WorldWideScience

Sample records for aquatic environments biological

  1. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L. [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  2. Hazardous wastes in aquatic environments: Biological uptake and metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Apblett, A.; Ensley, H. [and others

    1996-05-02

    The projects discussed in this article include the following: the uptake, accumulation, metabolism, toxicity and physiological effects of various environmentally-important contaminants, inorganic and organic, in several wetland species that are interrelated through food webs; and investigation of the potential for developing and linking chemical and biological methods of remediation so as to encapsulate bioaccummulated ions in stable wasteforms such as ceramics and/or zeolites. 24 refs.

  3. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    Science.gov (United States)

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  4. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  5. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  6. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  7. Nanomaterials in the aquatic environment

    DEFF Research Database (Denmark)

    Selck, Henriette; Handy, Richard D; Fernandes, Teresa F.

    2016-01-01

    in addressing the following overarching research topics: 1) NM characterization and quantification in environmental and biological matrices; 2) NM transformation in the environment and consequences for bioavailability and toxicity; 3) alternative methods to assess exposure; 4) influence of exposure scenarios......The European Union–United States Communities of Research were established in 2012 to provide a platform for scientists to develop a “shared repertoire of protocols and methods to overcome nanotechnology environmental health and safety (nanoEHS) research gaps and barriers” (www.us-eu.org/). Based...... on bioavailability and toxicity; 5) development of more environmentally realistic bioassays; and 6) uptake, internal distribution, and depuration of NMs. Research addressing these key topics will reduce uncertainty in ecological risk assessment and support the sustainable development of nanotechnology....

  8. The Experiment Study of the Influence on Plant Seeds and Aquatic Bio-logical Survival in High Altitude Environment

    Institute of Scientific and Technical Information of China (English)

    陈霈润

    2015-01-01

    There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition (temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to suc⁃cess.

  9. Black magic in the aquatic environment

    NARCIS (Netherlands)

    Jonker, M.T.O.

    2004-01-01

    Sorption to sediment controlsthe actual fate and risks ofhydrophobic organic contaminants (HOCs)in most aquatic environments. Sediment-bound HOCs are not readily available for uptake by organisms and degra

  10. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    Science.gov (United States)

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines

  11. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  12. Aquatic plants for removal of mevinphos from the aquatic environment

    Science.gov (United States)

    Wolverton, B. C.

    1975-01-01

    Fragrant waterlily (Nymphaea odorata, Ait.), joint-grass (Paspalum distichum L.), and rush (Juncus repens, Michx.) were used to evaluate the effectiveness of vascular aquatic plants in removing the insecticide mevinphos (dimethyl-1-carbomethoxy-1propen-2-yl phosphate) from waters contaminated with this chemical. The emersed aquatic plants fragrant waterlily and joint-grass removed 87 and 93 ppm of mevinphos from water test systems in less than 2 weeks without apparent damage to the plants; whereas rush, a submersed plant, removed less insecticide than the water-soil controls. Water-soil control still contained toxic levels of this insecticide, as demonstrated by fish bioassay studies, after 35 days.

  13. Biological Fenton's oxidation of pentachlorophenol by aquatic plants.

    Science.gov (United States)

    Reis, Andre Rodrigues dos; Kyuma, Yukako; Sakakibara, Yutaka

    2013-12-01

    This study proposes a new treatment method to decompose persistent chemicals such as pentachlorophenol (PCP) in water, utilizing hydrogen peroxide present in aquatic plants to proceed the biological Fenton reaction. PCP was not effectively removed by aquatic plants. However, by adding 2.8 mM of Fe(2+), there was a rapid removal of PCP while at the same time consumption of endogenous hydrogen peroxide occurred. It was observed the increase of chloride ions formation in water-confirming the complete degradation of PCP. These results demonstrated that PCP was oxidized through a biological Fenton reaction, and hydrogen peroxide in aquatic plants was a key endogenous substance in treatment of refractory toxic pollutants.

  14. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total phytoplankton biomass in a nutrient...

  15. Virtual Environments in Biology Teaching

    Science.gov (United States)

    Mikropoulos, Tassos A.; Katsikis, Apostolos; Nikolou, Eugenia; Tsakalis, Panayiotis

    2003-01-01

    This article reports on the design, development and evaluation of an educational virtual environment for biology teaching. In particular it proposes a highly interactive three-dimensional synthetic environment involving certain learning tasks for the support of teaching plant cell biology and the process of photosynthesis. The environment has been…

  16. APPLICATION OF SALMONIDS (SALMONIDAE N THE BIOMONITORING OF AQUATIC ENVIRONMENT (REVIEW

    Directory of Open Access Journals (Sweden)

    D. Yanovych

    2016-03-01

    Full Text Available Purpose. Due to the pollution of fisheries water bodies by industrial and agricultural waste waters, as well as by xenobiotics coming from other sources, taking into account a pridictable increase in the amounts of such effluents in the short and long terms, the problems related to the study of the effects of the pollutants of different nature and origin on aquatic organisms, especially fish, as well as a prediction of possible adverse consequences on aquatic ecosystems, becomes particularly important. The aim of our work was an analysis and synthesis of existing literature data concerning the indication in the biomonitoring of aquatic environments based on biological markers of salmonids as highly sensitive objects of fish fauna to external factors. Findings. The review summarizes and systematizes the data concerning the use of salmonids in biomonitoring studies. Furthermore, we highlighted and characterized the specificity of bioindication parameters of the aquatic environment state, such as the biochemical, genetic, physiological, morphological, histopathological, behavioral and population markers and noted the effects of hydroecosystem ecotoxication on different levels of biological organization (cell, individual, population, fish community. We also described the possibility of biological monitoring based on saprobic indexes identified for indicator species belonging to salmonids. Originality. In the article describes the structure, pros and cons of the use of specific biomarkers of individual salmonid fish and their populations for assessing the ecological status of aquatic environments. Practical value. The data given in the article can be used to improve the system of the ecological monitoring of aquatic environments by extending the range of indicator indices with organism and population biomarkers of highly sensitive salmonid species.

  17. Nutrition considerations in special environments for aquatic sports.

    Science.gov (United States)

    Stellingwerff, Trent; Pyne, David B; Burke, Louise M

    2014-08-01

    Elite athletes who compete in aquatic sports face the constant challenge of arduous training and competition schedules in difficult and changing environmental conditions. The huge range of water temperatures to which swimmers and other aquatic athletes are often exposed (16-31 °C for open-water swimming), coupled with altered aquatic thermoregulatory responses as compared with terrestrial athletes, can challenge the health, safety, and performance of these athletes. Other environmental concerns include air and water pollution, altitude, and jetlag and travel fatigue. However, these challenging environments provide the potential for several nutritional interventions that can mitigate the negative effects and enhance adaptation and performance. These interventions include providing adequate hydration and carbohydrate and iron intake while at altitude; optimizing body composition and fluid and carbohydrate intake when training or competing in varying water temperatures; and maximizing fluid and food hygiene when traveling. There is also emerging information on nutritional interventions to manage jetlag and travel fatigue, such as the timing of food intake and the strategic use of caffeine or melatonin. Aquatic athletes often undertake their major global competitions where accommodations feature cafeteria-style buffet eating. These environments can often lead to inappropriate choices in the type and quantity of food intake, which is of particular concern to divers and synchronized swimmers who compete in physique-specific sports, as well as swimmers who have a vastly reduced energy expenditure during their taper. Taken together, planned nutrition and hydration interventions can have a favorable impact on aquatic athletes facing varying environmental challenges.

  18. Toxicity of Ordnance Wastes in Aquatic Environments

    Science.gov (United States)

    1976-01-30

    tidal pool copepod Tigriopus californicus . Environ. Poll. 4(l):69-79. -17- Background References (Cont’d.) Osmon, J.L. and R.E. Klausmeier. 1973. The...toxicity of picric acid for the seawater copepod Tigriopus . Extremely good correlation is also obtained in comparing the toxicities of Otto fuel, Noset...Daphnia (65 ppm) and that of Tigriopus (45 ppm) appear to be the right order of magnitude when compared with results summarized by McKee and Wolf

  19. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  20. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota.

  1. Assessment of Constructed Wetland Biological Integrity Using Aquatic Macroinvertebrates

    Directory of Open Access Journals (Sweden)

    C. Galbrand

    2007-01-01

    Full Text Available A surface flow constructed wetland consisting of seven cells was used to treat the leachates from a decommissioned landfill. Wetland monitoring was performed by evaluating the treatment efficiency of the landfill leachate and the wetland biological integrity of the wetland. The water quality samples were analyzed for iron, manganese, phosphorus (orthophosphate, pH, dissolved oxygen (DO, nitrogen (ammonia, nitrate, nitrite and TKN, chemical oxygen demand (COD, total suspended solids (TSS and total dissolved solids (TDS. Aquatic macroinvertebrates were examined using Average Score per Taxon (ASPT via the Biological Monitoring Working Party (BMWP biotic index, the Ephemeroptera, Trichoptera, Sphaeriidae and Odonata (ETSD biotic index, abundance of mayflies and trophic structure. Reductions of 49.66, 66.66, 1.91, 46.37 and 8.33% were obtained for manganese, orthophosphate, TSS, TDS and COD, respectively. The nitrite, dissolved oxygen and iron concentrations were not in accordance with the water quality guidelines for aquatic life. ASPT, ETSD, percent abundance of mayflies and trophic structure represented moderate to moderately-poor water quality in comparison to a high quality reference site. Iron had most adverse effect on the biological system of the wetland.

  2. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  3. Ecological study of pathogenic vibrios in aquatic environments.

    Science.gov (United States)

    Shinoda, Sumio; Furumai, Yuki; Katayama, Sei-Ichi; Mizuno, Tamaki; Miyoshi, Shin-Ichi

    2013-01-01

    An ecological study of pathogenic vibrios in aquatic environments of Okayama was carried out. The number of Vibrio parahaemolyticus detected in the sea area was comparatively smaler than that found in the survey of about two decades ago. Various reasons for the decrease in the case of food poisoning by V. parahaemolyticus have been suggested but the lower number of the vibrio in aquatic environments may be one explanation. Although the number of V. vulnificus was also not as large, most of the isolates possessed the pathogenic genes, vvp and vvh, suggesting the potential for fatal pathogenicity to patients having underlying diseases. As for V. cholerae, some non-O1/non-O139 serovar isolates were detected in a fresh water area, and many of them had hlyA, the gene for hemolysin which acts as a pathogenic factor in sporadic cases of diarrhea. Thus, the total number of pathogenic vibrios detected was not of concern. However, the marine products of these areas are shipped in wide area and are for general consumption. Therefore, it is necessary to continue to survey pathogenic vibrios in aquatic environments in order to ensure food hygiene.

  4. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  5. Tropical Aquatic Archaea Show Environment-Specific Community Composition

    Science.gov (United States)

    Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota, a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729

  6. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    Science.gov (United States)

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  7. Progestagens for human use, exposure and hazard assessment for the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Jean-Philippe [Unite Biologie des ecosystemes aquatiques, Laboratoire d' ecotoxicologie, Cemagref, 3bis quai Chauveau CP 220, 69336 Lyon cedex 09 (France); Garric, Jeanne, E-mail: jeanne.garric@cemagref.f [Unite Biologie des ecosystemes aquatiques, Laboratoire d' ecotoxicologie, Cemagref, 3bis quai Chauveau CP 220, 69336 Lyon cedex 09 (France)

    2009-12-15

    Little information is available on the environmental occurrence and ecotoxicological effects of pharmaceutical gestagens released in the aquatic environment. Since eighteen different gestagens were found to be used in France, preliminary exposure and hazard assessment were done. Predicted environmental concentrations (PECs) suggest that if parent gestagens are expected to be found in the ng l{sup -1} range, some active metabolites could be present at higher concentrations, although limited data on metabolism and environmental fate limit the relevance of PECs. The biological effects are not expected to be restricted to progestagenic activity. Both anti-androgenic activity (mainly for cyproterone acetate, chlormadinone acetate and their metabolites) and estrogenic activity (mainly for reduced metabolites of levonorgestrel and norethisterone) should also occur. All these molecules are likely to have a cumulative effect among themselves or with other xenoestrogens. Studies on occurrence, toxicity and degradation time are therefore needed for several of these compounds. - Gestagens exposure and hazard assessment for the aquatic environment.

  8. Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2017-01-01

    Full Text Available The specific properties of metal-based nanoparticles (NPs have not only led to rapidly increasing applications in various industrial and commercial products, but also caused environmental concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts. This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment. Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS generation could influence each other and also be influenced by many factors, including the sizes, shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants, zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic effects could result from direct or indirect interactions between DNA and NPs. Finally, several challenges facing us are put forward in the review.

  9. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    Science.gov (United States)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  10. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  11. DISSIPATION AND ENVIRONMENTAL RISK OF FIPRONIL ON AQUATIC ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    JOAQUIM G. MACHADO-NETO

    2013-06-01

    Full Text Available Pesticides have been used in agriculture to avoid productivity losses caused by various organisms. However, the indiscriminate use of these chemicals has resulted in negative impacts on the environment, such as residues in soil, water, air, plants and animals. Fipronil is a phenylpyrazole insecticide widely used in agricultural management to control pests of sugar cane in Brazil, and it can be leached into aquatic ecosystems. The present study aimed to evaluate the environmental risk of toxic concentrations and dissipation of fipronil to Poecilia reticulata, based on the 96-h median lethal concentration (LC50 value estimated at 0.08 ± 0.01 mg/L without sediment and 0.09 ± 0.01 mg/L with sediment of fipronil in the aquatic environment. These values of fipronil were classified as extremely toxic to P. reticulata in both cases, which showed high environmental risk of poisoning to a shallow film of water of 1 ha and 0.30 m deep, with and without sediment. On the other hand, in bodies of water 1 ha and 2.0 m deep, it was of moderate toxicity. Dissipation of fipronil in the water was not affected by temperature, sediment or photoperiod. The minimum time to which fipronil caused 50% acute mortality (0.08 mg/L after dilution of 0.75 mg/L was 242 days; the withdrawal period, after which no mortality occurs (0.025 mg/L, was 263 days.

  12. Azole Fungicides as Synergists in the Aquatic Environment

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen

    the aquaticcrustacean Daphnia magna in both laboratory experiments and natural-like environments. In the PhDthesis, synergy is defined as happening in mixtures where either EC50 values decrease more than two-foldbelow the prediction by the model of Concentration Addition (horizontal assessment of synergy) or wherethe...... forbifenthrin. Subsequent experiments indirectly assessed sorption strength by measuring the bioaccessiblefraction of the sorbed pesticides using poly(dimethylsiloxane) (PDMS) rods. Bifenthrin bioaccessibilitywas significantly reduced in an algae suspension of approximately 17,000 cells mL-1 while a tendency...... ofsynergistically acting azoles in the environment. As a consequence of sorbents acting as vectors andpotential accumulation within exposed organisms, aquatic organisms may experience larger exposureconcentrations, leading to greater synergistic effects, than expected based on single azole concentrationsmeasured...

  13. Forestry and the aquatic environment: studies in an Irish context

    Science.gov (United States)

    Giller, P. S.; O'Halloran, J.

    Research on the interaction between plantation forestry and aquatic environments is essential to develop environmentally compatible and sustainable management further. Given, in Ireland, the generally low levels of atmospheric pollution, its geology and maritime climate, and the unique fauna and flora due to its island history, such studies are important not only in the regional context, but also internationally, as they provide an opportunity to examine the effect of forestry and forest management practices on aquatic systems per se, without the complications of acidification. Here, some of the major findings of forestry and water research in Ireland have been reviewed and compared with those from the UK and elsewhere. Plantation forests do not exacerbate acidification in the south of Ireland (Munster) as a whole so that the influence of forestry on water chemistry is far less important than in other parts of the country (such as Wicklow and Mayo). The main forestry influence on streams in Munster is more likely through physical factors, but their nature is unclear. In a few catchments some negative effects are evident, but in many others apparently positive forest effects occur. In this context, smaller scale catchment-level effects appear to be more important in explaining the various relationships between plantation forests and stream ecology than larger scale regional factors. The management of riparian zones, particularly in forested catchments, is of major importance for the structure and functioning of aquatic communities and further work is needed on best management practices. It is suggested that it is unreasonable to base forest management on national Forest-Fisheries guidelines since regions vary too much and the signal from local conditions is too strong. The approach for environmentally benign, scientifically sound forestry management has to be at the catchment scale. Trees in the right places may be beneficial ecologically but further work is needed

  14. Forestry and the aquatic environment: studies in an Irish context

    Directory of Open Access Journals (Sweden)

    P. S. Giller

    2004-01-01

    Full Text Available Research on the interaction between plantation forestry and aquatic environments is essential to develop environmentally compatible and sustainable management further. Given, in Ireland, the generally low levels of atmospheric pollution, its geology and maritime climate, and the unique fauna and flora due to its island history, such studies are important not only in the regional context, but also internationally, as they provide an opportunity to examine the effect of forestry and forest management practices on aquatic systems per se, without the complications of acidification. Here, some of the major findings of forestry and water research in Ireland have been reviewed and compared with those from the UK and elsewhere. Plantation forests do not exacerbate acidification in the south of Ireland (Munster as a whole so that the influence of forestry on water chemistry is far less important than in other parts of the country (such as Wicklow and Mayo. The main forestry influence on streams in Munster is more likely through physical factors, but their nature is unclear. In a few catchments some negative effects are evident, but in many others apparently positive forest effects occur. In this context, smaller scale catchment-level effects appear to be more important in explaining the various relationships between plantation forests and stream ecology than larger scale regional factors. The management of riparian zones, particularly in forested catchments, is of major importance for the structure and functioning of aquatic communities and further work is needed on best management practices. It is suggested that it is unreasonable to base forest management on national Forest-Fisheries guidelines since regions vary too much and the signal from local conditions is too strong. The approach for environmentally benign, scientifically sound forestry management has to be at the catchment scale. Trees in the right places may be beneficial ecologically but

  15. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    -ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me...... transformations of Me-ENPs, (2) uptake and accumulation in prey organisms, (3) internal fate and localization in the prey, and (4) digestive physiology of the predator. Whilst much research has been conducted on the first two of these factors, key knowledge gaps exist in our understanding of how Me-ENP trophic...

  16. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    John A. McLachlan

    2003-12-01

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial

  17. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.

  18. A Study on Rapid Biological Screening of Estrogens in Aquatic Environment by Enzyme-Linked Immunosorbent Assay%水环境中雌激素的酶联免疫快速生物筛选技术研究

    Institute of Scientific and Technical Information of China (English)

    胡双庆; 沈根祥; 朱江; 张洪渠; 刘勇弟

    2012-01-01

    There has been more and more public concern about estrogens distributed extensively in aquatic environment as they may bring potential threat to human health and ecological safety due to their endocrine disrupting activities.The study aimed to determine contents of a typical estrogen 17β-estradiol(E2) in water samples collected from the Yangtze estuary and wastewater treatment plants by using enzyme-linked immunosorbent assay(ELISA),and then to verify the results by being compared with the measurements of a chemical method.It has shown that the lowest detection limit of ELISA could reach 0.5 ng/L and the coefficient of variance for the tests was below 30%indicating its high sensitivity and repeatability.E2 concentrations detected by ELISA were not greater than 0.7 ng/L in the water samples taken from the Yangtze estuary,and in the range of 2.5 ~ 11.5 ng/L in the samples from wastewater treatment plants,whilst they had a good correlation (R2 = 0.9147) with the results obtained by means of LC-MS/MS.On comparison,ELISA required less volume of water samples and took much less time for performing 43 sample analysis simultaneously by using 96-well microplates.It revealed that as a rapid,convenient and economical method and a highly throughput screening technique,ELISA could provide technical supports for environmental authorities to investigate and quickly examine estrogens in natural aquatic environment.%采用酶联免疫(ELISA)检测技术,对来自长江口及污水处理厂的水样分析典型雌激素雌二醇(E2)的浓度,将检测结果与化学方法检测数据进行比较验证,以阐明ELISA应用于水环境雌激素快速筛选的可行性。结果表明:ELISA的检测限可低至0.5 ng/L,试验的变异系数〈30%,具有较高的灵敏性和良好的重复性;ELISA检测长江口水样中E2浓度范围≤0.7 ng/L,污水处理厂水样为2.5~11.5 ng/L,与液相色谱串联质谱(LC-MS/MS)的检测数据进行

  19. The mechanisms of nickel toxicity in aquatic environments: an adverse outcome pathway analysis.

    Science.gov (United States)

    Brix, Kevin V; Schlekat, Christian E; Garman, Emily R

    2016-12-09

    Current ecological risk assessment and water quality regulations for nickel (Ni) use mechanistically based, predictive tools such as biotic ligand models (BLMs). However, despite many detailed studies, the precise mechanism(s) of Ni toxicity to aquatic organisms remains elusive. This uncertainty in the mechanism(s) of action for Ni has led to concern over the use of tools like the BLM in some regulatory settings. To address this knowledge gap, the authors used an adverse outcome pathway (AOP) analysis, the first AOP for a metal, to identify multiple potential mechanisms of Ni toxicity and their interactions with freshwater aquatic organisms. The analysis considered potential mechanisms of action based on data from a wide range of organisms in aquatic and terrestrial environments on the premise that molecular initiating events for an essential metal would potentially be conserved across taxa. Through this analysis the authors identified 5 potential molecular initiating events by which Ni may exert toxicity on aquatic organisms: disruption of Ca(2+) homeostasis, disruption of Mg(2+) homeostasis, disruption of Fe(2+/3+) homeostasis, reactive oxygen species-induced oxidative damage, and an allergic-type response of respiratory epithelia. At the organ level of biological organization, these 5 potential molecular initiating events collapse into 3 potential pathways: reduced Ca(2+) availability to support formation of exoskeleton, shell, and bone for growth; impaired respiration; and cytotoxicity and tumor formation. At the level of the whole organism, the organ-level responses contribute to potential reductions in growth and reproduction and/or alterations in energy metabolism, with several potential feedback loops between each of the pathways. Overall, the present AOP analysis provides a robust framework for future directed studies on the mechanisms of Ni toxicity and for developing AOPs for other metals. Environ Toxicol Chem 2017;9999:1-10. © 2016 SETAC.

  20. Transuranic radionuclides dispersed into the aquatic environment, a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.; Stoker, A.C.; Wong, Kai M. [and others

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

  1. Local density variation of gold nanoparticles in aquatic environments

    Science.gov (United States)

    Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.

    2016-10-01

    Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.

  2. Memorandum of Understanding (MOU) between EPA and SEMARNAT on cooperation in coastal and aquatic environment

    Science.gov (United States)

    In September 2012, EPA signed a Memorandum of Understanding (MOU) with Mexico's Environment Ministery (SEMARNAT) on cooperation in coastal and aquatic environments to promote such joint work, including work on ship emissions.

  3. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  4. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    Science.gov (United States)

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.

  5. Visual sensory disability: rehabilitative treatment in an aquatic environment.

    Science.gov (United States)

    Bellomo, R G; Barassi, G; Iodice, P; Di Pancrazio, L; Megna, M; Saggini, R

    2012-01-01

    The outcome of this study is based on the concept of the enormous potentiality that is expressed, after the elimination of myofascial and articular compensation, from the body system. 10 low vision and blind subjects aged between 35 and 50 years. The subjects performed 10 sessions (2/week) for 5 weeks. Each session consisted of a training in the gym (30 minutes) and hydrokinetic therapy (45 minutes) All the subjects at the beginning (T0) and at the end (T1) of the rehabilitation program were tested by static baropodometry and the stabilometric (Milletrix, Diagnostic support, Rome, Italy). Our results shows an increase of the total area of support surface (p0.05). The stabilometry results shows an improvement of the orthostatic balance, sway area and the ellipse area decrease respectively 15% (236,9vs201 p≤0.05) and 41% b(p≤0.05). Thus, the energy expenditure of the patient in maintaining the orthostatic position without visual afferences is lower. Rehabilitative treatment in an aquatic environment resulted effective in improving posture and balance in all patients with increased precision in the execution of the step, which implies less effort during walk, less energy consumption and better quality of life.

  6. Assessing pesticide exposure of the aquatic environment in tropical catchments

    Science.gov (United States)

    Weiss, Frederik; Zurbrügg, Christian; Eggen, Rik; Castillo, Luisa; Ruepert, Clemens; Stamm, Christian

    2015-04-01

    Today, pesticides are intensively used in agriculture across the globe. Worldwide about 2.4×106 tons of pesticides are used annually on 1.6×109 ha of arable land. This yields a global average use of pesticides of 1.53 kg ha-1 year-1. Available data suggest that the use in the agricultural sector will continue to grow. Recently it was estimated that within the last decade, the world pesticide market increased by 93% and the Brazilian market alone by 190%. Though pesticides are intensively used in many low and middle income countries (LAMICs), scientifically sound data of amounts and types of pesticide use and the resulting impact on water quality are lacking in many of these countries. Therefore it is highly relevant to: i) identify risk areas where pesticides affect environmental health, ii) understand the environmental behavior of pesticides in vulnerable tropical ecosystems; and iii) develop possible mitigation options to reduce their exposure to ecosystems and humans. Here we present a project that will focus on assessing pesticide exposure of the aquatic environment and humans in tropical catchments of LAMICs. A catchment in the Zarcero province in Costa Rica will be the test case. Pesticide exposure will be assessed by passive sampling. In order to cover a broad range of compounds of possible use, two sampling devices will be used: SDB membranes for collecting polar compounds and silicon sheets for accumulating apolar pesticides. Extracts will be subsequently analysed by GC-MSMS and LC-HRMS.

  7. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Passow, Uta; Castrillón, Santiago Romero-Vargas; Elimelech, Menachem

    2015-01-20

    Transparent exopolymer particles (TEP) are ubiquitous in marine and freshwater environments. For the past two decades, the distribution and ecological roles of these polysaccharide microgels in aquatic systems were extensively investigated. More recent studies have implicated TEP as an active agent in biofilm formation and membrane fouling. Since biofouling is one of the main hurdles for efficient operation of membrane-based technologies, there is a heightened interest in understanding the role of TEP in engineered water systems. In this review, we describe relevant TEP terminologies while critically discussing TEP biological origin, biochemical and physical characteristics, and occurrence and distributions in aquatic systems. Moreover, we examine the contribution of TEP to biofouling of various membrane technologies used in the desalination and water/wastewater treatment industry. Emphasis is given to the link between TEP physicochemical and biological properties and the underlying biofouling mechanisms. We highlight that thorough understanding of TEP dynamics in feedwater sources, pretreatment challenges, and biofouling mechanisms will lead to better management of fouling/biofouling in membrane technologies.

  8. A Multisensory Aquatic Environment for Individuals with Intellectual/Developmental Disabilities

    Science.gov (United States)

    Potter, Cindy; Erzen, Carol

    2008-01-01

    This article presents the eighth of a 12-part series exploring the benefits of aquatic therapy and recreation for people with special needs. Here, the authors describe the process of development and installation of an aquatic multisensory environment (MSE) and the many factors that one should consider for a successful result. There are many…

  9. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs...

  10. ASSESSMENT OF 17β-ESTRADIOL IN AQUATIC ENVIRONMENTS AROUND KLANG VALLEY, MALAYSIA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study was conducted to assess the existing concentration of 17β-estradiol(E2)in the sulfate water samples collected from rivers and lakes around Klang Valley,Malaysia.E2,which is a natural feminizing chemical produced in female organisms.regularly used to compare with other environmental estrogens because they behave similarly and react effectively as a hormone at a very low concentration.It was found that the average concentration of E2 in the aquatic environment of Klang Valley was(14.08 ±3.67)pg/mL,which was 14 times higher than those in the Japanese aquatic environment in this study.The river system had the average concentration of(20.02±5.26)pg/mL while the lake had an average concentration of(5.91 ±3.39)pg/mL.The E2 concentration was presumed high if the sourcesoccurred nearby the area.Current levels of E2 in the aquatic environment may possess threats to existing aquatic organisms.Since high level of E2 has been discovered in the aquatic environment around Klang Valley,further studies and monitoring of E2 and other EDCs concentrations are needed to determine their levels in Malaysian aquatic environment and help to control these chemicals pollution in the aquatic environment.

  11. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  12. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    Science.gov (United States)

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  13. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment

    OpenAIRE

    Furlaneto Luciana; Saridakis Halha Ostrensky; Arantes Olívia Márcia Nagy

    2000-01-01

    Field and laboratory studies were conducted to assess the survival of cells and spores and plasmid transfer between Bacillus thuringienis strains in aquatic environment. Results indicated that cells and spores of B. thuringiensis can survive for 10 days in water, without altering their number. The sporulation process began after 12-15 hours of inoculation of water. B. thuringiensis was able to transfer conjugative plasmids in the aquatic environment.

  14. Progress in study on endocrine disrupting pesticides (EDPs) in aquatic environment

    Institute of Scientific and Technical Information of China (English)

    XUE Nandong; WANG Hongbo; XU Xiaobai

    2005-01-01

    Background on the generation of the problems of endocrine disrupting pesticides (EDPs) in aquatic environment, characteristics of EDPs, adverse effects and their effect mechanism of EDPs on human and wildlife, the transportation and degradation pathways of EDPs in water and analysis methods of EDPs in water were reviewed. The importance of EDPs in water should be attached to adverse effects on wildlife and human health. It was advised to establish research programs on EDPs in aquatic environment especially in water supply source.

  15. Role of an Aquatic and Non Aquatic Environment on Trunk Muscle Activation

    OpenAIRE

    VandenBerg, Jeanne P.

    2011-01-01

    Low back pain (LBP) is a widespread problem affecting a number of people. Traditionally treated by nonoperative approaches the recent development of water currents and treadmills imbedded into pools has spurred physical therapists and athletic trainers to incorporate the use of aquatic therapy into their rehabilitation programs. OBJECTIVE: Determine if select trunk muscle activity levels are different in water-based exercises compared to land-based exercises. METHODS: 11 healthy male particip...

  16. The influence of the aquatic environment on the control of postural sway.

    Science.gov (United States)

    Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R

    2017-01-01

    Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control.

  17. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    Science.gov (United States)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  18. Fate and effects of amphoteric surfactants in the aquatic environment.

    Science.gov (United States)

    Garcia, M Teresa; Campos, Encarna; Marsal, Agustí; Ribosa, Isabel

    2008-10-01

    Amphoteric surfactants form part of specialty surfactants available for formulators to improve or design new formulations in response to environmental, toxicity, safety and performance demands. Nevertheless, limited information on the ecological properties of amphoterics is available. In the present work, the aerobic and anaerobic biodegradability and the aquatic toxicity of different types of amphoteric surfactants (three alkyl betaines, one alkylamido betaine and three alkyl imidazoline derivatives) were studied. The amphoteric surfactants tested were readily biodegradable under aerobic conditions (CO2 headspace test) and alkylamido betaines and alkyl imidazoline derivatives were also easily biodegradable under anaerobic conditions (test based on the ECETOC method). Toxicity to Photobacterium phosphoreum and Daphnia magna increased with the fatty chain length of the surfactant. The EC50 toxicity values of the amphoterics tested were higher than 5 mg/L, and alkyl imidazoline derivatives, with EC50 values from 20 to > 200 mg/L, showed the lowest aquatic toxicity.

  19. Kinesiological Analysis of Stationary Running Performed in Aquatic and Dry Land Environments

    Directory of Open Access Journals (Sweden)

    Lima Alberton Cristine

    2015-12-01

    Full Text Available The purpose of the present study was to analyze the electromyographic (EMG signals of the rectus femoris (RF, vastus lateralis (VL, semitendinosus (ST and short head of the biceps femoris (BF during the performance of stationary running at different intensities in aquatic and dry land environments. The sample consisted of 12 female volunteers who performed the stationary running exercise in aquatic and dry land environments at a submaximal cadence (80 beats·min-1 controlled by a metronome and at maximal velocity, with EMG signal measurements from the RF, VL, ST and BF muscles. The results showed a distinct pattern between environments for each muscle examined. For the submaximal cadence of 80 beats·min-1, there was a reduced magnitude of the EMG signal in the aquatic environment, except for the ST muscle, the pattern of which was similar in both environments. In contrast to the submaximal cadence, the pattern of the EMG signal from all of the muscles showed similar magnitudes for both environments and phases of movement at maximal velocity, except for the VL muscle. Therefore, the EMG signals from the RF, VL, ST and BF muscles of women during stationary running had different patterns of activation over the range of motion between aquatic and dry land environments for different intensities. Moreover, the neuromuscular responses of the lower limbs were optimized by an increase in intensity from submaximal cadence to maximal velocity.

  20. Detection and characterization of Salmonella spp. in recreational aquatic environments in the Northeast of Argentina

    Directory of Open Access Journals (Sweden)

    María Fernanda Tracogna

    2013-08-01

    Full Text Available The aim of this work was to detect the presence of Salmonella spp. in recreational aquatic environments in the Northeast of Argentina and to relate it with water and environmental parameters. Sixty eight samples of water from recreational aquatic environments in the provinces of Chaco and Corrientes, Argentina, were studied. Salmonellae were detected in 6 samples (8.8%. Salmonella spp. isolates belonged to the following species and serovars: S. enterica serovar Give, S. enterica subespecie IV, S. enterica ser. Bredeney, S. enterica ser. Rubislaw, and S. enterica ser. Enteritidis (two isolates. None of the isolates were resistant to tested antimicrobials. There were no significant differences among sampling sites as a reservoir of bacteria Salmonella spp. and the other variables. The presence of Salmonella spp. in our recreational aquatic environments reaffirms the need for monitoring in order to minimize the risks of infection to exposed persons.

  1. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  2. Biologically mediated transport of contaminants to aquatic systems.

    Science.gov (United States)

    Blais, Jules M; Macdonald, Robie W; Mackay, Donald; Webster, Eva; Harvey, Colin; Smol, John P

    2007-02-15

    The prevailing view is that long-range transport of semivolatile contaminants is primarily conducted by the physical system (e.g., winds, currents), and biological transport is typically ignored. Although this view may be correct in terms of bulk budgets and fluxes, it neglects the potential of animals to focus contaminants into foodwebs due to their behaviors and lifecycles. In particular, gregarious animals that biomagnify and bioaccumulate certain contaminants and then migrate and congregate can become the predominant pathway for contaminants in many circumstances. Fish and birds provide prominent examples for such behavior. This review examines the potential for biovector transport to expose populations to contaminants. In addition, we apply a modeling approach to compare the potential of biovector transport to other physical transport pathways for a hypothetical lake receiving large numbers of fish. We conclude that biovector transport should not be neglected when considering environmental risks of biomagnifying contaminants.

  3. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment.

    Science.gov (United States)

    Zenker, Armin; Cicero, Maria Rita; Prestinaci, Francesca; Bottoni, Paola; Carere, Mario

    2014-01-15

    Pharmaceuticals, among the emerging contaminants, are one of the most relevant groups of substances in aquatic ecosystems due to universal use, their chemico-physical properties and known mode of action in aquatic organisms at low concentrations. After administration many drugs and their transformation products are only retained to some extent in wastewater treatment plants therefore entering the aquatic environment in considerable high amounts. The yearly consumption to treat human and animal diseases, also in livestock and aquaculture was estimated to be hundred thousands tons per year leading to high concentrations in surface water of developed countries. Mostly, pharmaceutical residues in effluents of wastewater treatment plants or in the water column of surface waters have been reported, but data about concentrations in the aquatic biota, partitioning of pharmaceuticals to biosolids, soils, and sediments and the bioaccumulation properties are often lacking. Chronic and subtle effects can be expected when aquatic organisms are long term exposed by pseudo-persistent, persistent and accumulative compounds. This review aims to summarize the current state of research about the fate of pharmaceuticals regarding bioconcentration, bioaccumulation and potential biomagnification in aquatic ecosystems. More comprehensive approaches for the evaluation of environmental (ERA) and human health risk assessment (HRA) are included and analytical methods required to detect bioaccumulation of pharmaceuticals are discussed.

  4. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  5. Identification of Endocrine Disruptive Effects in the Aquatic Environment - a Partial Life Cycle Study in Zebrafish

    NARCIS (Netherlands)

    Wester PW; Brandhof EJ van den; Vos JH; Ven LTM van der; TOX; LER

    2003-01-01

    In this project, an assay was developed and applied to identify hormone active substances in the aquatic environment. Laboratory fish were exposed during the reproductive and development phase to a range of established endocrine active compounds; these were estrogen (17 beta-estradiol), anti-estroge

  6. Biodegradation of pesticides using fungi species found in the aquatic environment.

    Science.gov (United States)

    Oliveira, B R; Penetra, A; Cardoso, V V; Benoliel, M J; Barreto Crespo, M T; Samson, R A; Pereira, V J

    2015-08-01

    Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.

  7. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC.

  8. Chlorinated organic compounds in aquatic biological resources of the Baltic region

    Directory of Open Access Journals (Sweden)

    Dubova O. L.

    2016-09-01

    Full Text Available The results of studying dependencies of levels of polychlorinated biphenyls (PCBs and chlorinated pesticides in the liver and muscles of the main commercial fish species of the Baltic Sea (sprat, herring, cod, flounder, the Vistula and the Curonian Bay (pike-perch, bream, roach on the fishing area, season and fish species have been considered. Determination of PCBs and pesticides has been carried out in accordance with MVI MN 2352–2005 "Method for simultaneous determination of residual amounts of PCBs and organochlorine pesticides in fish and fish products by gas-liquid chromatography". Separation, identification and quantification have been performed by the gas chromatography Varian 3400 on the DB-1701 column, 30 m  0.25 mm  0.25 m, the column temperature 150–250 °C, the detector one – 300 °C. Identification and quantification have been performed by retention time of individual PCB congeners by the internal standard. The content of PCBs in liver of the Curonian and Vistula Bays fish is much lower than in liver of aquatic biological resources (ABR of the Baltic Sea. Hexachlorocyclohexane (HCH and dichlorodiphenyltrichloroethane (DDT are accumulated more intensively in liver of fish caught in the southern part of the Baltic Sea. β-HCH and γ-HCH prevail in the liver and muscle tissue of ABR samples as individual organochlorine pesticides (OCPs. The all three isomers of HCH are present in cod liver. Accumulation ratio in cod liver compared to that in the muscle tissue content reaches 7-8 units HCH for isomers, and for DDT and metabolites – 10-12 units. It has been proposed that the secondary admission of HCH in the aquatic environment and in ABG (delivery from sediments takes place. Organochlorine pesticides such as hexachlorobenzene, heptachlor and aldrin are present in the Baltic Sea ABR in quantities below the detection limit used in the analysis methods. In spring and summer, there is an increased level of HCH and DDT in

  9. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station.

    Science.gov (United States)

    Uemoto, H; Shoji, T; Uchida, S

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate

  10. Micro/nanofabricated environments for synthetic biology.

    Science.gov (United States)

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.

  11. Extraction and detection of Ionophores in the Aquatic Environment

    DEFF Research Database (Denmark)

    Bak, Søren Alex; Hansen, Martin; Krogh, Kristine Andersen;

    . 2002; Hansen et al. 2009c). The focus of the present study is on the recent advances of a new analytical method for sampling, extraction and detection of ionophores in liquid matrices. The hyphenated method consists of an integrated clean-up with solid phase extraction followed by high......-performance liquid chromatography tandem in space mass spectrometry. Halling-Sørensen B, Sengelov G, Tjørnelund J (2002) Arch Environ Contam Toxicol, 42: 3, pp. 263-271 Dolliver H, Gupta S (2008) J. Environ. Qual. 37: 2 pp. 1227-1237. Hansen M, Björklund E, Krogh KA, Halling-Sørensen B (2009a) TrAC 28:5 pp521...

  12. Removal of cytostatic drugs from aquatic environment: a review.

    Science.gov (United States)

    Zhang, Jiefeng; Chang, Victor W C; Giannis, Apostolos; Wang, Jing-Yuan

    2013-02-15

    Cytostatic drugs have been widely used for chemotherapy for decades. However, many of them have been categorized as carcinogenic, mutagenic and teratogenic compounds, triggering widespread concerns about their occupational exposure and ecotoxicological risks to the environment. This review focuses on trace presence, fate and ecotoxicity of various cytostatic compounds in the environment, with an emphasis on the major sources contributing to their environmental concentrations. Past records have documented findings mainly on hospital effluents though little effort has been directed to household discharges. There is also a lack in physico-chemical data for forecasting the chemodynamics of cytostatics in natural waters along with its human metabolites and environmental transformation products. In this light, obtaining comprehensive ecotoxicity data is becoming pressingly crucial to determine their actual impacts on the ecosystem. Literature review also reveals urinary excretion as a major contributor to various cytostatic residues appeared in the water cycle. As such, engaging urine source-separation as a part of control strategy holds a rosy prospect of addressing the "emerging" contamination issue. State-of-the-art treatment technologies should be incorporated to further remove cytostatic residues from the source-separating urine stream. The benefits, limitations and trends of development in this domain are covered for membrane bio-reactor, reverse/forward osmosis and advanced oxidation processes. Despite the respective seeming advantages of source separation and treatment technology, a combined strategy may cost-effectively prevent the cytostatic residues from seeping into the environment. However, the combination calls for further evaluation on the associated technological, social-economic and administrative issues at hand.

  13. Removal of cytostatic drugs from aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiefeng [Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Chang, Victor W.C., E-mail: wcchang@ntu.edu.sg [Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Giannis, Apostolos [Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Wang, Jing-Yuan [Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore)

    2013-02-15

    Cytostatic drugs have been widely used for chemotherapy for decades. However, many of them have been categorized as carcinogenic, mutagenic and teratogenic compounds, triggering widespread concerns about their occupational exposure and ecotoxicological risks to the environment. This review focuses on trace presence, fate and ecotoxicity of various cytostatic compounds in the environment, with an emphasis on the major sources contributing to their environmental concentrations. Past records have documented findings mainly on hospital effluents though little effort has been directed to household discharges. There is also a lack in physico-chemical data for forecasting the chemodynamics of cytostatics in natural waters along with its human metabolites and environmental transformation products. In this light, obtaining comprehensive ecotoxicity data is becoming pressingly crucial to determine their actual impacts on the ecosystem. Literature review also reveals urinary excretion as a major contributor to various cytostatic residues appeared in the water cycle. As such, engaging urine source-separation as a part of control strategy holds a rosy prospect of addressing the “emerging” contamination issue. State-of-the-art treatment technologies should be incorporated to further remove cytostatic residues from the source-separating urine stream. The benefits, limitations and trends of development in this domain are covered for membrane bio-reactor, reverse/forward osmosis and advanced oxidation processes. Despite the respective seeming advantages of source separation and treatment technology, a combined strategy may cost-effectively prevent the cytostatic residues from seeping into the environment. However, the combination calls for further evaluation on the associated technological, social-economic and administrative issues at hand. Highlights: ► We review the environmental occurrence, fate and ecotoxicity of cytostatic drugs. ► Four major sources contributing to

  14. Dissipation and removal of oseltamivir (Tamiflu) in different aquatic environments.

    Science.gov (United States)

    Accinelli, Cesare; Saccà, Maria Ludovica; Fick, Jerker; Mencarelli, Mariangela; Lindberg, Richard; Olsen, Björn

    2010-05-01

    The antiviral drug oseltamivir (Tamiflu) has received recent attention due to the potential use as a first-line defense against H5N1 and H1N1 influenza viruses. Research has shown that oseltamivir is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of oseltamivir in two surface water ecosystems of Japan and in a municipal wastewater treatment plant located in Northern Italy. Persistence of oseltamivir in surface water ranged from non-detectable degradation to a half-life of 53d. After 40d, sediments (5%) led to a significant increase of oseltamivir degradation and mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40d). More precisely, 76% and 37% of the initial radioactivity applied as (14)C-oseltamivir was recovered as (14)CO(2) from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on oseltamivir as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two oseltamivir-degrading strains showed that mineralization of oseltamivir was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that Tamiflu would not affect the microbial population of surface water and wastewater.

  15. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review.

    Science.gov (United States)

    Ahrens, Lutz; Bundschuh, Mirco

    2014-09-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their mixtures can be of significant environmental concern. The production of C8 -based PFASs (i.e., perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular, perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs to affect ecosystem structure and function in the aquatic environment.

  16. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain.

    Science.gov (United States)

    Sun, Caiyun; Ma, Qiyun; Zhang, Jiquan; Zhou, Mo; Chen, Yanan

    2016-08-01

    Phenanthrene (Phe) with carcinogenicity is ubiquitous in the environment, especially in aquatic environment; its toxicity is greater. To help determine toxicity risk and remediation strategies, this study predicted seasonal fate of Phe in aquatic environment. Candidate mechanisms including biodegradation, sorption, desorption, photodegradation, hydrolysis and volatility were studied; the results for experiments under simulated conditions for normal, wet and dry seasons in the Yinma River Basin indicated that biodegradation in sediment, sorption, desorption, and volatility were important pathways for elimination of Phe from aquatic environment and showed seasonal variations. A microcosm which was used to mimic sediment/water system was set up to illustrate seasonal distribution and transport of Phe. A Markov chain was applied to predict seasonal fate of Phe in air/water/sediment environment, the predicted results were perfectly agreed with results of microcosm experiments. Predicted results with a Markov chain suggested that volatility and biodegradation in sediment were main elimination pathways, and contributions of elimination pathways showed seasonal variations; Phe was eliminated from water and sediment to negligible levels over around 250 h in August and over 1000 h in May; in November, Phe was eliminated from water to a negligible level while about 31 % of Phe amount still remained in sediment over 1000 h.

  17. Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: a rural perspective.

    Science.gov (United States)

    Nebot, Carolina; Falcon, Raquel; Boyd, Kenneth G; Gibb, Stuart W

    2015-07-01

    Incomplete removal of pharmaceuticals during wastewater treatment can result in their discharge into the aquatic environment. The discharge of pharmaceuticals in wastewater treatment plant (WWTP) effluents into rivers, lakes and the oceans has led to detectable concentrations of pharmaceuticals in the aquatic environment in many countries. However, to date studies of WWTP discharges into the aquatic environment have largely been confined to areas of relatively high population density, industrial activity or systems impacted on by such areas. In this work, two sites in the far north of Scotland were used to assess whether, and which, pharmaceuticals were being introduced into natural waters in a rural environment with low population density. Samples from two WWTPs (with differing modes of operation), and one receiving water, the River Thurso, were analysed for the presence of 12 pharmaceuticals (diclofenac, clofibric acid, erythromycin, ibuprofen, mefenamic acid, paracetamol, propranolol, sulfamethoxazole, tamoxifen, trimethoprim and dextropropoxyphene). Ten of the 12 pharmaceuticals investigated were detected in at least one of the 40 WWTP effluent samples. Maximum concentrations ranged from 7 ng L(-1) (sulfamethoxazole) to 22.8 μg L(-1) (paracetamol) with diclofenac and mefenamic acid being present in all of samples analysed at concentrations between 24.2 and 927 ng L(-1) and 11.5 and 22.8 μg L(-1), respectively. Additionally, the presence of four pharmaceuticals at ng L(-1) levels in the River Thurso, into which one of the WWTPs discharges, shows that such discharges result in measurable levels of pharmaceuticals in the environment. This provides direct evidence that, even in rural areas with low population densities, effluents from WWTPs can produce quantifiable levels of human pharmaceutical in the natural aquatic environment. These observations indicate that human pharmaceuticals may be considered as contaminants, with potential to influence water quality

  18. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  19. Aquatic biology in Nederlo Creek, southwestern Wisconsin. Water-resources investigations (final)

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, P.A. Jr.; Lidwin, R.A.; Mason, J.W.; Narf, R.P.

    1982-09-01

    This report presents the results of biologic investigations made during a study of hydrology and water quality in a small drainage basin in the 'Driftless Area' of southwest Wisconsin. The aquatic community is diverse and reasonably stable with little indication of environmental disturbance. Aquatic macrophyte population (dominated by Ranunculus aquatilis L., Veronica catenata Penn., and Nasturtium officinale) varies little from spring to fall. Periphytic and planktonic algae are predominantly diatoms, with the genus Achnanthes dominating both communities. The benthic invertebrate population is dominated by Trichoptera. The trout population is low and represents only a small part of the total fish population both in biomass and numbers. The wild trout population is highly dependent on spawning success; when spawning success was poor, populations the following fall were extremely low.

  20. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    Science.gov (United States)

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  1. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  2. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.

    Science.gov (United States)

    Sangion, Alessandro; Gramatica, Paola

    2016-10-01

    Active Pharmaceutical Ingredients (APIs) are recognized as Contaminants of Emerging Concern (CEC) since they are detected in the environment in increasing amount, mainly in aquatic compartment, where they may be hazardous for wildlife. The huge lack of experimental data for a large number of end-points requires tools able to quickly highlight the potentially most hazardous and toxic pharmaceuticals, focusing experiments on the prioritized compounds. In silico tools, like QSAR (Quantitative Structure-Activity Relationship) models based on structural molecular descriptors, can predict missing data for toxic end-points necessary to prioritize existing, or even not yet synthesized chemicals for their potential hazard. In the present study, new externally validated QSAR models, specific to predict acute toxicity of APIs in key organisms of the three main aquatic trophic levels, i.e. algae, Daphnia and two species of fish, were developed using the QSARINS software. These Multiple Linear regressions - Ordinary Least Squares (MLR-OLS) models are based on theoretical molecular descriptors calculated by free PaDEL-Descriptor software and selected by Genetic Algorithm. The models are statistically robust, externally predictive and characterized by a wide structural applicability domain. They were applied to predict acute toxicity for a large set of APIs without experimental data. Then predictions were processed by Principal Component Analysis (PCA) and a trend, driven by the combination of toxicities for all the studied organisms, was highlighted. This trend, named Aquatic Toxicity Index (ATI), allowed the raking of pharmaceuticals according to their potential toxicity upon the whole aquatic environment. Finally a QSAR model for the prediction of this Aquatic Toxicity Index (ATI) was proposed to be applicable in QSARINS for the screening of existing APIs for their potential hazard and the a priori chemical design of not environmentally hazardous APIs.

  3. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, G.; Pintauro, P.; O`Connor, S. [and others

    1996-05-02

    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  4. Metal concentrations in aquatic environments of Puebla River basin, Mexico: natural and industrial influences.

    Science.gov (United States)

    Morales-García, S S; Rodríguez-Espinosa, P F; Shruti, V C; Jonathan, M P; Martínez-Tavera, E

    2017-01-01

    The rapid urban expansion and presence of volcanoes in the premises of Puebla River basin in central Mexico exert significant influences over its aquatic environments. Twenty surface sediment samples from Puebla River basin consisting of R. Alseseca, R. Atoyac, and Valsequillo dam were collected during September 2009 and analyzed for major (Al, Fe, Mg, Ba, Ca, and K) and trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) in order to identify the metal concentrations and their enrichment. R. Atoyac sediments presented higher concentrations of Ba (1193.8 μg g(-1)) and Pb (27.1 μg g(-1)) in comparison with the local reference sample values. All the metal concentrations except Sr for R. Alseseca sediments were within the range of local reference sample values indicating no significant external influence, whereas Valsequillo dam sediments had elevated concentrations of all the metals suggesting both natural and external influences in the study region. The magnitude of metal contamination was assessed using several indices such as geoaccumulation index (I geo), enrichment factor (EF), degree of contamination (C d ), and pollution load index (PLI). The results suggest that As, Pb, and Zn were predominantly enriched in the Puebla River basin sediments. Comparing with sediment quality guidelines and ecotoxicological values, it is revealed that Cd, Cr, Cu, and Ni have possible harmful effects on the biological community. The present study provides an outlook of metal enrichment in Puebla River basin sediments, highlighting the necessity to conserve this river ecosystem for the near future.

  5. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  6. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  7. Detection and identification of free-living amoeba from aquatic environment in Taiwan

    Science.gov (United States)

    Jiun Tzeng, Kai; Che Tung, Min; Hsu, Bing Mu; Tsai, Hsiu Feng; Huang, Po Hsiang; Hao Huang, Kuan; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng

    2013-04-01

    Free-living amoebae including Acanthamoeba, Naegleria, Balamuthia and Hartmannella are widely distributed in water, soil, and air. They can infect humans and can lead to serious illness even death. The aim of this study is to investigate the presence of free-living amoebae from aquatic environment in Taiwan, and to compare the differences between Acanthamoeba and Naegleria in different cultivation methods and conditions. In this study, we used molecular method with specific primers by Polymerase Chain Reaction (PCR) to amplify and to analyze the occurrence of free-living amoebae in aquatic environment. We collected 92 samples from environmental water in Taiwan. The results show that 33 water samples (35.9%) and 11 water samples (12.0%) were detected positive for Acanthamoeba and Naegleria, respectively. Furthermore, both Acanthamoeba and Naegleria can be cultured by PYG in 30° C, but not all free-living amoebae can be enriched and isolated by using storage-cultivation method. Due to the presence of Acanthamoeba and Naegleria in aquatic environment, the water quality monitoring should be more conscious. Keywords: free-living amoebae; Acanthamoeba; Naegleria; Balamuthia; Hartmannella; PCR

  8. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    Science.gov (United States)

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC.

  9. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.

    Science.gov (United States)

    Reis, A R; Sakakibara, Y

    2012-01-01

    In order to evaluate the removal performance of trace phenolic endocrine-disrupting chemicals (EDCs) by aquatic plants, batch and continuous experiments were conducted using floating and submerged plants. The EDCs used in this study were bisphenol A, 2,4-dichlorophenol, 4-tert-octylphenol, pentachlorophenol, and nonylphenol. The feed concentration of each EDC was set at 100 μg/L. Continuous experiments showed that every EDC except pentachlorophenol was efficiently removed by different aquatic plants through the following reaction, catalyzed by peroxidases: EDCs+H(2)O(2)→Products+H(2)O(2). Peroxidases were able to remove phenolic EDCs in the presence of H(2)O(2) over a wide pH range (from 3 to 9). Histochemical localization of peroxidases showed that they were located in every part of the root cells, while highly concentrated zones were observed in the epidermis and in the vascular tissues. Although pentachlorophenol was not removed in the continuous treatment, it was rapidly removed by different aquatic plants when Fe(2+) was added, and this removal occurred simultaneously with the consumption of endogenous H(2)O(2). These results demonstrated the occurrence of a biological Fenton reaction and the importance of H(2)O(2) as a key endogenous substance in the treatment of EDCs and refractory toxic pollutants.

  10. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  11. Ultrafiltration technique in conjunction with competing ligand exchange method for Ni–humics speciation in aquatic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Boissel, M.; Reuillon, A.; Babu, P.V.R.; Parthiban, G.

    The combination of ultrafiltration technique with competing ligand exchange method provides a better understanding of interactions between Ni and different molecular weight fractions of humic acid (HA) at varying pH in aquatic environment...

  12. Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment.

    Science.gov (United States)

    Adachi, Fumie; Yamamoto, Atsushi; Takakura, Koh-Ichi; Kawahara, Ryuji

    2013-02-01

    Fluoroquinolones (FQs) have been detected in aquatic environments in several countries. Long-term exposure to low levels of antimicrobial agents provides selective pressure, which might alter the sensitivity of bacteria to antimicrobial agents in the environment. Here, we examined FQ levels and the resistance of Escherichia coli (E. coli) to FQs by phenotyping and genotyping. In the aquatic environment in Osaka, Japan, ciprofloxacin, enoxacin, enfloxacin, lomefloxacin, norfloxacin, and ofloxacin were detected in concentrations ranging from 0.1 to 570 ng L(-1). FQ-resistant E. coli were also found. Although no obvious correlation was detected between the concentration of FQs and the presence of FQ-resistant E. coli, FQ-resistant E. coli were detected in samples along with FQs, particularly ciprofloxacin and ofloxacin. Most FQ-resistant E. coli carried mutations in gyrA, parC, and parE in quinolone resistance-determining regions. No mutations in gyrB were detected in any isolates. Amino acid changes in these isolates were quite similar to those in clinical isolates. Six strains carried the plasmid-mediated quinolone resistance determinant qnrS1 and expressed low susceptibility to ciprofloxacin and nalidixic acid: the minimum inhibitory concentrations ranged from 0.25 μg mL(-1) for ciprofloxacin, and from 8 to 16 μg mL(-1) for nalidixic acid. This finding confirmed that plasmids containing qnr genes themselves did not confer full resistance to quinolones. Because plasmids are responsible for much of the horizontal gene transfer, these genes may transfer and spread in the environment. To our knowledge, this is the first report of plasmid-mediated quinolone resistance determinant qnrS1 in the aquatic environment, and this investigation provides baseline data on antimicrobial resistance profiles in the Osaka area.

  13. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    The fate of eroded soil organic carbon (SOC) after deposition is a large uncertainty in assessing the impact of soil erosion on C budgets. Globally, large amounts of SOC are transported by erosion and a substantial part is transferred into adjacent inland waters, linking terrestrial and aquatic C...... cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...

  14. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    OpenAIRE

    Ruchita Dixit; Wasiullah; Deepti Malaviya; Kuppusamy Pandiyan; Singh, Udai B; Asha Sahu; Renu Shukla; Singh, Bhanu P.; Jai P. Rai; Pawan Kumar Sharma; Harshad Lade; Diby Paul

    2015-01-01

    Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in bi...

  15. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  16. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    Science.gov (United States)

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

  17. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  18. The Impact of Mining Activity upon the Aquatic Environment in the Southern Apuseni Mountains

    Directory of Open Access Journals (Sweden)

    SIGISMUND DUMA

    2009-01-01

    Full Text Available In the Southern Apuseni Mountains, mining activities have taken place since Antiquity, leaving their marks upon the natural environment, the aquatic one inclusively. If the traditional technologies had a low impact upon the aquatic environment, the ones in the modern period have affected it up to the “dead water” level. It is about the disorganization of the hydrographical basins and especially about aggressive pollution of surface waters with some of the most toxic chemical substances such as cyanides, as well as by an increase in the contents of metallic ions, chlorides, sulphides, sulphates, suspensions and fixed residuum. The decrease in pH, and implicitly the acidification of waters, is also remarkable. It must be mentioned that no systematic studies of the impact of mining activities upon the aquatic environment have been conducted in the area in the last years. In these conditions, the data about water quality have been taken over from the studies conducted by author between 1996 and 1998. The cause of the lack of concern in the field is no other but the cease in ore valorization activities in the majority of the mining objectives in the area. As none of the tailings settling ponds has guard canals, the direct pluvial waters and the ones drained from the slopes transport tailings with noxes which they subsequently discharge in the local pluvial network. In these conditions, both the quality of the mine waters which run freely into the emissary and of the ones that flow from the waste dumps remain mainly in the qualitative parameters analyzed and presented in the study.

  19. Preparation of a novel magnetic powder resin for the rapid removal of tetracyclinein the aquatic environment

    Institute of Scientific and Technical Information of China (English)

    Qing Zhou; Man Cheng Zhang; Chen Dong Shuang; Zhe Qin Li; Ai Min Li

    2012-01-01

    Magnetic powder resin Q150 with high specific surface area of 1074 m2/g was prepared by the membrane emulsificationsuspension polymerization technique.Adsoption of tetracycline on the obtained sorbent Q150 was evaluted by using the granule resin (GR) XAD-4,the powder activated carbon (PAC) 1240AC and the granule activated carbon (GAC) HD4000 for comparison.It was found that Q150 had a larger adsorption capacity,faster kinetic and easier regeneration under alkaline condition.The results suggested that the powder resin (PR) Q150 would be a promising sorbent for removing antibiotics and even other organic micropollutants from the aquatic environment.

  20. Probing the fate of soil-derived core and intact polar GDGTs in aquatic environments

    Science.gov (United States)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2014-07-01

    We have performed incubation experiments in order to examine the fate of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to asses the suitability of brGDGTs as tracers for fluvial land-sea transport of soil organic carbon. We incubated a soil from the Rakaia River catchment on the South Island of New Zealand using Rakaia River water and ocean water collected near the river mouth as inocula for a period of up to 152 days. The concentrations of brGDGTs derived from intact polar ("living"; IPL) lipids and core ("fossil"; CL) lipids remained stable over the course of the experiment, suggesting an absence of significant brGDGT production or degradation. Moreover, the lack of change in brGDGT distribution during the experiment implies that the initial soil signature remains unaltered during transport through the aquatic environment, at least over the time frame of the experiment. In contrast, the total pool of isoprenoid GDGTs (isoGDGTs), currently attributed to soil Thaumachaeota, increased substantially (27-72%) in all incubation setups by the end of the experiment. As a consequence, a decrease in Branched and Isoprenoid Tetraether (BIT) index values - a proxy for the relative input of fluvially discharged soil material into a marine system - became evident after an incubation period of 30 days, with a maximum final decrease of 0.88 to 0.74 in the experiment with river water. The relative distribution within the isoGDGT pool shows changes with time, suggesting different membrane adaptation rates to the aquatic environment, or a shift in source organism(s). While the stability of soil brGDGTs in aquatic environments reinforces their potential as tracers for land-sea transport of soil organic carbon and their use in paleoclimate reconstructions, the distributional differences between GDGTs in river water and nearby soil indicate that further research is needed to pinpoint the sources of GDGTs that are

  1. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2012-02-01

    Full Text Available Southeast Asia has become the center of rapid industrial development and economic growth. However, this growth has far outpaced investment in public infrastructure, leading to the unregulated release of many pollutants, including wastewater-related contaminants such as antibiotics. Antibiotics are of major concern because they can easily be released into the environment from numerous sources, and can subsequently induce development of antibiotic-resistant bacteria. Recent studies have shown that for some categories of drugs this source-to-environment antibiotic resistance relationship is more complex. This review summarizes current understanding regarding the presence of quinolones, sulfonamides, and tetracyclines in aquatic environments of Indochina and the prevalence of bacteria resistant to them. Several noteworthy findings are discussed: 1 quinolone contamination and the occurrence of quinolone resistance are not correlated; 2 occurrence of the sul sulfonamide resistance gene varies geographically; and 3 microbial diversity might be related to the rate of oxytetracycline resistance.

  2. Speciation and persistence of doxycycline in the aquatic environment: Characterization in terms of steady state kinetics.

    Science.gov (United States)

    Zaranyika, Mark F; Dzomba, Pamhidzai; Kugara, Jameson

    2015-01-01

    The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10(-2) and 4.5 × 10(-3) μgg(-1) day(-1)) and sediment phase (7.9 × 10(-3) and 1.5 × 10(-3) μgg(-1) day(-1)) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10(-3) μgg(-1) day(-1)) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10(-3) μgg(-1) day(-1)) and to microbial degradation (9.8 × 10(-3) μgg(-1) day(-1)). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.

  3. Aquatic environment as an occupational therapeutic scenario for the development of body scheme in Down syndrome

    Directory of Open Access Journals (Sweden)

    Chrystiane Maria Veras Pôrto

    2010-12-01

    Full Text Available Objective: To assess the effect of aquatic environment while an occupational therapeutic scenario in the development of body scheme of a child with Down Syndrome, considering the therapeutic properties of water. Description of the case: An interventionist research, with a qualitative and descriptive approach, conducted in an adapted pool of the Núcleo de Atenção Médica Integrada (NAMI of Fortaleza University (UNIFOR, Ceara, during the period of March to May, 2005. The subject of the study was a female child, aged 10 years old, diagnosed with Down Syndrome. Data collection had as instruments an interview guide for anamnesis, an evaluation form of psychomotor development, besides a field diary to record clinical observations during the sessions. This information was organized and analyzed based on clinical reasoning of occupational therapists and then described as a case study. We observed an evolution in the development of skills related to body scheme, such as the perception of fine parts of her own body, as well as large parts in someone else’s body, the imitation of positions, finishing with more active participation in activities of daily living. Final Considerations: We verified the effectiveness of occupational therapeutic activities conducted in aquatic environment for the development of the body scheme of the child in the study. This may be useful for conducting further research on the subject – whose literature is scarce – and contributing to the crescent update of occupational therapy practices.

  4. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment.

    Science.gov (United States)

    Ammar, Rawaa; El Samrani, Antoine G; Kazpard, Véronique; Bassil, Joseph; Lartiges, Bruno; Saad, Zeinab; Chou, Lei

    2013-12-01

    One of the most important sources of solid waste in the Mediterranean Basin ecosystem originated from the phosphate fertilizer industries, which discharge phosphogypsum (PG) directly into aquatic environments or are stacked on stockpiles. The present study investigates metal release from PG under the influence of variable pH, increasing PG mass content, and complexing organic matter ligands. Major ions from PG leachates, grain size and charge, main functional groups along with metal leachability (Pb, Cd, Cr, Cu, and Zn) were determined using ion chromatography, laser diffraction, zetameter, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy, respectively. The complete dissolution of PG recorded is at 2 g/L. Saturation and supersaturation with respect to PG may occur at concentrations of 3 and 4 g/L, respectively, revealing a clustering phenomenon leading to heavy metal encapsulation within the aggregates. Organic ligands such as citrate may trigger the cationic exchange within the PG suspension leading to ion release. As these factors are considered as specific process involving the release of contaminants from PG during storage under natural conditions, this study could set the foundations for PG remediation in aquatic environment. Organic ligands under controlled pH conditions could be utilized in treating fertilizer industrial wastes by taking into consideration the particularity of the receiving area, thus decreasing metal hazardous impact on natural media.

  5. Pollution Pathways of Pharmaceutical Residues in the Aquatic Environment on the Island of Mallorca, Spain

    DEFF Research Database (Denmark)

    Rodríguez-Navas, Carlos; Björklund, Erland; Bak, Søren Alex

    2013-01-01

    This work determines the principal environmental pollution pathways of pharmaceuticals on the island of Mallorca (Spain). The evaluation was made on the basis of the quantification of pharmaceutical residues by liquid chromatography–tandem mass spectrometry in several environmental water samples......, including wastewater-treatment plant effluents, municipal solid waste landfill leachates, groundwater (GW), and marine water. An overall set of 19 pharmaceuticals has been identified in the environment of the 27 human pharmaceuticals investigated in this study. WWTP effluents are the main source...... of discharge of the pharmaceuticals into the aquatic environment. The data indicate that reuse of treated domestic wastewater for irrigation (which supplies some 30 % of the total water demand in Mallorca) contributes to the contamination of GW. In addition, leaching from landfills is identified as another...

  6. A novel photosynthetic strategy for adaptation to low-iron aquatic environments

    Science.gov (United States)

    Chauhan, D.; Folea, I.M.; Jolley, C.C.; Kouril, R.; Lubner, C.E.; Lin, S.; Kolber, D.; Wolfe-Simon, Felisa; Golbeck, J.H.; Boekema, E.J.; Fromme, P.

    2011-01-01

    Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments. ?? 2010 American Chemical Society.

  7. Conceptual Framework for Aquatic Interfaces

    Science.gov (United States)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  8. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  9. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D.

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  10. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview.

    Science.gov (United States)

    Vale, Gonçalo; Mehennaoui, Kahina; Cambier, Sebastien; Libralato, Giovanni; Jomini, Stéphane; Domingos, Rute F

    2016-01-01

    The enormous investments in nanotechnology have led to an exponential increase of new manufactured nano-enabled materials whose impact in the aquatic systems is still largely unknown. Ecotoxicity and nanosafety studies mostly resulted in contradictory results and generally failed to clearly identify biological patterns that could be related specifically to nanotoxicity. Generation of reactive oxygen species (ROS) is one of the most discussed nanotoxicity mechanism in literature. ROS can induce oxidative stress (OS), resulting in cyto- and genotoxicity. The ROS overproduction can trigger the induction of anti-oxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidases (GPx), which are used as biomarkers of response. A critical overview of the biochemical responses induced by the presence of NPs on freshwater organisms is performed with a strong interest on indicators of ROS and general stress. A special focus will be given to the NPs transformations, including aggregation, and dissolution, in the exposure media and the produced biochemical endpoints.

  11. Guidelines to Avoid Biocontamination of Antarctic Subglacial Aquatic Environments: Forward Contamination Concerns, Environmental Management and Scientific Stewardship of Icy analogue environments

    Science.gov (United States)

    Race, M. S.; Hobbie, J.; et al.

    2007-12-01

    For more than a decade, scientists and space mission planners have recognized the importance of collaborative information exchange with the Antarctic research community to address their many shared exploration challenges, from drilling methods, remote sample collection, and data interpretation, to concerns about cross contamination that could adversely impact both the environment and interpretation of scientific data. Another shared concern exists in the regulatory realm; both the Antarctic and outer space environments are subject to separate international treaties that impose regulatory controls and oversight with serious implications for exploration planning. In recent years, both communities have faced the need to adjust their regulatory controls in light of fast-paced advances in scientific understanding of extreme environments, particularly related to potential microbial life. Both communities have sought and received advice from the National Research Council (NRC) through studies that suggested ways to update their respective oversight and regulatory systems while allowing for continued scientific exploration. A recently completed NRC study "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship" provided a suite of recommendations to address1) 'cleanliness' levels necessary for equipment and devices used in exploration of subglacial aquatic environments, as well as 2) the scientific basis for contamination standards, and 3) the steps for defining an overall exploration strategy conducive to sound environmental management and scientific stewardship. This talk will present the findings of the recent multinational NRC study, which is likely to translate into useful information for analogue studies that proceed to test techniques and capabilities for exploring an Europan ocean, other icy celestial locations, and related science targets on Earth. As the science and exploration of subglacial environments grows beyond its

  12. An assessment of aquatic ecosystem health in a temperate watershed using the index of biological integrity.

    Science.gov (United States)

    An, Kwang-Guk; Choi, Shin-Sok

    2003-06-01

    The health effect of an aquatic ecosystem on habitat modifications were evaluated in the Keum river watershed, Korea during 1977-1996 using the Index of Biological Integrity (IBI) based on fish assemblages. Values of IBI, based on overall sites, averaged 35 (range: 26-45, n = 38) before dam construction, indicating a "fair health condition" based on the modified criteria of Karr and Chu (Karr, J.R.; Chu, E.W. Restoring Life in Running Waters: Better Biological Monitoring; Inland Press: Washington, DC, 1999; 206 pp.), while the values averaged 33 (range: 18-48, n = 15) after dam construction, indicating a similar ecosystem health condition in the IBI between the two periods. Marked modifications in the IBI, however, were partially observed along the longitudinal gradients from the headwaters to downstream along with variations of trophic compositions and habitat guilds. Annual mean of IBI showed significant decreases (p 20% decreases of insectivores and >25% increases of omnivores. Comparisons of habitat guilds indicated that the proportion of riffle benthic species declined linearly from 1977 to 1996 and had inverse relations (r = -0.78, p health was mainly affected by the habitat modifications.

  13. Antimicrobial resistance in bacteria isolated from aquatic environments in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Ermeton Duarte do Nascimento

    2014-04-01

    Full Text Available This article discusses antibiotic resistance in bacteria isolated from aquatic environments in Brazil, taking into account isolation sites, the main reported antimicrobial agents, the genes involved in resistance, the most prevalent bacterial genera and species, and the main mechanisms of resistance. This review is based upon specialized literature, consulting published scientific articles selected from the SciELO, PubMed and LILACS databases. Based upon the inclusion criteria, we selected 21 articles, most (61.6% were from PubMed, with the highest prevalence for work done in the Southeast region (71.4% in freshwater environments (71.4%, and the major focus on farm ponds (28.6%. Gram-negative bacteria are the most studied (71.4% and the Aeromonas spp. was the one found most frequently (19.0%. The most frequently used antimicrobials were chloramphenicol (81.0%, gentamicin (76.2%, sulpha/trimethroprim (71.4%, ampicillin (61.9% and tetracycline (71.4%; and the ones with higher prevalence of resistance were chloramphenicol (58.8%, sulpha/trimethroprim (78.5% and ampicillin (84.6%. It was found that studies on resistance in other aquatic environments have not yet been conducted in Brazil, especially in the North and Northeast regions, where irregular rainfall distribution leads to the use of reservoirs as supply sources during the dry season, highlighting concerns regarding the quality, contamination and maintenance of these resources, as the water is intended for human use or for production purposes.

  14. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    Science.gov (United States)

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  15. Simulation experiments on the variation of leaf n-alkanes in aquatic environments

    Institute of Scientific and Technical Information of China (English)

    Chengling JIA; Anwen ZHOU; Xiangru MA; Jingjing LI; Shucheng XIE

    2009-01-01

    The leaves of six plant species and the corresponding leaf residues collected in water from the two-year simulation experiments were analyzed in n-alkane distributions by gas chromatography (GC) and gas chromatography-mas spectrometry (GC/MS). The leaf n-alkanes keep unchanged in the dominant homologues when soaked in tap water for two years. The most significant change was observed in carbon preference index (CPI), with enhanced values being found in leaf residues collected from water. This is contradictory with the previous reports showing the lower CPI values during sinking and burial processes in natural aquatic environments. The elevated CPI values from leaf residues might be related to the low amount of microorganisms in the water used in the simulation experiment, and the enhanced solubility of even-carbon-numbered n-alkanes via van der Waals attraction. In contrast with herbaceous plants, the woody plants appear to show relatively great variations in both the CPI and the average chain length (ACL) values of n-alkanes after submerged in water for two years. Our data clearly show the differentiated decomposition between woody and herbaceous leaves, with the woody leaves suffered from much stronger decomposition. This observation suggests that in comparison with the grassland, the forest vegetation might result in relatively low authentic signals to be preserved in the n-alkane distributions in aquatic sediments.

  16. Aquatic molluscs in high mountain lakes of the Eastern Alps (Austria): Species-environment relationships and specific colonization behaviour

    Institute of Scientific and Technical Information of China (English)

    STURM Robert

    2012-01-01

    Mountain lakes represent essential stages for aquatic species on their way colonizing habitats of more elevated regions.Despite extensive biological and chemical study,only little has been reported about the species number and density of freshwater molluscs in these waters.The article presented here elucidates the dispersal of aquatic gastropods and bivalves in 12 mountain lakes that are commonly situated in the Eastern Alps,Austria.Molluscs were recorded at 120 sample points,where a total of 13 species (8 gastropods and 5 bivalves) could be determined.Species distribution data as well as results from contemporarily conducted physico-chemical factor recording were subject to weighted average analysis.In addition,a global marginality coefficient indicating the particularity of a habitat inhabited by a focal species as well as a global tolerance coefficient expressing the width of a niche occupied by this species were computed.Species-environment relationships exhibited that species number and specific density decrease with increasing geographic altitude,declining water temperature,and decreasing amount of submerged vegetation.Whilst waters of the montane altitude level are partly charcterized by high number of mollusc species (>10),lakes of the subalpine altitude level commonly bear 1 or 2 species with <<1 ind./m2.As proposed by the results of statistics,9 of the 13 mollusc species are characterized by a pronounced behaviour as specialists with respect to most environmental factors.The four remaining species,Pisidium casertanum,Galba truncatula,Radix labiata,and Radix balthica,act as generalists which increases their pioneering role in the long-term occupation of the Central-alpine region.

  17. Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments

    Directory of Open Access Journals (Sweden)

    Eneas eAguirre-Von-Wobeser

    2015-05-01

    Full Text Available Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92X10-22 kg s-1 of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick’s laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20X10-11 kg s-1, which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.

  18. Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments.

    Science.gov (United States)

    Aguirre-von-Wobeser, Eneas; Eguiarte, Luis E; Souza, Valeria; Soberón-Chávez, Gloria

    2015-01-01

    Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10(-22) kg s(-1) of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10(-11) kg s(-1), which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.

  19. Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles.

    Science.gov (United States)

    Hüffer, Thorsten; Praetorius, Antonia; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo

    2017-02-21

    Microplastics (MPs) have been identified as contaminants of emerging concern in aquatic environments and research into their behavior and fate has been sharply increasing in recent years. Nevertheless, significant gaps remain in our understanding of several crucial aspects of MP exposure and risk assessment, including the quantification of emissions, dominant fate processes, types of analytical tools required for characterization and monitoring, and adequate laboratory protocols for analysis and hazard testing. This Feature aims at identifying transferrable knowledge and experience from engineered nanoparticle (ENP) exposure assessment. This is achieved by comparing ENP and MPs based on their similarities as particulate contaminants, whereas critically discussing specific differences. We also highlight the most pressing research priorities to support an efficient development of tools and methods for MPs environmental risk assessment.

  20. Research Trends in Emerging Contaminants on the Aquatic Environments of Tanzania.

    Science.gov (United States)

    Miraji, H; Othman, O C; Ngassapa, F N; Mureithi, E W

    2016-01-01

    The continuity for discovery and production of new chemicals, allied products, and uses has currently resulted into generation of recent form of contaminants known as Emerging Contaminants (ECs). Once in the aquatic environment ECs are carcinogenic and cause other threats to both human's and animals' health. Due to their effects this study was aimed at investigating research trends of ECs in Tanzania. Findings revealed that USA and EU countries were leading in ECs researches, little followed by Asia, South Africa, and then Zambia. Only few guidelines from USA-EPA, WHO, Canada, and Australia existed. Neither published guidelines nor regulations for ECs existed in Tanzania; rather only the occurrence of some disinfection by-products and antibiotics was, respectively, reported in Arusha and Dar es Salaam, Tanzania. As these reports had a limited coverage of ECs, henceforth, these findings constitute the first-line reference materials for ECs research in Tanzania which shall be useful for future monitoring and regulation planning.

  1. Prediction of climate impacts on pesticide leaching to the aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Hans Joergen; Rosenbom, A.; van der Keur, P.; Kjaer, J.; Sonnenborg, T. [GEUS Danmark, Copenhagen (Denmark); Olesen, J.E. [Aarhus Univ., Tjele (Denmark); Nistrup Joergensen, L. [Aarhus Unv., Slagelse (Denmark); Boessing Christensen, O. [Danmarks Meteorologiske Institut (DMI), Copenhagen (Denmark)

    2013-10-01

    The report evaluates direct (precipitation, actual evapotranspiration and temperature) and indirect (crop rotations, crop management, and pesticide use) climatic change effects on pesticide-leaching to groundwater and the aquatic environment by use of MACRO and MIKE SHE model. The analysis is based on five model pesticides: low-dose herbicides, ordinary herbicides, strongly sorbing herbicides, fungicides and insecticides, and selected farm types (arable and dairy) for the variable saturated sandy soil (Jyndevad) and loamy soil (Faardrup). The evaluation has the aim at describing the implications of future climatic factors on pesticide leaching to groundwater as realistic as possible, based on realistic doses and parameters from MACRO setups from the Danish Pesticide Leaching Assessment Programme. (Author)

  2. Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake.

    Science.gov (United States)

    Chen, Yimin; Zhang, Liang; Xu, Changan; Vaidyanathan, Seetharaman

    2016-01-15

    Dissolved inorganic carbon (DIC) speciation is an important parameter that enables chemical and ecological changes in aquatic environments, such as the aquatic environmental impact of increasing atmospheric CO2 levels, to be monitored. We have examined and developed a sensitive and cost-effective 'back-titration' method to determine the DIC species and abundance in aqueous environments that is more accurate and reproducible than existing methods and is applicable in a range of fresh, brackish and sea waters. We propose the use of pHHCO3 (bicarbonate-dominant pH) and pH3.5 as the titration end points in the back-titration technique to accurately determine carbonate alkalinity. The proposed method has a higher accuracy and precision than other modified Gran's methods that are currently in use. The detection limit was found to be ~5 μmol kg(-1) with an accuracy within 1% and a precision (CV) within 0.2% and 0.5% at high and low level of carbonates, respectively. This method was successfully applied to monitor DIC in the aqueous medium of Nannochlopsis salina cultivation separately carried out with NaHCO3 and CO2 as the respective inorganic carbon source. The cells were able to grow in the NaHCO3 medium with a similar growth curve to cells with 0.039% CO2 (air). Increases in CO2 level stimulated lipid accumulation by diverting the fixed carbon from protein to lipids. The increased concentration of gaseous CO2 and the accompanying lower pH appears to significantly inhibit the growth of algae despite the presence of HCO3(-) when 20% CO2 was employed.

  3. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants.

    Science.gov (United States)

    Ortiz de García, Sheyla Andrea; Pinto Pinto, Gilberto; García-Encina, Pedro A; Irusta-Mata, Rubén

    2014-10-01

    A wide range of pharmaceuticals and personal care products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The environmental risk assessment of 26 PPCPs of relevant consumption and occurrence in the aquatic environment in Spain was accomplished in this research. Based on the ecotoxicity values obtained by bioluminescence and respirometry assays and by predictions using the US EPA ecological structure-activity relationship (ECOSAR™), the compounds were classified following the Globally Harmonized System of Classification and Labelling of Chemicals. According to the criteria of the European Medicines Agency, the real risk of impact of these compounds in wastewater treatment plants (WWTPs) and in the aquatic environment was predicted. In at least two ecotoxicity tests, 65.4 % of the PPCPs under study showed high toxicity or were harmful to aquatic organisms. The global order of the species' sensitivity to the PPCPs considered was as follows: Vibrio fischeri (5 min) > Vibrio fischeri (15 min) > algae > crustaceans > fish > biomass of WWTP. Acetaminophen, ciprofloxacin, clarithromycin, clofibrate, ibuprofen, omeprazole, triclosan, parabens and 1,4-benzoquinone showed some type of risk for the aquatic environments and/or for the activated sludge of WWTPs. Development of acute and chronic ecotoxicity data, the determination of predicted and measured environmental concentrations of PPCPs, the inclusion of metabolites and transformation products and the evaluation of mixtures of these compounds will allow further improvements of the results of the ERAs and, finally, to efficiently identify the compounds that could affect the environment.

  4. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  5. Non-Linear Time Series Analysis of Dissolved Oxygen in Five Diverse Aquatic Environments

    Science.gov (United States)

    Simpson, K. E.; Barton, C. C.; Smigelski, J. R.; Tebbens, S. F.

    2008-12-01

    Temporal variations in the concentration of Dissolved oxygen (DO) can create catastrophic conditions for organisms that rely on aerobic metabolic processes for survival. Dissolved oxygen (DO) is an aquatic parameter whose concentration is controlled by physical, biological, and chemical processes. The concentration of DO in an aquatic system is important to organisms that rely on aerobic metabolic processes for survival. A power-spectral-density analysis of time series of DO concentration is used to quantify persistence (the degree of internal correlation) over durations of 3 months to 19 years. The interval between data points was either 15 minutes or one hour. The data are from ten different water bodies throughout the United States. Four of these sites are large, slow moving bodies of water including three estuaries: Chesapeake Bay (Virginia), Winyah Bay (North Carolina) and Elkhorn Slough (California); and one reservoir: the Cheney Reservoir in Kansas. The other six sites are small, fast moving water bodies. They included four rivers: Christina River (Delaware), St. Croix River (Maine), Ramapo River (New Jersey), and Passaic River, New Jersey; one stream: Green Pond Brook (New Jersey); and one man-made channel: Reynolds Channel (New York). The analysis quantifies persistence as the power scaling exponent (β), which for all ten water bodies β ranges between 1.2 and 1.6 meaning that the signal is persistent and non-stationary. Rivers and streams, exhibit higher β-values of 1.5 < β<1.6 (greater persistence) than estuaries and lakes, which have β-values of 1.2< β <1.4t.

  6. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    Science.gov (United States)

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.

  7. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    Science.gov (United States)

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  8. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    Science.gov (United States)

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.

  9. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon

    Directory of Open Access Journals (Sweden)

    J. Friedrich

    2013-08-01

    Full Text Available In this paper we synthesize the new knowledge on oxygen and oxygen-related phenomena in aquatic systems, resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies", www.hypox.net. In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analysed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and in Swiss lakes. Examples of episodic and rapid (hours occurrences of hypoxia as well as seasonal changes in bottom-water oxygenation in stratified systems are discussed. Geologically-driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale submicromolar oxygen distributions were resolved. Existing multi-decadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales not resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where natural and anthropogenic hypoxia overlap. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on microbially-mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the

  10. Use of Aeromonas spp. as general indicators of antimicrobial susceptibility among bacteria in aquatic environments in Thailand

    Directory of Open Access Journals (Sweden)

    Masaru eUsui

    2016-05-01

    Full Text Available Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria (ARB, and thereby disseminating antimicrobial resistance genes (ARGs. In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals and 12 sites (6 sites at city canals, 2 sites at chicken farms, 2 sites at pig farms, and 2 samples from sites at pig farms that were subsequently treated at a biogas plant in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Moreover, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp. Notably, however, the concentration and resistance rates of tetracycline in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments.

  11. Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand.

    Science.gov (United States)

    Usui, Masaru; Tagaki, Chie; Fukuda, Akira; Okubo, Torahiko; Boonla, Chanchai; Suzuki, Satoru; Seki, Kanako; Takada, Hideshige; Tamura, Yutaka

    2016-01-01

    Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria, and thereby disseminating antimicrobial resistance genes (ARGs). In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals) and 12 sites (6 sites at city canals; 2 sites at chicken farms; 2 sites at pig farms; and 2 samples from sites at pig farms, which were subsequently treated at a biogas plant) in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Notably, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp.; however, both the concentration and rates of tetracycline resistance in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments.

  12. Assessment of the environmental status of the coastal and marine aquatic environment in Europe: A plea for adaptive management

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Slijkerman, D.M.E.; Vethaak, A.D.; Schobben, J.H.M.

    2012-01-01

    Policymakers and managers have a very different philosophy and approach to achieving healthy coastal and marine ecosystems than scientists. In this paper we discuss the evolution of the assessment of the chemical status in the aquatic environment and the growing rift between the political intention

  13. Prioritization of chemicals according to the degree of hazard in the aquatic environment

    Science.gov (United States)

    Branson, Dean R.

    1980-01-01

    Chemicals designated as “priority pollutants” or “toxics” have received special attention recently because the discharge of these compounds into public water is to be restricted to the maximum possible with little regard to water quality or economics. The selection of many of the 129 priority cemicals was not based on an objective scientific assessment of the exposure and effect data. In fact, for some compounds, including acenaphthene and 4-chlorophenyl-phenyl ether, the necessary data for listing were non-existent. As an alternative to arbitrarily listing or delisting chemicals for the purpose of prioity control, this paper suggests a promising scientific approach to selecting priority chemicals based on the principles of hazard assessment for chemicals in the aquatic environment. According o the hypothesis, the highest priority chemicals are those with the least margin of safety, defined as the gap between the no-observable-effect concentrations and the ambient exposure concentrations. The no-observable-effect concenrations are based on the results of chronic or sensitive life stage tests with aquatic organisms and the acceptable daily intake rate for fish eates. The ambient exposure concentrations are levels either measured in fish and water, or roughly estimated from a simple nomogram that requires only two of the following three factors: environmental release rate, ratio of dissipation to bioconcentration potential, or ambient residues in fish. The chemicals studied to illustrate this approach to prioritizing chemicals based on hazard assessment are: polychlorinated biphenyls, di-2-ethylhexyl phthalate, linear alkylbenzene sulfonate, and pentachlorophenol. PMID:6771128

  14. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  15. A modelling framework for the transport, transformation and biouptake of manufactured nanoparticles in the aquatic environment

    Science.gov (United States)

    Lofts, Stephen; Keller, Virginie; Dumont, Egon; Williams, Richard; Praetorius, Antonia; von der Kammer, Frank

    2016-04-01

    The development of innovative new chemical products is a key aspect of the modern economy, yet society demands that such development is environmentally sustainable. Developing knowledge of how new classes of chemicals behave following release to the environment is key to understanding the hazards that will potentially result. Nanoparticles are a key example of a class of chemicals that have undergone a significant expansion in production and use in recent years and so there is a need to develop tools to predict their potential hazard following their deliberate or incidental release to the environment. Generalising the understanding of the environmental behaviour of manufactured nanoparticles in general is challenging, as they are chemically and physically diverse (e.g. metals, metal oxides, carbon nanotubes, cellulose, quantum dots). Furthermore, nanoparticles may be manufactured with capping agents to modify their desired behaviour in industrial applications; such agents may also influence their environmental behaviour. Also, nanoparticles may become significantly modified from their as-manufactured forms both prior to and after the point of environmental release. Tools for predicting nanoparticle behaviour and hazard need to be able to consider a wide range of release scenarios and aspects of nanoparticle behaviour in the environment (e.g. dissolution, transformation of capping agents, agglomeration and aggregation behaviour), where such behaviours are not shared by all types of nanoparticle. This implies the need for flexible, futureproofed tools capable of being updated to take new understanding of behavioural processes into account as such knowledge emerges. This presentation will introduce the NanoFASE model system, a multimedia modelling framework for the transport, transformation and biouptake of manufactured nanoparticles. The complete system will comprise atmospheric, terrestrial and aquatic compartments to allow holistic simulation of nanoparticles; this

  16. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  17. Occurrence and diversity of clinically important Vibrio species in the aquatic environments of Georgia

    Directory of Open Access Journals (Sweden)

    Tamari eKokashvili

    2015-10-01

    Full Text Available Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n=657 and freshwater lakes around Tbilisi (n=938. Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost ninety percent of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus were detected in 62.8%, 37.8%, and 21.4% of samples testing positive for vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs.

  18. Acanthamoeba polyphaga is a possible host for Vibrio cholerae in aquatic environments.

    Science.gov (United States)

    Sandström, Gunnar; Saeed, Amir; Abd, Hadi

    2010-09-01

    Acanthamoeba is a genus of free-living amoebae found to be able to host many bacterial species living in the environment. Acanthamoebae and Vibrio cholerae are found in the aquatic environments of cholera endemic areas. Previously it has been shown that V. cholerae O1 and O139 can survive and grow in Acanthamoeba castellanii. The aim of this study was to examine the ability of Acanthamoeba polyphaga to host V. cholerae O1 and O139. The interaction between A. polyphaga and V. cholerae strains was studied by means of viable amoeba cell counts and viable count of the bacteria in the absence and presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Electron microscopy was used to determine the localization of V. cholerae inside A. polyphaga. The results showed that A. polyphaga enhanced growth and survival of V. cholerae, which grew and survived inside the amoeba cells for 2weeks. The electron microscopy showed that A. polyphaga hosted intracellular V. cholerae localized in the vacuoles of amoeba cell. Neither the presence of V. cholerae together with A. polyphaga nor the intracellular localization of the bacteria inhibited growth and survival of A. polyphaga. The outcome of the interaction between these microorganisms may support strongly the role of A. polyphaga as host for V. cholerae O1 and O139.

  19. Occurrence, fate and behavior of parabens in aquatic environments: a review.

    Science.gov (United States)

    Haman, Camille; Dauchy, Xavier; Rosin, Christophe; Munoz, Jean-François

    2015-01-01

    Parabens are esters of para-hydroxybenzoic acid, with an alkyl (methyl, ethyl, propyl, butyl or heptyl) or benzyl group. They are mainly used as preservatives in foodstuffs, cosmetics and pharmaceutical drugs. Parabens may act as weak endocrine disrupter chemicals, but controversy still surrounds the health effects of these compounds. Despite being used since the mid-1920s, it was only in 1996 that the first analytical results of their occurrence in water were published. Considered as emerging contaminants, it is useful to review the knowledge acquired over the last decade regarding their occurrence, fate and behavior in aquatic environments. Despite treatments that eliminate them relatively well from wastewater, parabens are always present at low concentration levels in effluents of wastewater treatment plants. Although they are biodegradable, they are ubiquitous in surface water and sediments, due to consumption of paraben-based products and continuous introduction into the environment. Methylparaben and propylparaben predominate, reflecting the composition of paraben mixtures in common consumer products. Being compounds containing phenolic hydroxyl groups, parabens can react readily with free chlorine, yielding halogenated by-products. Chlorinated parabens have been detected in wastewater, swimming pools and rivers, but not yet in drinking water. These chlorinated by-products are more stable and persistent than the parent species and further studies are needed to improve knowledge regarding their toxicity.

  20. GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples.

    Science.gov (United States)

    Manageiro, Vera; Ferreira, Eugénia; Caniça, Manuela; Manaia, Célia M

    2014-02-01

    In this study, we investigated the β-lactamase-encoding genes responsible for β-lactam resistance phenotypes detected among 56 Gram-negative isolates (Gamma- and Alpha-proteobacteria) recovered from wastewater, urban streams, and drinking water. The β-lactam resistance mechanisms detected in 36 isolates comprised the presence of class A (blaTEM-1 , blaSHV-1 , blaSHV-11 , blaGES-5 ), class B (ImiS, L1), class C (blaCMY-2 , blaCMY-34 , blaCMY-65 , blaCMY-89 , blaCMY-90 , blaACC-5 , blaACT-13 ), and class D (blaOXA-309)β-lactamase-encoding genes, some variants described for the first time here. Notably, the results showed antimicrobial resistance genes related not only to commonly used antibiotics, but also to carbapenems, providing the first description of a GES-5-producing Enterobacteriaceae. The importance of ubiquitous bacteria thriving in aquatic environments as reservoirs or carriers of clinically relevant resistance determinants was confirmed, and the need to monitor water habitats as potential sources for the emergence and/or spread of antibiotic resistance in the environment was highlighted.

  1. Freshwater Mussels as Biological Sensors and Cyclers of Aquatic Nitrogen Constituents: An Experimental Investigation

    Science.gov (United States)

    Kruger, A.; Just, C. L.; Mudumbai, R.; Dasgupta, S.; Newton, T. J.; Durst, J.; Boddicker, M. D.; Diken, M. B.; Bril, J.; Baidoo-Williams, H. E.

    2011-12-01

    One of the most extensive manifestations of anthropogenic mismanagement of nitrogen is eutrophication of the Gulf of Mexico. Leaching and runoff transport nitrate compounds-excess agricultural fertilizer and animal waste-via the Mississippi River to the Gulf of Mexico. Phytoplankton then multiplies exponentially, and consumes most of the dissolved oxygen. This hypoxia kills fish and other organisms, leading to so-called dead zones in the Gulf that can cover 6,000-7,000 square miles. Dead zone mitigation plans call for coupling management actions with enhanced monitoring, modeling, and research on nitrogen delivery to, as well as processing within, the Mississippi River. Our vision is to create a biosensor network of native freshwater mussels in a major river to monitor, comprehend, and ultimately model key components of the nitrogen cycle. Native freshwater mussels are a guild of long-lived, suspension feeding bivalves that perform important ecological functions in aquatic systems. Mussels can influence nutrient cycling by transferring nutrients from the water column to the riverbed. A major problem for environmental scientists is that relatively little is known about the diurnal behaviors of freshwater mussels or the impacts these behaviors may have on the aquatic nitrogen cycle. Our multidisciplinary team is performing a series of laboratory experiments exploring the feasibility of using freshwater mussels as sensors of and capacitors for nitrates. For sensing, we place Hall-effect sensors on mussels to monitor the rhythmic opening and closing of their valves (gape). One shortcoming of previous work is that mussels were monitored in artificial conditions: glued fast in laboratory flumes, or tethered in constrained settings. To overcome this shortcoming, our team has built a mussel microhabitat with a constant river water feed stock, solar simulator, and a variety of water chemistry sensor. A main thrust of our work is to develop the technology to monitor mussel

  2. Reactivity and transfer of tributyl-tin and mercury in aquatic environments; Etude de la reactivite et du transfert du tributyletain et du mercure dans les environnements aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, E.

    2004-12-15

    Aquatic ecosystems are particularly affected by tributyl-tin (TBT) and mercury (Hg) chronic contamination. These micro-pollutants are ubiquitous and persistent and occurred at trace level, likely to drastically impair aquatic environments. TBT and Hg biogeochemical cycles are driven by transformation and transfer mechanisms between the different environmental compartments. These natural processes have been studied in details by using novel analytical methods and environmental design to improve the risk assessment. The first part of this work focus on the mechanistic study of TBT and Hg reactivity and transfer in reconstituted aquatic ecosystems. These experiments involve both state-of-the-art analytical speciation techniques, partly based on quantification by isotopic dilution and experimental tools simulating the environmental conditions. Kinetics of TBT and Hg distribution (adsorption, bioaccumulation, biodegradation, clearance) have been simultaneously characterized in all compartments of the microcosms presenting a simple biological organization. In a second step, volatilization kinetics of TBT at real interfaces have been studied to assess the potential remobilization and elimination pathways of butyl-tin compounds. Finally, in a third part, stable isotopic tracers of Hg have been employed to discriminate and quantify the coupled methylation and demethylation kinetics in estuarine sediments, by forcing different environmental factors (oxygenation, microbial activity). (author)

  3. Experimental Design and Analysis of the Fate of Nanoparticulate Titanium Dioxide in Aquatic Environment

    Science.gov (United States)

    Xiang, Chengcheng

    The increase in the production and use of engineered nanomaterials has been considered to result in potential environmental risks and health issues. Of the commonly used nanomaterials, TiO2 has raised intensive concern due to its wide-spread application in food, drugs, cosmetics, catalysis, ultraviolet blocker, and sorbents for water treatment, etc. It is believed that TiO2 nanomaterials possess distinct transport, transfer and toxicity in the aquatic environment. This research applies the design of experiments methodology to investigate the fate of engineered TiO2 nanoparticles with various functional groups in the simulated aquatic environment. Multiple linear regression models were used to analyze the experimental fate data. The engineered TiO2 NPs with -CH3, -SH, -OH, -COOH and -SO3H functional groups were prepared by the surface silanization, and characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface charge, aggregation and surface chemistry of engineered TiO2 NPs were investigated by dynamic (electrophoretic) light scattering. Results obtained from the multiple linear regression model show that the pH, the ionic strength and the cation type affect the surface charge, aggregation, and adsorption capability in individual and associated forms. Moreover, the surface functional group on TiO2 NPs surface dominates the fate in the simulated aquatic environment. Especially, the zeta potential of TiO2 NPs decreased with the increase of pH value in low salt concentration, whereas SO3H-, COOH-, OH- and SH- TiO2 NPs slightly increased when pH increased. The zeta potential of TiO2 NPs also increased with the increasing salt concentration at the whole pH range and COOH-TiO2 NPs are more sensitive to the salt concentration in the zeta potential. Furthermore, the zeta potential of TiO2 NPs in solutions containing CaCl2 is higher than that in NaCl. The hydrodynamic size was little affected by the pH value or had

  4. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

  5. Development of a risk assessment for BSE in the aquatic environment.

    Science.gov (United States)

    Gale, P; Young, C; Stanfield, G; Oakes, D

    1998-04-01

    Bovine spongiform encephalopathy (BSE) is believed to be transmitted by the ingestion of proteinaceous agents called prions which accumulate in the brain and spinal cord of infected bovines. Concern has been expressed about the risks of transmission of BSE to humans through BSE prions discharged to the aquatic environment from rendering plants, abattoirs and landfills. The disease-related form of the prion protein is relatively resistant to degradation, and infectivity decays rather slowly in the environment. Levels of disinfection used for drinking water treatment would have little effect. This paper presents the assumptions which were used to model the risks from a rendering plant disposing of cull cattle carcasses in the catchment of a chalk aquifer which is used for a drinking water abstraction. The risk assessment approach focused on identifying the hydrogeological and physical barriers which would contribute to preventing BSE infectivity gaining entry to the aquifer. These barriers included inactivation of BSE agent by the rendering process, removal from the effluent by treatment at the plant, filtration and adsorption in the clay and chalk, and dilution in the ground water. The importance in environmental risk assessment of the cow-to-man species barrier is considered. Two key conclusions about the environmental behaviour of the BSE agent are that prion proteins are 'sticky' and bind to particulates, and that the millions of BSE prion molecules comprising a human oral ID50 are subject to some degree of dispersion and hence dilution in the environment. Assuming the rendering plant processes 2000 cull cattle carcasses per week, the risks to drinking water consumers were estimated to be remote. Indeed, even using worst case assumptions an individual would have to consume 21 d-1 of tap water for 45 million years to have a 50% chance of infection through drinking water drawn from the aquifer.

  6. Investigation of oil drilling impacts to aquatic habitat resources: In Situ biological assessment of the photoinduced toxicity of environmental releases of crude oil

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study proposed a biological assessment of a recent crude oil spill for potential impacts to aquatic resources due to petroleum hydrocarbon wastes. The...

  7. Biosorption Reactive Orange 16 Dye using Sargassum glaucescens from the Aquatic environments

    Directory of Open Access Journals (Sweden)

    Moradi Ebrahim

    2016-12-01

    Full Text Available Background and purpose: Dyes are oneof the most important environmental pollutants in industrial wastewaters. Due to the complex molecular structure, toxic removal of the pollutant is always challenging. Thisstudy aimed toevaluate the efficiency of Sargassum glaucescens In the adsorption of ReactiveOrange16 dyein aquatic environments. Materials and Methods: This research was a lab study. S. glaucescens was used as an adsorbent to remove dye Reactive Orange 16. The effect of various parameters such as pH, initial dyes concentration, adsorbent dose, contact time, Equilibrium Isotherm were studied. Concentration was measured in the wavelength of 526 nm by spectrophotometer. Results: The results showed that removal of the color increases by increasing the amount of absorbent and contact time, and decreases by increasing PH solution and initial concentration of dye. The equilibrium constant was consistent with both Freundlich and Langmuir isotherm but it was more consistent with Freundlich isotherm (R2 :0.989. Conclusion: This study showed that Sargassum glaucescens having high absorption capacity, was economic and could be effective as an absorbent in water treatment especially in the removal of dyes from waste and textile sewage and other manufacturing industries and dye consumption.

  8. Occurrence and fate of nitrification and urease inhibitors in the aquatic environment.

    Science.gov (United States)

    Scheurer, Marco; Brauch, Heinz-Jürgen; Schmidt, Carsten K; Sacher, Frank

    2016-08-10

    Nitrification and urease inhibitors (NUIs) decelerate the bacterial oxidation of nitrogen species by suppressing the activity of soil microorganisms. Thus, nitrogen losses can be limited and the efficiency of nitrogen fertilizers can be increased. After application NUI transfers to surface water may occur through leaching or surface run-off. In order to assess the occurrence of nitrification and urease inhibitors in the aquatic environment a multi-analyte high-performance liquid chromatography-mass spectrometry method was developed. 1H-1,2,4-Triazole and dicyandiamide (DCD) were detected for the first time in German surface waters. Only at a few sites 1H-1,2,4-triazole has been episodically detected with concentrations up to the μg L(-1)-range. DCD was ubiquitously present in German surface waters. An industrial site was identified as the point source of DCD being responsible for exceptionally high DCD concentrations of up to 7.2 mg L(-1) in close proximity to the point of discharge. Both compounds were also detected in at least one wastewater treatment plant effluent, but their concentrations in surface waters did not correlate with those of typical markers for domestic wastewater. Other NUIs were not detected in any of the samples. Laboratory-scale batch tests proved that 1H-1,2,4-triazole and DCD are not readily biodegradable, are not prone to hydrolysis and do not tend to adsorb onto soil particles. Ozonation and activated carbon filtration proved to be ineffective for their removal.

  9. Numerical modelling of distribution the discharged heat water from thermal power plant on the aquatic environment

    Science.gov (United States)

    Issakhov, Alibek

    2016-06-01

    The paper presents a mathematical model of distribution the discharged heat water from thermal power plant under various operational capacities on the aquatic environment. It was solved by the Navier-Stokes and temperature equations for an incompressible fluid in a stratified medium were based on the splitting method by physical parameters which approximated by the finite volume method. The numerical solution of the equation system was divided into four stages. At the first step it was assumed that the momentum transfer carried out only by convection and diffusion. While the intermediate velocity field was solved by 5-step Runge-Kutta method. At the second stage, the pressure field was solved by found the intermediate velocity field. Whereas Poisson equation for the pressure field was solved by Jacobi method. The third step assumes that the transfer was carried out only by pressure gradient. Finally the fourth step of the temperature equation was also solved as motion equations, with 5-step Runge-Kutta method. The algorithm was parallelized on high-performance computer. The obtained numerical results of three-dimensional stratified turbulent flow were compared with experimental data. What revealed qualitatively and quantitatively approximately the basic laws of hydrothermal processes occurring in the reservoir-cooler.

  10. Research Trends in Emerging Contaminants on the Aquatic Environments of Tanzania

    Directory of Open Access Journals (Sweden)

    H. Miraji

    2016-01-01

    Full Text Available The continuity for discovery and production of new chemicals, allied products, and uses has currently resulted into generation of recent form of contaminants known as Emerging Contaminants (ECs. Once in the aquatic environment ECs are carcinogenic and cause other threats to both human’s and animals’ health. Due to their effects this study was aimed at investigating research trends of ECs in Tanzania. Findings revealed that USA and EU countries were leading in ECs researches, little followed by Asia, South Africa, and then Zambia. Only few guidelines from USA-EPA, WHO, Canada, and Australia existed. Neither published guidelines nor regulations for ECs existed in Tanzania; rather only the occurrence of some disinfection by-products and antibiotics was, respectively, reported in Arusha and Dar es Salaam, Tanzania. As these reports had a limited coverage of ECs, henceforth, these findings constitute the first-line reference materials for ECs research in Tanzania which shall be useful for future monitoring and regulation planning.

  11. Bioaerosol emissions from open microalgal processes and their potential environmental impacts: what can be learned from natural and anthropogenic aquatic environments?

    Science.gov (United States)

    Sialve, Bruno; Gales, Amandine; Hamelin, Jérôme; Wery, Nathalie; Steyer, Jean-Philippe

    2015-06-01

    Open processes for microalgae mass cultivation and/or wastewater treatment present an air-water interface. Similarly to other open air-aquatic environments, they are subject to contamination, but as such, they also represent a source of bioaerosols. Indeed, meteorological, physico-chemical and biological factors cause aerial dispersion of the planktonic community. Operating conditions like liquid mixing or gas injection tend to both enhance microbial activity, as well as intensify aerosolization. Bacteria, virus particles, fungi and protozoa, in addition to microalgae, are all transient or permanent members of the planktonic community and can thus be emitted as aerosols. If they should remain viable, subsequent deposition on various habitats could instigate their colonization of other environments and the potential expression of their ecological function.

  12. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    Science.gov (United States)

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments.

  13. Evaluation of removal efficiency of 2-chlorophenol in aquatic environments by modified fly ash

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Background: Chlorophenols are classified as priority toxic pollutants. These acidic organic compounds present a serious potential hazard for human health and aquatic life. Chlorophenols accumulate in water, soil and air due to high stability, and impart an unpleasant taste and odor to drinking water and can exert negative effects on different biological processes. Among the different methods of removal, adsorption process by low price adsorbents, such as fly ash (FA is common. Therefore, in this study, the effects of oxidation of FA as modified adsorbent were investigated when the adsorption of 2-chlorophenol (2-CP was increased. Methods: This experimental study was conducted from March to September of 2013. FA obtained from Zarand power plant (located in Kerman province was oxidized with potassium permanganate. Effective factors on the oxidation of FA, such as temperature, oxidation time and concentrations of oxidizers were optimized. Raw sewage of Zarand coal washing plant was tested under optimal conditions. All tests were carried out according to the standard methods book for the examination of water and wastewater. Results: Optimal condition for the preparation of oxidized FA was obtained at 70°C, 1 hour, and 1 mM of potassium permanganate concentration. The absorber obtained was able to remove 96.22% of 2-CP under optimized conditions (pH=3, 2 hours, adsorbent dose 0.8 g and room temperature. The removal efficiency of the real wastewater under optimal conditions was 82.1%. Conclusion: Oxidized FA can be used for the removal of this pollutant from industry wastewater due to its high efficiency of removal in real wastewater, it is easy and inexpensive to prepare and could modify the sorbent.

  14. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  15. Biological stoichiometry in tumor micro-environments.

    Science.gov (United States)

    Kareva, Irina

    2013-01-01

    Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH), increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  16. A concept for biological valuation in the marine environment

    NARCIS (Netherlands)

    Derous, S.; Agardy, T.; Hillewaert, H.; Wal, van der J.T.

    2007-01-01

    In order to develop management strategies for sustainable use and conservation in the marine environment, reliable and meaningful, but integrated ecological information is needed. Biological valuation maps that compile and summarize all available biological and ecological information for a study are

  17. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; Gouvello, Bernard de; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; SOYER, Mathilde; Moilleron, Régis

    2016-01-01

    International audience; The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pract...

  18. An environment for knowledge discovery in biology.

    Science.gov (United States)

    Barrera, Junior; Cesar, Roberto M; Ferreira, João E; Gubitoso, Marco D

    2004-07-01

    This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported.

  19. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-01-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants. PMID:28272515

  1. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  2. Health problems associated with consumption of fish and the role of aquatic environments in the transmission of human diseases.

    Science.gov (United States)

    Aloo, P A

    2000-01-01

    The majority of the numerous fish parasites are harmless to man and many domestic animals because when eaten with their fish hosts, they are digested. However, some of the fish parasites with larval stages in freshwater or marine teleosts have zoonotic potential if eaten raw or partially cooked. These are usually parasites, which have a piscivorous mammalian carnivore as their normal final host and are able to infect man because of the low host specificity of the adult stage. The major groups of fish parasite that are known as potentially dangerous pathogens of man belong to the helminth groups cestoda, trematoda, nematoda and rarely acanthocephala. However, bacterial and viral disease of man transmitted through fish are not uncommon. Toxic substances, metals and insecticides used to control human diseases in aquatic environments may accumulate in fish in po1lluted waters at such levels as to constitute a health risk to the consumer. Other health problems associated with fish arise from its perishable nature for example, in adequate handling, processing and storage, which may lead to the accumulation of microbes enhancing the risk of food poisoning. The aquatic environment in Africa constitutes a breeding habitat to several vectors of human diseases such as mosquitoes, snails and black flies. This paper reviews the role played by fish in transmitting diseases to humans as well as the importance of the aquatic environments in the transmission of human diseases such as Malaria, Schistosomiasis and onchocerciasis.

  3. Interaction of mining activities and aquatic environment: A review from Greek mine sites.

    Science.gov (United States)

    Vasileiou, Eleni; Kallioras, Andreas

    2016-04-01

    In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.

  4. Comparative phenotypic characterization of Vibrio cholerae isolates collected from aquatic environments of Georgia.

    Science.gov (United States)

    Kokashvili, T; Elbakidze, T; Jaiani, E; Janelidze, N; Kamkamidze, G; Whitehouse, C; Huq, A; Tediashvili, M

    2013-11-01

    Vibrio cholerae is ubiquitous in aquatic environment inhabiting marine, fresh and brackish waters. V. cholerae serotypes O1 and O139 cause the devastating diarrheal disease cholera, which is often fatal without proper treatment. Little is known regarding the abundance and diversity of clinically important nonhalophilic vibrios in the South Caucasus region, particularly in Georgia. Here we provide the data on the Georgian environmental strains of V. cholerae isolated in 2006-2009 years from the coastal waters of the Black Sea and inland water reservoirs near Tbilisi. In total, 846 V. cholerae strains were collected from the water samples, most of them (705 strains) obtained from fresh water lakes. Isolation pattern of V. cholerae showed obvious seasonality with the highest isolation rates in late summer - early autumn. Twenty-nine isolates of V. cholerae were attributed to the O1 serotype based on serological studies and PCR identification and were further grouped by biochemical properties into classical and El Tor biotypes as well as hybrids. The study of antibiotic susceptibility profiles for V. cholerae isolates showed that 95% were sensitive to tetracycline, 91% to doxycycline, and 91% to ciprofloxacin. Interestingly, the freshwater isolates appeared to be more resistant to antibiotics than the Black Sea isolates. Among Black Sea isolates of V. cholerae toxigenic strains of O1 serotype revealed higher antibiotic resistance compared to non- O1/non-O139 isolates. In addition, V. cholerae O1 and non- O1/non-O139 isolates differed by phage susceptibility profiles, with higher diversity within the population of environmental non-O1/non-O139 V. cholerae isolates.

  5. Excretory nitrogen metabolism in the juvenile axolotl Ambystoma mexicanum: differences in aquatic and terrestrial environments.

    Science.gov (United States)

    Loong, Ai M; Chew, Shit F; Ip, Yuen K

    2002-01-01

    The fully grown but nonmetamorphosed (juvenile) axolotl Ambystoma mexicanum was ureogenic and primarily ureotelic in water. A complete ornithine-urea cycle (OUC) was present in the liver. Aerial exposure impeded urea (but not ammonia) excretion, leading to a decrease in the percentage of nitrogen excreted as urea in the first 24 h. However, urea and not ammonia accumulated in the muscle, liver, and plasma during aerial exposure. By 48 h, the rate of urea excretion recovered fully, probably due to the greater urea concentration gradient in the kidney. It is generally accepted that an increase in carbamoyl phosphate synthetase activity is especially critical in the developmental transition from ammonotelism to ureotelism in the amphibian. Results from this study indicate that such a transition in A. mexicanum would have occurred before migration to land. Aerial exposure for 72 h exhibited no significant effect on carbamoyl phosphate synthetase-I activity or that of other OUC enzymes (with the exception of ornithine transcarbamoylase) from the liver of the juvenile A. mexicanum. This supports our hypothesis that the capacities of OUC enzymes present in the liver of the aquatic juvenile axolotl were adequate to prepare it for its invasion of the terrestrial environment. The high OUC capacity was further supported by the capability of the juvenile A. mexicanum to survive in 10 mM NH(4)Cl without accumulating amino acids in its body. The majority of the accumulating endogenous and exogenous ammonia was detoxified to urea, which led to a greater than twofold increase in urea levels in the muscle, liver, and plasma and a significant increase in urea excretion by hour 96. Hence, it can be concluded that the juvenile axolotl acquired ureotelism while submerged in water, and its hepatic capacity of urea synthesis was more than adequate to handle the toxicity of endogenous ammonia during migration to land.

  6. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

    Directory of Open Access Journals (Sweden)

    MingXia He

    2007-12-01

    the spectral curve, and thus maximizes the potential of accurately deriving properties of the water column and/or bottom of various aquatic environments with a multi-band sensor.

  7. Strategies to Quantify and Decrease Mercury Bioavailability and Methylation Potential in the Aquatic Environment

    Science.gov (United States)

    Hsu-Kim, H.; Deshusses, M.; Elias, D. A.

    2015-12-01

    Mercury (Hg) contamination in aquatic environments is a concern due to the production of monomethylmercury (MeHg), the highly bioaccumulative form that can impart neurotoxic effects to wildlife and humans. One strategy for remediation is to minimize MeHg production by anaerobic microorganisms that are prevalent in benthic settings. However, the factors that influence MeHg production and, in particular, the bioavailability of inorganic Hg for methylating microorganisms are poorly understood and difficult to quantify. This presentation will discuss the application of a thiol-based selective leaching assay to quantify the bioavailable fraction of Hg in sediments. This leaching assay involves quantification of leachable Hg concentrations in samples that are exposed to anoxic solutions containing glutathione (GSH). This thiol-based approach was chosen because cellular uptake and methylation of Hg by methylating bacteria are known to increase with the addition of GSH to cultures. This assay was applied to sediment-slurry microcosms that were amended with multiple types of inorganic Hg (dissolved Hg2+, Hg-sorbed to FeS, nanoparticulate HgS, microcrystalline HgS) that are known to span a range of bioavailability and methylation potential. The results demonstrated that the GSH-leachable Hg concentration correlated with MeHg production in cultures and microcosms. Methylation potential did not correlate to the concentration of Hg in the filtered aqueous fraction in the microcosm (i.e., passable though 0.2 um filters). These results suggest that a portion of the particle-bound Hg is available for methylation in a way that cannot be assessed by conventional filtration methods. The results of this work will be discussed in the context of management and in-situ remediation of contaminated sediments.

  8. The Semi-Aquatic Theory: Semi-Aquatic Evolutionary Phase and Environment, Language Development of Modern Humans. With a Short Epilog on Conceptualized Evolution, Social Ecology and the Quintuple Helix

    OpenAIRE

    George S. Campbell; David F.J. Campbell

    2011-01-01

    This article presents the semi-aquatic theory motivated to provide an explanation for why or how did language of the modern humans develop? Key propositions of this theory are early hominids went through a semi-aquatic evolutionary phase and that this semi-aquatic environment exposed the early hominids to frequent visual reflections of their own image, thus transforming a “potential sense of self†to an “active sense of self†, which supported the language development of early hominids....

  9. Detection and identification of free-living amoeba from aquatic environment in different seasons in Taiwan

    Science.gov (United States)

    Tzeng, K.; Hsu, B.; Tsai, H.; Huang, P.; Tsai, J.; Kao, P.; Huang, K.; Chen, J.

    2013-12-01

    Free-living amoeba includes Acanthamoeba and Naegleria, which are widely distributed in water and soil. Human infection with free-living amoeba leads to serious illness, even lethal. For example, central nervous system infection will cause amoebic meningoencephalitis, and infections will cause amoebic keratitis. The presence of free-living amoeba in environment water can be used as a water quality indicator in ecosystem assessment. In Taiwan, reservoirs are indispensable because of the water source are limited by the steep terrain and the short river flow. Therefore, we need to pay more attention in the quality control of reservoirs water. The aims of this study are to investigate the presence of free-living amoeba in Taiwan reservoirs, and to compare the differences among seasons. At last, the identification and genotyping of Acanthamoeba and Naegleria are investigated. In this study, we use polymerase chain reaction with specific primers to analyze the presence of free-living amoeba in aquatic environment. We collected total 60 samples from reservoirs in Taiwan. The water samples are divided into two parts for both direct concentration method and culture method. The results show the different detection rates among seasons. For Acanthamoeba, the detection rates were 28.3% (17 of 60 water samples), 21.7% (13 of 60 water samples) and 8.3% (5 of 60 water samples) in autumn, winter and spring, respectively. For Naegleria, the detection rates were 6.7% (4 of 60 water samples), 0% (0 of 60 water samples) and 0% (0 of 60 water samples) were detected positive in autumn, winter and spring, respectively. Sequence analysis showed that the major genotypes in Acanthamoeba were T3, T4, T10 and T11 in autumn, T2, T4 and T10 in winter, T4 in spring. Due to the presences of Acanthamoeba and Naegleria in reservoirs, we should pay more attention in water quality monitoring to prevent the potential risks of diseases. Keywords: free-living amoeba, Acanthamoeba, Naegleria, polymerase

  10. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Shi, Junpeng [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2015-07-15

    Highlights: • In the dark, AgNPs formed chain-like structures through bridging effects with NOM. • NOM decelerated the photoreaction of AgNPs but did not stop the photoconversion. • Under extended irradiation, NOM substituted for citrate as a stabilizer. • In different aquatic systems AgNPs would suffer distinct environmental behavior. - Abstract: With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag{sup +} in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.

  11. A concept for biological valuation in the marine environment

    Directory of Open Access Journals (Sweden)

    Eric Willem Maria Stienen

    2007-03-01

    Full Text Available In order to develop management strategies for sustainable useand conservation in the marine environment, reliable and meaningful,but integrated ecological information is needed. Biological valuationmaps that compile and summarize all available biological andecological information for a study area, and that allocate anoverall biological value to subzones, can be used as baselinemaps for future spatial planning at sea. This paper providesa concept for marine biological valuation which is based on aliterature review of existing valuation criteria and the consensusreached by a discussion group of experts.

  12. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-01

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  13. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  14. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects.

    Science.gov (United States)

    Duis, Karen; Coors, Anja

    2016-01-01

    Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be

  15. Environmental Parasitology. Interactions between parasites and pollutants in the aquatic environment

    Directory of Open Access Journals (Sweden)

    Sures B.

    2008-09-01

    Full Text Available In recent years there has been an increasing number of papers showing how parasitism and pollution can interact with each other in aquatic organisms. Among the variety of investigated aspects especially the combined effects of pollution and simultaneous infection on the health of aquatic hosts (molluscs, crustaceans, fish, mammals is of considerable interest. Effects of pollution on the occurrence and distribution of parasites is another interesting field of “Environmental Parasitology” attracting increasing attention. This mini-review presents some promising examples of interdisciplinary studies paying attention to the fact that under natural conditions no organism will only be affected by either parasites or pollution.

  16. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters.

  17. REE incorporation and behaviour in aquatic turtles as a consequence of environmental exposure and biological processes

    Science.gov (United States)

    Censi, P.; Randazzo, L. A.; D'Angelo, S.; Cuttitta, A.; Saiano, F.

    2012-04-01

    Rare Earth Elements (REE) contents in Emys trinacris have been investigated for the first time in order to recognise effects of the chemistry of the environment on the composition of biological fluids. Representing radionuclides a potential health risk for living organisms in case of incorporation in tissues and being REE geochemical analogues of actinides in hydrosphere, this study was focused on investigation of REE behaviour in whole blood and esoskeleton of selected individuals of Emys trinacris. The choice of this species is related to its amphibian character that allowed us to evidence environmental stress in terms of composition of environmental freshwaters whose REE compositions were investigated and compared with blood samples. Moreover effects induced by different environmental conditions were investigated collecting samples in two sites characterised by absence of an anthropogenic signature (GT site) and subjected to strong anthropogenic pressure in terms of wastewater input (SIC site), respectively. In both sites REE contents in whole blood samples of studied turtles are quite similar even if in GT site the highest REE contents have been recognised. Shale-normalised REE patterns show very similar REE behaviour with light REE (LREE) enrichments with respect to heavier REE (HREE), mainly in samples from anthropized site. If REE concentrations in whole blood are normalised to the composition of environmental waters, calculated REE patterns show upward concave shapes centred on Gd that are more pronounced in samples from GT site because their patterns are more enriched in LREE. The last features observed in blood samples from GT can be related to larger REE contents occurred in environmental water from this site with respect to waters collected in SIC site, suggesting that a relationship occurs between REE contents in environmental and biological fluids. Since MREE depletions were observed in waters experiencing phosphate crystallization, observed REE

  18. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    Science.gov (United States)

    Santamaría, Luis

    2002-06-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.

  19. Endocrine disrupters in the aquatic environment: the Austrian approach--ARCEM.

    Science.gov (United States)

    Bursch, W; Fuerhacker, M; Gemeiner, M; Grillitsch, B; Jungbauer, A; Kreuzinger, N; Moestl, E; Scharf, S; Schmid, E; Skutan, S; Walter, I

    2004-01-01

    A consortium of Austrian scientists (ARCEM) carried out a multidisciplinary environmental study on Austrian surface and ground waters including chemical monitoring, bioindication, risk assessment and risk management for selected endocrine disrupters: 17beta-estradiol, estriol, estrone, 17alpha-ethinylestradiol, 4-nonylphenol, 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) and their degradation products, ocytlphenol, ocytlphenol ethoxylates (OP1EO, OP2EO) as well as bisphenol A. To obtain data representative for Austria, a material flow analysis served to select relevant compounds and water samples were collected monthly over one year at those sites routinely used in Austrian water quality control. The following results were obtained and conclusions drawn: 1. Chemical monitoring: As compared to other countries, relatively low levels of pollution with endocrine disrupters were detected. 2. Bioindication: In the surface waters under study, male fish showed significant signs of feminization and demasculinization (increased production of the egg-yolk protein and histological changes of the gonads. 3. Risk assessment: For humans, exposure via either drinking water abstraction (ground water) or fish consumption was considered. The exposure levels of the compounds under study were below those considered to result in human health risks. Likewise, for bisphenol A and octylphenols, there was no indication for risk posed upon the aquatic environment (fish). However, nonylphenol or 17alpha-ethinylestradiol exposure along with results of bioindication (2) suggest a borderline estrogenic activity in a considerable number of surface waters. Consequently the emissions of these substances into the surface waters affected have to be reduced. 4. Risk management: Waste water treatment experiments revealed a positive correlation between the removal rate of endocrine disrupters from the waste water and the sludge retention time in the treatment plants. These substances are removed to a

  20. Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luanna R.S.; Silva, Edvane B.; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (GERAR/DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia; Silva, Ronaldo C. da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica; Amancio, Francisco F. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia

    2011-07-01

    Ionizing radiation is a genotoxic agent, inducing gene mutations and cellular death. Several efforts have been defendants in the development of techniques for measurement of radiation damage in biological systems. Among these techniques, micronuclei test has been showing as a great bio marker of DNA damage, being used in environmental monitoring to detect genotoxic agents in the environment. Additionally, organisms as Biomphalaria glabrata, freshwater molluscs, presents itself as an excellent model to assess damage caused by physical and chemical agents, due their biological and environmental characteristics. The snails were divided into groups of 5 individuals exposed to doses of 0 (control), 25, 35, 45 and 55 Gy of {sup 60}Co. After 48 hours of irradiation, the hemo lymph was collected and prepared the slides, which were stained with Giemsa and analyzed the cellular changes in haemocytes Statistical analysis was accomplished through chi-square test, ANOVA and Tukey test (p< 0,05). The results indicated that B. glabrata showed to be sensitive to gamma radiation. The snails irradiated with 35 Gy showed a decrease of haemocytes, while that of 55 Gy increased. Cellular and morphological changes were observed at doses of 35, 45 and 55 Gy and the dose of 55 Gy, the most radiotoxic. (author)

  1. AquaEnv: an aquatic acid–base modelling environment in R

    NARCIS (Netherlands)

    Hofmann, A.F.; Soetaert, K.E.R.; Middelburg, J.J.; Meysman, F.J.R.

    2010-01-01

    AquaEnv is an integrated software package for aquatic chemical model generation focused on ocean acidification and antropogenic CO2 uptake. However, the package is not restricted to the carbon cycle or the oceans: it calculates, converts, and visualizes information necessary to describe pH, related

  2. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...... to OCPs and may serve as the most effective bioindicators for monitoring OCP contamination in the water and suspended solids of Lake Chaohu. Megalobrama amblycephala, which contained the highest wet weight mean OCP concentration, is the most sensitive OCP indicator and can be used to assess the human...

  3. Aquatic environment, housing, and management in the eighth edition of the Guide for the Care and Use of Laboratory Animals: additional considerations and recommendations.

    Science.gov (United States)

    Mason, Timothy J; Matthews, Monte

    2012-05-01

    The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers.

  4. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.

  5. Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA

    Directory of Open Access Journals (Sweden)

    Thomas Simon

    2015-01-01

    Full Text Available The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species. Habitat quality was highest in the Muscatatuck River drainage with increased amounts of forested habitats compared to the Patoka River drainage. Biological integrity of the three refuges ranked the Patoka NWR as the lowest biological integrity (mean IBI reach scores = 35 IBI points, while Big Oaks had the highest biological integrity (mean IBI reach score = 41 IBI points. The Muscatatuck NWR had a mean IBI reach score of 31 during June, which seasonally increased to a mean of 40 IBI points during summer. Watershed IBI scores and habitat condition were highest in the Big Oaks NWR.

  6. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

  7. Physical biologists and biological physicists: combining biology and physics in research on the effects of noise on aquatic life.

    Science.gov (United States)

    Cato, Douglas H

    2012-01-01

    Research in aquatic bioacoustics and the effects of noise is interdisciplinary and to be effective requires a collaboration of experts from all the fields involved. The full range of expertise is needed for adequate understanding of the processes involved, adequate experimental design, analysis and interpretation, and adequate knowledge of the research already published. The biologists need to understand how physicists work and make allowance, and vice versa. Both need to understand that the other will not be familiar with their practices and approach and that there will be a certain amount of negotiation and education on both sides.However, the best reason to develop collaborations with other experts in interdisciplinary research is that it is such a rewarding experience from the insights it provides into other disciplines and from the opportunity to do really effective and very significant research, well beyond what the individuals might have achieved on their own.

  8. Next Generation of Advanced Laser Fluorescence Technology for Characterization of Natural Aquatic Environments

    Science.gov (United States)

    2011-09-30

    The project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to...sucessfully tested. It provides the accuracy of CC fluorescnce measurments comparable to the accuracy of commonly accepted preparatory methods , such HPLC...Plankton Reseach (Chekalyuk et al. 2011). Task 2 Development of Aquatic Laser Fluorescence Analyzer (ALFA). The ALFA instrument development is

  9. Methods for estimating doses to organisms from radioactive materials released into the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.; Soldat, J.K.

    1992-06-01

    The US Department of Energy recently published an interim dose limit of 1 rad d{sup {minus}1} for controlling the radiation exposure of nature aquatic organisms. A computer program named CRITR, developed previously for calculating radiation doses to aquatic organisms and their predators, has been updated as an activity of the Hanford Site Surface Environmental Surveillance Project to facilitate demonstration of compliance with this limit. This report presents the revised models and the updated computer program, CRITR2, for the assessment of radiological doses to aquatic organisms and their predators; tables of the required input parameters are also provided. Both internal and external doses to fish, crustacea, mollusks, and algae, as well as organisms that subsist on them, such as muskrats, raccoons, and ducks, may be estimated using CRITR2. Concentrations of radionuclides in the water to which the organisms are exposed may be entered directly into the user-input file or may be calculated from a source term and standard dilution models developed for the National Council on Radiation Protection and Measurements.

  10. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  11. Watershed-Scale Modeling of Land-Use and Altered Environment Impacts on Aquatic Weed Growth in the Delta

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, and water quality have all been suspected as playing role in the dramatic expansion of invasive aquatic plants and their impact on ecosystems of the San Francisco Bay / California Delta complex. NASA Ames Research Center, USDA-Agricultural Research Service, the State of California, UC Davis, and local governments have partnered under a USDA sponsored project (DRAAWP) to develop science-based, adaptive-management strategies for invasive aquatic plants in Sacramento-San Joaquin Delta. Critical to developing management strategies is to understand how the Delta is affected by both the magnitude of fluctuations in land-use and climate / drought induced altered environments and how the plants respond to these altered environments. We utilize the Soil Water Assessment Tool (SWAT), a watershed-scale model developed to quantify the impact of land management practices in large and complex watersheds on water quality, as the backbone for a customized Delta model - Delta-SWAT. The model uses land-use, soils, elevation, and hydrologic routing to characterize pesticide and nutrient transport from the Sacramento and San Joaquin rivers watersheds and loading into the Delta. Land-use within the Delta, as well as water extraction to supply those functions, and the resulting return of water to Delta waterways are included in Delta-SWAT. Hydrologic transport within the Delta has required significant attention to address the lack of elevation driven transport processes. Delta-SWAT water quality trend estimates are compared with water quality monitoring conducted throughout the Delta. Aquatic plant response to water quality and other environmental factors is carried out using a customized

  12. Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research.

    Science.gov (United States)

    Walters, Chavon R; Pool, Edmund J; Somerset, Vernon S

    2014-01-01

    There has been extensive growth in nanoscale technology in the last few decades to such a degree that nanomaterials (NMs) have become a constituent in a wide range of commercial and domestic products. With NMs already in use in several consumer products, concerns have emerged regarding their potential adverse environmental impacts. Although research has been undertaken in order to minimise the gaps in our understanding of NMs in the environment, little is known about their bioavailability and toxicity in the aquatic environment. Nano-toxicology is defined as the study of the toxicity of nanomaterials. Nano-toxicology studies remain poorly and unevenly distributed. To date most of the research undertaken has been restricted to a narrow range of test species such as daphnids. Crabs are bio-indicators that can be used for toxicological research on NMs since they occupy a significant position in the aquatic food chain. In addition, they are often used in conventional ecotoxicological studies due to their high sensitivity to environmental stressors and are abundantly available. Because they are benthic organisms they are prone to contaminant uptake and bioaccumulation. To our knowledge the crab has never been used in nano-toxicological studies. In this context, an extensive review on published scientific literature on the ecotoxicity of silver NPs (AgNPs) on aquatic organisms was conducted. Some of the most common biomarkers used in ecotoxicological studies are described. Emphasis is placed on the use of biomarker responses in crabs as monitoring tools, as well as on its limitations. Additionally, the gaps in nano-toxicological research and recommendations for future research initiatives are addressed.

  13. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  14. A numerical taxonomic study of species of Vibrio isolated from the aquatic environment and birds in Kent, England.

    Science.gov (United States)

    West, P A; Lee, J V; Bryant, T N

    1983-10-01

    A numerical taxonomic study has been carried out to confirm the identity of strains of the family Vibrionaceae isolated during an ecological study. A total of 237 strains were studied including 148 from the aquatic environment, 6 from estuarine birds, 1 from sheep faeces, and 61 control cultures. Duplicates of 21 of the strains were randomly selected and included to estimate test and operator error. Taxonomic resemblance was estimated on the basis of 148 characters using Euclidean distance. The taxonomic position of some strains was reevaluated using the pattern different coefficient. Strains were clustered by three methods, all of which gave similar results. The estimated average probability of test error was 1.5%. Strains previously identified as Vibrio anguillarum fell into four distinct phenons corresponding to V. anguillarum biovar I, 'V. anguillarum biovar II', V. diazotrophicus, and strains pathogenic to oyster larvae. The latter group characteristically degraded xanthine and probably represents a new species. The phenon corresponding to V. cholerae included the type strain, strains of human origin, and strains isolated in the United Kingdom from birds and the aquatic environment. Some strains of V. cholerae were luminous. Other phenons were identified as V. metschnikovii, V. fluvialis, and Aeromonas spp.

  15. Surveillance and evaluation of the infection risk of free-living amoebae and Legionella in different aquatic environments.

    Science.gov (United States)

    Ji, Wen-Tsai; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Kao, Po-Min; Huang, Kuan-Hao; Tsai, Shiou-Feng; Huang, Yu-Li; Fan, Cheng-Wei

    2014-11-15

    Free-living amoebae (FLA) are ubiquitous in various aquatic environments. Several amoebae species are pathogenic and host other pathogens such as Legionella, but the presence of FLA and its parasites as well as the related infection risk are not well known. In this study, the presence of pathogenic FLA and Legionella in various water bodies was investigated. Water samples were collected from a river, intake areas of drinking water treatment plants, and recreational hot spring complexes in central and southern Taiwan. A total of 140 water samples were tested for the presence of Acanthamoeba spp., Naegleria spp., Vermamoeba vermiformis, and Legionella. In addition, phylogenetic characteristics and water quality parameters were also assessed. The pathogenic genotypes of FLA included Acanthamoeba T4 and Naegleria australiensis, and both were abundant in the hot spring water. In contrast, Legionella pneumophila was detected in different aquatic environments. Among the FLA assessed, V. vermiformis was most likely to coexist with Legionella spp. The total bacteria level was associated with the presence of FLA and Legionella especially in hot spring water. Taken together, FLA contamination in recreational hot springs and drinking water source warrants more attention on potential legionellosis and amoebae infections.

  16. Muscle electrical activity during exercises with and without load executed on dry land and in an aquatic environment

    Directory of Open Access Journals (Sweden)

    Indira Nayra Paz Santos

    Full Text Available Introduction Muscle activity in the aquatic environment was investigated using electromyographic analyses. The physical properties of water and the resistance used may influence the response of the muscle during exercise. The objective of this study was to evaluate the electrical activity in water and on the floor during flexion and knee extension exercises with and without load and aimed at understanding the muscular response while performing resistance exercises in water. Methods The sample consisted of 14 volunteers between 18 and 35 years old who were subjected to active exercises involving knee flexion and extension with and without load on the floor and in water. Electromyography was performed during the movement. Results A significant increase was found in the electrical activity of the rectus femoris muscle during exercises on the floor. The biceps femoris muscle showed increased electromyographic activity when resistance was used. A significant increase was found in the electrical activity of the rectus femoris muscle compared with exercises with and without load and the moment of rest in immersion. The electrical activity of the rectus and biceps femoris muscles was reduced in exercises with load and without load in a therapy pool compared with on the floor. Conclusion There was a reduction of the electromyographic activity in the aquatic environment compared with that on the ground, which could be attributed to the effects from hot water. Therefore, it is believed that resistance exercises can be performed early in a therapy pool, which will facilitate the prevention and treatment of musculoskeletal disorders.

  17. Morpho-Physiological and Biochemical Criteria of Acantha-moeba spp. Isolated from the Egyptian Aquatic Environment

    Directory of Open Access Journals (Sweden)

    A Mohammed

    2013-06-01

    Full Text Available Background: The free-living amoebae Acanthamoeba spp., have been recognized as etiologic agents of amoebic encephalitis, keratitis, otitis, lung lesions and other skin infections mainly in immuno-compro­mised individuals. In this study, morpho-physiological and biochemical characterization of Acanthamoeba strains isolated from the Egyptian aquatic environment were surveyed.Methods: some Acanthamoeba species were cultivated on non-nutrient agar. Isolated strains of Acantha­moeba were identification based on the morphology of trophic and cyst forms in addition to temperature and osmo-tolerance assays. Biochemical characterization of the isolated amoeba strains was performed using quantitative assay as well as qualitative determination of proteolytic activity in zymograph analysis.Results: Potentially pathogenic Acanthamoeba species were isolated from all of the examined water sources. Colorimetric assays showed protease activity in the heat-tolerant isolates of Acanthamoeba. All pathogenic isolates of Acanthamoeba exhibited higher protease activity than did the non-patho­genic ones. The zymographic protease assays showed various banding patterns for different strains of Acanthamoeba.Conclusio: The incidence and prevalence of the pathogenic Acanthamoeba species in the aquatic environment using parasitological and biochemical diagnostic tools will provide baseline data against which the risk factors associated with waterborne transmission can be identified.

  18. Biological approaches to global environment change mitigation and remediation.

    Science.gov (United States)

    Woodward, F Ian; Bardgett, Richard D; Raven, John A; Hetherington, Alistair M

    2009-07-28

    One of the most pressing and globally recognized challenges is how to mitigate the effects of global environment change brought about by increasing emissions of greenhouse gases, especially CO(2). In this review we evaluate the potential contribution of four biological approaches to mitigating global environment change: reducing atmospheric CO(2) concentrations through soil carbon sequestration and afforestation; reducing predicted increases in global surface temperatures through increasing the albedo of crop plants; and fertilizing the oceans to increase primary productivity and CO(2) drawdown. We conclude that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases. However, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale. In the absence of legally binding international agreements to reduce CO(2) emissions, we propose that: increased efforts are made to identify novel biological mitigatory strategies; further research is conducted to minimise the uncertainties present in all four of the biological approaches described; and pilot-level field work is conducted to examine the feasibility of the most promising strategies. Finally, it is essential to engage with the public concerning strategies for mitigating the effects of climate change because the majority of the biological approaches have effects, quite possibly of a negative nature, on ecosystem services and land usage.

  19. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    Science.gov (United States)

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  20. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?

    Science.gov (United States)

    Nuttens, A; Chatellier, S; Devin, S; Guignard, C; Lenouvel, A; Gross, E M

    2016-08-01

    Aquatic systems in agricultural landscapes are subjected to multiple stressors, among them pesticide and nitrate run-off, but effects of both together have rarely been studied. We investigated possible stress-specific and interaction effects using the new OECD test organism, Myriophyllum spicatum, a widespread aquatic plant. In a fully factorial design, we used two widely applied herbicides, isoproturon and mesosulfuron-methyl, in concentration-response curves at two nitrate levels (219.63 and 878.52mg N-NO3). We applied different endpoints reflecting plant performance such as growth, pigment content, content in phenolic compounds, and plant stoichiometry. Relative growth rates based on length (RGR-L) were affected strongly by both herbicides, while effects on relative growth rate based on dry weight (RGR-DW) were apparent for isoproturon but hardly visible for mesosulfuron-methyl due to an increase in dry matter content. The higher nitrate level further reduced growth rates, specifically with mesosulfuron-methyl. Effects were visible between 50 and 500μgL(-1) for isoproturon and 0.5-5μgL(-1) for mesosulfuron-methyl, with some differences between endpoints. The two herbicides had opposite effects on chlorophyll, carotenoid and nitrogen contents in plants, with values increasing with increasing concentrations of isoproturon and decreasing for mesosulfuron-methyl. Herbicides and nitrate level exhibited distinct effects on the content in phenolic compounds, with higher nitrate levels reducing total phenolic compounds in controls and with isoproturon, but not with mesosulfuron-methyl. Increasing concentrations of mesosulfuron-methyl lead to a decline of total phenolic compounds, while isoproturon had little effect. Contents of carbon, nitrogen and phosphorus changed depending on the stressor combination. We observed higher phosphorus levels in plants exposed to certain concentrations of herbicides, potentially indicating a metabolic response. The C:N molar ratio

  1. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England.

    Science.gov (United States)

    Dallas, Lorna J; Jha, Awadhesh N

    2015-06-30

    Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools.

  2. A way forward in exposure assessment of nanomaterials in the aquatic environment

    DEFF Research Database (Denmark)

    Quik, T. K.; Vonk, A.; Hansen, Steffen Foss;

    2011-01-01

    The current approach to ecological risk assessment of chemicals is based on the quotient of a predicted no effect concentration and a predicted exposure concentration. We have gathered knowledge supporting the prediction of the exposure concentration of nanomaterials (NMs) in the aquatic environm......The current approach to ecological risk assessment of chemicals is based on the quotient of a predicted no effect concentration and a predicted exposure concentration. We have gathered knowledge supporting the prediction of the exposure concentration of nanomaterials (NMs) in the aquatic...... for sedimentation and dissolution of NMs. We have used this overview to propose a way forward in modeling the exposure concentration of NMs in the water phase. Transport to sediment seems to be of greater relative importance than advection or dissolution of NMs. Both the transport of nanomaterials from water...... to sediment and the dissolution of nanomaterials can be incorporated into current exposure models simply by adding first-order rate constants. Our proposed exposure model for nanomaterials can be used to improve current risk assessment for nanomaterials....

  3. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms.

    Science.gov (United States)

    Liu, Tiantian; Diao, Jinling; Di, Shanshan; Zhou, Zhiqiang

    2015-04-01

    The benthic fauna is of great importance to assess the environmental fate of contaminations in aquatic ecosystem. In this study, tubificids were exposed to both laboratory-contaminated aqueous phases and spiked sediment to study the bioaccumulation of isocarbophos (ICP). Two types of spiked sediments were used in the spiked sediment experiment. During the exposure period, an enantioselective bioaccumulation was found in spiked water treatment, with concentrations of the (-)-ICP higher than that of the (+)-ICP, but no enantioselectivity was detected in the spiked sediment treatments. However, different bioaccumulation patterns were observed in the two spiked sediment treatments. Results showed that for spiked forest field sediment (FF sediment) incubation, bioaccumulation was governed by the concentrations in soil. Whereas ICP was bioaccumulated dominantly from overlying water in spiked Chagan Lake sediment (CG sediment) test. The dissipation rates were proved different in the two sediments and ICP dissipated much faster in CG sediment than that in FF sediment. Significant difference in ICP's half-life was also observed between worm-present and worm-free treatments in FF sediment. The detections of concentrations in overlying water indicated that much more ICP diffused to aquatic phase with the present of tubificids.

  4. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: a case study including a cocktail scenario.

    Science.gov (United States)

    Styrishave, Bjarne; Halling-Sørensen, Bent; Ingerslev, Flemming

    2011-01-01

    We present an environmental risk assessment of three selective serotonin reuptake inhibitors (SSRIs; citalopram, sertraline, and fluoxetine) in the aquatic environment based on two case scenarios. Abiotic and biotic degradation experiments and sorption estimates were used to predict environmental concentrations of three SSRIs from the wastewater of two psychiatric hospitals, the primary sector, and wastewater entering and leaving wastewater treatment plants (WWTPs). Assuming a sewage treatment retention time of 8 h, abiotic degradation was low, for all three SSRIs inhibitors, ranging between 0 and 2% for hydrolysis and 0 and 6% for photolysis. The biodegradation was also slow, ranging from 0 to 3% within an 8-h period. In untreated sewage, citalopram (CIT) and sertraline (SER) concentrations may be high enough to exert effects on the aquatic biota (CIT: 0.19-10.3 µg/L; SER: 0.14-17.1 µg/L). Removal of the pharmaceuticals is due primarily to sorption in the WWTP. Sertraline was estimated to have the highest concentrations in the sewage effluents, 4.4 and 19.9 ng/L for the two cases, respectively. In treated wastewater, individual SSRI concentrations are probably too low to exert effects on biota. By using concentration addition, a cocktail exposure scenario was estimated. The predicted concentration in the biota calculated from the cocktail effect was 0.05 and 0.16 nmol/g for the two cases, respectively, and SER was found to give the highest contribution to this cocktail effect. The results indicate that the concentrations in the wastewater effluents are one to two orders of magnitude lower than the concentrations likely to cause an effect in the aquatic biota.

  5. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine;

    2016-01-01

    Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment...

  6. EFFECT OF AQUATIC ENVIRONMENT PH ON THE LEVEL OF ECTOPARASITE INFESTATION, PROTEIN AND LYSOZYME CONTENT IN SOME CYPRINID SPECIES (CYPRINIDAE

    Directory of Open Access Journals (Sweden)

    L. Kurovskaya

    2016-03-01

    Full Text Available Purpose. To study the effect of рН values of the aquatic environment on the level of ectoparasite infestation, protein and lysozyme content in organs and serum of some cyprinid species in experimental conditions. Methodology. The objects of the study were yearlings of Cyprinus carpio, Carassius auratus gibelio and Pseudorasbora parva caught in ponds of fish farm “Nyvka” (Kiev region in spring. Fish were kept in experimental conditions at neutral pH water (6.8-7.2 and a temperature of 17-18оC. To study the changes in the level of fish parasite infestation at different pH values, we used carp yearlings, as an object, the most infected with parasites. Fish were placed in aquariums with water pH of 5.0-5.5 (slightly acidic environment and 8.5-9.0 (slightly alkaline environment for 5 days. Thereafter, the ectoparasites were counted on fish body surface and gills. The protein content in serum and tissue extracts of organs (liver, kidney, spleen of Carassius auratus gibelio and Pseudorasbora parva infected and uninfected ectoparasites, after holding them in slightly acidic or slightly alkaline environment for 8 days, was determined by Lowry’s method, while lysozyme content was determined by a diffusion method on agar. Findings. A comparative assessment of the number of ectoparasites (Ichthyophthirius multifiliis, Trichodina sp., Dactylogyrus sp., Gyrodactylus sp. on fish body surface and gills, the content of protein and lysozyme in serum and organs at different pH values of aquatic environment has been presented. It was demonstrated that the number of ectoparasites on fish body surface and gills was significantly reduced when keeping the fish in both slightly acidic and slightly alkaline environments. In infected Carassius auratus gibelio, a reduction in the protein and lysozyme content in liver, kidney and serum was observed only in the neutral pH environment compared to uninfected individuals. In the slightly acidic or slightly alkaline

  7. Daphnia as a model organism in limnology and aquatic biology: some aspects of its reproduction and development

    Directory of Open Access Journals (Sweden)

    Adam Petrusek

    2011-08-01

    Full Text Available Invertebrates comprise the overwhelming majority of all animal species - around 95% of described species, not including substantial cryptic variation. As it is an extremely diverse and heterogeneous group, research on various invertebrate taxa often follows parallel trajectories, with little interaction among experts on different groups. To promote sharing of knowledge within as well as across taxa, the International Society of Invertebrate Reproduction and Development (ISIRD was established in 1975 in Calicut, India. Since that time, the ISIRD has organised international conferences at three-year intervals where various aspects of invertebrate biology are presented and discussed, naturally with the focus on reproduction and development. Traditionally, marine invertebrate groups have been well represented at all ISIRD congresses, but freshwater invertebrates have often been relatively overlooked at these meetings. The 12th ISIRD congress took place between August 16 and 20, 2010 in Prague, the Czech Republic. Several different Czech institutions collaborated on the organisation of this meeting. As aquatic invertebrate research has a long tradition in the country, we decided to include a section dedicated to popular model organisms in aquatic ecology and evolutionary biology, the "water fleas", cladocerans of the genus Daphnia. The section entitled "Daphnia and other cladocerans as model organisms" was open to any aspects of cladoceran biology directly or indirectly related to their reproduction or development. Unfortunately, the timing of the Prague congress completely overlapped the triennial congress of the International Society of Theoretical and Applied Limnology (SIL in Cape Town, South Africa. This large meeting in a very attractive setting attracted many cladocerologists from all over the world, including Europe. Therefore, the Daphnia section of the Prague ISIRD meeting remained moderate in size, attracting 13 contributions (eight talks

  8. Theoretical training bases for young athletes in aquatic sports on the natural environment: Bodyboard.

    Directory of Open Access Journals (Sweden)

    Marcos Mecías Calvo

    2015-09-01

    Full Text Available The bodyboard is a surfing discipline whose growth has been considerably since the 60s, so it is considered one of the fastest growing aquatic sport in the world. Despite this, scientific research of this discipline has been reflected poorly compared to other sports. As in any other sport, the bodyboarder requires of specific physical and physiological conditions to help it to practice the sport effectively as it does not follow a specific training or develop conditioning programs. Therefore, this article comes up with the idea of providing a basis for determining the most appropriate training based on study objectives and bodyboard actions to improve physical, technical and psychological condition of the bodyboarders based on the particularities of their own sport and the athlete, taking into account scientific studies in the field at hand: the Bodyboard.

  9. Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments.

    Science.gov (United States)

    Fasulo, Salvatore; Iacono, Francesco; Cappello, Tiziana; Corsaro, Carmelo; Maisano, Maria; D'Agata, Alessia; Giannetto, Alessia; De Domenico, Elena; Parrino, Vincenzo; Lo Paro, Giuseppe; Mauceri, Angela

    2012-10-01

    Environmental metabolomics was applied to assess the metabolic responses in transplanted mussels to environmental pollution. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). Chemical analysis revealed increased levels of PAHs in the digestive gland of mussels from the industrial area compared with control, and marked morphological changes were also observed. Digestive gland metabolic profiles, obtained by 1H NMR spectroscopy and analyzed by multivariate statistics, showed changes in metabolites involved in energy metabolism. Specifically, changes in lactate and acetoacetate could indicate increased anaerobic fermentation and alteration in lipid metabolism, respectively, suggesting that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The NMR-based environmental metabolomics applied in this study results thus in it being a useful and effective tool for assessing environmental influences on the health status of aquatic organisms.

  10. Are Bacteria the Major Producers of Extracellular Glycolytic Enzymes in Aquatic Environments?

    Science.gov (United States)

    Vrba, Jaroslav; Callieri, Cristiana; Bittl, Thomas; Imek, Karel; Bertoni, Roberto; Filandr, Pavel; Hartman, Petr; Hejzlar, Josef; Macek, Miroslav; Nedoma, Jií

    2004-01-01

    In aquatic microbial ecology, it has been considered that most extracellular enzymes except phosphatases are of bacterial origin. We tested this paradigm by evaluating the relationship between bacterial cell number and the activity of three glycolytic enzymes from 17 fresh waters and also from a laboratory experiment. Our large sets of pooled data do not seem to support such a simple explanation, because we found only a weak correlation of bacterial number with activity of -glucosidase (rs = 0.63), -glucosidase (rs = 0.45), and -N-acetylhexosaminidase (rs = 0.44). We also tested relations of the enzymatic activities to potential sources of natural substrates: dissolved organic carbon (DOC) and phytoplankton (as chlorophyll a). Their correlations with the enzymatic activities tested were very weak or insignificant. On the other hand, we found evidence for distinct producers of extracellular enzymes by analysing enzyme kinetics. The kinetics usually did not follow the simple Michaelis-Menten model but a more complex one, indicating a mixture of two enzymes with distinct affinity to a substrate. In combination with size fractionation, we could sometimes even distinguish three or more different enzymes. During diatom blooms, the diatom biomass tightly correlated with β-N-acetylhexosaminidase activity (>4 μm fraction). We also documented very tight relationships between activity of both glucosidases and dry weight of Daphnia longispina (rs = 1.0 and 0.60 for α- and β-glucosidases, respectively) in an alpine clear-water lake. Our data and evidence from other studies indicate that extracellular glycosidic activities in aquatic ecosystems cannot generally be assigned only to bacteria. Also invertebrate animals and other eukaryotes (fungi, diatoms, protozoa etc.) should be considered as potentially very important enzyme producers. (

  11. Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments.

    Science.gov (United States)

    Declerck, Priscilla; Behets, Jonas; van Hoef, Vincent; Ollevier, Frans

    2007-07-01

    Floating biofilms develop at the water-air interface and harbor numerous microorganisms, some of which are human pathogens like Legionella pneumophila. The presence of Legionella spp. and especially L. pneumophila in such biofilms was investigated. In parallel, the occurrence of Naegleria spp., Acanthamoeba spp., Willaertia spp., Vahlkampfia spp. and Hartmanella spp. was determined and it was examined whether Acanthamoeba spp. isolates were naturally infected with L. pneumophila bacteria. Eight anthropogenic and 37 natural aquatic environments were sampled between June and August 2005. Both Legionella spp. and L. pneumophila were present in 100% of the floating biofilms of the anthropogenic aquatic systems. Eighty-one percent of all natural floating biofilm samples were positive for Legionella spp. and 70% of these samples were positive for L. pneumophila. Legionella concentrations were in the range of 10(1)-10(2)cells/cm(2). Naegleria spp. and Acanthamoeba spp., two well-known L. pneumophila amoeba hosts, were present in 50-92% and 67-72% of floating biofilm samples, respectively. Acanthamoeba spp. isolates appeared to be naturally infected with L. pneumophila bacteria as proved by fluorescent in situ hybridization.

  12. Aquatic biological communities and associated habitats at selected sites in the Big Wood River Watershed, south-central Idaho, 2014

    Science.gov (United States)

    MacCoy, Dorene E.; Short, Terry M.

    2016-09-28

    Assessments of streamflow (discharge) parameters, water quality, physical habitat, and biological communities were completed between May and September 2014 as part of a monitoring program in the Big Wood River watershed of south-central Idaho. The sampling was conducted by the U.S. Geological Survey in cooperation with Blaine County, Trout Unlimited, the Nature Conservancy, and the Wood River Land Trust to help identify the status of aquatic resources at selected locations in the watershed. Information in this report provides a basis with which to evaluate and monitor the long-term health of the Big Wood River and its major tributaries. Sampling sites were co-located with existing U.S. Geological Survey streamgaging stations: three on the main stem Big Wood River and four on the North Fork Big Wood River (North Fork), Warm Springs Creek (Warm Sp), Trail Creek (Trail Ck), and East Fork Big Wood River (East Fork) tributaries.The analytical results and quality-assurance information for water quality, physical habitat, and biological community samples collected at study sites during 2 weeks in September 2014 are summarized. Water-quality data include concentrations of major nutrients, suspended sediment, dissolved oxygen, and fecal-coliform bacteria. To assess the potential effects of nutrient enrichment on algal growth, concentrations of periphyton biomass (chlorophyll-a and ash free dry weight) in riffle habitats were determined at each site. Physical habitat parameters include stream channel morphology, habitat volume, instream structure, substrate composition, and riparian vegetative cover. Biological data include taxa richness, abundance, and stream-health indicator metrics for macroinvertebrate and fish communities. Statistical summaries of the water-quality, habitat, and biological data are provided along with discussion of how these findings relate to the health of aquatic resources in the Big Wood River watershed.Seasonal discharge patterns using statistical

  13. Aquatic biological communities and associated habitats at selected sites in the Big Wood River Watershed, south-central Idaho, 2014

    Science.gov (United States)

    MacCoy, Dorene E.; Short, Terry M.

    2016-09-28

    Assessments of streamflow (discharge) parameters, water quality, physical habitat, and biological communities were completed between May and September 2014 as part of a monitoring program in the Big Wood River watershed of south-central Idaho. The sampling was conducted by the U.S. Geological Survey in cooperation with Blaine County, Trout Unlimited, the Nature Conservancy, and the Wood River Land Trust to help identify the status of aquatic resources at selected locations in the watershed. Information in this report provides a basis with which to evaluate and monitor the long-term health of the Big Wood River and its major tributaries. Sampling sites were co-located with existing U.S. Geological Survey streamgaging stations: three on the main stem Big Wood River and four on the North Fork Big Wood River (North Fork), Warm Springs Creek (Warm Sp), Trail Creek (Trail Ck), and East Fork Big Wood River (East Fork) tributaries.The analytical results and quality-assurance information for water quality, physical habitat, and biological community samples collected at study sites during 2 weeks in September 2014 are summarized. Water-quality data include concentrations of major nutrients, suspended sediment, dissolved oxygen, and fecal-coliform bacteria. To assess the potential effects of nutrient enrichment on algal growth, concentrations of periphyton biomass (chlorophyll-a and ash free dry weight) in riffle habitats were determined at each site. Physical habitat parameters include stream channel morphology, habitat volume, instream structure, substrate composition, and riparian vegetative cover. Biological data include taxa richness, abundance, and stream-health indicator metrics for macroinvertebrate and fish communities. Statistical summaries of the water-quality, habitat, and biological data are provided along with discussion of how these findings relate to the health of aquatic resources in the Big Wood River watershed.Seasonal discharge patterns using statistical

  14. Interacting domain-specific languages with biological problem solving environments

    Science.gov (United States)

    Cickovski, Trevor M.

    Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.

  15. Sporothrix schenckii complex biology: environment and fungal pathogenicity.

    Science.gov (United States)

    Téllez, M D; Batista-Duharte, A; Portuondo, D; Quinello, C; Bonne-Hernández, R; Carlos, I Z

    2014-11-01

    Sporothrix schenckii is a complex of various species of fungus found in soils, plants, decaying vegetables and other outdoor environments. It is the aetiological agent of sporotrichosis in humans and several animals. Humans and animals can acquire the disease through traumatic inoculation of the fungus into subcutaneous tissue. Despite the importance of sporotrichosis, it being currently regarded as an emergent disease in several countries, the factors driving its increasing medical importance are still largely unknown. There have only been a few studies addressing the influence of the environment on the virulence of these pathogens. However, recent studies have demonstrated that adverse conditions in its natural habitats can trigger the expression of different virulence factors that confer survival advantages both in animal hosts and in the environment. In this review, we provide updates on the important advances in the understanding of the biology of Spor. schenckii and the modification of its virulence linked to demonstrated or putative environmental factors.

  16. Toxicity of certain heavy metals on fish in the aquatic environment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On the earth's crust there are 59 heavy metals of which 17 are considered toxic to biological communities. Here in Alaska, we have thus far considered the following...

  17. Functional Genomics and Cell Biology of the Dolphin (Tursiops runcatus): Establishment of Novel Molecular Tools to Study Marine Mammals in Changing Environments

    OpenAIRE

    Mancia, Annalaura

    2010-01-01

    The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studi...

  18. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.

    Science.gov (United States)

    Farnese, F S; Oliveira, J A; Lima, F S; Leão, G A; Gusman, G S; Silva, L C

    2014-08-01

    Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As) for seven days. Growth, As absorption, malondialdehyde (MDA) content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  19. Evaluation of the potential of Pistia stratiotes L. (water lettuce for bioindication and phytoremediation of aquatic environments contaminated with arsenic

    Directory of Open Access Journals (Sweden)

    FS Farnese

    Full Text Available Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As for seven days. Growth, As absorption, malondialdehyde (MDA content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  20. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator

    CERN Document Server

    Kim, Woosung; Zhu, Jiangang; Faraz, Monifi; Coban, Cevayir; Yang, Lan; 10.1364/OE.20.029426

    2013-01-01

    We, for the first time, report the detection and the size measurement of single nanoparticles (i.e. polystyrene) in aquatic environment using mode splitting in a whispering gallery mode (WGM) optical resonator, namely a microtoroid resonator. Using this method we achieved detecting and measuring individual synthetic hemozoin nanocrystals, which are a hemoglobin degradation by-product of malarial parasites, dispersed in a solution or in air. The results of size measurement in solution and in air agree with each other and with those obtained using scanning electron microscope and dynamic light scattering. Moreover, we compare the sensing capabilities of the degenerate (single resonance) and non-degenerate (split mode, doublet) operation regimes of the WGM resonator.

  1. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  2. Effect of recurrent sediment resuspension-deposition events on bioavailability of polycyclic aromatic hydrocarbons in aquatic environments

    Science.gov (United States)

    Dong, Jianwei; Xia, Xinghui; Wang, Minghu; Xie, Hui; Wen, Jiaojiao; Bao, Yimeng

    2016-09-01

    To investigate the effect of recurrent sediment resuspension-deposition events (RSRDEs) on bioavailability of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments, a modified device was used to simulate three resuspension-deposition events with the sediment collected from the Yellow River. The results showed that the dissolved organic carbon (DOC)-water distribution coefficients of PAHs decreased with time during the first resuspension-deposition period. It indicates that some PAHs associated with organic carbon (OC) in suspended sediment (SPS) desorbed with the release of OC and became DOC-associated PAHs in the overlying water, then the PAHs desorbed from the DOC and became freely dissolved. After first 2-h suspension, only 1.90% of phenanthrene, 2.98% of pyrene, and 0.33% of chrysene in the overlying water came from pore-water; at least 61.6%, 89.6%, and 95.3% came from DOC-associated PAHs in SPS and the rests were released from the insoluble OC in SPS. The maximum desorption ratios in the original sediment were 20%, 12%, and 14% for phenanthrene, pyrene, and chrysene, respectively during the first resuspension-deposition event. The SPS concentration followed the sequence of the third > second > first resuspension event. This was because RSRDEs changed the SPS particle size and enhanced floc formation. There was no significant difference in the total dissolved PAH concentrations among the three resuspension events, while their freely dissolved concentrations followed the sequence of the third > second > first resuspension event. During deposition periods, more than half of the total/freely dissolved PAHs released during suspension still existed in the overlying water after 70-h deposition. This study suggests that the RSRDEs will increase the bioavailability of PAHs in aquatic environments, especially near the sediment-water interface, and the potential effects of PAHs during RSRDEs on fish/human in rivers and lakes should be considered in future

  3. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments.

    Science.gov (United States)

    Lumaret, Jean-Pierre; Errouissi, Faiek; Floate, Kevin; Römbke, Jörg; Wardhaugh, Keith

    2012-05-01

    The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin

  4. Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region.

    Science.gov (United States)

    Chen, Zhi-Feng; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Zhao, Jian-Liang; Liu, Shuang-Shuang; Chen, Jun; Peng, Feng-Jiao; Lai, Hua-Jie; Pan, Chang-Gui

    2014-07-01

    Biocides are widely formulated in household and personal care products. We investigated the distribution and ecological risks of 16 household biocides in aquatic environments of a highly urbanized region in South China, evaluated triclosan as a chemical indicator for this group of household chemicals, and proposed a novel approach to predict the environmental occurrence and fate of these household biocides by using triclosan usage data and a level-III fugacity model. Eleven biocides were quantitatively detected at concentrations up to 264 ± 15.3 ng/L for climbazole in surface water, and up to 5649 ± 748 ng/g for triclocarban in sediment of four rivers in the region. The distribution of biocides in the aquatic environments was significantly correlated with environmental variables such as total nitrogen, total phosphorus and population. Domestic sewage in the region was the dominant pollution source for most biocides such as azole fungicides (fluconazole, climbazole, clotrimazole, ketoconazole, miconazole, and carbendazim) and disinfectants (triclosan and triclocarban). Preliminary risk assessment showed high ecological risks posed by two biocides carbendazim and triclosan in river waters. Mostly important, triclosan was found to be a reliable chemical indicator to surrogate household biocides both in water and sediment based on the correlation analysis. In addition, the fugacity modeling could provide simulated concentrations comparable to the monitoring results. Therefore, with the usage data of the chemical indicator triclosan and correlation formula with other biocides, this model can be applied for predicting the occurrence and fate of various household biocides in a catchment.

  5. Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; ZHOU Qixing; PENG Shengwei; MA Lena Q; NIU Xiaowei

    2009-01-01

    Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided to 3 phases: fishes exposed to the low dose groups (0.5--5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0--25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0--50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of the exposure. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was first increased and then decreased, and was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a little more than the control level when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group compared with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of the GST activity.

  6. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments

    Science.gov (United States)

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis. PMID:28166249

  7. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  8. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments.

    Science.gov (United States)

    García, M T; Campos, E; Marsal, A; Ribosa, I

    2009-02-01

    Four types of commonly used sulphonate-based surfactants (alkane sulphonates, alpha-olefin sulphonates, sulphosuccinates and methyl ester sulphonates) were tested for their aerobic and anaerobic biodegradability as well as for their toxicity to Daphnia magna and Photobacterium phosphoreum to assess the effect of the surfactant structure on those properties. Aerobic biodegradation was evaluated by means of the CO2 headspace test and anaerobic biodegradation was assessed by a method based on the ECETOC test. All the surfactants tested were readily biodegraded under aerobic conditions. No clear effect of the surfactant structures on the toxicity to the aquatic organisms tested was found. The most significant differences in the surfactants studied were observed in their behaviour under anaerobic conditions. Alkane sulphonates, alpha-olefin sulphonates and methyl ester sulphonates were not mineralized in lab anaerobic digesters despite the fact that the last one showed a certain degree of primary degradation. Nevertheless, these surfactants did not significantly inhibit methanogenic activity at concentrations up to 15 g surfactant/kg dry sludge, a concentration that is much higher than the expected concentrations of these surfactants in real anaerobic digesters. Sulphosuccinates showed a high level of primary biodegradation in anaerobic conditions. However, linear alkyl sulphosuccinates were completely mineralized whereas branched alkyl sulphosuccinates achieved percentages of ultimate biodegradation < or =50%.

  9. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    Science.gov (United States)

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  10. Determination and occurrence of secondary alkane sulfonates (SAS) in aquatic environments.

    Science.gov (United States)

    Baena-Nogueras, Rosa María; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2013-05-01

    A new methodology has been developed for the determination of secondary alkane sulfonates (SAS), an anionic surfactant, in environmental matrices. Sediment and sludge samples were extracted using pressurized liquid extraction and sonication, whereas wastewater and surface water samples were processed using solid-phase extraction. Extraction recoveries were acceptable for both aqueous (78-120%) and solid samples (83-100%). Determination of SAS was carried out by high or ultra performance liquid chromatography - mass spectrometry using ion trap and time-of-flight detectors. The methodology was applied to samples from Guadalete River (SW Spain), where SAS concentrations below 1 μg L(-1) were measured in surface water, and from 72 to 9737 μg kg(-1) in sediments. Differential partitioning was observed for SAS homologues as those having a longer hydrocarbon chain which preferentially sorbed onto particulate matter. A preliminary environmental risk assessment also showed that SAS measured levels were not harmful to the aquatic community in the sampling area.

  11. Hydroxyl radical induced photo-transformation of single-walled carbon nanotubes in the aquatic environment

    Science.gov (United States)

    Inevitably, the growth in production of carbon nanotubes will translate into their release into our environment, yet existing information about their fate and persistence is limited. We hypothesize that indirect photochemical transformation of unfunctionalized carbon nanotubes is...

  12. Methodologies to assess the fate of polar organic compounds in aquatic environments

    OpenAIRE

    Magnér, Jörgen

    2010-01-01

    Polar organic compounds (POCs) are chemicals with polar functional groups in their structure. The functional groups make the compounds hydrophilic and less prone to partition with biota. However, the knowledge of their fate is limited due to difficulties associated with their measurements. Although, the persistence of POCs in the environment is generally low, they are considered to be semi-persistent compounds due to their continuous introduction to the environment via wastewater. Studies hav...

  13. Using Stable Isotopes of Carbon and Nitrogen to Evaluate Trophic Interactions in Aquatic Environments

    Science.gov (United States)

    Christensen, David R.; LaRoche, Andrew

    2012-01-01

    This paper describes a series of laboratory exercises for upper level biology courses, independent research and/or honors programs. Students sampled fish from a local water body with the assistance of a local fish and wildlife agency. Tissue samples from collected fish were utilized to obtain estimates of the stable isotopes delta[superscript 13]C…

  14. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment.

    Science.gov (United States)

    Kennedy, Alan J; Hull, Matthew S; Steevens, Jeffery A; Dontsova, Katerina M; Chappell, Mark A; Gunter, Jonas C; Weiss, Charles A

    2008-09-01

    Carbon nanotubes (NTs) may be among the most useful engineered nanomaterials for structural applications but could be difficult to study in ecotoxicological evaluations using existing tools relative to nanomaterials with a lower aspect ratio. Whereas the hydrophobicity and van der Waals interactions of NTs may suggest aggregation and sedimentation in aquatic systems, consideration regarding how engineered surface modifications influence their environmental fate and toxicology is needed. Surface modifications (e.g., functional groups and coatings) are intended to create conditions to make NTs dispersible in aqueous suspension, as required for some applications. In the present study, column stability and settling experiments indicated that raw, multiwalled NTs (MWNTs) settled more rapidly than carbon black and activated carbon particles, suggesting sediment as the ultimate repository. The presence of functional groups, however, slowed the settling of MWNTs (increasing order of stability: hydroxyl > carboxyl > raw), especially in combination with natural organic matter (NOM). Stabilized MWNTs in high concentrations of NOM provided relevance for water transport and toxicity studies. Aqueous exposures to raw MWNTs decreased Ceriodaphnia dubia viability, but such effects were not observed during exposure to functionalized MWNTs (> 80 mg/L). Sediment exposures of the amphipods Leptocheirus plumulosus and Hyalella azteca to different sizes of sediment-borne carbon particles at high concentration indicated mortality increased as particle size decreased, although raw MWNTs induced lower mortality (median lethal concentration [LC50], 50 to >264 g/kg) than carbon black (LC50, 18-40 g/kg) and activated carbon (LC50, 12-29 g/kg). Our findings stress that it may be inappropriate to classify all NTs into one category in terms of their environmental regulation.

  15. Protein method for investigating mercuric reductase gene expression in aquatic environments.

    Science.gov (United States)

    Ogunseitan, O A

    1998-02-01

    A colorimetric assay for NADPH-dependent, mercuric ion-specific oxidoreductase activity was developed to facilitate the investigation of mercuric reductase gene expression in polluted aquatic ecosystems. Protein molecules extracted directly from unseeded freshwater and samples seeded with Pseudomonas aeruginosa PU21 (Rip64) were quantitatively assayed for mercuric reductase activity in microtiter plates by stoichiometric coupling of mercuric ion reduction to a colorimetric redox chain through NADPH oxidation. Residual NADPH was determined by titration with phenazine methosulfate-catalyzed reduction of methyl thiazolyl tetrazolium to produce visible formazan. Spectrophotometric determination of formazan concentration showed a positive correlation with the amount of NADPH remaining in the reaction mixture (r2 = 0.99). Mercuric reductase activity in the protein extracts was inversely related to the amount of NADPH remaining and to the amount of formazan produced. A qualitative nitrocellulose membrane-based version of the method was also developed, where regions of mercuric reductase activity remained colorless against a stained-membrane background. The assay detected induced mercuric reductase activity from 10(2) CFU, and up to threefold signal intensity was detected in seeded freshwater samples amended with mercury compared to that in mercury-free samples. The efficiency of extraction of bacterial proteins from the freshwater samples was (97 +/- 2)% over the range of population densities investigated (10(2) to 10(8) CFU/ml). The method was validated by detection of enzyme activity in protein extracts of water samples from a polluted site harboring naturally occurring mercury-resistant bacteria. The new method is proposed as a supplement to the repertoire of molecular techniques available for assessing specific gene expression in heterogeneous microbial communities impacted by mercury pollution.

  16. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  17. Persistence and bioavaiability of manufactured silver nanoparticles in the aquatic environment

    DEFF Research Database (Denmark)

    Dai, Lina; Banta, Gary Thomas; Selck, Henriette

    2011-01-01

    The environmental behavior of manufactured nanoparticles (MNPs) has received increasing attention. One of the focuses is whether they exist as particles or as dissolved ions in the environment. The dissolution of MNPs is a key to understand their behaviors in the environment. However, little...... information is available in dissolution of MNPs in a complex environment, such as sediment, which is believed to be the final sink for released MNPs. We tested the dissolution of PVP-coated silver nanoparticles (AgNPs) and compared the ion diffusive kinetics with Ag(I) in 3 different media (MilliQ water......, seawater and sediment) at a level of 100 µg per g dry weight sediment. A large difference in dissolution in the three media was found in the order: MilliQ water >> seawater > sediment, which suggests that ligands (i.e., organic matter and inorganic ligands) have a large influence on ion release of Ag...

  18. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays.

    Science.gov (United States)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine; Witt, Gesine; Haase, Nora; Escher, Beate I

    2016-06-07

    Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction or polymer-based passive sampling combined with either solvent spiking or passive dosing.

  19. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.

  20. Impact assessment of emission management strategies of the pharmaceuticals Metformin and Metoprolol to the aquatic environment using Bayesian networks.

    Science.gov (United States)

    Brandmayr, Caterina; Kerber, Heide; Winker, Martina; Schramm, Engelbert

    2015-11-01

    The issue of pharmaceuticals in the environment has caused increasing concern in the recent years and various strategies have been proposed to tackle this problem. This work describes a Bayesian network (BN)-based socio-ecological impact assessment of a set of measures aimed at reducing the entry of pharmaceuticals in the aquatic environment. The measures investigated were selected across three sectors: public health market, environmental politics and drug design innovation. The BN model was developed for two drugs, Metformin and Metoprolol, and it models the distribution of the Predicted Environmental Concentration (PEC) values as a function of different measures. Results show that the sensitivity of the PEC for the two drugs to the measures investigated reflects the distinct drug characteristics, suggesting that in order to ensure the successful reduction of a broad range of substances, a spectrum of measures targeting the entire lifecycle of a pharmaceutical should be implemented. Furthermore, evaluation of two scenarios reflecting different emission management strategies highlights that the integrated implementation of a comprehensive set of measures across the three sectors results in a more extensive reduction of the contamination. Finally, the BN provides an initial forecasting tool to model the PEC of a drug as a function of a combination of measures in a context-specific manner and possible adaptations of the model are proposed.

  1. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels.

    Science.gov (United States)

    Harada, Arata; Komori, Koya; Nakada, Norihide; Kitamura, Kiyoaki; Suzuki, Yutaka

    2008-01-01

    The existence of pharmaceuticals and personal care products (PPCPs) in the water environment is an emerging problem. In this study, we investigated the toxicity of eleven PPCPs through bioassays on bacteria, algae, crustaceans, amphibians and protozoa, and compared the toxicology indexes with the concentration of PPCPs in river water for ecotoxiclogical risk evaluation. Toxicity of the eleven PPCPs was observed and the values of EC50 or LC50 were in the order of mg/L. A distinctive finding is that antibacterial triclosan affected all aquatic lives tested. The effects of PPCPs varied according to species of lives. Contamination from PPCPs was detected at observation stations on the river, and the range of concentration was in the order of ng/L far lower than the values of toxicity indexes EC50 or LC50. Ecotoxicological risks posed by PPCPs at the observation stations was evaluated using the concentration in the river water and the NOEC examined by AGI tests. The results revealed that three PPCPs, triclosan, clarithromycin, and azithromycin, posed an ecotoxiclogical risk in rivers where wastewater treatment systems are not yet well developed.

  2. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M;

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shor...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.......We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  3. Adhesins acquired in the aquatic environment and Vibrio cholerae colonization of intestinal cells

    OpenAIRE

    Vezzulli, Luigi; Repetto, Barbara; Pezzati, Elisabetta; Stauder, Monica; Giusto, Giovanni; Pruzzo, Carla

    2011-01-01

    Recent results for Vibrio cholerae interactions with bivalves and chitin-containing substrates are reviewed. Chitin, composed of b-1,4-linked N-acetylglucosamine residues, is one of the most abundant biopolymers in nature and the most abundant in the marine environment. V. cholerae connection to chitin is a well known phenomenon and one of the best documented examples of a successful bacteriasubstrate interaction, affecting both the lifestyle of the microorganisms and natural system functioni...

  4. Fate of perfluoroalkyl acids in the aquatic environment with a focus on mass balance studies

    OpenAIRE

    2015-01-01

    Perfluoroalkyl substances (PFASs) are man-made chemicals. Their unique properties make them beneficial for a wide range of industrial and consumer product applications, such as in aqueous film forming foam (AFFF), durable water repellent clothing, hydraulic oils and food packaging materials. Perfluoroalkyl acids (PFAAs), a class of PFASs, are highly persistent in the environment, and long chain PFAAs are bioaccumulative and toxic. International regulation and voluntary actions by the industry...

  5. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands

    NARCIS (Netherlands)

    Vethaak, A.D.; Lahr, J.; Schrap, S.M.; Belfroid, A.C.; Rijs, G.B.J.; Gerritsen, A.; Boer, de J.; Bulder, A.S.; Grinwis, G.C.M.; Kuiper, R.V.; Legler, J.; Murk, A.J.; Peijnenburg, W.; Verkaar, H.J.M.; Voogt, de P.

    2005-01-01

    An extensive study was carried out in the Netherlands on the occurrence of a number of estrogenic compounds in surface water, sediment, biota, wastewater, rainwater and on the associated effects in fish. Compounds investigated included natural and synthetic hormones, phthalates, alkylphenol(ethoxyla

  6. A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments

    Science.gov (United States)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2015-02-01

    We have performed incubation experiments in order to examine the behaviour of soil-derived branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to evaluate the processes that potentially take place during their fluvial transport from land to sea. We incubated a soil from the Rakaia River catchment on the South Island of New Zealand using Rakaia River water and ocean water collected near the river mouth as inocula for a period of up to 152 days. The concentrations, as well as the relative distribution of brGDGTs derived from intact polar ("living"; IPL) lipids and core ("fossil"; CL) lipids remained unaltered over the course of the experiment. Although the stability of the brGDGTs may be a consequence of the higher than natural soil : water ratio used in the laboratory experiment, the substantial increase (27-72%) in the total pool of isoprenoid GDGTs (isoGDGTs) in all incubation setups, including the control using distilled water, indicates that entering an aquatic environment does influence the behaviour of soil-derived GDGTs. However, the availability of water appears to be more important than its properties. As a consequence of increasing isoGDGT concentrations, a decrease in Branched and Isoprenoid Tetraether (BIT) index values - a proxy for the relative input of fluvially discharged soil material into a marine system - became evident after an incubation period of 30 days, with a maximum final decrease of 0.88 to 0.74 in the experiment with river water. The relative distribution within the isoGDGT pool shows changes with time, suggesting that isoGDGT producers may either have different rates of membrane adaptation or production/degradation, or that preferential release from the soil matrix or a shift in source organism(s) may take place. While the apparent stability of soil brGDGTs during this incubation experiment reinforces their potential as tracers for land-sea transport of soil organic carbon and

  7. Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    CERN Document Server

    Woosung, Kim; Zhu, Jiangang; Yang, Lan

    2011-01-01

    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in water. We determine the size range of particles that induces MS in a microsphere in water as a function of resonator mode volume and quality factor. The results are confirmed by the experimental observations.

  8. Natural radionuclides in the aquatic environment of a phosphogypsum disposal area.

    Science.gov (United States)

    Haridasan, P P; Paul, A C; Desai, M V

    2001-01-01

    Rock phosphate ore processing and disposal of phosphogypsum contribute to enhanced levels of natural radionuclides in the environment. Studies on the distribution of U-series nuclides were carried out in the Chitrapuzha River, near Cochin, in the southern part of India. The concentrations of radionuclides, especially 226Ra, in the river waters showed enhancement by an order of magnitude relative to the levels in nearby water bodies. The concentrations were influenced by seasonal changes in the river flows during monsoon and summer periods. Ingestion doses via fish and milk have an upper estimate of 18 microSv for the critical population.

  9. Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment.

    Science.gov (United States)

    Lohmann, Rainer; Muir, Derek; Zeng, Eddy Y; Bao, Lian-Jun; Allan, Ian J; Arinaitwe, Kenneth; Booij, Kees; Helm, Paul; Kaserzon, Sarit; Mueller, Jochen F; Shibata, Yasuyuki; Smedes, Foppe; Tsapakis, Manolis; Wong, Charles S; You, Jing

    2017-02-07

    Organic contaminants, in particular persistent organic pollutants (POPs), adversely affect water quality and aquatic food webs across the globe. As of now, there is no globally consistent information available on concentrations of dissolved POPs in water bodies. The advance of passive sampling techniques has made it possible to establish a global monitoring program for these compounds in the waters of the world, which we call the Aquatic Global Passive Sampling (AQUA-GAPS) network. A recent expert meeting discussed the background, motivations, and strategic approaches of AQUA-GAPS, and its implementation as a network of networks for monitoring organic contaminants (e.g., POPs and others contaminants of concern). Initially, AQUA-GAPS will demonstrate its operating principle via two proof-of-concept studies focused on the detection of legacy and emerging POPs in freshwater and coastal marine sites using both polyethylene and silicone passive samplers. AQUA-GAPS is set up as a decentralized network, which is open to other participants from around the world to participate in deployments and to initiate new studies. In particular, participants are sought to initiate deployments and studies investigating the presence of legacy and emerging POPs in Africa, Central, and South America.

  10. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  11. Adsorption of biometals to monosodium titanate in biological environments

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D.T.; MESSER, R. L. W.; LEWIS, J. B.; CLICK, D. R. LOCKWOOD, P. E.; WATAHA, J. C.

    2005-06-06

    Monosodium titanate (MST) is an inorganic sorbent/ion exchanger developed for the removal of radionuclides from nuclear wastes. We investigated the ability of MST to bind Cd(II), Hg(II), or Au(III) to establish the utility of MST for applications in environmental decontamination or medical therapy (drug delivery). Adsorption isotherms for MST were determined at pH 7-7.5 in water or phosphate-buffered saline. The extent of metal binding was determined spectroscopically by measuring the concentrations of the metals in solution before and after contact with the MST. Cytotoxic responses to MST were assessed using THP1 monocytes and succinate dehydrogenase activity. Monocytic activation by MST was assessed by TNF{alpha} secretion (ELISA) with or without lipopolysaccharide (LPS) activation. MST sorbed Cd(II), Hg(II), and Au(III) under conditions similar to that in physiological systems. MST exhibited the highest affinity for Cd(II) followed by Hg(II) and Au (III). MST (up to 100 mg/L) exhibited only minor (< 25% suppression of succinate dehydrogenase) cytotoxicity and did not trigger TNF{alpha} secretion nor modulate LPS-induced TNF{alpha} secretion from monocytes. MST exhibits high affinity for biometals with no significant biological liabilities in these introductory studies. MST deserves further scrutiny as a substance with the capacity to decontaminate biological environments or deliver metals in a controlled fashion.

  12. Passive aquatic listener (PAL): An adoptive underwater acoustic recording system for the marine environment

    Science.gov (United States)

    Anagnostou, Marios N.; Nystuen, Jeffrey A.; Anagnostou, Emmanouil N.; Papadopoulos, Anastasios; Lykousis, Vassilios

    2011-01-01

    The ambient sound field in the ocean is a combination of natural and manmade sounds. Consequently, the interpretation of the ambient sound field can be used to quantify these processes. In the frequency range from 1 to 50 kHz, the general character of ocean ambient sound is a slowly changing background that is closely associated with local wind speed, interspersed with shorter time scale events such as rain storms, ships and animal calls. At lower frequencies the underwater ambient sound budget includes geologically generated sound activities including underwater volcanic eruptions, seismic and seepage faults that generate bubbles, etc. that can also potentially be classified and quantified. Acoustic data are collected on hydrophones. Hydrophones are simple, robust sensors that can be deployed on most ocean instrumentation systems including surface or sub-surface moorings, bottom mounted systems, drifters, ARGO floats or autonomous underwater platforms. A dedicated oceanic underwater recorder called a passive acoustic listener (PAL) has been developed. A principal issue is to accurately distinguish different sound sources so that they can be quantified as part of a sound budget, and then quantified if appropriate. Based on ongoing data collected from the Poseidon II network the retrieval potential of multi-parameters from underwater sound, including meteorological (i.e., precipitation and winds) and in general geophysical, anthropogenetic (i.e., ships, submarines, etc.) and biological (whales, etc.) sources is presented.

  13. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    Science.gov (United States)

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats.

  14. Use of neural networks for assessment of adverse impact duration of solid waste disposal facilities on the aquatic environment

    Science.gov (United States)

    Kmiecik, Ewa; Twardowska, Irena; Szczepanska, Jadwiga

    2004-03-01

    Routine monitoring and long-term studies conducted in 19-years" hydrologic cycle in the Upper Silesia Coal Basin (USCB), Poland, show extensive release to ground and surface waters of contaminant loads from mining waste. For simulation of the time-dependent changes of Acid Rock Drainage (ARD) generation expressed as sulfate formation due to oxidation of ferrous sulfides occurring in solid phase of mining waste, models of supervised neural networks were used. It was found that with use of such a model, the time span in which the concentration of a contaminant will reach the permissible level or the process of its release will terminate could be evaluated with a precision sufficient for practical purposes (the relative error did not exceed 1%). The results of simulation of temporal and spatial contaminant concentration changes will be utilized as a basis for assessment of an extent of the environmental deterioration dependent on the duration of a waste disposal in the site. These analyses enable to obtain reliable models describing time-dependent changes of water quality in the vicinity of long-term contamination sources, which seems to be their most essential merit The models allow also to evaluate the duration of the adverse impact of a facility on the aquatic environment and to reduce the expenses on the monitoring through the reduction of a number of samples and analyses.

  15. Identification and quantitative detection of Legionella spp. in various aquatic environments by real-time PCR assay.

    Science.gov (United States)

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Chiu, Yi-Chou; She, Cheng-Yu; Shen, Shu-Min; Huang, Yu-Li; Huang, Wen-Chien

    2013-09-01

    In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.

  16. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    Science.gov (United States)

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  17. Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments.

    Science.gov (United States)

    Schlüter, Michael; Gentz, Torben

    2008-10-01

    A method is presented for the online measurement of methane in aquatic environments by application of membrane inlet mass spectrometry (MIMS). For this purpose, the underwater mass spectrometer Inspectr200-200 was applied. A simple and reliable volumetric calibration technique, based on the mixing of two end member concentrations, was used for the analysis of CH(4) by MIMS. To minimize interferences caused by the high water vapor content, permeating through the membrane inlet system into the vacuum section of the mass spectrometer, a cool-trap was designed. With the application of the cool-trap, the detection limit was lowered from 100 to 16 nmol/L CH(4). This allows for measurements of methane concentrations in surface and bottom waters of coastal areas and lakes. Furthermore, in case of membrane rupture, the cool-trap acts as a security system, avoiding total damage of the mass spectrometer by flushing it with water. The Inspectr200-200 was applied for studies of methane and carbon dioxide concentrations in coastal areas of the Baltic Sea and Lake Constance. The low detection limit and fast response time of the MIMS allowed a detailed investigation of methane concentrations in the vicinity of gas seepages.

  18. Study on biting bugs encountered in the aquatic environments in Kashan, Isfahan Province, Iran

    Institute of Scientific and Technical Information of China (English)

    Rouhullah Dehghani; Mahmood Atharizadeh; Vahid Kazemi Moghadam; Mostafa Hadei

    2016-01-01

    Objective:To determine biting bugs of Hemiptera families presenting in the county of Kashan. Methods: For this descriptive study, samples were collected from 17 locations of lentic and lotic waters,3 times for each. These specimens were identified by using a stereo microscope and morphological keys. Results:Out of 5 535 specimens collected in three times of samplings, 3 024 specimens (54.6%) belonged to order Diptera, 701 specimens (12.7%) belonged to Crustaceans, 691 specimens (12.5%) belonged to Trichoptera, 468 specimens (8.4%) belonged to Hemipetera, 303 specimens (5.5%) belonged to Ephemeroptera, 133 specimens (2.4%) belonged to Odonata, 104 specimens (1.9%) belonged to Coleoptera, 98 specimens (1.8%) belonged to Hydroacarina and 13 specimens (0.2%) belonged to Plecoptera. In this study, Families Corixidae, Notonectidae, Gerridae and Nepidae from Hemiptera order were identified 45.9%, 26.9%, 25.0% and 2.2%, respectively. Conclusions: These results lead to the conclusion that Hemiptera fauna is relatively rich in Kashan. More studies by entomologists and biologists are recommended to determine the benefits and damages of these insects on the environment.

  19. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior.

    Science.gov (United States)

    Lefèvre, Christopher T; Abreu, Fernanda; Lins, Ulysses; Bazylinski, Dennis A

    2010-05-01

    Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.

  20. Increase of the Trametes versicolor efficiency in bioremediation process for diclofenac biodegradation in aquatic environments

    Directory of Open Access Journals (Sweden)

    Claudia POPA (UNGUREANU

    2015-08-01

    Full Text Available Diclofenac (DCF is a non-steroidal anti-inflammatory drug and, as pollutant, it represents a persistent residue hazard to health and to the environment. Trametes versicolor was previously selected for its ability in diclofenac biodegradation (up to 20% during cultivation in submerged system under aerobic conditions at an initial DCF concentration of 10 mg L-1. The influence of some factors such as nitrogen sources glucose, MnSO4·H2O, CuSO4·5H2O, inoculum level, initial DCF concentration and incubation time, upon the biodegradation potential was examined by Plackett-Burman analysis. The parameters significantly influencing the DCF biotransformation were found to be yeast extract, glucose, CuSO4·5H2O and inoculum level. In these optimum conditions, the DCF biotransformation yield was 80%. This result was 60% superior in comparison with the medium without optimization. Analysis of variance exhibited a high coefficient of determination (R2 value of 0.9987 and ensured that the polynomial model with the experimental data was a satisfactory one. Optimal conditions obtained in this work led to a solid foundation for further use of Trametes versicolor in biotreatment of high strength DCF pollutant effluents in water wastes.

  1. Towards molecular computers that operate in a biological environment

    Science.gov (United States)

    Kahan, Maya; Gil, Binyamin; Adar, Rivka; Shapiro, Ehud

    2008-07-01

    important consequences when performed in a proper context. We envision that molecular computers that operate in a biological environment can be the basis of “smart drugs”, which are potent drugs that activate only if certain environmental conditions hold. These conditions could include abnormalities in the molecular composition of the biological environment that are indicative of a particular disease. Here we review the research direction that set this vision and attempts to realize it.

  2. Oxidation of diclofenac with chlorine dioxide in aquatic environments: influences of different nitrogenous species.

    Science.gov (United States)

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Ni, Tianjun

    2015-06-01

    The oxidation of diclofenac (DCF), a non-steroidal anti-inflammatory drug and emerging water pollutant, with chlorine dioxide was investigated under simulated water disinfection conditions. The reaction kinetics as functions of the initial concentrations of DCF, different nitrogenous species, and different pE values were experimentally determined. The results demonstrated that DCF reacted rapidly with ClO2, where more than 75 % of DCF (≤3.00 μM) was removed by 18.94 μM ClO2 within 60 s. All of the reactions followed pseudo first-order kinetics with respect to DCF, and the rate constant, k obs, exhibited a significant decrease from 4.21 × 10(-2) to 8.09 × 10(-3) s(-1), as the initial DCF concentration was increased from 1.00 to 5.00 μM. Furthermore, the degradation kinetics of DCF was clearly dependent on nitrogen-containing ion concentrations in the reaction solution. Ammonium and nitrite ions inhibited the DCF degradation by ClO2, whereas nitrate ion clearly initiated its promotion. In contrast, the inhibitory effect of NO2 (-) was more robust than that of NH4 (+). When the values of pE were gradually increased, the transformation of NH4 (+) to NO2 (-), and subsequently to NO3 (-), would occur, the rate constants were initially decreased, and then increased. When NH4 (+) and NO2 (-) coexisted, the inhibitory effect on the DCF degradation was less than the sum of the partial inhibitory effect. However, when NO2 (-) and NO3 (-) coexisted, the actual inhibition rate was greater than the theoretical estimate. These results indicated that the interaction of NH4 (+) and NO2 (-) was antagonistic, while the coexistence of NO2 (-) and NO3 (-) was observed to have a synergistic effect in aqueous environments.

  3. Prevalence of antibiotic-resistant bacteria in three different aquatic environments over three seasons.

    Science.gov (United States)

    Mohanta, Tandra; Goel, Sudha

    2014-08-01

    The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012-2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n = 138), River Kangsabati (n = 13) and groundwater (n = 12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon > winter > summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.

  4. Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment.

    Science.gov (United States)

    Schreder, Erika D; La Guardia, Mark J

    2014-10-07

    Levels of flame retardants in house dust and a transport pathway from homes to the outdoor environment were investigated in communities near the Columbia River in Washington state (WA). Residential house dust and laundry wastewater were collected from 20 homes in Vancouver and Longview, WA and analyzed for a suite of flame retardants to test the hypothesis that dust collecting on clothing and transferring to laundry water is a source of flame retardants to wastewater treatment plants (WWTPs) and subsequently to waterways. Influent and effluent from two WWTPs servicing these communities were also analyzed for flame retardants. A total of 21 compounds were detected in house dust, including polybrominated diphenyl ethers (PBDEs), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB or EH-TBB), bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH), 1,2-bis(2,4,6,-tribromophenoxy)ethane (BTBPE) and decabromodiphenylethane (DBDPE), hexabromocyclododecane (HBCD or HBCDD), tetrabromobisphenol A (TBBPA), and three chlorinated organophosphate flame retardants (ClOPFRs), tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(2-chloroethyl)phosphate (TCEP). Levels ranged from 3.6 to 82,700 ng g(-1) (dry weight). Of the 21 compounds detected in dust, 18 were also detected in laundry wastewater. Levels ranged from 47.1 to 561,000 ng L(-1). ClOPFRs were present at the highest concentrations in both dust and laundry wastewater, making up 72% of total flame retardant mass in dust and 92% in laundry wastewater. Comparison of flame retardant levels in WWTP influents to estimates based on laundry wastewater levels indicated that laundry wastewater may be the primary source to these WWTPs. Mass loadings to the Columbia River from each treatment plant were by far the highest for the ClOPFRs and ranged up to 114 kg/yr for TCPP.

  5. Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China.

    Science.gov (United States)

    Gan, Zhiwei; Sun, Hongwen; Feng, Biting; Wang, Ruonan; Zhang, Yanwei

    2013-09-15

    Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation.

  6. Pesticide Degrading Bacteria in Aquatic Environment: Bioprospecting and Evaluation of Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Daniel Rodrigues dos Santos

    2016-07-01

    Full Text Available Pesticides play an important role in the increase of productivity in agro-industry and the extensive use of these substances cause environmental, economic and social damage in time. Microbial activity is an essential part in the dynamics and the destination of pesticides in the environment. This research focuses in prospecting and characterizing bacterial strains which are potentially able to degrade/tolerate Atrazine, Chlorpyrifos, Methyl parathion and Picloram. Bacteria were isolated from water samples collected according to the degree of salinity along the Pacoti River's estuary (Ceara, located in the semi-arid region of northeastern Brazil. A total of 49 bacterial strains were isolated, all of which tolerated/ downgraded concentrations up to 200mg/L of picloram, atrazine and methyl parathion. Tested in pesticide mixtures, the percentage and tolerance level showed that 73% grew in concentrations up to 200mg/L, 17,4% tolerated/ downgraded up to 150ml/L and the remainder only grew in concentrations under 100ml/L. The strains which had the best performance against pesticides, by points, were P1 (13Db e 14D; P2 (10E; P3 (2M, 9M, 10M, 12Mb, 14M, 17M 18Mp 19M e 20M. A high percentage of isolates (67% expressed luminescence when exposed to the pesticides atrazine and methyl parathion in concentrations between 150 and 200ml/L. DOI: http://dx.doi.org/10.17807/orbital.v8i4.748

  7. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2015-08-01

    Full Text Available Antibiotic resistant bacteria (ARB are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3 and tet(M, in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP in South Africa. There was no correlation between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread in a wide area without connection to selection pressure. Among sul genes, sul1 and sul2 were major genes in the total (over 10-2 copies/16S and colony forming bacteria assemblages (approx 10-1 copies/16S. In urban waters, the sul3 gene was mostly not detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M was found in natural assemblages with 10-3 copies/16S level in STP, but was not detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured bacterial community in urban surface waters and STP effluent possess the tet(M gene. Sulfamethoxazole resistant (SMXr and oxytetracycline resistant (OTCr bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3 and tet(M genes. These genes are widely distributed in SMXr and OTCr bacteria. In conclusion, urban river and estuarine water and STP effluent in the Durban area were highly contaminated with ARGs, and the yet-to-be cultured bacterial community may act as a non-visible ARG reservoir in certain situations.

  8. Optimization of spectral bands for ocean colour remote sensing of aquatic environments

    Science.gov (United States)

    Nagamani, P. V.; Lotliker, Aneesh; Navalgund, R. R.; Dadhwal, V. K.; Rao, K. H.; Kumar, T. Srinivasa; Preethi Latha, T.

    2016-05-01

    Selection of central wavelengths, bandwidths and the number of spectral bands of any sensor to be flown on a remote sensing satellite is important to ensure discriminability of targets and adequate signal-to-noise ratio for the retrieval of parameters. In recent years, a large number of spectral measurements over a wide variety of water types in the Arabian Sea and the Bay of Bengal have been carried out through various ship cruises. It was felt pertinent to use this precious data set to arrive at meaningful selection of spectral bands and their bandwidths of the ocean colour sensor to be flown on the forthcoming Oceansat-3 of ISRO. According to IOOCG reports and studies by Lee and Carder (2002) it is better for a sensor to have 15 bands in the 400-800 nm range for adequate derivation of major properties (phytoplankton biomass, colored dissolved organic matter, suspended sediments, and bottom properties) in both oceanic and coastal environments from observation of water color. In this study, 417 hyper-spectral remote-sensing reflectance spectra (spectral range varies from 380-800 nm) covering different water types like open, coastal, mid coastal and near coastal waters have been used to identify the suitable spectral bands for OCM-3. Central wavelengths were identified based on the results obtained from hyper-spectral underwater radiometer measurements of Rrs, HPLC pigments and spectrometer analyzed absorption spectra for all the above water types. Derivative analysis has been carried out from 1st to 5th order to identify the inflection and null points for better discrimination / identification of spectral peaks from the in situ Rrs spectra. The results showed that open ocean and coastal ocean waters has spectra peaks mostly in the blue, green region; turbid coastal waters has maximum spectral peaks in the red region. Apart from this, the spectral peaks were identified in the red region for the chlorophyll fluorescence in the open ocean and coastal waters. Based on

  9. Who Possesses Drug Resistance Genes in the Aquatic Environment? : Sulfamethoxazole (SMX Resistance Genes among the Bacterial Community in Water Environment of Metro-Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2013-04-01

    Full Text Available Recent evidence has shown that antibiotic resistant bacteria (ARB and antibiotic resistance genes (ARG are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in colony forming bacterial assemblages and natural bacterial assemblages. Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86 % of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10-5-10-2 copy/16S but not sul3. Among the natural bacterial assemblage, all sul1, sul2 and sul3 were detected (10-5-10-3 copy/16S, whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment.

  10. Biology-environment interaction and evocative biology-environment correlation: contributions of harsh discipline and parental psychopathology to problem adolescent behaviors.

    Science.gov (United States)

    Riggins-Caspers, Kristin M; Cadoret, Remi J; Knutson, John F; Langbehn, Douglas

    2003-05-01

    Using an adoption paradigm, the Bioecological Model of development proposed by Bronfenbrenner and Ceci in 1994 was tested by concurrently modeling for biology-environment interaction and evocative biology-environment correlation. A sample of 150 adult adoptees (ages, 18-45 years) provided retrospective reports of harsh adoptive parent discipline, which served as the environmental independent variables. Birth parent psychopathology served as the biological predictor. The dependent variables were retrospective adoptee and adoptive parent reports on adolescent aggressive and conduct-disordered behaviors. Finally, adoptees were classified as experiencing contextual environmental risk using the presence of two or more adverse factors in the adoptive home (e.g., adoptive parent psychopathology) as the cutoff. The contextual environment was found to moderate the biological process of evocative biology-environment correlation, providing empirical support for the Bronfenbrenner and Ceci (1994) Bioecological Model.

  11. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  12. Linking monitoring and modelling for river basin management:Danish experience with combating nutrient loadings to the aquatic environment from point and non-point sources

    Institute of Scientific and Technical Information of China (English)

    KRONVANG; Brian; WINDOLF; JФrgen; GRANT; Ruth; ANDERSEN; Hans; E; THODSEN; Hans; OVESEN; Niels; B; LARSEN; SФren; E

    2009-01-01

    Nationwide monitoring of the aquatic environment was initiated in 1988 in Denmark as a means to follow the outcome of the Action Plans for nutrient pollution of the aquatic environment. Five Action Plans have been adopted by the Danish Parliament since 1985 and the nationwide monitoring programme can be used to quantify the outcome as shown by reductions in nutrient discharges from both point and non-point sources. Moreover, the empirical experience gathered from nearly 20 years of monitoring is assisting the development and calibration of models for simulation of nitrogen leaching, nitrogen removal in groundwater and surface waters and the establishment of a P-index all covering the entire land area of Denmark.

  13. Linking monitoring and modelling for river basin man-agement: Danish experience with combating nutrient loadings to the aquatic environment from point and non-point sources

    Institute of Scientific and Technical Information of China (English)

    KRONVANG Brian; WINDOLF J(φ)rgen; GRANT Ruth; ANDERSEN Hans E; THODSEN Hans; OVESEN Niels B; LARSEN S(φ)ren E

    2009-01-01

    Nationwide monitoring of the aquatic environment was initiated in 1988 in Denmark as a means to fol-low the outcome of the Action Plans for nutrient pollution of the aquatic environment.Five Action Plans have been adopted by the Danish Parliament since 1985 and the nationwide monitoring programme can be used to quantify the outcome as shown by reductions in nutrient discharges from both point and non-point sources.Moreover, the empirical experience gathered from nearly 20 years of monitoring is assisting the development and calibration of models for simulation of nitrogen leaching, nitrogen re-moval in groundwater and surface waters and the establishment of a P-index all covering the entire land area of Denmark.

  14. Impact on the aquatic environment of hydro-peaking in hydroelectric plants; Impact sur le milieu aquatique de la gestion par eclusees des usines hydroelectriques

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C.; Lauters, F.; Valentin, S.

    1996-12-31

    There are a number of types of hydroelectric installations on French rivers. Some of these intermittently turbine water stored in dammed reservoirs, in order to use available reserves at the most opportune moment for power generation. These plants, run under `hydro-peaking` management procedures, cause variations in discharge in river sections downstream of the restitution, on a daily or weekly scale. To answer questions concerning the impact of such variations in discharge on the aquatic environment, EDF launched a research program aimed at describing and better understanding the physical and biological phenomena related to hydro-peaking and assessing the possible impact of this type of plant management on French streams. Seven sites subjects to hydro-peaking were studied on rivers with mean flow rates lower than 20 m{sup 3}/s (which corresponds to over 65 % of EDF hydro-peaking sites). Four themes in particular were examined: hydraulic characterization of hydro-peaking, modifications in thermal regime and water quality, response of benthic invertebrates and response of fish populations to hydro-peaking. For fish as well as for invertebrates, the role of the base discharge - in the absence of peaking flow - and that of the morphology of the river bed (and, in particular, the presence of shelter for fish) during periods of strong discharge were clearly highlighted. Impact assessment requires a precise diagnosis of the state of biocenoses. To carry out such a diagnosis, one must reason in terms of species, life phase (particularly the most sensitive phases) and population structure as well as the type of stream and the faunizone involved. A risk assessment is possible by means of simultaneous study of the morphology of the river bed and the response of the signal generated by hydro-peaking in terms of hydrology and physical characteristics downstream of the restitution. (authors). 25 refs.

  15. INTERPRETATION OF COPPER AND ZINC CONTAMINATION IN THE AQUATIC ENVIRONMENT OF PENINSULAR MALAYSIA WITH SPECIAL REFERENCE TO A POLLUTED RIVER, SEPANG RIVER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three different aquatic ecosystems(an urban pond,Kelana Jays Pond;a polluted river,Sepang River;and the intertidal and offshore areas of the west coast of Peninsular Malaysia)with different sets of ecological backgrounds and human activities were reviewed and assessed for the levels of Cu and Zn contamination with special reference to those found in polluted sediments collected from the Sepang River.The discussion on the contamination levels of Cu and Zn in the aquatic environment of Peninsular Malaysia was based on a comparison of the metal contamination of 4 kinds of aquatic environments.The comparison of 4 different areas was based on①total concentrations of 2 metals;②the concentrations and percentages of the nonresistant(EFLE,acid-reducible and oxidisable-organic)and resistant geochemical fractions;and③correlation coefficients(R-values)based on data of 4 areas separately and a combination of 4 areas.The Sepang River recorded nonresistant fractions of 63.1%for Zn and 55.8%for Cu in addition toslightly lower metal concentrations when compared to those(60%-70%)reported before the shutting down of the piggery activities in that area.These nonresistant metal percentages(55%-63%)indicated that the metal concentrations were still dominated by anthropogenic sources since nonresistant fraction of metals were mostly contributed by anthropogenic sources.The positive results from the four different aquatic environments assessed here provided strong evidence to show that Malaysia's aquatic environment had received anthropogenic Cu and Zn.The present study also showed that thepercentage of the nonresistant fraction and the R-values based on correlation analysis of Cu and Zn could be used as indicators of Cu and Zn pollution in the Malaysian aquatic ecosystem.Based on the present data,the correlation coefficients(R-values)are potential indicators of EFLE Cu and acid-reducible Cu of the sediments.The use of R-values as indicators of metal pollution is suggested and it is

  16. Use of graphene as protection film in biological environments

    Science.gov (United States)

    Zhang, Weixia; Lee, Sudarat; McNear, Kelly L.; Chung, Ting Fung; Lee, Seunghyun; Lee, Kyunghoon; Crist, Scott A.; Ratliff, Timothy L.; Zhong, Zhaohui; Chen, Yong P.; Yang, Chen

    2014-02-01

    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu2+ ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application.

  17. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-02

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Construction of a self- luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    Directory of Open Access Journals (Sweden)

    Keila eMartin-Betancor

    2015-03-01

    Full Text Available A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg and monovalent Ag. Chemical modelling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs, Maximum Permissive Concentrations (MPCs and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive to 1.54-5.35 µM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45-50-fold induction, Hg2+ (30-fold and finally Co2+ (20-fold. The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  19. The fate of EDTA and DTPA in aquatic environments receiving waste water from two pulp and paper mills

    Energy Technology Data Exchange (ETDEWEB)

    Remberger, M.; Svenson, Anders

    1997-10-01

    To evaluate the fate of the complexing agents in receiving waters, two basic questions have been addressed: (i) are EDTA and DTPA found in the aquatic environment after discharge into receiving waters and (ii) are they photolytically converted. Two mills, one pulp mill localized at a fresh water lake and one pulp and paper mill at a brackish water were investigated, both mills using bleaching technologies with EDTA and DTPA as complexing agents. Samples were collected at the discharge point and along a gradient in the receiving waters at two occasions: summer at solstice and winter with low light intensity. Samples were taken from surface water, an intermediate depth, and bottom water. A new analytical method was applied, which made it possible to quantify the analytes at sub-{mu}g/l level. The complexing agents EDTA and DTPA and their primary degradation products were detected in the effluent and the receiving waters in the vicinity of the mills. DTPA and the degradation products could be detected a few kilometers from the effluent point while EDTA could be detected in more remote locations at fairly constant concentrations. The absorption of light in the sun spectrum in the water columns of the receiving waters was studied at different localities and during summer and winter conditions. The theoretical photochemical half-life of the ferric complex of EDTA in the surface layer of a central Swedish lake was confirmed. Analysis of EDTA in samples of receiving waters after photolytic treatment showed however, that a large portion of the complexing agent was unaffected by the treatment, indicating that most of the EDTA was complexed with other metals. EDTA in brackish water samples was unaffected by the photolytic treatment upon addition of excess ferric ions, except in winter close to the discharge point. The ease by which the ferric complexes are photochemically converted in ideal conditions seems to be hampered in receiving waters. 42 refs, 16 figs, 2 tabs

  20. Evaluating Aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivuty, biological traits, and toxic mode of action

    NARCIS (Netherlands)

    Rico, A.; Brink, van den P.J.

    2015-01-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, fam

  1. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge.

    Science.gov (United States)

    Cardoso, Olivier; Porcher, Jean-Marc; Sanchez, Wilfried

    2014-11-01

    Human and veterinary active pharmaceutical ingredients (APIs) are involved in contamination of surface water, ground water, effluents, sediments and biota. Effluents of waste water treatment plants and hospitals are considered as major sources of such contamination. However, recent evidences reveal high concentrations of a large number of APIs in effluents from pharmaceutical factories and in receiving aquatic ecosystems. Moreover, laboratory exposures to these effluents and field experiments reveal various physiological disturbances in exposed aquatic organisms. Also, it seems to be relevant to increase knowledge on this route of contamination but also to develop specific approaches for further environmental monitoring campaigns. The present study summarizes available data related to the impact of pharmaceutical factory discharges on aquatic ecosystem contaminations and presents associated challenges for scientists and environmental managers.

  2. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment Sobrevivência e conjugação de Bacillus thuringiensis em ambiente aquático

    OpenAIRE

    Luciana Furlaneto; Halha Ostrensky Saridakis; Olívia Márcia Nagy Arantes

    2000-01-01

    Field and laboratory studies were conducted to assess the survival of cells and spores and plasmid transfer between Bacillus thuringienis strains in aquatic environment. Results indicated that cells and spores of B. thuringiensis can survive for 10 days in water, without altering their number. The sporulation process began after 12-15 hours of inoculation of water. B. thuringiensis was able to transfer conjugative plasmids in the aquatic environment.O presente trabalho é um estudo sobre a sob...

  3. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NARCIS (Netherlands)

    Santamaria, L.

    2002-01-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisa

  4. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security

    Science.gov (United States)

    Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336

  5. Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications.

    Science.gov (United States)

    Bajaj, Priyanka; Kanaujia, Pawan Kumar; Singh, Nambram Somendro; Sharma, Shalu; Kumar, Shakti; Virdi, Jugsharan Singh

    2016-01-01

    Quinolone and β-lactam antibiotics constitute major mainstay of treatment against infections caused by pathogenic Escherichia coli. Presence of E. coli strains expressing co-resistance to both these antibiotic classes in urban aquatic environments which are consistently being used for various anthropogenic activities represents a serious public health concern. From a heterogeneous collection of 61 E. coli strains isolated from the river Yamuna traversing through the National Capital Territory of Delhi (India), those harboring blaCTX-M-15 (n = 10) or blaCMY-42 (n = 2) were investigated for co-resistance to quinolones and the molecular mechanisms thereof. Resistance was primarily attributed to amino acid substitutions in the quinolone resistance-determining regions (QRDRs) of GyrA (S83L ± D87N) and ParC (S80I ± E84K). One of the E. coli strains, viz., IPE, also carried substitutions in GyrB and ParE at positions Ser492→Asn and Ser458→Ala, respectively. The phenotypically susceptible strains nevertheless carried plasmid-mediated quinolone resistance (PMQR) gene, viz., qnrS, which showed co-transfer to the recipient quinolone-sensitive E. coli J53 along with the genes encoding β-lactamases and led to increase in minimal inhibitory concentrations of quinolone antibiotics. To the best of our knowledge, this represents first report of molecular characterization of quinolone co-resistance in E. coli harboring genes for ESBLs or AmpC β-lactamases from a natural aquatic environment of India. The study warrants true appreciation of the potential of urban aquatic environments in the emergence and spread of multi-drug resistance and underscores the need to characterize resistance genetic elements vis-à-vis their public health implications, irrespective of apparent phenotypic resistance.

  6. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2015-07-01

    Full Text Available Consumer products containing engineered nanoparticles (ENP are already entering the marketplace. This leads, inter alia, to questions about the potential for release of ENP into the environment from commercial products. We have inventoried the prevalence of ENP-containing consumer products in the Singapore market by carrying out onsite assessments of products sold in all major chains of retail and cosmetic stores. We have assessed their usage patterns and estimated release factors and emission quantities to obtain a better understanding of the quantities of ENP that are released into which compartments of the aquatic environment in Singapore. Products investigated were assessed for their likelihood to contain ENP based on the declaration of ENP by producers, feature descriptions, and the information on particle size from the literature. Among the 1,432 products investigated, 138 were “confirmed” and 293 were “likely” to contain ENP. Product categories included sunscreens, cosmetics, health and fitness, automotive, food, home and garden, clothing and footwear, and eyeglass/lens coatings. Among the 27 different types of nanomaterials identified, SiO2 was predominant, followed by TiO2 and ZnO, Carbon Black, Ag, and Au. The amounts of ENP released into the aquatic system, which was estimated on the basis of typical product use, ENP concentration in the product, daily use quantity, release factor, and market share, were in the range of several hundred tons per year. As these quantities are likely to increase, it will be important to further study the fate of ENP that reach the aquatic environment in Singapore.

  7. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management.

    Science.gov (United States)

    O'Toole, Amanda C; Hanson, Kyle C; Cooke, Steven J

    2009-08-01

    There is growing concern that recreational shoreline angling activity may negatively impact littoral and riparian habitats independent of any direct or indirect influences of fish harvest or fishing mortality through mechanisms such as disturbance (e.g., trampling, erosion) and pollution (e.g., littering). We sampled a suite of aquatic and terrestrial variables (i.e., water quality, aquatic and terrestrial macrophytes, soil compaction, anthropogenic refuse) at 14 high shoreline angling-activity sites (identified by way of interviews with conservation officers and angling clubs) within an urban area (Ottawa, Canada). For each high angling-activity site, a nearby corresponding low angling-activity site was sampled for comparison. We found that the percentage of barren area and soil compaction were greater in areas of high angling activity compared with areas that experienced relatively low angling activity. In addition, terrestrial and aquatic macrophyte density, height, and diversity were lower at high angling-activity sites. Angling- and non-angling-related litter was present in large quantities at each of the high angling-activity sites, and comparatively little litter was found at low angling-activity sites. Collectively, these findings indicate that shoreline angling does alter the riparian environment, contributing to pollution and environmental degradation in areas of high angling intensity. With growing interest in providing urban angling opportunities and in response to increasing interest in developing protected areas and parks, a better understanding of the ecologic impacts of shoreline angling is necessary to address multiuser conflicts, to develop angler outreach and educational materials, and to optimize management of angling effort to maintain ecologic integrity of riparian and aquatic ecosystems.

  8. {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am levels in the terrestrial and aquatic environment of the Loire and Garonne rivers basins (France)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, G.; Mokili, M.B.; Le Roy, C.; Pagano, V. [SUBATECH/IN2P3 (France); Gontier, G.; Boyer, C. [EDF-DPI-DIN-CIDEN (France); Chardon, P. [CNRS/IN2P3 (France); Hemidy, P.Y. [EDF-DPN-UNIE-GPRE-IEV (France)

    2014-07-01

    Plutonium and americium long-lived alpha emitter isotopes can be found in the environment because of atmospheric global fallout due to thermonuclear tests performed between 1945 and 1980, to the American SNAP 9A satellite explosion in 1964, to the Chernobyl nuclear power plant accident,... In France, the nuclear safety authority does not allow the release of artificial alpha emitters from nuclear power plants. Thus, monitoring is performed to verify the absence of these alpha emitters in liquid discharges to respect the limits set by the regulations. These thresholds ensure a very low dosimetric impact to the population compared to other radionuclides. With the objective of environmental monitoring around nuclear facilities, activity measurements of long-lived alpha emitters are carried out to detect the traces of these radionuclides. Analysis of low activity by alpha spectrometry after chemical steps were performed and used to determine the {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activities on a large set of environmental solid samples likely to be encountered in environmental monitoring as soils, sediments, terrestrial and aquatic bio-indicators. The samples collected in the terrestrial and aquatic environment of the Loire and Garonne rivers basins (France) was investigated for the 2009-2014 period. It was found that the mean activity concentration of the most frequently detected was for the radionuclide {sup 238}Pu: from <0.00031 to 0.0061 Bq/kg dry in terrestrial samples and from <0.00086 to 0.011 Bq/kg dry in aquatic samples; for the radionuclide {sup 239+240}Pu: from 0.00041 to 0.150 Bq/kg dry in terrestrial samples and from 0.0023 to 0.240 Bq/kg dry in aquatic samples and for the radionuclide {sup 241}Am: from <0.00086 to 0.087 Bq/kg dry in terrestrial samples and from 0.0022 to 0.120 Bq/kg dry in aquatic samples. {sup 238}Pu/{sup 239+240}Pu and {sup 241}Am/{sup 239+240}Pu ratios determined are in accordance with an environmental contamination due to

  9. Nanomaterials in the aquatic environment: A European Union–United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead

    DEFF Research Database (Denmark)

    Selck, Henriette; Handy, Richard D; Fernandes, Teresa F.;

    2016-01-01

    on bioavailability and toxicity; 5) development of more environmentally realistic bioassays; and 6) uptake, internal distribution, and depuration of NMs. Research addressing these key topics will reduce uncertainty in ecological risk assessment and support the sustainable development of nanotechnology....... on work within the Ecotoxicology Community of Research (2012–2015) the present Focus article provides an overview of the state of the art of nanomaterials (NMs) in the aquatic environment by addressing different research questions, with a focus on ecotoxicological test systems and the challenges faced...

  10. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    Energy Technology Data Exchange (ETDEWEB)

    Ide, C.

    1996-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.

  11. Evaluating Biology Achievement Scores in an ICT Integrated PBL Environment

    Science.gov (United States)

    Osman, Kamisah; Kaur, Simranjeet Judge

    2014-01-01

    Students' achievement in Biology is often looked up as a benchmark to evaluate the mode of teaching and learning in higher education. Problem-based learning (PBL) is an approach that focuses on students' solving a problem through collaborative groups. There were eighty samples involved in this study. The samples were divided into three groups: ICT…

  12. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Linton, P.J.

    1984-07-01

    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The aboveground portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.

  13. Molecular Characterization of Mycolactone Producing Mycobacteria from Aquatic Environments in Buruli Ulcer Non-Endemic Areas in Côte d’Ivoire

    Science.gov (United States)

    Tano, Marcellin B.; Dassi, Christelle; Mosi, Lydia; Koussémon, Marina; Bonfoh, Bassirou

    2017-01-01

    Non-tuberculous mycobacteria (NTM), particularly mycolactone producing mycobacteria (MPM), are bacteria found in aquatic environments causing skin diseases in humans like Buruli ulcer (BU). Although the causative agent for BU, Mycobacterium ulcerans has been identified and associated with slow-moving water bodies, the real transmission route is still unknown. This study aimed to characterize MPMs from environmental aquatic samples collected in a BU non-endemic community, Adiopodoumé, in Côte d’Ivoire. Sixty samples were collected in four types of matrices (plant biofilms, water filtrate residues, plant detritus and soils) from three water bodies frequently used by the population. Using conventional polymerase chain reaction (PCR), MPMs were screened for the 16S ribosomal RNA (rRNA) mycobacterial gene, the IS2404 insertion sequence, and MPM enoyl reductase (ER) gene. Variable Number Tandem Repeat (VNTR) typing with loci 6, 19, mycobacterial interspersed repetitive unit 1 (MIRU1) and sequence type 1(ST1) was performed to discriminate between different MPMs. Our findings showed 66.7%, 57.5% and 43.5% of positivity respectively for 16S rRNA, IS2404 and ER. MPM discrimination using VNTR typing did not show any positivity and therefore did not allow precise MPM distinction. Nevertheless, the observed contamination of some water bodies in a BU non-endemic community by MPMs suggests the possibility of pathogen dissemination and transmission to humans. These aquatic environments could also serve as reservoirs that should be considered during control and prevention strategies. PMID:28208653

  14. Experimental and in silico assessment of fate and effects of the antipsychotic drug quetiapine and its bio- and phototransformation products in aquatic environments.

    Science.gov (United States)

    Herrmann, Manuel; Menz, Jakob; Gassmann, Matthias; Olsson, Oliver; Kümmerer, Klaus

    2016-11-01

    The antipsychotic drug quetiapine (QUT) has been frequently detected in sewage treatment plants. However, information on the fate of QUT in aquatic environments and its behavior during UV treatment is limited. In this study, QUT is shown not to be readily biodegradable in the Closed Bottle Test and the Manometric Respirometry Test according to OECD guidelines. The main biotransformation product (BTP) formed in the tests, a carboxylic acid derivative, was identified by means of high-resolution mass spectrometry. This BTP is presumably a human metabolite and showed higher detection rates than QUT in a river sampling campaign conducted in northern Germany. UV elimination kinetics of QUT at different initial concentrations (226.5, 45.3, 11.3, and 2.3 μmol L(-1)) were faster at lower initial concentrations. All seven phototransformation products (PTPs) could be still identified at initial concentration of 11.3 μmol L(-1). The photolytic mixture generated after 128 min of photolysis of QUT was not better biodegradable than QUT. Initial UV treatment of QUT led to the formation of several additional BTPs. Four of them were identified. The bacterial cytotoxicity and genotoxicity before and after phototransformation of QUT in a modified luminescent bacteria test (LBT) and the umu-test (ISO/FDIS 13829) showed cytotoxic effects in the LBT for QUT. Furthermore, PTPs had similar cytotoxic effects on luminescent bacteria. The umu-test did not reveal any genotoxic activity for QUT or PTPs. In conclusion, the release of QUT into sewage treatment plants and aquatic environments could result in the formation of a main BTP. Additional UV treatment of QUT would lead to the formation of additional BTPs. Moreover, treatment did not result in lower toxicity to tested organisms. In conclusion, UV treatment of QUT should be considered critically as a potential treatment for QUT in aquatic systems.

  15. Remaining Sites Verification Package for the 100-F-52, 146-FR Radioecology and Aquatic Biology Laboratory Soil, Waste Site Reclassification Form 2008-022

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 100-F-52 waste site consisted of the soil under and around the former 146-FR Radioecology and Aquatic Biology Laboratory. The laboratory was used for studies of the effects of pre-reactor and post-reactor process water on fish eggs, young fish, and other small river creatures of interest. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Environment. Biological processing of wastes; Environnement. Traitement biologique des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, R. [Institut National des Sciences Appliquees, INSA, Lab. d' Analyse Environnementale des Procedes et des Systemes Industriels, 69 - Villeurbanne (France)

    2001-01-01

    The main principle of the biological processing is the utilization of microbial activities by a control stimulation in order to decrease the wastes harmful effects, or by an energetic valorization. This paper deals with the solid wastes or the sludges. After a short presentation of the concerned wastes, their metabolism and their consequences, the author details two treatments: the composting (aerobic) and the methanization (anaerobic). The last part is devoted to the alcoholic fermentation and the industrial wastes (non agricultural) processing. (A.L.B.)

  17. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  18. Towards Modelling and Simulation of Crowded Environments in Cell Biology

    Science.gov (United States)

    Bittig, Arne T.; Jeschke, Matthias; Uhrmacher, Adelinde M.

    2010-09-01

    In modelling and simulation of cell biological processes, spatial homogeneity in the distribution of components is a common but not always valid assumption. Spatial simulation methods differ in computational effort and accuracy, and usually rely on tool-specific input formats for model specification. A clear separation between modelling and simulation allows a declarative model specification thereby facilitating reuse of models and exploiting different simulators. We outline a modelling formalism covering both stochastic spatial simulation at the population level and simulation of individual entities moving in continuous space as well as the combination thereof. A multi-level spatial simulator is presented that combines populations of small particles simulated according to the Next Subvolume Method with individually represented large particles following Brownian motion. This approach entails several challenges that need to be overcome, but nicely balances between calculation effort and required levels of detail.

  19. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment

    Science.gov (United States)

    Hacıoğlu, Fırat; Özdemir, Tonguç; Çavdar, Seda; Usanmaz, Ali

    2013-02-01

    In this study, changes in the properties of ethylene propylene diene terpolymer (EPDM) irradiated with different dose rates in ambient atmosphere and aqueous environment were investigated. Irradiations were carried out both with low dose and high dose rate irradiation sources. EPDM samples which were differentiated from each other by peroxide type and 5-ethylidene 2-norbornene (ENB) contents were used. Long term low dose rate irradiations were carried out for the duration of up to 2.5 years (total dose of 1178 kGy) in two different irradiation environments. Dose rates (both high and low), irradiation environments (in aquatic and open to atmosphere), and peroxide types (aliphatic or aromatic) were the parameters studied. Characterization of irradiated EPDM samples were performed by hardness, compression, tensile, dynamic mechanical analysis (DMA), TGA-FTIR, ATR-FTIR, XRD and SEM tests. It was observed that the irradiation in water environment led to a lower degree of degradation when compared to that of irradiation open to atmosphere for the same irradiation dose. In addition, irradiation environment, peroxide type and dose rate had effects on the extent of change in the properties of EPDM. It was observed that EPDM is relatively radiation resistant and a candidate polymer for usage in radioactive waste management.

  20. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  1. Natural Environment Exploration Approach: The Case Study in Department of Biology, Universitas Negeri Semarang

    Science.gov (United States)

    Alimah, Siti; Susilo, Herawati; Amin, Moh

    2016-01-01

    The study reports the evaluation and analysis of the implementation of the Nature Environment Exploration approach in the Department of Biology, Universitas Negeri Semarang State University. The method used was survey method. The results showed that the implementation of the Nature Environment Exploration approach was still far from optimal…

  2. Diffusion in crowded biological environments: applications of Brownian dynamics

    Directory of Open Access Journals (Sweden)

    Długosz Maciej

    2011-03-01

    Full Text Available Abstract Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of macromolecules under in vivo conditions.

  3. Metal release from stainless steel in biological environments: A review.

    Science.gov (United States)

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2015-03-29

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized.

  4. Malathion Degradation Law in Different Aquatic Environment%不同水环境条件下马拉硫磷的降解规律

    Institute of Scientific and Technical Information of China (English)

    温娟; 周硕; 于静洁; 钟远; 王少坡; 孙力平

    2013-01-01

    [目的]研究马拉硫磷在不同水环境条件下的降解规律.[方法]在不同pH值、不同温度及不同水样条件下,采用高效液相色谱法检测水环境中马拉硫磷剩余浓度随时间的变化情况.[结果]马拉硫磷降解活化能EA为73.10 kJ/mol,降解速率随pH值增大而加快,随温度升高而加快,湿地原水中降解最快、灭菌湿地原水次之、灭菌超纯水中最慢,准一级反应动力学方程可以描述其在水环境中的降解规律.[结论]马拉硫磷的降解速率受pH值、温度和水样条件的影响,自然水体中马拉硫磷降解速率较快.%[Aims] The malathion degradation law in different aquatic environment was researched. [Methods] Under different pH, different temperature and different water conditions, the variation of malation residual concentrations with time in different aquatic environment was detected by the high performance liquid chromatography (HPLC). [Results] The malathion degradation activation energy (EA) is 73.10 kJ/mol, and its degradation rate is accelerated with pH increasing, and increased with temperature rising. Its degradation rate in wetland raw water is the fastest, and in sterilized wetland water is faster, and in sterilized ultrapure water is slow. The pseudo-first-order kinetics can be applied to describe the malathion degradation law in aquatic environment. [Conclusions] The pH, temperature and water quality have effect on malathion degradation rates, and malathion degrade fast in natural water.

  5. Biological and ecological characteristics of Tamarix L. And its effect on the ecological environment

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Daoyuan(张道元); YIN; Linke(尹林克); PAN; Borong(潘伯荣)

    2002-01-01

    Through studying biological and ecological characteristics of Tarnarix L., we foundwide adaptability to different ecological environment and high endurance of adversity. Whenplanted in the edge of desert and periphery of oasis, Tamarix will act as excellent sand-fixingshrubs, improve ecological environment and play a positive role. However, introducing Tamarixunreasonably will deteriorate the ecological environment and reduce biodiversity and play a nega-tive role. Grasping the biological and ecological characteristics of Tamarix will do much to benefitfurther developing and utilizing of the resources.

  6. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  7. Biología reproductiva de la serpiente semiacuática Liophis semiaureus (Serpentes, Colubridae en el nordeste de Argentina Reproductive biology of the semi-aquatic snake Liophis semiaureus (Serpentes, Colubridae in the north-east of Argentina

    Directory of Open Access Journals (Sweden)

    SOLEDAD M LÓPEZ

    2009-06-01

    Full Text Available Las serpientes tienen una notable flexibilidad y diversidad en sus tácticas reproductivas, a pesar de ello, los estudios acerca de la biología reproductiva de especies sudamericanas en zonas subtropicales-templadas son escasos. Se analizó la biología reproductiva de Liophis semiaureus en el nordeste de Argentina, incluyendo la madurez y dimorfismo sexual, fecundidad y ciclo reproductivo. Las hembras maduras fueron significativamente más largas, presentaron mayor peso corporal y alcanzaron la madurez sexual a una longitud mayor que los machos. Los machos tuvieron colas más largas que las hembras. El ciclo reproductivo fue estacional con mayor actividad en los períodos templados del año aunque previos a la época de inundaciones. Liophis semiaureus invirtió más energía en la reproducción que en el crecimiento, lo que posibilita que comiencen a reproducirse con tamaños más pequeños con respecto a otras poblaciones, sin retrasar su reproducción hasta alcanzar mayores tamaños. Esta puede ser una estrategia ventajosa en climas estacionales. Las características reproductivas y de dimorfismo sexual en L. semiaureus se encontrarían influenciadas por aspectos filogenéticos, geográficos y ecológicos, lo que determina que la especie responda de manera general al patrón reproductivo del grupo taxonómico pero con particularidades propias determinadas por los factores geográficos y los requerimientos ecológicos.Snakes in subtropical warm zones have a wide flexibility and diversity in your reproductive tactics. In spite of it, the studies in South America about that are scanty yet. We analyzed sexual dimorphism, sexual maturity, fecundity and reproductive cycle of a semi-aquatic snake, Liophis semiaureus, in north-east of Argentina. Females were significantly longer and heavier than the males. Females reach sexual maturity with longer snout-vent length than the males. Males had longer tails than the females. The reproductive cycle was

  8. Development and application of in vitro and in vivo reporter gene assays for he assessment of (xeno-)estrogenic compounds in the aquatic environment

    OpenAIRE

    Legler, J

    2001-01-01

    In recent years, both scientific and public concern about the possible threat of estrogenic compounds in the environment that may impact the reproduction of humans and wildlife has increased. Many substances have been demonstrated to possess estrogenic potency using in vitro test systems, and these compounds have been identified in the environment using chemical analysis. However, up until now, it has been difficult to rapidly estimate the total biologically active estrogenic potency in envir...

  9. 水产品生物保鲜技术研究进展%Review of biological preservation technology in aquatic product

    Institute of Scientific and Technical Information of China (English)

    刘尊英; 曾名湧

    2014-01-01

    食品的保鲜与防腐一直是人们普遍关注的问题。传统的化学防腐剂如苯甲酸钠、亚硝酸钠等具有一定的毒性。因此,寻找安全无毒的生物保鲜剂取代化学防腐剂已成为人们关注的热点。生物保鲜剂来源于生物体自身组成成分或其代谢产物,安全无毒、可被生物降解、不会造成二次污染。本文综述了常见生物保鲜剂壳聚糖、有机酸、茶多酚、乳酸链球菌素、生物酶等生物保鲜剂单独或联合使用时对水产品生理生化特性、细菌总数及货架期的影响,比较分析了上述生物保鲜剂在不同水产品应用过程中所呈现的保鲜效果的差异,阐述了生物保鲜剂在水产品保鲜过程中的可能机制,提出了我国水产品生物保鲜剂依然存在提取分离困难、纯化工艺复杂、生物保鲜技术成本高、应用范围窄等问题。针对我国生物保鲜技术存在的主要问题,提出了一些对策。%Food storage and preservation has been the focus of attention of the people. The traditional chemical preservatives such as sodium benzoate and sodium nitrite have certain toxicity. Therefore, researches for safe non-toxic bio-preservative to replace chemical preservative had become the focus of attention. Biological preservative compositions derived from organism itself or its metabolites, which possessescharacteristic of tasteless, non-toxic, safe, biodegradable and no secondary pollution, is causing widespread concern. In this paper, effects of chitosan, organic acids, polyphenols, nisin, and biological enzymes on physiological and biochemical characteristics, the total number of bacteria and shelf of aquatic products were reviewed. A comparative analysis of the difference in the biological preservative fresh-keeping effect of application in different aquatic product process was presented. The main problems including separation and purification of biological preservatives, high cost and

  10. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005)

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, P. [LSCE, CEA/Saclay, 91191 - Gif/Yvette cedex (France)]. E-mail: Philippe.Jean-Baptiste@cea.fr; Baumier, D. [LSCE, CEA/Saclay, 91191 - Gif/Yvette cedex (France); Fourre, E. [LSCE, CEA/Saclay, 91191 - Gif/Yvette cedex (France); Dapoigny, A. [LSCE, CEA/Saclay, 91191 - Gif/Yvette cedex (France); Clavel, B. [EDF-CIDEN, BP1212, 69611 - Villeurbanne cedex (France)

    2007-05-15

    The Creys-Malville nuclear plant, located on the left bank of the Rhone, was shut down in 1998. The facilities are currently in their initial stage of dismantling. In order to establish a baseline for tritium in the vicinity of the site prior to the main dismantling phase, we carried out a monitoring program between 2002 and 2005 in the main terrestrial and aquatic compartments of the local environment. Tritium levels in the groundwaters and in the Rhone waters correspond to the regional tritium concentration in precipitation. The data obtained for the terrestrial environment are also in good agreement with the regional background and do not show any specific signature linked to the nuclear plant. The various aquatic compartments of the Rhone (fish, plant, sediment) are significantly enriched in tritium both upstream and downstream of the power plant: although Tissue-Free Water Tritium concentrations are in equilibrium with the river water, the non-exchangeable fraction of organic bound tritium in plants and fishes shows values which outpace the river water background by one to two orders of magnitude, and up to four to five orders of magnitude in the sediments. This tritium anomaly is not related to the nuclear plant, as it is already present at the Swiss border 100 km upstream of the site. Although fine particles of tritiated polystyrene entering the composition of the luminous paints used by the clock industry have been suspected on several occasions, the exact nature and the origin of this tritium source remain unknown and require further investigations.

  11. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    Directory of Open Access Journals (Sweden)

    Elena L Peredo

    Full Text Available The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas, the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR separating the large single copy (LSC from the small single copy (SSC regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(PH dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms.

  12. Harm of Antibiotics in Aquatic Environment on Health%水环境中抗生素对健康的危害

    Institute of Scientific and Technical Information of China (English)

    胡譞予

    2015-01-01

    The water pollution problem caused by the unreasonable and nonstandard using of antibiotics has raised extensive concerns in recent years. This paper reviews the sources of antibiotic pollution in the aquatic environment and its harm to the ecological environment and human health, points out that medical antibiotics, agricultural antibiotics and antibiotics in pharmaceutical wastewater are the upmost sources of pollution. Antibiotics polluted in the water can cause adverse effects to the aquatic ecosystem, which can not only induce bacterial resistance and affect the aquatic organisms, but also remain in agricultural products, thus pose a potential threat to human health through drinking water, food chain, etc, then seriously disturb the physiological function of human body, damage the body’s immune system and reduce immunologic function of human body.%抗生素的不合理和不规范使用所造成的水环境污染问题日益受到人们的重视。本文综述了水环境中抗生素污染的来源及对生态环境和人体健康的危害,指出医用抗生素、农用抗生素和制药工业废水中的抗生素是最高污染源头。抗生素进入水体后,给水生生态系统造成不良影响,不仅诱导产生耐药性细菌,也使水生生物受到影响;还可在农副产品中残留,通过饮水、食物链等方式对人体健康构成潜在的威胁,严重干扰人体的各项生理机能,破坏人体免疫系统,降低人体的免疫功能。

  13. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment.

    Science.gov (United States)

    Turner, Andrew; Xu, Jing

    2008-01-01

    The influence of sub-micellar concentrations of an anionic surfactant (sodium dodecyl sulphate; SDS) and a cationic surfactant (hexadecyl trimethylammonium bromide; HDTMA) on the aquatic behaviour of the strongly complexing metals, Pd(II) and Hg(II), has been investigated. In river water, flocculation of organic complexes of metal was suppressed by SDS but accentuated by HDTMA, effects that are consistent with electrostatic and hydrophobic interactions between ionic surfactants and natural polyelectrolytes. In sea water, flocculation of metal complexes was enhanced by both surfactants because of the shielding and salting effects of inorganic ions on these interactions. Particle surface modification engendered by sorbed surfactant strongly influenced the sorption of Pd and Hg to estuarine particles. Thus, hydrophobically bound SDS enhances the negative charge at the particle surface and favours specific sorption of metal, while specifically sorbed HDTMA enhances the solvency of the particle surface, favouring non-specific sorption of metal complexes. Given the relatively short environmental half-life of SDS, its impacts on strongly complexing metals are predicted to be localised. However, greater stability of HDTMA suggests that its effects on such metals, including enhanced flocculation and sorption, are likely to be more pervasive.

  14. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  15. Applying systems biology methods to the study of human physiology in extreme environments.

    Science.gov (United States)

    Edwards, Lindsay M; Thiele, Ines

    2013-03-22

    Systems biology is defined in this review as 'an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems'. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling.

  16. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.

    Science.gov (United States)

    Wang, Peifang; Qi, Ning; Ao, Yanhui; Hou, Jun; Wang, Chao; Qian, Jin

    2016-05-01

    The behavior of photoactive TiO2 nanoparticles in an aquatic environment under UV irradiation was investigated. When there was no UV light irradiation, the attachment of humic acid (HA) onto the TiO2 nanoparticles improved their stability due to an increase in the electrostatic and steric repulsions between the particles. However, our study demonstrated that UV light clearly influenced the aggregation of TiO2 nanoparticles. Half an hour of UV irradiation caused the particles to aggregate from 331.0 nm to 1505.0 nm at a pH of 3.0. Similarly, the particles aggregated from 533.2 nm to 1037.0 nm at a pH of 6.5 and from 319.0 nm to 930.0 nm at a pH of 9.0. The aggregation continued with increased irradiation time, except for the condition at pH 3.0, which demonstrated disaggregation. Furthermore, we determined that the photocatalytic degradation of the HA dominated the behavior of TiO2 in our study. From the results of HA removal and 3DEEM fluorescence spectra data for the solution, a change in the HA was in accordance with the size change of the TiO2. The results illustrated that the UV irradiation affected the behavior of light-active nanomaterial (such as TiO2) in an aquatic system, thus influencing their bioavailability and reactivity.

  17. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  18. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  19. Effectiveness of Blended Cooperative Learning Environment in Biology Teaching: Classroom Community Sense, Academic Achievement and Satisfaction

    Science.gov (United States)

    Yapici, I. Ümit

    2016-01-01

    The aim of this study was to examine the effect of Blended Cooperative Learning Environment (BCLE) in biology teaching on students' classroom community sense, their academic achievement and on their levels of satisfaction. In the study, quantitative and qualitative research methods were used together. The study was carried out with 30 students in…

  20. The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH.

    Science.gov (United States)

    Heijerick, D G; Regoli, L; Carey, S

    2012-10-01

    The REACH Molybdenum Consortium initiated an extensive research program in order to generate robust PNECs, based on the SSD approach, for both the freshwater and marine environments. This activity was part of the REACH dossier preparation and to form the basis for scientific dialogues with other national and international regulatory authorities. Chronic ecotoxicity data sets for the freshwater and marine environments served as starting point for the derivation of PNECs for both compartments, in accordance with the recommended derivation procedures established by the European Chemicals Agency (ECHA). The HC(5,50%)s that were derived from the generated Species Sensitivity Distributions were 38.2 mg Mo/L and 5.75 mg Mo/L for the freshwater and marine water compartment, respectively. Uncertainty analysis on both data sets and available data on bioaccumulation at high exposure levels justified an assessment factor of 3 on both HC(5,50%) leading to a PNEC(freshwater) of 12.7 mg Mo/L and a PNEC(marine) of 1.92 mg Mo/L. As there are currently insufficient ecotoxicological data available for the derivation of PNECs in the sediment compartment, the equilibrium partitioning method was applied; typical K(D)-values for both the freshwater and marine compartments were identified and combined with the respective PNEC, leading to a PNEC(sediment) of 22,600 mg/kg dry weight and 1980 mg/kg dry weight for freshwater and marine sediments, respectively. The chronic data sets were also used for the derivation of final chronic values using the procedures that are outlined by the US Environmental Protection Agency for deriving such water benchmarks. Comparing PNECs with FCVs showed that both methodologies result in comparable protective concentration levels for molybdenum in the environment.

  1. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    Science.gov (United States)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  2. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-12-31

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  3. Degradation of Iodinated Contrast Media in Aquatic Environment by Means of UV, UV/TiO2 Process, and by Activated Sludge.

    Science.gov (United States)

    Borowska, Ewa; Felis, Ewa; Żabczyński, Sebastian

    Iodinated contrast media (ICM), which are used for radiological visualization of human tissue and cardiovascular system, are poorly biodegradable; hence, new methods of their removal are sought. In this study, the effectiveness of selected X-ray ICM removal by means of UV and UV/TiO2 pretreatment processes from synthetic hospital wastewater was demonstrated. The following compounds were investigated: iodipamide, iohexol, and diatrizoate. The experiments were as follows: (i) estimated susceptibility of the ICM to decay by UV radiation in different aquatic matrices, (ii) determined an optimal retention time of hospital wastewater in the UV reactor, (iii) determined optimum TiO2 concentration to improve the effectiveness of the UV pretreatment, and (iv) investigated removal of ICM by combination of the photochemical and biological treatment methods. The quantum yields of selected ICM decay in deionized water (pH = 7.0) were established as 0.006, 0.004, and 0.029 for iohexol, diatrizoate, and iodipamide, respectively. Furthermore, the experiments revealed that diatrizoate and iohexol removal in the UV/TiO2 process is more efficient than in UV process alone. For diatrizoate, the removal efficiency equaled to 40 and 30 %, respectively, and for iohexol, the efficiency was 38 and 27 %, respectively. No significant increase in iodipamide removal in UV and UV/TiO2 processes was observed (29 and 28 %, respectively). However, highest removal efficiency was demonstrated in synthetic hospital wastewater with the combined photochemical and biological treatment method. The removal of diatrizoate and iohexol increased to at least 90 %, and for iodipamide, to at least 50 %.

  4. Active surveillance of the aquatic environment for potential prediction, prevention and spread of water borne disease: the cholera paradigm

    Science.gov (United States)

    Huq, A.; Colwell, R.

    2011-12-01

    Based on results of ecological and epidemiological studies, occurrence and spread of certain diseases are more fully understood. Cholera is a major waterborne disease, that is relatively easily treatable and clearly preventable, yet tens of thousands die each year worldwide. A dose dependent disease, the infectious dose can vary from 103-106, depending on health status of the victim. Historically, cholera has been shown to spread from person to person. Furthermore, the disease is caused predominantly via ingestion of contaminated water and most of the outbreaks that have been recorded worldwide originated in a coastal region. Using appropriate detection methods, Vibrio cholerae can be isolated from samples collected from ponds, rivers, estuaries, and coastal waters globally. The populations of V. cholerae may vary in numbers during different seasons of the year. It is important to have a clear understanding of the distribution of the causative agent in the environment as such information can assist public health officials in taking action to prevent outbreaks of cholera. Thus an effective monitoring program is critical, particularly in light of climate change with temperature extremes more likely to be occurring. Based on a predictive model and results of ground truth data, temperature has been found to be a factor in the increase of V. cholerae in the environment. Correlation was observed with occurrence of cholera and both temperature and salinity. More recent research indicates additional factors need to be considered in predicting cholera epidemics, including the hydrology and disease dynamics.

  5. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe?

    Science.gov (United States)

    Ji, Kyunghee; Kim, Sunmi; Han, Sunyoung; Seo, Jihyun; Lee, Sangwoo; Park, Yoonsuk; Choi, Kyunghee; Kho, Young-Lim; Kim, Pan-Gyi; Park, Jeongim; Choi, Kyungho

    2012-10-01

    To understand potential risks of major pharmaceutical residues in waters, we evaluated ecotoxicities of five major veterinary pharmaceuticals, i.e., chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin, which have been frequently detected in freshwater environment worldwide. We conducted acute and chronic toxicity tests using two freshwater invertebrates (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). In general, D. magna exhibited greater sensitivity than M. macrocopa, and chronic reproduction was the most sensitive endpoints for both organisms. The population growth rate was adversely influenced by exposure to chlortetracycline, sulfamethazine, or sulfathiazole in water fleas, but reduction in population size was not expected. In O. latipes, the tested pharmaceuticals affected several reproduction related endpoints including time to hatch and growth. Based on the toxicity values from the present study and literature, algae appeared to be the most sensitive organism, followed by Daphnia and fish. Hazard quotients derived from measured environmental concentrations (MECs) and predicted no effect concentrations (PNECs) for erythromycin and oxytetracycline exceeded unity, suggesting that potential ecological effects at highly contaminated sites cannot be ruled out. Long-term consequences of veterinary pharmaceutical contamination in the environment deserve further investigation.

  6. 三峡工程对水环境与水生态的影响及保护对策%Impacts of Three Gorges Project on water environment and aquatic ecosystem and protective measures

    Institute of Scientific and Technical Information of China (English)

    邹家祥; 翟红娟

    2016-01-01

    介绍三峡工程水环境与水生态现状,分析三峡工程对库区及坝下水文情势、水质、库区及支流富营养化等水环境的影响,以及工程运行对水生态系统、饵料生物、鱼类及珍稀水生动物等水生态的影响,提出优化水库调度、加强城镇生活污水处理、工业废水防治、农村面源治理、饮用水源地保护等水环境保护对策,以及开展栖息地保护、物种保护、人工增殖放流、生态调度等水生生态保护对策。%This paper introduces the water environmental and aquatic ecological status of the Three Gorges Project. The impacts of the project on the aquatic environment, involving hydrological regimes, water quality, reservoir eutrophication, and water blooms in the tributaries, are analyzed. The project ’ s impacts on aquatic ecology, including the aquatic ecosystem, food organisms, fish species, and rare aquatic animals, are also analyzed. Several measures are proposed to protect the water environment, including optimization of reservoir regulation, urban sewage treatment, industrial waste water control, rural non-point source pollution control, and drinking water source protection. For the protection of the aquatic ecosystem, some measures are put forward, including habitat conservation, species conservation, artificial enhancement and release of fish, and ecological reservoir regulation.

  7. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  8. 应用生物完整性指数评价水生态系统健康的研究进展%Research progress on using index of biological integrity to assess aquatic ecosystem health

    Institute of Scientific and Technical Information of China (English)

    廖静秋; 黄艺

    2013-01-01

    Index of biological integrity (IBI) is one of the most important and popular tools in as-sessing aquatic ecosystem health. This paper reviewed the selection of indicator species for IBI, its construction process, and its applications in assessing aquatic ecosystem health, summarized the commonly used candidate biological parameter indices of fish-index of biological integrity (F-IBI), benthos-index of biological integrity (B-IBI) , and periphyton-index of biological integrity (P-IBI) , and pointed out the feasibility and necessity of using microbe-index of biological integrity (M-IBI) to assess the health of aquatic ecosystem.%生物完整性指数(IBI)法是评价水生态系统健康的一种重要且被广泛应用的方法.本文综述了生物完整性指数的指示物种选择原因、构建方法以及在水生态系统健康评价中的应用,并总结了现阶段生态系统评估常用的鱼类完整性指数(F-IBI)、底栖无脊椎动物完整性指数(B-IBI)和着生藻类完整性指数(P-IBI)中候选生物状况参数指标,提出了使用微生物完整性指数(M-IBI)评价水生态系统健康的可行性和必要性.

  9. 环境水体微污染有机物及其去除技术研究进展%A review of organic micro pollutants in aquatic environment and its removal technologies

    Institute of Scientific and Technical Information of China (English)

    王梦乔; 周庆; 李爱民

    2012-01-01

    水体有机污染物因其生物毒性对人体健康和生态环境造成了严重的危害.随着环保技术的发展,高浓度有机污染物已得到很好的去除.检测水平的不断提高使微量有机污染物日益受到广泛关注.为了深入地研究微污染有机物及其去除技术,对微污染有机物的种类、性质和危害进行了详细阐述,并综述了国内外生物法、膜处理技术、高级氧化技术、吸附技术对微污染有机物的去除效果,总结了各种技术的优缺点.%Organic pollutants in aquatic environment are harmful to human health and ecological environment. With the development of environmental science and engineering, organic pollutants in high concentration have been well removed from the wastewater. Nowadays, organic micro pollutants have got more attention because of their known and unknown toxicity. In order to further study the organic micro pollutants and their removal technologies, the categories, properties and hazards of organic micro pollutants are introduced in details. Removal technologies of organic micro pollutants are reviewed, including biological technology, membrane technology, advanced oxidation technology and adsorption technology. The advantages and disadvantages of these technologies are summarized.

  10. Patient care in a biological safety level-4 (BSL-4) environment.

    Science.gov (United States)

    Marklund, LeRoy A

    2003-06-01

    The greatest threats to America's public health include accidental importation of deadly diseases by international travelers and the release of biologic weapons by our adversaries. The greatest failure is unpreparedness because international travel and dispersion of biologic agents by our enemies are inevitable. An effective medical defense program is the recommended deterrent against these threats. The United States has a federal response plan in place that includes patient care and patient transport by using the highest level of biologic containment: BSL-4. The DoD has the capability to provide intensive care for victims infected with highly infectious yet unknown biologic agents in an environment that protects the caregiver while allowing scientists to study the characteristics of these new agents and assess the effectiveness of treatment. Army critical care nurses are vital in the biologic medical defense against unidentified infectious diseases, accidental occupational exposures, or intentional dispersion of weaponized biologic agents. Research that carefully advances healthcare using BSL-4 technology addresses the challenges of the human element of BSL-4 containment patient care, and BSL-4 patient transport enhances our nation's ability to address the emerging biologic threats we confront in the future.

  11. Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution.

    Science.gov (United States)

    Masood, Najat; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Magam, Sami M; Kannan, Narayanan; Mustafa, Shuhaimi; Ali, Masni Mohd; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Alkhadher, Sadeq Abdullah Abdo; Al-Odaini, Najat Ahmed

    2016-01-15

    Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects.

  12. The microzooplankton and its distribution in different aquatic environment; Il microzooplancton e la sua distribuzione nei diversi ambienti

    Energy Technology Data Exchange (ETDEWEB)

    Creo, C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Grenni, P.

    1999-07-01

    In this work some examples of studies performed with the use of microzooplankton as biological indicator are reported. [Italian] Scopo del lavoro e' quello di dimostrare come lo studio della distribuzione del microzooplancton in ambienti aquatici, possa permettere la caratterizzazione trofica dell'ambiente oggetto di studio. Il microzooplancton, infatti, essendo un componente fondamentale della catena trofica di differenti ambienti acquatici, puo' essere considerato un buon {sup i}ndicatore biologico{sup .} E' quindi riportata un'ampia ed approfondita analisi sistematica, necessaria al fine di individuarne le diverse specie dalla cui presenza (oltreche' dal numero degli esemplari) e' possibile desumere lo stato chimico-fisico e trofico di un determinato ambiente acquatico. Sono poi indicati i diversi metodi per il campionamento, la conservazione, la concentrazione ed il conteggio del microzooplancton; in particolare per la concentrazione ed il conteggio sono indicate e sperimentate nuove tecniche effettuate rispettivamente con l'ausilio della concentrazione dei campioni a flusso tangenziale e con l'utilizzo di coloranti fluorescenti.

  13. Do biological medicinal products pose a risk to the environment?: a current view on ecopharmacovigilance.

    Science.gov (United States)

    Kühler, Thomas C; Andersson, Mikael; Carlin, Gunnar; Johnsson, Ann; Akerblom, Lennart

    2009-01-01

    The occurrence of active pharmaceutical substances in the environment is of growing concern. The vast majority of the compounds in question are of low molecular weight, intended for oral use and designed to tolerate, for example, the digestive enzymes in the upper alimentary tract, the harsh milieus found in the acidic stomach, or the microbe rich intestine. Accordingly, these xenobiotic compounds may, due to their inherent biological activity, constitute a risk to the environment. Biological medicinal products, for example recombinant human insulin or monoclonal antibodies, however, are different. They are primarily made up of oligomers or polymers of amino acids, sugars or nucleotides and are thus readily metabolized. They are therefore generally not considered to pose any risk to the environment. Certain classes of biological medicinal products, however, are associated with specific safety issues. Genetically modified organisms as vectors in vaccines or in gene therapy products have attracted much attention in this regard. Issues include the degree of attenuation of the live recombinant vaccine, replication restrictions of the vaccine vector, alteration of the host and tissue tropism of the vector, the possibility of reversion to virulence, and risk to the ecosystem. In this review we discuss the fate and the potential environmental impact of biological medicinal products following clinical use from an ecopharmacovigilance point of view, and review relevant policy documents and regulatory statements.

  14. Aquatic Invertebrate Development Working Group

    Science.gov (United States)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  15. Chemical, biological and toxicological investigation of oil drilling impacts to aquatic resources in the Yellowbank Slough region near New Haven, Illinois

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey of contaminants in sediments and aquatic macroinvertebrates at several locations on the proposed Yellowbank Slough National Wildlife Refuge was conducted...

  16. Methods for the determination of low-level actinide concentrations and their behaviour in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Pilvioe, R

    1998-12-31

    Intentional and accidental releases have contaminated the environment with radionuclides, posing a potential health hazard to populations of the polluted regions. Low concentrations of the actinides in the environment and complex sample matrices have made their determination a time consuming and complicated task. Separation methods based on anion exchange and extraction chromatography were developed, and subsequently modified, for analysis of different sample matrices in this work. These methods were used for the investigations of the behaviour of actinides in the environment. Chemical properties play an important role in the phenomena affecting the migration of radionuclides. The method based on anion exchange was used to study the behaviour of U in a small U-Th deposit and also the behaviour of Pu, Am and Cm in a lake system after the Chernobyl accident. The speciation of U and Pu in natural waters has also been investigated. A trend of higher {sup 234}U/{sup 238}U activity ratios with lower {sup 238}U concentrations was seen in the ground waters in the Palmottu analogue study site in southern Finland. This indicates chemical leaching of U(VI) in oxidising conditions and preferable dissolution of {sup 234}U due to the recoil effects of the alpha decay in reducing conditions. The factors affecting the distribution of U concentrations and the {sup 234}U/{sup 238}U activity ratios in filtered ground water and the particulate fraction in the Palmottu are also discussed. The concentrations of Pu, Am and Cm in filtered water, particulate and surface sediment samples in Lake Paeijaenne in southern Finland have been determined. Pu, Am and Cm fallout from the Chernobyl accident was minor compared to global fallout from atmospheric nuclear weapon tests. Based on the {sup 238}Pu/{sup 239,240}Pu isotopic ratio, only 10 % of the Pu in the surface layer of the bottom sediment derived from the Chernobyl accident. Three months after the accident, 73 % of the total {sup 239

  17. Species analysis of organotin compounds to investigate their pathway in the aquatic environment; Speziesanalytik von zinnorganischen Verbindungen zur Aufklaerung ihrer Biopfade in der aquatischen Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Kuballa, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1997-12-31

    In this thesis the sorption, transport and accumulation behaviour of organotin compounds in the aquatic environment was investigated in order to assess and evaluate the toxic potential. In situ derivatization with sodiumthetraethylborate and extraction with hexane were employed to isolate the tin species from the matrices. Separation and quantification were performed using on-line gas chromatorgraphy coupled with atomic absorption spectrometry. The main conclusion of this work is that organotin compounds show a characteristic bioaccumulation behaviour, which is influenced by the solubility of the species in combination with lipophily and sorption on particles, humic substances and biofilms. (orig.) [Deutsch] In der vorliegenden Arbeit wurden das Sorptions-, Transport- und Akkumulationsverhalten von Organozinnverbindungen in der aquatischen Umwelt untersucht mit dem Ziel einer Abschaetzung und Bewertung des oekologischen Schaedigungspotentials. Die Isolierung der Zinnspezies aus den Matrizes gelang mit der In-Situ-Derivatisierung mit Natriumtetraethylborat und Extraktion mit Hexan. Die Trennung und Quantifizierung erfolgte mittels Gaschromatographie on-line gekoppelt mit Atomabsorptionsspektrometrie. Die wichtigste Aussage dieser Arbeit ist, dass zinnorganische Verbindungen ein charakteristisches Bioakkumulationsverhalten aufweisen, das wesentlich von der Wasserloeslichkeit der Spezies in Verbindung mit der Lipophilie und der Bindung an Partikel, Huminstoffe und Biofilme beeinflusst wird. (orig.)

  18. Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach.

    Science.gov (United States)

    Avigliano, Esteban; Schenone, Nahuel Francisco; Volpedo, Alejandra Vanina; Goessler, Walter; Fernández Cirelli, Alicia

    2015-02-15

    The concentrations of As, Ag, B, Ba, Bi, Ca, Cd, Co, Cr, Fe, Ga, Hg, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, Te, Ti, U, V and Zn were determined in water and silverside (Odontesthes bonariensis) muscle samples from four important commercial fishing sites (Argentina) by ICPMS. Trace element concentrations in water with well-documented human health effects were above the recommended maximum levels established by Argentinean and international guidelines for the aquatic biota protection in three sampling sites (e.g. As: 28.4-367 μg L(-1); Cd: 0.17-1.05 μg L(-1); Hg: 0.07-0.63 μg L(-1); Zn: 71.3-90.0 μg L(-1)). High concentrations of As, Hg and Pb (0.03-0.76; 0.03-0.42 and 0.04-0.19 mg kg(-1) wet weight, respectively) were found in silverside muscle. Fishing communities associated with contaminated environments are likely to have higher consumption rates and are thus more likely to be exposed to higher concentrations of the toxic elements (As, Hg and Pb).

  19. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study.

    Science.gov (United States)

    Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

    2015-01-01

    The ecological threat associated with emerging pollutants detected in wastewater was estimated in country level. Treated wastewater was analyzed for pharmaceuticals and illicit drugs; whereas the concentrations of all emerging contaminants determined in Greek Sewage Treatment Plants were recorded through literature review. Toxicity data was collected after literature review or using ECOSAR and risk quotients (RQs) were calculated for treated wastewater and 25 Greek rivers, for 3 different aquatic organisms (fish, daphnia magna, algae). According to the results, monitoring data was available for 207 micropollutants belonging to 8 different classes. RQ>1 was calculated for 30 compounds in secondary treated wastewater. Triclosan presented RQ>1 (in algae) for all studied rivers; decamethylcyclopentasilane (in daphnia magna), caffeine (in algae) and nonylphenol (in fish) presented RQ>1 in rivers with dilution factors (DF) equal or lower to 1910, 913 and 824, respectively. The class of emerging contaminants that present the greatest threat due to single or mixture toxicity was endocrine disrupters. The mixture of microcontaminants seems to pose significant ecological risk, even in rivers with DF equal to 2388. Future national monitoring programs should include specific microcontaminants that seem to possess environment risk to surface water.

  20. Study on pricing model of aquatic environment quality resources%水环境质量资源定价模型研究

    Institute of Scientific and Technical Information of China (English)

    王俊能; 许振成; 彭晓春; 胡习邦; 张修玉

    2011-01-01

    在水环境质量资源的价格分析中,引入"级差地租"理论,以水质差异而造成的水价不同作为水环境质量资源的定量依据,结合模糊综合评判法,建立一种新的适用于复杂且模糊的多指标评价体系的环境质量资源定价方法.以广州流溪河为例,分析了各河段的水质价格,分析表明,本文提供的模型可为合理调整水价,修正水资源核算,制定水资源管理的相关政策提供依据.%Using price difference caused by water quality difference as the quantifying base of water environmental quality, introducing differential rent theory and combining with fuzzy comprehensive evaluation, a pricing method of aquatic environment quality resources was proposed.This new pricing method was applicable to complicated and fuzzy multi-index evaluation system.Taking Liuxi River in Guangzhou as an example, water quality price in each river section was calculated, which provided a base for rationally adjusting water price, correcting water resources checking and making relevant police of water resources management.

  1. Biologically inspired design framework for Robot in Dynamic Environments using Framsticks

    CERN Document Server

    S., Raja Mohamed

    2012-01-01

    Robot design complexity is increasing day by day especially in automated industries. In this paper we propose biologically inspired design framework for robots in dynamic world on the basis of Co-Evolution, Virtual Ecology, Life time learning which are derived from biological creatures. We have created a virtual khepera robot in Framsticks and tested its operational credibility in terms hardware and software components by applying the above suggested techniques. Monitoring complex and non complex behaviors in different environments and obtaining the parameters that influence software and hardware design of the robot that influence anticipated and unanticipated failures, control programs of robot generation are the major concerns of our techniques.

  2. Secure encapsulation and publication of biological services in the cloud computing environment.

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  3. The morphological and functional effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats

    Science.gov (United States)

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; de Fátima Chasko Ribeiro, Lucinéia; Bertolini, Gladson Ricardo Flor

    2016-01-01

    The aim of this study was to evaluate the effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats on morphological and functional parameters. Twenty-five Wistar rats were divided into the following groups: control (C), lesion (L), trained+lesion (TL), lesion+exercise (LE), and training+lesion+exercise (TLE), who underwent right sciatic nerve compression on day 21 of the experiment. The TL and TLE groups were submitted to a jumping exercise in a water environment for 20 days prior to injury and the LE and TLE groups after injury. The functional analysis was carried out using the sciatic functional index (SFI). On the last day of the experiment, the right sciatic nerves were collected, processed and analysed according to morphology and morphometry. The C group showed higher SFI in relation to the other groups. In the morphometric analysis, in comparison to C, all groups showed a decrease in the diameter of the injured nerve fibre, the myelin sheath and an increase in the percentage of connective tissue. There was a decrease in axon diameter in L, TL, and LE groups and a decrease in the density of nerve fibres in the TL and LE groups. The exercise did not affect functional recovery. However, the exercise prior to the injury improved morphology of the nervous tissue, and when performed pre- and postinjury, there was also an improvement in nerve regeneration, but this was not the case with exercise performed after the injury demonstrating worse results. PMID:27807516

  4. The morphological and functional effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats.

    Science.gov (United States)

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; de Fátima Chasko Ribeiro, Lucinéia; Bertolini, Gladson Ricardo Flor

    2016-10-01

    The aim of this study was to evaluate the effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats on morphological and functional parameters. Twenty-five Wistar rats were divided into the following groups: control (C), lesion (L), trained+lesion (TL), lesion+exercise (LE), and training+lesion+exercise (TLE), who underwent right sciatic nerve compression on day 21 of the experiment. The TL and TLE groups were submitted to a jumping exercise in a water environment for 20 days prior to injury and the LE and TLE groups after injury. The functional analysis was carried out using the sciatic functional index (SFI). On the last day of the experiment, the right sciatic nerves were collected, processed and analysed according to morphology and morphometry. The C group showed higher SFI in relation to the other groups. In the morphometric analysis, in comparison to C, all groups showed a decrease in the diameter of the injured nerve fibre, the myelin sheath and an increase in the percentage of connective tissue. There was a decrease in axon diameter in L, TL, and LE groups and a decrease in the density of nerve fibres in the TL and LE groups. The exercise did not affect functional recovery. However, the exercise prior to the injury improved morphology of the nervous tissue, and when performed pre- and postinjury, there was also an improvement in nerve regeneration, but this was not the case with exercise performed after the injury demonstrating worse results.

  5. Summary Report Panel 3: Gap Analysis from the Perspective of Animal Biology: Results of the Panel Discussion from the Third International Conference on the Effects of Noise on Aquatic Life.

    Science.gov (United States)

    Lewandowski, Jill; Luczkovich, Joseph; Cato, Douglas; Dunlop, Rebecca

    2016-01-01

    There is little disagreement among regulators, scientists, and other interested parties as to the complexity surrounding our understanding of the potential and realized impacts of anthropogenic noise on marine life. Given the challenges of research in an aquatic environment, the breadth of species of interest and the range of human-made noise-producing activities, it is difficult at best to identify the most important science needs that improve our understanding and ultimately regulation of the issue.

  6. Scaling macroscopic aquatic locomotion

    Science.gov (United States)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  7. High Prevalence and Genetic Polymorphisms of Legionella in Natural and Man-Made Aquatic Environments in Wenzhou, China.

    Science.gov (United States)

    Zhang, Leyi; Li, Yi; Wang, Xin; Shangguan, Zhihui; Zhou, Haijian; Wu, Yuejin; Wang, Lianghuai; Ren, Hongyu; Hu, Yun; Lin, Meifen; Qin, Tian

    2017-02-24

    Natural and engineered water systems are the main sources of Legionnaires' disease. It is essential from a public health perspective to survey water environments for the existence of Legionella. To analyze the main serogroups, genotypes and pathogenicity of the pathogen, a stratified sampling method was adopted to collect water samples randomly from shower water, cooling tower water, and local public hot springs in Wenzhou, China. Suspected strains were isolated from concentrated water samples. Serum agglutination assay and real-time PCR (Polymerase chain reaction) were used to identify L. pneumophila. Sequence-based typing (SBT) and pulsed-field gel electrophoresis (PFGE) were used to elucidate the genetic polymorphisms in the collected isolates. The intracellular growth ability of the isolates was determined through their interaction with J774 cells and plating them onto BCYE (Buffered Charcoal Yeast Extract) agar plates. Overall, 25.56% (46/180) of water samples were Legionella-positive; fifty-two strains were isolated and two kinds of serogroups were co-detected from six water samples from 2015 to 2016. Bacterial concentrations ranged from 20 CFU/100 mL to 10,720 CFU/100 mL. In detail, the Legionella-positive rates of shower water, cooling tower water and hot springs water were 15.45%, 13.33%, and 62.5%, respectively. The main serogroups were LP1 (30.69%) and LP3 (28.85%) and all strains carried the dot gene. Among them, 52 isolates and another 10 former isolates were analyzed by PFGE. Nineteen distinct patterns were observed in 52 strains isolated from 2015 to 2016 with three patterns being observed in 10 strains isolated from 2009 to 2014. Seventy-three strains containing 52 from this study and 21 former isolates were selected for SBT analysis and divided into 25 different sequence types in 4 main clonal groups belonging to 4 homomorphic types. Ten strains were chosen to show their abilities to grow and multiply in J744 cells. Taken together, our results

  8. Influence of Web-Aided Cooperative Learning Environment on Motivation and on Self-Efficacy Belief in Biology Teaching

    Science.gov (United States)

    Hevedanli, Murat

    2015-01-01

    The purpose of this study is to investigate the influence of the web-aided cooperative learning environment on biology preservice teachers' motivation and on their self-efficacy beliefs in biology teaching. The study was carried out with 30 biology preservice teachers attending a state university in Turkey. In the study, the pretest-posttest…

  9. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  10. Research on Performance Evaluation of Biological Database based on Layered Queuing Network Model under the Cloud Computing Environment

    OpenAIRE

    Zhengbin Luo; Dongmei Sun

    2013-01-01

    To evaluate the performance of biological database based on layered queuing network model and under cloud computing environment is a premise, as well as an important step for biological database optimization. Based on predecessors’ researches concerning computer software and hardware performance evaluation under cloud environment, the study has further constructed a model system to evaluate the performance of biological database based on layered queuing network model and under cloud environme...

  11. A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing

    Science.gov (United States)

    Glatt, Vaida; Evans, Christopher H.; Tetsworth, Kevin

    2017-01-01

    In order to achieve consistent and predictable fracture healing, a broad spectrum of growth factors are required to interact with one another in a highly organized response. Critically important, the mechanical environment around the fracture site will significantly influence the way bone heals, or if it heals at all. The role of the various biological factors, the timing, and spatial relationship of their introduction, and how the mechanical environment orchestrates this activity, are all crucial aspects to consider. This review will synthesize decades of work and the acquired knowledge that has been used to develop new treatments and technologies for the regeneration and healing of bone. Moreover, it will discuss the current state of the art in experimental and clinical studies concerning the application of these mechano-biological principles to enhance bone healing, by controlling the mechanical environment under which bone regeneration takes place. This includes everything from the basic principles of fracture healing, to the influence of mechanical forces on bone regeneration, and how this knowledge has influenced current clinical practice. Finally, it will examine the efforts now being made for the integration of this research together with the findings of complementary studies in biology, tissue engineering, and regenerative medicine. By bringing together these diverse disciplines in a cohesive manner, the potential exists to enhance fracture healing and ultimately improve clinical outcomes. PMID:28174539

  12. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    Science.gov (United States)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  13. Biologic Therapies: From Complexity to Clinical Practice in a Changing Environment

    Directory of Open Access Journals (Sweden)

    Remo Panaccione

    2015-12-01

    Full Text Available This symposium provided an opportunity for global experts to discuss the challenges posed by the introduction of biosimilars. The impact of the manufacturing process on clinical outcomes, maintaining treatment responses over the long term, and issues surrounding patient management in a changing environment were addressed. The symposium was opened by Prof Panaccione describing the evolution of inflammatory bowel disease (IBD treatment in the last 20 years and how biologics have improved outcomes. Prof D’Haens provided an explanation of the complexity surrounding biologic drug development and the hurdles facing drug manufacturers when ensuring high quality and consistently performing products over time. Prof Panaccione discussed the clinical challenges in balancing the transition from induction to maintenance therapy in order to provide a clinically relevant and sustained response to therapy. He also discussed the evidence for long-term outcomes with adalimumab for IBD. Prof Feagan highlighted the issues faced by clinicians treating patients with biologics, including the ability to switch between biologics without loss of efficacy or impact on safety, and the need to consider interchangeability between biologic therapies and the potential risk and impact of immunogenicity.

  14. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments - A developing country case study from Owerri, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Arukwe, Augustine, E-mail: arukwe@bio.ntnu.no [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Eggen, Trine [Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Postveien 213, N-4353 Klepp St. (Norway); Moeder, Monika [Helmholtz Centre for Environmental Research UFZ, Department of Analytical Chemistry, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2012-11-01

    isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high {mu}g/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. -- Highlights: Black-Right-Pointing-Pointer Solid waste management in developing countries Black-Right-Pointing-Pointer Solid waste as a significant source of contaminants of emerging concern Black-Right-Pointing-Pointer Contaminant leaching from solid waste to surrounding environment Black-Right-Pointing-Pointer Detection of several contaminants of emerging concern and with endocrine-disrupting activities Black-Right-Pointing-Pointer Phthalates are the dominant contaminant group with concentrations that are comparable with other countries.

  15. Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany.

    Directory of Open Access Journals (Sweden)

    Anja Henneberg

    Full Text Available Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1 chemical analyses, (2 in vitro bioassays, and (3 in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7 and reporter gene assays (human cell line HeLa-9903 and MDA-kb2. In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario to water downstream of a wastewater outfall (Schussen River or to water from a reference site (Argen River to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus and spirlin (Alburnoides bipunctatus, were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests and an occasional endocrine action (vitellogenin levels in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index. We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine

  16. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    Science.gov (United States)

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results

  17. Chapter 5. Assessing the Aquatic Hazards of Veterinary Medicines

    Science.gov (United States)

    In recent years, there has been increasing awareness of the widespread distribution of low concentrations of veterinary medicine products and other pharmaceuticals in the aquatic environment. While aquatic hazard for a select group of veterinary medicines has received previous s...

  18. Research on Performance Evaluation of Biological Database based on Layered Queuing Network Model under the Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Zhengbin Luo

    2013-06-01

    Full Text Available To evaluate the performance of biological database based on layered queuing network model and under cloud computing environment is a premise, as well as an important step for biological database optimization. Based on predecessors’ researches concerning computer software and hardware performance evaluation under cloud environment, the study has further constructed a model system to evaluate the performance of biological database based on layered queuing network model and under cloud environment. Moreover, traditional layered queuing network model is also optimized and upgraded in this process. After having constructed the performance evaluation system, the study applies laboratory experiment method to test the validity of the constructed performance model. Shown by the test result, this model is effective in evaluating the performance of biological system under cloud environment and the predicted result is quite close to the tested result. This has demonstrated the validity of the model in evaluating the performance of biological database.

  19. Nanoplastics in the aquatic environment

    NARCIS (Netherlands)

    Koelmans, A.A.; Besseling, E.; Shim, W.J.

    2015-01-01

    A growing body of literature reports on the abundance and effects of plastic debris, with an increasing focus on microplastic particles smaller than 5 mm. It has often been suggested that plastic particles in the

  20. REVIEW OF SELECTED BIOLOGICAL METHODS OF ASSESSING THE QUALITY OF NATURAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Beata Jakubus

    2015-04-01

    Full Text Available The xenobiotics introduced into the environment are the effect of human activities. It is especially soil contamination that leads to degradation of soils, which may finally be referred to the biological imbalance of the ecosystem. Normally chemical methods are used for the assessment of soil’s quality. Unfortunately, they are not always quick and inexpensive. Therefore, the practice and the science at environmental monitoring more frequently employ biological methods. Most of them meet the above mentioned conditions and become a supplement of routine laboratory practices. This publication shows an overview of selected common biological methods used to estimate the quality of the environment. The first part of the paper presents biomonitoring as a first step of environmental control which relies on the observation of indicator organisms. The next section was dedicated to the bioassays, indicating the greater or lesser practical applications confirmed by literature on the subject. Particular attention has been focused on phytotests and the tests based on the invertebrates.

  1. Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment

    Directory of Open Access Journals (Sweden)

    Mark A. Moline

    2016-02-01

    Full Text Available The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.

  2. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...

  3. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    Science.gov (United States)

    Löwa, Norbert; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non-linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment.

  4. Application of BIOLOG Automatic Microbiological Assay Systemin the Detection of Aquatic Animals Pathogen%BIOLOG自动微生物鉴定系统在水产动物病原菌检测中的应用

    Institute of Scientific and Technical Information of China (English)

    童桂香; 韦信贤; 黎小正; 吴祥庆; 庞燕飞

    2011-01-01

    [ ObjectiVe ] The aim was to know the reliability of BIOLOG automatic microbiological assay system in the detection of aquatic animals' pathogen ,providing references for the diagnosis of aquatic animals' bacteriosis. [ Method] 9 strains pathogen isolated from diseased aquatic animals were identified by BIOLOG automatic microbiological assay system,while 4 strains of them were identified by 16S rDNA sequencing and phylogenetic analysis,then two identification results of them were compared. [ Result] The results of the 9 strains identified by BIOLOG automatic microbiological assay system were very satisfactory, and the results of the 4 strains which were identified simultaneously by above two methods were coincident completely. [ Conclusion] It was rapid,accurate and convenient to detect pathogen in aquatic animals with the application of BIOLOG automatic microbiologieal assay system.%[目的]了解BIOLOG自动微生物鉴定系统对水产动物病原菌鉴定结果的可靠性,为水产动物细菌性疾病的诊断提供参考.[方法]选用BIOLOG自动微生物鉴定系统对9株分离自发病水产动物的病原菌进行鉴定,同时采用16S rDNA序列分析对其中的4株进行鉴定,比较2种鉴定结果的符合率.[结果]采用自动微生物鉴定系统对9株病原菌进行鉴定均取得良好结果,采用16S rDNA序列分析对4株病原菌进行鉴定的结果与应用自动微生物鏊定系统所得结果完全一致,二者符合率为100%.[结论]应用BIOLOG自动微生物鉴定系统对水产动物病原菌进行鉴定具有操作简便、快速、准确等特点,是实验室鉴定水产动物病原菌的一种可行方法.

  5. Performance-oriented Architecture: Towards a Biological Paradigm for Architectural Design and the Built Environment

    Directory of Open Access Journals (Sweden)

    Michael Ulrich Hensel

    2010-07-01

    Full Text Available This paper introduces and elaborates a specific approach to architectural design entitled ‘performance-oriented architecture’ based on a redefinition of the concept of ‘performance’ in relation to the discipline of architecture and set within a biological paradigm. The concept of ‘performance’ evolved out of a series of intellectual efforts that had broad consequences, brining about a paradigm shift in the humanities referred to as the ‘performative turn’. These efforts commenced in the 1940s and 1950s and had significant impact also on the sciences, deriving what is referred to as the ‘performative idiom’. Here the question is raised as to what ‘performance’ in the context of architecture may entail. The approach introduced con­trasts previous ones that focused either on questions of representation and meaning in architecture, or, alternatively that have treated performance as synonymous to function placed in the context of post-design functional optimisation. Contrasting these previous efforts performance is here reformulated as a driving concept for design that helps re-con­solidate form and function into a synergetic relation with the dynamics of natural, cultural and social environments, and in so doing, locate performative capacity - ‘ active agency’ - in the spatial and material organisation of architecture, in the human subject and the environ­ment through the dynamic interaction between these four domains. In pursuing this approach the potential of a close disciplinary affiliation between architecture and biology is examined, so as to locate a suitable paradigm for performance in the discipline of biology and its var­ious sub-disciplines, in its various foci and modes of inquiry, and, moreover, in biological syst­ems.

  6. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  7. A new extreme environment for aerobic anoxygenic phototrophs: biological soil crusts.

    Science.gov (United States)

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-01-01

    Biological soil crusts improve the health of arid or semiarid soils by enhancing water content, nutrient relations and mechanical stability, facilitated largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs were known from soil crusts. A recent study has demonstrated the presence of aerobic representatives of Earth's second major photosynthetic clade, the evolutionarily basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting pigment bacteriochlorophyll a. At relative abundances of 0.1-5.9% of the cultivable bacterial community, they were comparable in density to aerobic phototrophs in other documented habitats. 16S rDNA sequence analysis revealed the isolates to be related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result adds a new type of harsh habitat, dry soil environments, to the environments known to support aerobic anoxygenic phototrophs.

  8. Microorganisms isolated from subsurface environments and their importance for astrobiology and theoretical biology

    Directory of Open Access Journals (Sweden)

    Sergiu Fendrihan

    2010-07-01

    Full Text Available Objective: the article is a review of the very controversial microbial life in subsurfaceenvironments like caves, rocks, mines, deep subsurface water and springs, in very special extremeenvironments. Material and Methods: the methods of isolation of the bacteria and archaea fromsubsurface environments are discussed too and analysed. Results: the results of years of investigationsshowed the possiblilities of adaptation to extreme environments and survival on very long periods oftimes, even geological eras, of some microorganisms. The inner biochemical, physical, biological andenergetic mechanisms are still not elucidated, even some features were discovered. Conclusion: anextensive and intensive work of cooperation in this field of activity is required to discover themechanisms of long term survival in extreme conditions of the subsurface microorganisms.

  9. Application of Microorganisms in the Degradation of Polluted Chemicals in Aquatic Environments%微生物在水环境污染物降解中的应用

    Institute of Scientific and Technical Information of China (English)

    彭燕; 蔡俊鹏

    2008-01-01

    Every year, waters on earth receive large quantities of wastewater from industry, agriculture, fish and poultry raising, and municipal sewage treatment plants. Consequently, the aquatic environment on the earth is under a serious challenge from a very large quantity of pollutants such as antibiotics, insecticides, herbicides, hydrocarbons, etc., contained in the domestic wastewater, industrial and agricultural waste water and illegal effluents. In particular, with the development of intensive aquiculture and poultry, the effluent pollution has recently become more and more serious with more attentions. Furthermore more and more chemical pollutants discharged into aquatic environment have been detected with the advancement of analytical techniques. These chemicals can cause toxic effects on water habitats after discharged into aquatic environment. However, microorganisms have many key functions in pollution control. In this review, applications of microorganism in the degradation of chemicals in aquatic environments are reviewed. It was concluded that most applications of microorganisms degrading chemicals focused on aquaculture waters, whereas other aquatic systems (such as river, lake, sea, coastal waters) have been scarcely studied.%每年有大量来自工业、农业、养殖业和城市污水处理厂的废水被排入到水环境中,因此,地球上的水环境面临大量来自生活废水、工农业废水、非法排放的废水及其它废水的污染物质(如抗生素、杀虫剂,除草剂、烃等)的严重挑战,特别是近年来随着集约化养殖的发展,废水污染问题日益突出,并且随着分析手段的进步,能够检测到被排入水环境中的化学污染物质也越来越多,这些化学污染物对水环境中的生物产生有害影响.但是,微生物在污染控制上具有许多重要的作用.因此,本文对微生物在水环境污染物降解中的应用进行了评论.结果表明微生物主要是应用

  10. EFFECTS OF POLLUTANTS ON BIOLOGICAL SYSTEMS. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-10-01

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residence in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to

  11. Aquatic Therapy. Making Waves in Therapeutic Recreation.

    Science.gov (United States)

    Broach, Ellen; Dattilo, John

    1996-01-01

    Therapeutic recreation professionals often use aquatic therapy to improve physiological and psychological functioning, and they have reported improvements for people with many different types of disabilities. The paper discusses aquatic therapy methods, water as a therapeutic environment, professional training and development, and lifestyle…

  12. Technical progress report of biological research on the volcanic island, Surtsey, and environment for the year 1975

    Energy Technology Data Exchange (ETDEWEB)

    Fridriksson, S.

    1975-01-01

    The study involves terrestrial biological research on the volcanic island, Surtsey, off the coast of Iceland and the neighboring islands and environs of the Westman Islands, which are situated on the mid-Atlantic Ridge.

  13. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    Science.gov (United States)

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

  14. Lilienfeld Prize Talk: New Results on Water in Bulk, Nanoconfined, and Biological Environments

    Science.gov (United States)

    Stanley, H. Eugene

    2008-04-01

    This talk will introduce some of the 63 unsolved mysteries of water, and will demonstrate some recent progress in solving them combining information provided by water in bulk, nanoconfined, and biological environments. In particular, we will present evidence from experiments designed to test the hypothesis that water displays ``polymorphism'' in that it can exist in two liquid different phases and display a novel liquid-liquid critical point. The concept of liquid polymorphism is also proving useful in understanding some of the anomalies of other liquids with local tetrahedral symmetry, such as silicon, silica, and carbon. In particular, the talk will discuss changes in dynamic transport properties [1], and water in biological environments, including a possible physical explanation for the phenomenon known as the protein glass transition [2]. [1] P. Kumar, S. V. Buldyrev, S. L. Becker, P. H. Poole, F. W. Starr, and H. E. Stanley, ``Relation between the Widom line and the Breakdown of the Stokes--Einstein Relation in Supercooled Water,'' Proc. Natl. Acad. Sci. USA 104, 9575-9579 (2007). [2] P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S.-H. Chen. S. Sastry, and H. E. Stanley, ``Glass Transition in Biomolecules and the Liquid-Liquid Critical Point of Water,'' Phys. Rev. Lett. 97, 177802 (2006).

  15. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  16. Studies on the aquatic environment at Olkiluoto and reference area. 1: Olkiluoto, reference lakes and Eurajoki and Lapijoki rivers in 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Kangasniemi, V. [Environmental Research and Assessment EnviroCase Ltd., Pori (Finland); Helin, J.

    2014-03-15

    This working report presents the first results of a sampling campaign at Olkiluoto and reference lakes and rivers selected to resemble the aquatic systems expected to form at the site in the future with the post-glacial crustal rebound (land uplift). In 2009-2010, the aim of the studies was to improve the knowledge of the aquatic systems and to produce input data to the safety case for the spent nuclear fuel repository at Olkiluoto. The first main objective was to estimate the areal biomass distribution and measure the dimensions of characteristic aquatic plants and animals. Another objective was to estimate the transfer of different elements from water to the aquatic organisms paying special attention on key elements (Ag, Cl, I, Mo, Nb and Se) in the dose assessment within the safety case. Surface water, sediment, macrophyte, fish and macrobenthos samples were collected from the Olkiluoto coastal area and from the reference lakes for biomass and dimension measurements and analysis of element concentration. Water-to-biota concentration ratios were estimated for the coastal area and for the reference lakes. From rivers, only water samples were collected at this stage. In 2009-2010, sampling procedures and pre-treatment methods were developed and analytical methods were optimised. Thus, the results reported here are indicative by their nature. After 2010, the studies have been continued with better established methods, and the more recent results will be reported later. (orig.)

  17. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts.

    Science.gov (United States)

    Schaumann, Gabriele E; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra; Kumahor, Samuel K; Kühn, Melanie; Baumann, Thomas; Lang, Friederike; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in

  18. Study the Effectiveness of Technology-Enhanced Interactive Teaching Environment on Student Learning of Junior High School Biology

    Science.gov (United States)

    Yang, Kai-Ti; Wang, Tzu-Hua; Chiu, Mei-Hung

    2015-01-01

    This research investigates the effectiveness of integrating Interactive Whiteboard (IWB) into the junior high school biology teaching. This research adopts a quasi-experimental design and divides the participating students into the conventional ICT-integrated learning environment and IWB-integrated learning environment. Before teaching, students…

  19. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    Science.gov (United States)

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  20. Marine and other aquatic dermatoses

    Directory of Open Access Journals (Sweden)

    Jandhyala Sridhar

    2017-01-01

    Full Text Available Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. “Suit squeeze” due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  1. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals.

    Science.gov (United States)

    Donnachie, Rachel L; Johnson, Andrew C; Sumpter, John P

    2016-04-01

    Aquatic organisms can be exposed to thousands of chemicals discharged by the human population. Many of these chemicals are considered disruptive to aquatic wildlife, and the literature on the impacts of these chemicals grows daily. However, because time and resources are not infinite, research must focus on the chemicals that represent the greatest threat. One group of chemicals of increasing concern is pharmaceuticals, for which the primary challenge is to identify which represent the greatest threat. In the present study, a list of 12 pharmaceuticals was compiled based on scoring the prevalence of different compounds from previous prioritization reviews. These included rankings based on prescription data, environmental concentrations, predicted environmental concentration/predicted no-effect concentration (PEC/PNEC) ratios, persistency/bioaccumulation/(eco)toxicity (PBT), and fish plasma model approaches. The most frequently cited were diclofenac, paracetamol, ibuprofen, carbamazepine, naproxen, atenolol, ethinyl estradiol, aspirin, fluoxetine, propranolol, metoprolol, and sulfamethoxazole. For each pharmaceutical, literature on effect concentrations was compiled and compared with river concentrations in the United Kingdom. The pharmaceuticals were ranked by degree of difference between the median effect and median river concentrations. Ethinyl estradiol was ranked as the highest concern, followed by fluoxetine, propranolol, and paracetamol. The relative risk of these pharmaceuticals was compared with those of metals and some persistent organic pollutants. Pharmaceuticals appear to be less of a threat to aquatic organisms than some metals (Cu, Al, Zn) and triclosan, using this ranking approach.

  2. The Open Microscopy Environment: open image informatics for the biological sciences

    Science.gov (United States)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  3. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  4. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    example, the salmonids in the coastal rivers and streams, and the larger interconnected streams, rivers, and lakes of the interior exhibit a variety of ecotypes and migratory life histories (Healey 1986; Trotter 1989; Larson and McIntire 1993; Northcote 1997). This life-history variation appears to be associated with adaptation to spatial and temporal variation in environment (e.g., Schaffer and Elson 1975; Carl and Healey 1984; Beacham and Murray 1987), and there is some evidence of the genetic heritability of life-history traits (Carl and Healey 1984; Gharrett and Smoker 1993; Hankin, Nicholas, and Downey 1993). Persistence of any level of biological organization (e.g., life-history type, population, metapopulation, subspecies, species, community) is related to the interaction of environmental and biological components, and intraspecific diversity is a means of spreading risk (sensu den Boer 1968) of extirpation in dynamic environments (Gresswell 1999). Unfortunately, despite the broad distribution and extensive intraspecific diversity, persistence of native fishes is uncertain in the Pacific Northwest. Many populations of anadromous salmonids, once synonymous with vigorous biological communities throughout the region, are threatened with extinction (Nehlsen, Williams, and Lichatowich 1991; Frissell 1993; Thurow, Lee, and Rieman 1997). Furthermore, over half of the native taxa in the Columbia River Basin are either listed under the Endangered Species Act, are being considered for listing, or are deemed sensitive by the management agencies (Lee et al. 1997; Thurow, Lee, and Rieman 1997). Potamodromous species like bull trout Salvelinus confluentus are estimated to occur as strong populations in less than 5% of their potential range (Rieman, Lee, and Thurow 1997). Although not currently listed under the endangered species list, the coastal cutthroat trout Oncorhynchus clarki is managed as a sensitive species in Oregon and California (Hall, Bisson, and Gresswell 1997

  5. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  6. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    Energy Technology Data Exchange (ETDEWEB)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-07-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  7. Research Progress in Biodegradation of Aliphatic Polyesters under Aquatic Environment%水生环境下脂肪族聚酯生物降解性能研究进展

    Institute of Scientific and Technical Information of China (English)

    孙炳新; 揣成智; 韩春阳; 郭迎; 冯叙桥

    2012-01-01

    以脂肪族聚酯在不同水生环境下的生物降解性能研究为出发点,概述了国内外在此领域的研究进展情况,通过分析发现,对于PBS,PCL,PLA和PPC等化学合成类脂肪族聚酯的降解性能的研究相当缺乏,对于这些生物降解材料降解性能的研究,尤其是在水生环境下的降解性能,还需要大量的试验来获取更多详实的基础数据。%Research progress in biodegradation of aliphatic polyesters in different aquatic environments was reviewed. Analysis of related information indicated that more researches need to be carried out so that the degra- dation of chemical synthetic aliphatic polyesters, such as PBS, PCL, PLA and PPC, can be understood. Therefore, researches in the future must stress on the degradation of these materials especially in aquatic environment in an effort to acquire reliable data.

  8. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment Sobrevivência e conjugação de Bacillus thuringiensis em ambiente aquático

    Directory of Open Access Journals (Sweden)

    Luciana Furlaneto

    2000-10-01

    Full Text Available Field and laboratory studies were conducted to assess the survival of cells and spores and plasmid transfer between Bacillus thuringienis strains in aquatic environment. Results indicated that cells and spores of B. thuringiensis can survive for 10 days in water, without altering their number. The sporulation process began after 12-15 hours of inoculation of water. B. thuringiensis was able to transfer conjugative plasmids in the aquatic environment.O presente trabalho é um estudo sobre a sobrevivência e a conjugação de linhagens de Bacillus thuringiensis em água. Os experimentos conduzidos no laboratório mostram que as células e os esporos de B. thuringiensis podem persistir pelo menos 10 dias na água. A esporulação inicia-se 12-15 horas após a inoculação. O processo de conjugação foi demonstrado em diferentes ambientes aquáticos, tanto em condições de laboratório quanto no meio ambiente.

  9. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    Science.gov (United States)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  10. Research unit INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interface

    Science.gov (United States)

    Schaumann, Gabriele Ellen; Metreveli, George; Baumann, Thomas; Klitzke, Sondra; Lang, Friederike; Manz, Werner; Nießner, Reinhard; Schulz, Ralf; Vogel, Hans-Jörg

    2013-04-01

    Engineered inorganic nanoparticles (EINP) are expected to pass the wastewater-river-topsoil-groundwater pathway. Despite their increasing release, the processes governing the EINP aging and the changes in functionality in the environment are up to now largely unknown. The objective of the interdisciplinary research unit INTERNANO funded by the DFG is to identify the processes relevant for the fate of EINP and EINP-associated pollutants in the interfacial zone between aquatic and terrestrial ecosystems. The research unit consists of six subprojects and combines knowledge from aquatic and terrestrial sciences as well as from microbiology, ecotoxicology, physicochemistry, soil chemistry and soil physics. For the identification of key processes we will consider compartment specific flow conditions, physicochemistry and biological activity. Situations representative for a floodplain system are simulated using micromodels (μm scale) as well as incubation, soil column and joint laboratory stream microcosm experiments. These results will be transferred to a joint aquatic-terrestrial model system on EINP aging, transport and functioning across the aquatic-terrestrial transition zone. EINP isolation and characterization will be carried out via a combination of chromatographic, light scattering and microscopic methods including dynamic light scattering, elemental analysis, hydrodynamic radius chromatography, field flow fractionation as well as atomic force microscopy, Raman microscopy and electron microscopy. INTERNANO generates fundamental aquatic-terrestrial process knowledge, which will help to evaluate the environmental significance of the EINP at aquatic-terrestrial interfaces. Thus, INTERNANO provides a scientific basis to assess and predict the environmental impact of EINP release into the environment.

  11. The Preservation of "Non-Biological" Environments in the Solar System

    Science.gov (United States)

    Hargrove, Eugene

    Nature preservation will be a central element of the exploration of the Solar System, whether this emphasis is initially planned for or not. Exploration of extraterrestrial environments will generate images and scientific information that will excite the imagination of the general public throughout the world and be supportive of more funding for exploration. However, damage to the environments visited, once made public, will likely generate a backlash against exploration programs that could inhibit exploration or even bring it completely to an end. The exploration in the nineteenth century of the western United States, with landscapes aesthetically very different from those found in Europe but very similar to those existing on the Moon and on Mars, provides an excellent indication of what will happen in off-planet exploration. Nearly every place painted by a major artist or photographed by a photographer on a geological survey during that time period is today a national park or national monument. If extraterrestrial environments are not protected, the major space societies that are currently enthusiastically supportive of space agencies around the world could become political opponents, much as the Sierra Club evolved into a serious and effective critic of the U.S. Forest Service and National Park Service in the United States. At a minimum, space agencies must be protective of the historical landing sites on the Moon, avoid strip mining on the Moon that may draw criticism, and protect major features on Mars from damage, such as the Cydonian Face on Mars, Valles Marineris, the grand canyon of Mars, and Olympus Mons, a mountain three times as tall as Mount Everest. A good first step might be to establish a world-heritage-style site to protect the visible side of the Moon. Although extraterrestrial sites may initially be labeled "non-biological," caution must be taken to be protective of possible extraterrestrial life, active or dormant, even in the most unlikely

  12. Aquatic Therapy for Children

    Science.gov (United States)

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  13. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  14. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium field / Development of technology to treat aquatic environment by using microorganisms fixed on carbon fabrics (abbreviation: carbon/aquatic environment project) (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium bun`ya / tanso sen`i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu (ryakusho: tanso mizu kankyo project) daiichi nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Out of the development of technology to arrange the aquatic environment using phenomena of microorganism fixation on carbon fiber soft textures, the paper stated the fiscal 1997 result. On carbon fibers in a state of swaying in water, microorganisms in water fix in an amazingly large quantity. A catalog was compiled of 58 kinds of carbon fabrics trially woven and knitted. When carbon fiber is used as activated sludge carrier, activity of microorganism lasts more than one year. Only a little amount of surplus sludge is generated. The fixed microorganisms are more active in case of carbon fiber than in case of nylon and polyester fibers. Fiber texture models of carbon fiber fixing activated sludge groups were proposed. By pump operation, the water flow inside/outside microorganism groups is being accelerated. Several new strains of bacillus carboniphilus were isolated/identified from soil and marsh. To grasp relationships of characteristics among three elements such as the state of aquatic environment, fiber, and microorganism group, the experiment was prepared. Preliminary work is conducted to derive a simple equation for facility design, and experimental directions to obtain design conditions were proposed. 6 refs., 166 figs., 47 tabs.

  15. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    Science.gov (United States)

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  16. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  17. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts.

    Science.gov (United States)

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-10-01

    Phototrophic microorganisms are critical to the carbon cycling and productivity of biological soil crusts, which enhance water content, nutrient relations and mechanical stability of arid soils. Only oxygen-producing phototrophs, including cyanobacteria and algae, are known from soil crusts, but Earth's second major branch of photosynthetic organisms, the evolutionarily earlier anoxygenic phototrophs, is unreported. We announce the discovery of aerobic anoxygenic phototrophs in three Canadian soil crust communities. We found in a culture-based study that they comprised 0.1-5.9% of the cultivable bacterial community in moss-, lichen- and cyanobacteria-dominated crust from sand dunes and sandy soils. Comparable in density to aerobic phototrophs in other habitats, the bacteriochlorophyll a-possessing pink and orange isolates were related to species of Methylobacterium (99.0-99.5%), Belnapia (97.4-98.8%), Muricoccus (94.4%) and Sphingomonas (96.6-98.5%), based on 16S rRNA gene sequences. Our results demonstrate that proteobacterial anoxygenic phototrophs may be found in dry soil environments, implying desiccation resistance as yet unreported for this group. By utilizing sunlight for part of their energy needs, aerobic phototrophs can accelerate organic carbon cycling in nutrient-poor arid soils. Their effects will be especially important as global climate change enhances soil erosion and consequent nutrient loss.

  18. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment.

    Science.gov (United States)

    Tonon, Thierry; Eveillard, Damien; Prigent, Sylvain; Bourdon, Jérémie; Potin, Philippe; Boyen, Catherine; Siegel, Anne

    2011-12-01

    Brown algae belong to a phylogenetic lineage distantly related to land plants and animals. They are almost exclusively found in the intertidal zone, a harsh and frequently changing environment where organisms are submitted to marine and terrestrial constraints. In relation with their unique evolutionary history and their habitat, they feature several peculiarities, including at the level of their primary and secondary metabolism. The establishment of Ectocarpus siliculosus as a model organism for brown algae has represented a framework in which several omics techniques have been developed, in particular, to study the response of these organisms to abiotic stresses. With the recent publication of medium to high throughput profiling data, it is now possible to envision integrating observations at the cellular scale to apply systems biology approaches. As a first step, we propose a protocol focusing on integrating heterogeneous knowledge gained on brown algal metabolism. The resulting abstraction of the system will then help understanding how brown algae cope with changes in abiotic parameters within their unique habitat, and to decipher some of the mechanisms underlying their (1) acclimation and (2) adaptation, respectively consequences of (1) the behavior or (2) the topology of the system resulting from the integrative approach.

  19. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    Science.gov (United States)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  20. Attitude, achievement, and classroom environment in a learner-centered introductory biology course

    Science.gov (United States)

    McCormick, Bonnie Day

    The purpose of this study is to determine the effectiveness of the revision of an undergraduate biology course to meet the standards set forth by current science education reform documents. This course was revised by a collaborate team at a small, religious, liberal arts university located in an urban area of South Texas. This institution is a Hispanic serving institution where the majority of students are Hispanic. The female population of this institution is approximately 70 percent. The course was revised to meet teaching standards called for in the National Science Education Standards. The guiding principle was to use an instructional model that was based on constructivist theories of learning. The lecture and laboratory sections of the course were combined into a class that met two days a week for three hours. A learner-centered instructional model based on learning cycles and the 5E model were used to organize instruction. Three sections of the experimental course were compared to three control sections that were taught in a traditional format of a three-hour lecture with a separate lab. Instruments that measured classroom learning environment, achievement, and attitude toward science were given at the beginning and conclusion of the course. Qualitative data was gathered from a questionnaire, university course evaluations, and student portfolios. Results of the learning environment survey found that two sections of the control class used some active learning within the context of the traditional lecture. These sections were analyzed as a modified lecture and the other control section as the traditional lecture. The experimental sections were the integrated sections. Subjects in the traditional and integrated sections scored higher on the content knowledge test than those in the modified section. This suggests that the integrated course was as successful as the traditional method in acquisition of content knowledge. Subjects the integrated course and the

  1. Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environment: From synthesis to fate

    Science.gov (United States)

    Recently, increasing studies have focused on the environment stability, transport, and fate of the anthropogenic nanomaterials in the environment, which contributes to the understanding of the potential risks when released. However, applying nanomaterials from different manufactu...

  2. Aquatic ecology of the Elwha River estuary prior to dam removal: Chapter 7 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.

  3. Cetacean brains: how aquatic are they?

    Science.gov (United States)

    Marino, Lori

    2007-06-01

    The adaptation of cetaceans to a fully aquatic lifestyle represents one of the most dramatic transformations in mammalian evolutionary history. Two of the most salient features of modern cetaceans are their fully aquatic lifestyle and their large brains. This review article will offer an overview of comparative neuroanatomical research on aquatic mammals, including analyses of odontocete cetacean, sirenian, pinniped, and fossil archaeocete brains. In particular, the question of whether a relationship exists between being fully aquatic and having a large brain is addressed. It has been hypothesized that the large, well-developed cetacean brain is a direct product of adaptation to a fully aquatic lifestyle. The current consensus is that the paleontological evidence on brain size evolution in cetaceans is not consistent with this hypothesis. Cetacean brain enlargement took place millions of years after adaptation to a fully aquatic existence. Neuroanatomical comparisons with sirenians and pinnipeds provide no evidence for the idea that the odontocete's large brain, high encephalization level, and extreme neocortical gyrification is an adaptation to a fully aquatic lifestyle. Although echolocation has been suggested as a reason for the high encephalization level in odontocetes, it should be noted that not all aquatic mammals echolocate and echolocating terrestrial mammals (e.g., bats) are not particularly highly encephalized. Echolocation is not a requirement of a fully aquatic lifestyle and, thus, cannot be considered a sole effect of aquaticism on brain enlargement. These results indicate that the high encephalization level of odontocetes is likely related to their socially complex lifestyle patterns that transcend the influence of an aquatic environment.

  4. Contaminação do ambiente aquático por pesticidas. Estudo de caso: águas usadas para consumo humano em Primavera do Leste, Mato Grosso - análise preliminar Aquatic environment contamination by pesticides. Case study: water used for human consumption in Primavera do Leste, Mato Grosso - preliminary analyses

    Directory of Open Access Journals (Sweden)

    Eliana Freire Gaspar de Carvalho Dores

    2001-02-01

    Full Text Available A preliminary analyses of the possible contamination of superficial and underground water by the active ingredients of the pesticide products used in the surroundings of the urban area of Primavera do Leste, Mato Grosso, Brazil, was carried out. A description of the study region and of its environmental characteristics, which can favor the contamination of the local aquatic environment, was presented. The EPA screening criteria, the groundwater ubiquity score (GUS and the criteria proposed by Goss were used to evaluate which pesticides might contaminate the local waters. Among the active ingredients studied, several present risks to the local aquatic environment.

  5. National Biological Monitoring Inventory. [Data base for information on biological monitoring of power plant impacts on environment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R. L.

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized.

  6. Study on the entry of synthetic chelating agents and compounds exhibiting complexing properties into the aquatic environment; Studie zum Eintrag synthetischer Komplexbildner und Substanzen mit komplexbildenden Eigenschaften in die Gewaesser

    Energy Technology Data Exchange (ETDEWEB)

    Knepper, T.P.; Weil, H. [ESWE-Inst. fuer Wasserforschung und Wassertechnologie GmbH, Wiesbaden (Germany)

    2001-07-01

    Synthetic chelating agents are utilized in many industrial applications due to their capability to bind and mask metal ions. A review was conducted in Germany for twenty main compounds, including chelating agents as well as such compounds binding metal ions and thus exhibiting some complexing properties such as the phosphonates or polycarboxylates. Focus of the study was to gather data about production, use, entry into the aquatic environment, fate and environmental behavior. Metal mobilisation as well as toxicity of all components has been studied indicating a low order for the measured or predicted environmental concentrations. However, most of the investigated synthetic complexing agents such as e. g. ethylenediaminetetra acetate (EDTA), can be classified as environmentally relevant, since they are microbial poorly degradable and exhibit an excellent water solubility. (orig.)

  7. Assessing, mapping and validating site-specific ecotoxicological risk for pesticide mixtures: a case study for small scale hot spots in aquatic and terrestrial environments.

    Science.gov (United States)

    Vaj, Claudia; Barmaz, Stefania; Sørensen, Peter Borgen; Spurgeon, David; Vighi, Marco

    2011-11-01

    Mixture toxicity is a real world problem and as such requires risk assessment solutions that can be applied within different geographic regions, across different spatial scales and in situations where the quantity of data available for the assessment varies. Moreover, the need for site specific procedures for assessing ecotoxicological risk for non-target species in non-target ecosystems also has to be recognised. The work presented in the paper addresses the real world effects of pesticide mixtures on natural communities. Initially, the location of risk hotspots is theoretically estimated through exposure modelling and the use of available toxicity data to predict potential community effects. The concept of Concentration Addition (CA) is applied to describe responses resulting from exposure of multiple pesticides The developed and refined exposure models are georeferenced (GIS-based) and include environmental and physico-chemical parameters, and site specific information on pesticide usage and land use. As a test of the risk assessment framework, the procedures have been applied on a suitable study areas, notably the River Meolo basin (Northern Italy), a catchment characterised by intensive agriculture, as well as comparative area for some assessments. Within the studied areas, the risks for individual chemicals and complex mixtures have been assessed on aquatic and terrestrial aboveground and belowground communities. Results from ecological surveys have been used to validate these risk assessment model predictions. Value and limitation of the approaches are described and the possibilities for larger scale applications in risk assessment are also discussed.

  8. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments.

  9. Long-Term Effects of Dredging Operations Program. Biological Consequences of Bioaccumulation in Aquatic Animals: An Assessment of the Current Literature

    Science.gov (United States)

    1984-06-01

    Pertica , G. Mancinelli, R. Capelli, and M. Orunesu. 1981a. Effects of copper on the uptake of amino acids, on protein synthesis and on ATP content in...different tissues of fytilus galloprovinciales Lam. Mar. Environ. Res. 4:145-152. Viarengo, A., M. Pertica , G. Mancinelli, S. Palmero, G. Zanicchi, and M

  10. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  11. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  12. Psychological Effects towards Humans Living in the Environment Made of Biological Concrete in Malaysia at 2015

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2017-01-01

    Full Text Available In day-to-day life concrete become a compulsory material in the construction field as to make it a real concern among researchers for producing concrete with improved properties. Biological method is one of the new methods to improve concrete properties. Although, much research about biological concrete has been carried out, but till now nobody has not studied for the psychological effects of using a house or offices made up of biological concrete. The aim of this study is to investigate and find out the person's opinion about staying in a house or offices made up of biological concrete. In this study, a questionnaire containing eight questions was prepared and distributed among 21 persons in Malaysia University of Technology including students, academic and non-academic staffs among which few of them was an expert in the field of biological concrete and others did not have any knowledge about the bioconcrete. Finally, the results obtained from the questionnaires were analyzed. The results showed that 81% of participants in this study would like to stay in a house or office made up of biological concrete. However, 38% of participants believe that staying in a house or office made of biological concrete can cause health related problems. The current research paper can be considered significant for architects and civil engineers to have the insight to look into the psychological aspects of using biological concrete for various applications in the field of construction.

  13. Biology's Challenge to Social Work: Embodying the Person-in-Environment Perspective.

    Science.gov (United States)

    Saleebey, Dennis

    1992-01-01

    Notes that, although social work credits itself for using biopsychosocial perspective, "bio" is virtually absent from profession's knowing and doing. Review of areas in which biological knowledge is growing ("biology of hope"--psychoneuroimmunology, for example--and the new biomedical approach to mental health) yields some ideas about how theory…

  14. Remaining Sites Verification Package for the 100-F-33, 146-F Aquatic Biology Fish Ponds, Waste Site Reclassification Form 2006-021

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-08-25

    The 100-F-33, 146-F Aquatice Biology Fish Ponds waste site was an area with six small rectangular ponds and one large circular pond used to conduct tests on fish using various mixtures of river and reactor effluent water. The current site conditions achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification and applicable confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...... to distribute photons evenly between the photosynthetic tissues. As scattering and attenuation in the water column increase, the effect of thallus structure on production declines and thin transparent macrophytes are more efficient at utilizing light than thick opaque macrophytes. The results confirm...... combined a simple mechanistic model and empirical measurements on artificially structured macroalgal communities (Ulva lactuca) with varying thallus absorptance and community density. Predicted and measured values corresponded closely and revealed that gross production in high-light environments...

  16. FAIRDOMHub: a repository and collaboration environment for sharing systems biology research

    Science.gov (United States)

    Wolstencroft, Katherine; Krebs, Olga; Snoep, Jacky L.; Stanford, Natalie J.; Bacall, Finn; Golebiewski, Martin; Kuzyakiv, Rostyk; Nguyen, Quyen; Owen, Stuart; Soiland-Reyes, Stian; Straszewski, Jakub; van Niekerk, David D.; Williams, Alan R.; Malmström, Lars; Rinn, Bernd; Müller, Wolfgang; Goble, Carole

    2017-01-01

    The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship. PMID:27899646

  17. Oligochaeta (Annelida: Clitellata) associated to aquatic macrophytes in Brazil

    OpenAIRE

    Nathalie Aparecida de Oliveira Sanches; Marina Gulo Alcorinte; Lucas Henrique Sahm; Guilherme Rossi Gorni; Maria Lúcia Ribeiro

    2016-01-01

    Oligochaeta are still characterized as a poorly studied group among the aquatic macroinvertebrates and few studies about their ecology were conducted in Brazil. Thus, our study aimed to provide an overview of the association between Oligochaeta and macrophytes, in Brazilian continental aquatic environments, by means of a literature review along with an inventory of species associated to aquatic macrophytes on marginal lagoons in the reservoir Ribeirão das Anhumas (Américo Brasiliense, São Pau...

  18. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  19. Growth-form and spatiality driving the functional difference of native and alien aquatic plants in Europe.

    Science.gov (United States)

    Lukács, Balázs A; Vojtkó, Anna E; Mesterházy, Attila; Molnár V, Attila; Süveges, Kristóf; Végvári, Zsolt; Brusa, Guido; Cerabolini, Bruno E L

    2017-02-01

    Trait-based approaches are widely used in community ecology and invasion biology to unravel underlying mechanisms of vegetation dynamics. Although fundamental trade-offs between specific traits and invasibility are well described among terrestrial plants, little is known about their role and function in aquatic plant species. In this study, we examine the functional differences of aquatic alien and native plants stating that alien and native species differ in selected leaf traits. Our investigation is based on 60 taxa (21 alien and 39 native) collected from 22 freshwater units of Hungarian and Italian lowlands and highlands. Linear mixed models were used to investigate the effects of nativeness on four fundamental traits (leaf area, leaf dry matter content, specific leaf area, and leaf nitrogen content), while the influence of growth-form, altitude, and site were employed simultaneously. We found significantly higher values of leaf areas and significantly lower values of specific leaf areas for alien species if growth-form was included in the model as an additional predictor.We showed that the trait-based approach of autochthony can apply to aquatic environments similar to terrestrial ones, and leaf traits have relevance in explaining aquatic plant ecology whether traits are combined with growth-forms as a fixed factor. Our results confirm the importance of traits related to competitive ability in the process of aquatic plant invasions. Alien aquatic plants can be characterized as species producing soft leaves faster. We argue that the functional traits of alien aquatic plants are strongly growth-form dependent. Using the trait-based approach, we found reliable characteristics of aquatic plants related to species invasions, which might be used, for example, in conservation management.

  20. Application of Controlled Freezing Point Technique Combined with Biological Antistaling Agent in Preservation of Aquatic Products%冰温结合生物保鲜剂技术在水产品保鲜中的应用

    Institute of Scientific and Technical Information of China (English)

    杨胜平; 谢晶

    2009-01-01

    The effect of controlled freezing point technique on the quality of aquatic products and the antibacterial function of several common biological antistaling agents were analyzed. The application of food fresh keeping by means of combining these two technologies was also proposed. The review will provide important theoretical basis for the research and enhancement of the application of these two technologies in food industry.%阐述了冰温保鲜技术对水产品品质的影响,以及几种常见生物保鲜剂的抑菌作用.并介绍了冰温贮藏结合生物保鲜剂技术在食品保鲜中的应用,为进一步研究冰温及生物保鲜剂技术和扩大它们在食品工业中的应用提供重要的理论基础.

  1. Development and application of in vitro and in vivo reporter gene assays for he assessment of (xeno-)estrogenic compounds in the aquatic environment

    NARCIS (Netherlands)

    Legler, J.

    2001-01-01

    In recent years, both scientific and public concern about the possible threat of estrogenic compounds in the environment that may impact the reproduction of humans and wildlife has increased. Many substances have been demonstrated to possess estrogenic potency using in vitro test systems, and these

  2. Recalcitrant pharmaceuticals in the aquatic environment : a comparative screening study of their occurrence, formation of phototransformation products and their in vitro toxicity

    OpenAIRE

    2014-01-01

    Data allowing for a complete environmental risk assessment of pharmaceuticals and their photoderatives in the environment are still scarce. In the present study, in vitro toxicity and both bio- and photopersistence of various pharmaceuticals (aciclovir, allopurinol, cetirizine, cimetidine, fluconazole, hydrochlorothiazide, lisinopril, phenytoin, primidone, ranitidine, sotalol, sulpiride, tramadol and valsartane) as well as their phototransformation products were evaluated in order to fill dat...

  3. World, environment, umwelt, and inner-world: A biological perspective on visual awareness

    NARCIS (Netherlands)

    Koenderink, J.J.

    2013-01-01

    The world is all physical reality (Higgs bosons, and so forth), the environment is a geographical locality (your city, . . . ), the "Umwelt" is the totality of possible actions of the environment on the sensitive body surface of an agent (you, your dog, . . . ) and the possible actions of the agent

  4. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Science.gov (United States)

    Baldy, Virginie; Thiebaut, Gabrielle; Fernandez, Catherine; Sagova-Mareckova, Marketa; Korboulewsky, Nathalie; Monnier, Yogan; Perez, Thierry; Tremolieres, Michele

    2015-01-01

    Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1) P-PO4(3-) and hypertrophic state, 300 μg x l(-1) P-PO4(3-)) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  5. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Directory of Open Access Journals (Sweden)

    Virginie Baldy

    Full Text Available Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch. St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine or soft (Vosges water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1 P-PO4(3- and hypertrophic state, 300 μg x l(-1 P-PO4(3- on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer. Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic. The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  6. Recent Advances in the Use of Chemical Markers for  Tracing Wastewater Contamination in Aquatic  Environment: A Review

    Directory of Open Access Journals (Sweden)

    Fang Yee Lim

    2017-02-01

    Full Text Available There has been increasing research focus on the detection and occurrence of wastewater contamination in aquatic environment. Wastewater treatment plants receive effluents containing various chemical pollutants. These chemicals may not be fully removed during treatment and could potentially enter the receiving water bodies. Detection of these chemical pollutants and source identification could be a challenging research task due to the diversified chemical and functional groups, concentration levels and fate and transportation mechanisms of these pollutants in the environment. Chemical markers such as pharmaceuticals and personal care products, artificial sweeteners, fluorescent whitening agents, sterols and stanols, and nitrate and nitrogen isotopics have been widely used by most research as markers. These markers served as indicators of wastewater contamination to the receiving bodies due to their frequent usage, resistance to biodegradability and, more importantly, anthropogenic origin. These markers are commonly used in combination to identify the contaminant source of different origins. This article discusses the main chemical markers that are used to identify wastewater contamination in receiving bodies, the current trends, and approach to select suitable chemical markers.

  7. Anatomical adaptations of aquatic mammals.

    Science.gov (United States)

    Reidenberg, Joy S

    2007-06-01

    This special issue of the Anatomical Record explores many of the anatomical adaptations exhibited by aquatic mammals that enable life in the water. Anatomical observations on a range of fossil and living marine and freshwater mammals are presented, including sirenians (manatees and dugongs), cetaceans (both baleen whales and toothed whales, including dolphins and porpoises), pinnipeds (seals, sea lions, and walruses), the sea otter, and the pygmy hippopotamus. A range of anatomical systems are covered in this issue, including the external form (integument, tail shape), nervous system (eye, ear, brain), musculoskeletal systems (cranium, mandible, hyoid, vertebral column, flipper/forelimb), digestive tract (teeth/tusks/baleen, tongue, stomach), and respiratory tract (larynx). Emphasis is placed on exploring anatomical function in the context of aquatic life. The following topics are addressed: evolution, sound production, sound reception, feeding, locomotion, buoyancy control, thermoregulation, cognition, and behavior. A variety of approaches and techniques are used to examine and characterize these adaptations, ranging from dissection, to histology, to electron microscopy, to two-dimensional (2D) and 3D computerized tomography, to experimental field tests of function. The articles in this issue are a blend of literature review and new, hypothesis-driven anatomical research, which highlight the special nature of anatomical form and function in aquatic mammals that enables their exquisite adaptation for life in such a challenging environment.

  8. A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills.

    Science.gov (United States)

    Gong, Yanyan; Zhao, Xiao; Cai, Zhengqing; O'Reilly, S E; Hao, Xiaodi; Zhao, Dongye

    2014-02-15

    The 2010 Deepwater Horizon oil spill has spurred significant amounts of researches on fate, transport, and environmental impacts of oil and oil dispersants. This review critically summarizes what is understood to date about the interactions between oil, oil dispersants and sediments, their roles in developing oil spill countermeasures, and how these interactions may change in deepwater environments. Effects of controlling parameters, such as sediment particle size and concentration, organic matter content, oil properties, and salinity on oil-sediment interactions are described in detail. Special attention is placed to the application and effects of oil dispersants on the rate and extent of the interactions between oil and sediment or suspended particulate materials. Various analytical methods are discussed for characterization of oil-sediment interactions. Current knowledge gaps are identified and further research needs are proposed to facilitate sounder assessment of fate and impacts of oil spills in the marine environment.

  9. Simulated null-gravity environments as applied to electrophoretic separations of biological species

    Science.gov (United States)

    Giannovario, J. A.; Griffin, R. N.

    1978-01-01

    The scale-up of electrophoretic separations to provide preparative quantities of materials has been hampered by gravity induced convection and sedimentation. The separation of biologically important species may be significantly enhanced by electrophoretic space processing. Simple demonstrations on past space flights have proven some principles. Several techniques have been evolved to study electrophoretic separations where the effects of gravity have been nullified or significantly reduced. These techniques employ mechanical design, density gradients and computer modeling. Utilization of these techniques for ground based studies will yield clues as to which biological species can be considered prime candidates for electrophoretic processing in zero-G.

  10. Causes of the increased nitrite concentrations in aquatic environments and their effects on the plant and animal survival%水环境中亚硝酸盐聚集的原因及其对动植物的影响

    Institute of Scientific and Technical Information of China (English)

    陈卫民; 戴树桂; 张清敏

    2011-01-01

    分析了水环境中亚硝酸盐含量升高的原因,综述了其对动植物的毒理作用机制.认为亚硝酸盐浓度的升高主要是因为人为排放的亚硝酸盐增加和环境因素变化引起的硝酸盐不完全还原与铵盐不完全氧化所致.亚硝酸盐对动物的毒害作用,主要是高铁血红蛋白的形成引起机体缺氧,和亚硝酸盐导致的器官损伤与体内离子浓度变化紊乱了机体正常的生理功能;对植物的损伤主要是细胞内氧自由基含量的增加,能量转化效率下降,光合作用和一些酶活性受到抑制.%The present paper is inclined to introduce our research on the causes of the increased nitrite concentrations in aquatic environments and their effects on the plant and animal survival. As a matter of fact, nitrite is a common pollutant in aquatic environment as a kind of intermediate product both of nitrification and denitrification in the nitrogen cycle. In healthy biological systems, it exists in a relatively floating form at low levels (μmo)/L), however, in certain conditions it can be accumulated due to the imbalance of the nitrification and denitrification processes or the influence of received agricultural effluents and industrial discharges with nitrite. It is for this reason that this paper thinks of it as a real need to make a general review of the broad range of parameters and environmental factors that involve the nitrite accumulation, such as the pH value, dissolved oxygen, temperature , phosphate and free ammonia, all of which are found to play their own role. In addition, nitrite accumulation can be said to be a potential problem in aquatic environment, in which freshwater creature actively takes up nitrite across the gills, leading to high internal concentrations. In fact, nitrite has rmiltiple physiological effects, for example, it helps to activate efflux of potassium from skeletal muscle and erythrocytes, disturbing intracellular and extracellular K+ levels. It

  11. Investigating Student Interactions within a Problem-Based Learning Environment in Biology.

    Science.gov (United States)

    Guerrera, Claudia P.; Lajoie, Susanne P.

    This aim of this study was to analyze the content of students' verbal interactions within a problem-based learning context in biology. This was achieved through the qualitative analysis of the verbal protocols of three groups of two clases of ninth-grade female students (average/high ability, high/high ability, and average/average ability). The…

  12. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  13. Number size distribution measurements of biological aerosols under contrasting environments and seasons from southern tropical India

    Science.gov (United States)

    Valsan, Aswathy; Cv, Biju; Krishna, Ravi; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2016-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. Though omnipresent, their concentration and composition exhibit large spatial and temporal variations depending up on their sources, land-use, and local meteorology. The Indian tropical region, which constitutes approximately 18% of the world's total population exhibits vast geographical extend and experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the sources, properties and characteristics of biological aerosols are also expected to have significant variations over the Indian subcontinent depending upon the location and seasons. Here we present the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) from two contrasting locations in Southern tropical India measured during contrasting seasons using Ultra Violet Aerodynamic Particle Sizer (UV-APS). Measurements were carried out at a pristine high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) during two contrasting seasons, South-West Monsoon (June-August, 2014) and winter (Jan - Feb, 2015) and in Chennai, a coastal urban area, during July - November 2015. FBAP concentrations at both the locations showed large variability with higher concentrations occurring at Chennai. Apart from regional variations, the FBAP concentrations also exhibited variations over two different seasons under the same environmental condition. In Munnar the FBAP concentration increased by a factor of four from South-West Monsoon to winter season. The average size distribution of FBAP at both

  14. Recent advances in bio-logging science: Technologies and methods for understanding animal behaviour and physiology and their environments

    Science.gov (United States)

    Evans, K.; Lea, M.-A.; Patterson, T. A.

    2013-04-01

    The deployment of an ever-evolving array of animal-borne telemetry and data logging devices is rapidly increasing our understanding of the movement, behaviour and physiology of a variety species and the complex, and often highly dynamic, environments they use and respond to. The rapid rate at which new technologies, improvements to current technologies and new analytical techniques are being developed has meant that movements, behaviour and physiological processes are being quantified at finer spatial and temporal scales than ever before. The Fourth International Symposium on Bio-logging Science, held on 14-18 March in Hobart, Australia, brought together scientists across multiple disciplines to discuss the latest innovations in technology, applications and analytical techniques in bio-logging science, building on research presented at three previous conferences. Here we present an update on the state of bio-logging research and provide some views on the future of this field of research. Papers were grouped into five theme areas: (i) Southern Ocean ecosystems; (ii) fishery and biodiversity management applications; (iii) from individuals to populations—inferences of population dynamics from individuals; (iv) conservation biology and (v) habitat modelling. Papers reflected wider uptake of newer technologies, with a greater proportion of studies utilising accelerometry and incorporating advances in statistical modelling of behaviour and habitats, especially via state space modelling methods. Environmental data collected by tags at increasing accuracies are now having wider application beyond the bio-logging community, providing important oceanographic data from regions difficult to sample using traditional methodologies. Partnerships between multiple organisations are also now enabling regional assessments of species movements, behaviour and physiology at population scales and will continue to be important for applying bio-logging technologies to species

  15. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  16. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%.

  17. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  18. The next green movement: Plant biology for the environment and sustainability.

    Science.gov (United States)

    Jez, Joseph M; Lee, Soon Goo; Sherp, Ashley M

    2016-09-16

    From domestication and breeding to the genetic engineering of crops, plants provide food, fuel, fibers, and feedstocks for our civilization. New research and discoveries aim to reduce the inputs needed to grow crops and to develop plants for environmental and sustainability applications. Faced with population growth and changing climate, the next wave of innovation in plant biology integrates technologies and approaches that span from molecular to ecosystem scales. Recent efforts to engineer plants for better nitrogen and phosphorus use, enhanced carbon fixation, and environmental remediation and to understand plant-microbiome interactions showcase exciting future directions for translational plant biology. These advances promise new strategies for the reduction of inputs to limit environmental impacts and improve agricultural sustainability.

  19. Experimental proposal for testing the Emergence of Environment Induced (EIN) Classical Selection rules with Biological Systems

    CERN Document Server

    Durt, Thomas

    2010-01-01

    According to the so-called Quantum Darwinist approach, the emergence of "classical islands" from a quantum background is assumed to obey a (selection) principle of maximal information. We illustrate this idea by considering the coupling of two oscillators (modes). As our approach suggests that the classical limit could have emerged throughout a long and progressive Evolution mechanism, it is likely that primitive living organisms behave in a "more quantum", "less classical" way than more evolved ones. This brings us to seriously consider the possibility to measure departures from classicality exhibited by biological systems. We describe an experimental proposal the aimed at revealing the presence of entanglement in the biophotonic radiation emitted by biological sources.

  20. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species.

    Science.gov (United States)

    Fabbri, Elena; Franzellitti, Silvia

    2016-04-01

    Marine waters have been poorly investigated for the occurrence of pharmaceutical contamination. Recent data confirm that pharmaceuticals occur widely in marine and coastal environments; therefore, assessment of potential risk to marine species needs further efforts. The present study represents the first extensive review of pharmaceutical contamination in marine environments addressing the effects on the marine biota analyzed at the molecular, cellular, and individual levels. Because pharmaceuticals differ from conventional pollutants, being designed to interact with specific physiological pathways at low doses, the most recent evidence on modes of action and physiological alterations on marine animal species are discussed. Data on spatial distributions of pharmaceuticals in waters and sediments, as well as bioaccumulation rates, are also presented. The present review also seeks to expand knowledge of how the quality of coastal and marine environments could be efficiently monitored to anticipate possible health and environmental risks.

  1. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  2. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  3. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  4. Biological model of vision for an artificial system that learns to perceive its environment

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, M.R.; Nguyen, H.G.

    1989-06-01

    The objective is to design an artificial vision system for use in robotics applications. Because the desired performance is equivalent to that achieved by nature, the authors anticipate that the objective will be accomplished most efficiently through modeling aspects of the neuroanatomy and neurophysiology of the biological visual system. Information enters the biological visual system through the retina and is passed to the lateral geniculate and optic tectum. The lateral geniculate nucleus (LGN) also receives information from the cerebral cortex and the result of these two inflows is returned to the cortex. The optic tectum likewise receives the retinal information in a context of other converging signals and organizes motor responses. A computer algorithm is described which implements models of the biological visual mechanisms of the retina, thalamic lateral geniculate and perigeniculate nuclei, and primary visual cortex. Motion and pattern analyses are performed in parallel and interact in the cortex to construct perceptions. We hypothesize that motion reflexes serve as unconditioned pathways for the learning and recall of pattern information. The algorithm demonstrates this conditioning through a learning function approximating heterosynaptic facilitation.

  5. ZOONOSIS OF AQUATICAL ORGANISMS

    OpenAIRE

    2001-01-01

    Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and tra...

  6. Parental effects of endocrine disrupting compounds in aquatic wildlife: Is there evidence of transgenerational inheritance?

    Science.gov (United States)

    Schwindt, Adam R

    2015-08-01

    The effects of endocrine disrupting compounds (EDCs) on aquatic wildlife are increasingly being recognized for their complexity. Investigators have detected alterations at multiple levels of biological organization in offspring exposed to EDCs through the blood or germ line of the parents, suggesting that generational consequences of EDCs are evident. Exposure to EDCs through the parents is concerning because if the resulting phenotype of the offspring is heritable and affects fitness, then evolutionary consequences may be evident. This review summarizes the evidence for transgenerational effects of EDCs in aquatic wildlife and illustrates cases where alterations appear to be transmitted maternally, paternally, or parentally. The literature indicates that EDC exposure to the parents induces developmental, physiological, endocrinological, and behavioral changes as well as increased mortality of offspring raised in clean environments. What is lacking, however, is a clear demonstration of heritable transgenerational effects in aquatic wildlife. Therefore, it is not known if the parental effects are the result of developmental or phenotypic plasticity or if the altered phenotypes are durably passed to subsequent generations. Epigenetic changes to gene regulation are discussed as a possible mechanism responsible for EDC induced parental effects. Additional research is needed to evaluate if heritable effects of EDCs are evident in aquatic wildlife, as has been demonstrated for terrestrial mammals.

  7. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards Biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; den Brok, P.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  8. World, environment, Umwelt, and innerworld: a biological perspective on visual awareness

    Science.gov (United States)

    Koenderink, Jan J.

    2013-03-01

    The world is all physical reality (Higgs bosons, and so forth), the "environment" is a geographical locality (your city, …), the "Umwelt" is the totality of possible actions of the environment on the sensitive body surface of an agent (you, your dog, …) and the possible actions of the agent on the environment (mechanical, chemical, …), whereas the "innerworld" is what it is for the agent to be, that is awareness. Awareness is pre-personal, proto-conscious, and (perhaps) proto-rational. The various "worlds" described above are on distinct ontological levels. The world, and the environment are studied in the exact sciences, the Umwelt is studied by physiology and ethology. Ethology is like behavioristic psychology, with the difference that it applies to all animals. It skips the innerworld, e.g., it considers speech to be a movement of air molecules.The innerworld can only be known through first person reports, thus is intrinsically subjective. It can only be approached through "experimental phenomenology", which is based on intersubjectivity among humans. In this setting speech may mean something in addition to the movements of molecules. These views lead to a model of vision as an "optical user interface". It has consequences for many applications.

  9. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment

    NARCIS (Netherlands)

    Elsas, van J.D.; Duarte, G.F.; Rosado, A.S.; Smalla, K.

    1998-01-01

    As the use of biotechnology products, such as genetically modified microorganisms (GMMs), in the environment might bring about undesirable ecological effects, it is important that the environmental fate of inoculant organisms, as well as any effects of their release, are assessed. Ideally, pilot stu

  10. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  11. Introduction to the Symposium-Unsteady Aquatic Locomotion with Respect to Eco-Design and Mechanics.

    Science.gov (United States)

    Fish, Frank E; Domenici, Paolo

    2015-10-01

    The importance of unsteadiness in the aquatic environment has come to the forefront in understanding locomotor mechanics in nature. The impact of unsteadiness, starting with control of posture and trajectories during aquatic locomotion, is ultimately expressed in energy costs, morphology, and fitness. Unsteadiness from both internal and external perturbations for aquatic animals is important at scales ranging from micro to macro to global.

  12. Effects of vegetations on the removal of contaminants in aquatic environments:A review

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; ZHENG Sha-sha; WANG Pei-fang; QIAN Jin

    2014-01-01

    This paper reviews the removal of contaminants including nutrients, metals and organic pollutants by vegetations in aquatic environments. The removal efficiencies are considered with respect to 16, 19 and 14 kinds of different aquatic plants, respectively in three tables. Due to different characteristics, the removal effects of plants on contaminants from the overlying water differ greatly. The vegetation can improve the water quality mainly through two ways: (1) to adsorb and absorb pollutants from water, (2) to prevent pollutants from releasing from sediment. The contaminant removal mechanisms of vegetations and related physical, chemical and biological effects are discussed. The effects of vegetations on the contaminant removal are found to depend on the environmental conditions, the number and the type of plants, the nature and the chemical structure of the pollutants. In addition, the contaminant release and removal by vegetations under hydrodynamic conditions is specially addressed. Further research directions are suggested.

  13. Inland Aquatic Resources and Biogeochemical Cycles

    Science.gov (United States)

    Melack, J. M.

    1984-01-01

    The biosphere is the entire planetary system that includes, sustains and is influenced by life. The central issue of the science of the biosphere is the extent to which the Earth's surface, atmosphere and hydrosphere is the result of biological rather than abiotic processes. Space science and technology accelerates the understanding of global biological processes by providing repetive synoptic observations on large spatial scales once the relationships between the processes and the remotely sensed quantities are established. Especially promising applications of space technology are the measurement of biological productivity and portions of geochemical cycles in aquatic ecosystems and the evaluation and management of the quality of freshwater resources.

  14. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  15. Can we colonize the solar system? Human biology and survival in the extreme space environment.

    Science.gov (United States)

    Launius, Roger D

    2010-09-01

    Throughout the history of the space age the dominant vision for the future has been great spaceships plying the solar system, and perhaps beyond, moving living beings from one planet to another. Spacesuited astronauts would carry out exploration, colonization, and settlement as part of a relentlessly forward looking movement of humanity beyond Earth. As time has progressed this image has not changed appreciably even as the full magnitude of the challenges it represents have become more and more apparent. This essay explores the issues associated with the human movement beyond Earth and raises questions about whether humanity will ever be able to survive in the extreme environment of space and the other bodies of the solar system. This paper deals with important historical episodes as well as wider conceptual issues about life in space. Two models of expansion beyond Earth are discussed: (1) the movement of microbes and other types of life on Earth that can survive the space environment and (2) the modification of humans into cyborgs for greater capability to survive in the extreme environments encountered beyond this planet.

  16. Microbial ecology of Antarctic aquatic systems.

    Science.gov (United States)

    Cavicchioli, Ricardo

    2015-11-01

    The Earth's biosphere is dominated by cold environments, and the cold biosphere is dominated by microorganisms. Microorganisms in cold Southern Ocean waters are recognized for having crucial roles in global biogeochemical cycles, including carbon sequestration, whereas microorganisms in other Antarctic aquatic biomes are not as well understood. In this Review, I consider what has been learned about Antarctic aquatic microbial ecology from 'omic' studies. I assess the factors that shape the biogeography of Antarctic microorganisms, reflect on some of the unusual biogeochemical cycles that they are associated with and discuss the important roles that viruses have in controlling ecosystem function.

  17. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment.

    Science.gov (United States)

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars.

  18. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment.

    Science.gov (United States)

    Buettner, Garry R; Wagner, Brett A; Rodgers, Victor G J

    2013-11-01

    Systems biology is now recognized as a needed approach to understand the dynamics of inter- and intra-cellular processes. Redox processes are at the foundation of nearly all aspects of biology. Free radicals, related oxidants, and antioxidants are central to the basic functioning of cells and tissues. They set the cellular redox environment and, therefore, are the key to regulation of biochemical pathways and networks, thereby influencing organism health. To understand how short-lived, quasi-stable species, such as superoxide, hydrogen peroxide, and nitric oxide, connect to the metabolome, proteome, lipidome, and genome we need absolute quantitative information on all redox active compounds as well as thermodynamic and kinetic information on their reactions, i.e., knowledge of the complete redoxome. Central to the state of the redoxome are the interactive details of the superoxide/peroxide formation and removal systems. Quantitative information is essential to establish the dynamic mathematical models needed to reveal the temporal evolution of biochemical pathways and networks. This new field of Quantitative Redox Biology will allow researchers to identify new targets for intervention to advance our efforts to achieve optimal human health.

  19. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  20. The role of aquatic ecosystems as reservoirs of antibiotic resistance.

    Science.gov (United States)

    Marti, Elisabet; Variatza, Eleni; Balcazar, Jose Luis

    2014-01-01

    Although antibiotic resistance has become a major threat to human health worldwide, this phenomenon has been largely overlooked in studies in environmental settings. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance, because they are frequently impacted by anthropogenic activities. This review focuses primarily on the emergence and dissemination of antibiotic resistance in the aquatic environment, with a special emphasis on the role of antibiotic resistance genes.

  1. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  2. ELECTRONIC EQUIPMENT TO MONITORIZE SOME BIOLOGICAL PROCESS OF ECONOMIC IMPORTANCE IN HONEYBEE COLONY AND ITS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. SICEANU

    2013-12-01

    Full Text Available The electronic hive is the result of the scientific researches carried out between2003-2006 by a research project funded by MEdC through the National ProgramRELANSIN, being accomplished by Institute for Beekeeping Research andDevelopment –Bucharest in cooperation with the Polytechnics University fromBucharest –The Center for Electronic Technology and Interconnection Techniquesand the Radio Consult CompanyTo achieve the great complexity of the electronic model adapted to the hive –the“smart” hive, it was necessary to establish the all electronic details which to makepossible to monitorize some very important information from the bee colony andits environment with the help of the honeybees and which to eliminate the errorsthat may occur in the information collection process.Thus, the project aimed to conceive the electronic system in order to collectinformation from inside the hive and from environment too, to storage andtransmit it to a data basis by GSM network in order to be analyzed and processedby users.By this complex electronic system, composed by electronic equipment and thehoney bee colony, which is dynamic and strong related with natural evolution ofvegetation correlated with the climate factors, is possible to identify instantaneousor periodically a large palette of aggression factors as well naturals (acids rains,extreme temperatures, calamities as anthropic factors –accidental chemical orbiologic pollution. The obtained data, electronically quantified and taken out intothe data basis, could offer accurate information about the moisturized areas atdifferent time intervals.

  3. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  4. Environmental Sensing of Aquatic Systems at the University of Geneva.

    Science.gov (United States)

    Bakker, Eric; Tercier-Waeber, Mary-Lou; Cherubini, Thomas; Crespi, Miquel Coll; Crespo, Gastón A; Cuartero, Maria; Afshar, Majid Ghahraman; Jarolimova, Zdenka; Jeanneret, Stéphane; Mongin, Sandrine; Néel, Bastien; Pankratova, Nadezda; Touilloux, Romain; Xie, Xiaojiang; Zhai, Jingying

    2014-11-01

    Aquatic environments are complex living systems where biological and chemical constituents change rapidly with time and space and may exhibit synergistic interactions. To understand these processes, the traditional approach based on a typically monthly collection of samples followed by laboratory analysis is not adequate. It must be replaced by high-resolution autonomous in situ detection approaches. In our group at the University of Geneva, we aim to develop and deploy chemical sensor probes to understand complex aquatic systems. Most research centers around electrochemical sensing approaches, which involves: stripping voltammetry at gel-coated microelectrode arrays for direct measurements of bioavailable essential or toxic trace metals; direct potentiometry for the measurement of nutrients and other species involved in the nitrogen and carbon cycles; online desalination for oceanic measurements; the development of robust measurement principles such as thin layer coulometry, and speciation analysis by tandem electrochemical detection with potentiometry and dynamic electrochemistry. These fundamental developments are combined with instrument design, both in-house and with external partners, and result in field deployments in partnership with environmental researchers in Switzerland and the European Union.

  5. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  6. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide.

    Science.gov (United States)

    Vázquez, M Eugenio; Blanco, Juan B; Imperiali, B

    2005-02-02

    We have synthesized a new environment-sensitive fluorophore, 6-N,N-dimethylamino-2,3-naphthalimide (6DMN). This chromophore exhibits valuable fluorescent properties as a biological probe with emission in the 500-600 nm range and a marked response to changes in the environment polarity. The 6DMN fluorescence is red-shifted in polar protic environments, with the maximum emission intensity shifting more than 100 nm from 491 nm in toluene to 592 nm in water. Additionally, the fluorescence quantum yield decreases more than 100-fold from chloroform (Phi = 0.225) to water (Phi = 0.002). The scope and applications of the 6DMN probe are expanded with the synthesis of an Fmoc-protected amino acid derivative (5), which contains the fluorophore. This unnatural amino acid has been introduced into several peptides, demonstrating that it can be manipulated under standard solid-phase peptide synthesis conditions. Peptides incorporating the new residue can be implemented for monitoring protein-protein interactions as exemplified in studies with Src homology 2 (SH2) phosphotyrosine binding domains. The designed peptides exhibit a significant increase in the quantum yield of the long wavelength fluorescence emission band (596 nm) upon binding to selected SH2 domains (e.g., Crk SH2, Abl SH2, and PI3K SH2). The peptides can be used as ratiometric sensors, since the short wavelength band (460 nm) was found almost invariable throughout the titrations.

  7. Effects of space environment on biological characters of tissue cultured rose seedlings

    Institute of Scientific and Technical Information of China (English)

    XUE Huai; LIU Min; LU Jinying; PAN Yi; ZHANG Chunhua

    2005-01-01

    Tissue cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology, cytology, physiology and molecular biology of the seedlings. After loaded on the space flight, the plant's height, number of leaves, and fresh weight per seedling were all increased significantly compared to the ground controls. The content of chlorophyll was basically unchanged. In some cells, the ultrastructural changes involved twist, contraction and deformation of cell wall, curvature and loose arrangement of lamellae of some chloroplasts, and a significant increase in number of starch grains per chloroplast. In addition, the number of mitochondria increased, but some mitochondrial outer membrane broke, and some mitochondrial cristae disappeared. The activities of the defense enzymes, such as superoxide dismutase, peroxidase and catalyse, in rose leaves increased and the content of malondialdehyde decreased. In the RAPD analysis with 40 10-mer primers, 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls, and five primers amplified polymorphic products. The rate of DNA variation was 6.34 %.

  8. THE EFFECT OF LEARNING ENVIRONMENT FACTORS ON BIOLOGICAL DEVELOPMENT OF FIRST YEAR STUDENTS

    Directory of Open Access Journals (Sweden)

    Podstawski Robert

    2013-12-01

    Full Text Available The purpose of the study conducted among students of UWM in Olsztyn was to diagnose the level of biological development of first year students aged 19-20 years, depending on the location and type of secondary school attended. The research on the level of physical and motor development was carried out in 2012 during the compulsory physical education classes of 361 full-time students randomly selected with the use of statistical tables out of 250 student groups. In order to determine the level of physical development, basic anthropometric parameters of the subjects were measured such as body weight and height, and 13 motor tests were used to determine the motor level. The results showed that factors such as the location and type of secondary school attended did not differentiate significantly the level of physical and motor development of first-year students, and the occurring differences were rather incidental and accidental. The weak interaction of factors used was probably the result of blurring the differences and barriers between schools operating in rural areas and in urban areas, a similar curriculum, and an 8-month stay of the subjects at university.

  9. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments.

    Science.gov (United States)

    Chen, S; Goode, A E; Skepper, J N; Thorley, A J; Seiffert, J M; Chung, K F; Tetley, T D; Shaffer, M S P; Ryan, M P; Porter, A E

    2016-02-01

    Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinized. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data.

  10. Algas: da economia nos ambientes aquáticos à bioremediação e à química analítica Algae: from aquatic environment economy to bioremediation and analytical chemistry

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Vidotti

    2004-02-01

    Full Text Available Algae constitute a large group of many different organisms, essentially aquatic and able to live in all systems giving them sufficient light and humidity. Some algae species have been used in the evaluation or in the bioremediation of aquatic systems. More recently algae have been suggested as interesting tools in the field of analytical chemistry. In this work the most important aspects related to the different uses of algae are presented with a brief discussion.

  11. Aquatic ecosystems in Central Colorado are influenced by mineral forming processes and historical mining

    Science.gov (United States)

    Schmidt, T.S.; Church, S.E.; Clements, W.H.; Mitchell, K.A.; Fey, D. L.; Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Klein, T.L.; deWitt, E.H.; Rockwell, B.W.

    2009-01-01

    Stream water and sediment toxicity to aquatic insects were quantified from central Colorado catchments to distinguish the effect of geologic processes which result in high background metals concentrations from historical mining. Our sampling design targeted small catchments underlain by rocks of a single lithology, which allowed the development of biological and geochemical baselines without the complication of multiple rock types exposed in the catchment. By accounting for geologic sources of metals to the environment, we were able to distinguish between the environmental effects caused by mining and the weathering of different mineralized areas. Elevated metal concentrations in water and sediment were not restricted to mined catchments. Impairment of aquatic communities also occurred in unmined catchments influenced by hydrothermal alteration. Hydrothermal alteration style, deposit type, and mining were important determinants of water and sediment quality and aquatic community structure. Weathering of unmined porphyry Cu-Mo occurrences resulted in water (median toxic unit (TU) = 108) and sediment quality (TU = 1.9) that exceeded concentrations thought to be safe for aquatic ecosystems (TU = 1). Metalsensitive aquatic insects were virtually absent from streams draining catchments with porphyry Cu-Mo occurrences (1.1 individuals/0.1 m2 ). However, water and sediment quality (TU = 0.1, 0.5 water and sediment, respectively) and presence of metalsensitive aquatic insects (204 individuals/0.1 m2 ) for unmined polymetallic vein occurrences were indistinguishable from that for unmined and unaltered streams (TU = 0.1, 0.5 water and sediment, respectively; 201 individuals/0.1 m2 ). In catchments with mined quartz-sericite-pyrite altered polymetallic vein deposits, water (TU = 8.4) and sediment quality (TU = 3.1) were degraded and more toxic to aquatic insects (36 individuals/0.1 m2 ) than water (TU = 0.4) and sediment quality (TU = 1.7) from mined propylitically altered

  12. Importance of Biological Loess Crusts for Loess Formation in Semi-Arid Environments

    Science.gov (United States)

    Svirčev, Z.; Marković, S. B.; Stevens, T.; Smalley, I. J.; Hambach, U.; Obreht, I.; Lukić, T.; Vasiljević, Dj. A.

    2012-04-01

    The essential components for loess deposition are: material, atmospheric circulation and appropriate surface conditions for the trapping of aeolian material as well as the subsequent development of typical loess sedimentary structures. In spite of the world-wide distribution of loess deposits, knowledge of the processes of transformation from accumulated dust to mature loess sediment is still inadequate. Some recent studies highlight the potential importance of biologically crusted surfaces (BCS) in loess formation. BCS are highly specialized extremophile communities and generally play an important role in atmospheric dust trapping and erosion prevention. Our initial results indicate that cyanobacterial strains isolated from loess exhibit some specific morphological and ecophysiological characteristics that play a key role in loess formation, warranting adoption of the new term biological loess crusts (BLC). We suggest that loessification is heavily influenced by the metabolic activity of BLC microorganisms mainly through polysaccharides. The sticky polysaccharide glue on the topographic surface, exuded mostly by cyanobacteria, can trap silty particles suspended in a dusty atmosphere. This collection of airborne loess forming particles is part of the life strategy of crust organisms in so far as they provide the necessary minerals for further growth of the BLC, which in turn provides protection from desiccation during dry periods. Simultaneously, polysaccharides secreted by crust organisms bind particles inside the BLC zone, forming a cohesive crust that resists both wind and water erosion during dry periods. Metabolized particles, exuded metabolites and unused airborne particles become the uppermost loess sediment covered with BLC. During moist periods, accumulation of dust and loess forming particles is very active. During the dry phases, the BLC becomes very stable and develops a resistant surface preventing wind and water erosion. The drying period induces

  13. A new reactor concept for sludge reduction using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, B.G.; Buisman, C.J.N.

    2006-01-01

    Biological waste water treatment results in the production of waste sludge. The final treatment option in The Netherlands for this waste sludge is usually incineration. A biological approach to reduce the amount of waste sludge is through predation by aquatic worms. In this paper we test the applica

  14. Innovative biological approaches for monitoring and improving water quality

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2015-08-01

    Full Text Available Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.

  15. Toxaphene in the aquatic environment of Greenland.

    Science.gov (United States)

    Vorkamp, Katrin; Rigét, Frank F; Dietz, Rune

    2015-05-01

    The octa- and nonachlorinated bornanes (toxaphene) CHBs 26, 40, 41, 44, 50 and 62 were analysed in Arctic char (Salvelinus alpinus), shorthorn sculpin (Myoxocephalus scorpius), ringed seal (Pusa hispida) and black guillemot eggs (Cepphus grylle) from Greenland. Despite their high trophic level, ringed seals had the lowest concentrations of these species, with a Σ6Toxaphene median concentration of 13-20 ng/g lipid weight (lw), suggesting metabolisation. The congener composition also suggests transformation of nona- to octachlorinated congeners. Black guillemot eggs had the highest concentrations (Σ6Toxaphene median concentration of 971 ng/g lw). Although concentrations were higher in East than in West Greenland differences were smaller than for other persistent organic pollutants. In a circumpolar context, toxaphene had the highest concentrations in the Canadian Arctic. Time trend analyses showed significant decreases for black guillemot eggs and juvenile ringed seals, with annual rates of -5 to -7% for Σ6Toxaphene. The decreases were generally steepest for CHBs 40, 41 and 44.

  16. Implications of nanoparticles in the aquatic environment

    NARCIS (Netherlands)

    Velzeboer, I.

    2014-01-01

    De productie en het gebruik van synthetische nanodeeltjes (ENPs) nemen toe en veroorzaken toenemende emissies naar het milieu. Dit proefschrift richt zich op de implicaties van ENPs in het aquatisch milieu, met de nadruk op het sediment, omdat er wordt verwacht dat ENPs hoofdzakelijk in het aquatisc

  17. Protection and Conservation of the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Cornel Grigorut

    2012-05-01

    Full Text Available Concerns about environmental protection and their legal expression led to the formation andaffirmation of a set of common principles of national, regional and international law. Although they knowvarious formulations and specifications in these three legal systems, their fundamental meaning remains thesame, in different situations. They arise and contribute, at the same time, from / to the assertion of theenvironment in general, as common heritage of humanity.

  18. Human Physiology in an Aquatic Environment.

    Science.gov (United States)

    Pendergast, David R; Moon, Richard E; Krasney, John J; Held, Heather E; Zamparo, Paola

    2015-09-20

    Water covers over 70% of the earth, has varying depths and temperatures and contains much of the earth's resources. Head-out water immersion (HOWI) or submersion at various depths (diving) in water of thermoneutral (TN) temperature elicits profound cardiorespiratory, endocrine, and renal responses. The translocation of blood into the thorax and elevation of plasma volume by autotransfusion of fluid from cells to the vascular compartment lead to increased cardiac stroke volume and output and there is a hyperperfusion of some tissues. Pulmonary artery and capillary hydrostatic pressures increase causing a decline in vital capacity with the potential for pulmonary edema. Atrial stretch and increased arterial pressure cause reflex autonomic responses which result in endocrine changes that return plasma volume and arterial pressure to preimmersion levels. Plasma volume is regulated via a reflex diuresis and natriuresis. Hydrostatic pressure also leads to elastic loading of the chest, increasing work of breathing, energy cost, and thus blood flow to respiratory muscles. Decreases in water temperature in HOWI do not affect the cardiac output compared to TN; however, they influence heart rate and the distribution of muscle and fat blood flow. The reduced muscle blood flow results in a reduced maximal oxygen consumption. The properties of water determine the mechanical load and the physiological responses during exercise in water (e.g. swimming and water based activities). Increased hydrostatic pressure caused by submersion does not affect stroke volume; however, progressive bradycardia decreases cardiac output. During submersion, compressed gas must be breathed which introduces the potential for oxygen toxicity, narcosis due to nitrogen, and tissue and vascular gas bubbles during decompression and after may cause pain in joints and the nervous system.

  19. Presence of squalane in urban aquatic environments.

    Science.gov (United States)

    Matsumoto, G; Hanya, T

    1980-06-20

    Ethyl acetate extracts of river waters and sediments, night-soil and sewage treatment plant effluents and sludges from the Tokyo area were analysed for squalane using combined gas chromatography-mass spectrometry after separation by silica gel column chromatography. Squalane was identified in all the samples studied and the concentration in river waters and sediments ranged from 0.46 to 1.7 micrograms/l and from 0.86 to 15 micrograms per g dry sediment, respectively. Squalane is presumably derived from artificial materials rather than from natural sources, with the exception of fossil fuel products.

  20. Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments: An Introduction to the Symposium.

    Science.gov (United States)

    Lindgren, Annie R; Buckley, Bradley A; Eppley, Sarah M; Reysenbach, Anna-Louise; Stedman, Kenneth M; Wagner, Josiah T

    2016-10-01

    Life persists, even under extremely harsh conditions. While the existence of extremophiles is well known, the mechanisms by which these organisms evolve, perform basic metabolic functions, reproduce, and survive under extreme physical stress are often entirely unknown. Recent technological advances in terms of both sampling and studying extremophiles have yielded new insight into their evolution, physiology and behavior, from microbes and viruses to plants to eukaryotes. The goal of the "Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments" symposium was to unite researchers from taxonomically and methodologically diverse backgrounds to highlight new advances in extremophile biology. Common themes and new insight that emerged from the symposium included the important role of symbiotic associations, the continued challenges associated with sampling and studying extremophiles and the important role these organisms play in terms of studying climate change. As we continue to explore our planet, especially in difficult to reach areas from the poles to the deep sea, we expect to continue to discover new and extreme circumstances under which life can persist.

  1. Modeling and interpreting biological effects of mixtures in the environment: introduction to the metal mixture modeling evaluation project.

    Science.gov (United States)

    Van Genderen, Eric; Adams, William; Dwyer, Robert; Garman, Emily; Gorsuch, Joseph

    2015-04-01

    The fate and biological effects of chemical mixtures in the environment are receiving increased attention from the scientific and regulatory communities. Understanding the behavior and toxicity of metal mixtures poses unique challenges for incorporating metal-specific concepts and approaches, such as bioavailability and metal speciation, in multiple-metal exposures. To avoid the use of oversimplified approaches to assess the toxicity of metal mixtures, a collaborative 2-yr research project and multistakeholder group workshop were conducted to examine and evaluate available higher-tiered chemical speciation-based metal mixtures modeling approaches. The Metal Mixture Modeling Evaluation project and workshop achieved 3 important objectives related to modeling and interpretation of biological effects of metal mixtures: 1) bioavailability models calibrated for single-metal exposures can be integrated to assess mixture scenarios; 2) the available modeling approaches perform consistently well for various metal combinations, organisms, and endpoints; and 3) several technical advancements have been identified that should be incorporated into speciation models and environmental risk assessments for metals.

  2. Global meta-analysis of native and nonindigenous trophic traits in aquatic ecosystems.

    Science.gov (United States)

    McKnight, Ella; García-Berthou, Emili; Srean, Pao; Rius, Marc

    2016-10-26

    Ecologists have recently devoted their attention to the study of species traits and their role in the establishment and spread of nonindigenous species (NIS). However, research efforts have mostly focused on studies of terrestrial taxa, with lesser attention being dedicated to aquatic species. Aquatic habitats comprise of interconnected waterways, as well as exclusive introduction vectors that allow unparalleled artificial transport of species and their propagules. Consequently, species traits that commonly facilitate biological invasions in terrestrial systems may not be as represented in aquatic environments. We provide a global meta-analysis of studies conducted in both marine and freshwater habitats. We selected studies that conducted experiments with native and NIS under common environmental conditions to allow detailed comparisons among species traits. In addition, we explored whether different factors such as species relatedness, functional feeding groups, latitude, climate, and experimental conditions could be linked to predictive traits. Our results show that species with traits that enhance consumption and growth have a substantially increased probability of establishing and spreading when entering novel ecosystems. Moreover, traits associated with predatory avoidance were more prevalent in NIS and therefore favour invasive species in aquatic habitats. When we analysed NIS interacting with taxonomically distinctive native taxa, we found that consumption and growth were particularly important traits. This suggests that particular attention should be paid to newly introduced species for which there are no close relatives in the local biota. Finally, we found a bias towards studies conducted in temperate regions, and thus, more studies in other climatic regions are needed. We conclude that studies aiming at predicting future range shifts should consider trophic traits of aquatic NIS as these traits are indicative of multiple interacting mechanisms involved

  3. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  4. Aquatic Equipment Information.

    Science.gov (United States)

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choo