WorldWideScience

Sample records for aquatic environments biological

  1. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  2. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  3. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    1983-01-01

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  4. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  5. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    Toxic effect of heavy metals on aquatic environment. ... International Journal of Biological and Chemical Sciences ... The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and ...

  6. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  7. APPLICATION OF SALMONIDS (SALMONIDAE N THE BIOMONITORING OF AQUATIC ENVIRONMENT (REVIEW

    Directory of Open Access Journals (Sweden)

    D. Yanovych

    2016-03-01

    Full Text Available Purpose. Due to the pollution of fisheries water bodies by industrial and agricultural waste waters, as well as by xenobiotics coming from other sources, taking into account a pridictable increase in the amounts of such effluents in the short and long terms, the problems related to the study of the effects of the pollutants of different nature and origin on aquatic organisms, especially fish, as well as a prediction of possible adverse consequences on aquatic ecosystems, becomes particularly important. The aim of our work was an analysis and synthesis of existing literature data concerning the indication in the biomonitoring of aquatic environments based on biological markers of salmonids as highly sensitive objects of fish fauna to external factors. Findings. The review summarizes and systematizes the data concerning the use of salmonids in biomonitoring studies. Furthermore, we highlighted and characterized the specificity of bioindication parameters of the aquatic environment state, such as the biochemical, genetic, physiological, morphological, histopathological, behavioral and population markers and noted the effects of hydroecosystem ecotoxication on different levels of biological organization (cell, individual, population, fish community. We also described the possibility of biological monitoring based on saprobic indexes identified for indicator species belonging to salmonids. Originality. In the article describes the structure, pros and cons of the use of specific biomarkers of individual salmonid fish and their populations for assessing the ecological status of aquatic environments. Practical value. The data given in the article can be used to improve the system of the ecological monitoring of aquatic environments by extending the range of indicator indices with organism and population biomarkers of highly sensitive salmonid species.

  8. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    Science.gov (United States)

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  9. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    Meyer, D.E.

    1999-01-01

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC 50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low ( 50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  10. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  11. An assessment of pollution in aquatic environment using bioindicators

    African Journals Online (AJOL)

    This review highlights the importance of biological indicators in monitoring presence of pollution in aquatic environment. This assessment involves the use of living organisms (macro or microorganisms and plants or animals) as bioindicators of pollution in water bodies. These organisms are believed to show higher ...

  12. Rubber tire leachates in the aquatic environment.

    Science.gov (United States)

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management.

  13. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  14. Saponins in the aquatic environment

    DEFF Research Database (Denmark)

    Jiang, Xiaogang

    -like structure, saponins have a lot of applications, e.g. as foaming agents in consumer products, as adjuvants in the vaccine, as biosurfactants in soil washing and as biopesticides in crop protection. Hence, they may leach into the aquatic environment due to their low octanol/water partition coefficient......This PhD thesis consists of three parts to illustrate the goal of getting a better understanding of the fate and toxicity of saponins in the aquatic environment. It includes an introduction to the general aspects of saponins, their chemistry and the ecotoxicology concepts, and a second part...... and poor binding to organic matter. They may therefore also pose a risk to the aquatic organisms. Since saponins are efficient against pests, they are most likely also toxic to the non-target organisms. However, their fate and toxicity in the environment are not fully understood. There are two main...

  15. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    Science.gov (United States)

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  16. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning 'Hazardous Materials in Aquatic Environments of the Mississippi River Basin.' The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl

  17. Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems

    Science.gov (United States)

    Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.

    2017-12-01

    One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long

  18. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  19. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  20. Book review: Aquatic insect ecology: 1. Biology and habitat

    OpenAIRE

    Arnett, Ross H.

    2010-01-01

    Book Review: A comprehensive treatment of the ecology of aquatic insects in one place is needed for both students and researchers. Professor Ward is doing this in two volumes. The first volume covers the biology and habitats, as indicated in the subtitle, of the 13 insect orders that are either entirely aquatic at some stage, or those with some members aquatic at some stage. The second volume will be devoted entirely to the feeding ecology of these aquatic species.

  1. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea.

    Science.gov (United States)

    Kim, Younghee; Jung, Jinyong; Kim, Myunghyun; Park, Jeongim; Boxall, Alistair B A; Choi, Kyungho

    2008-09-01

    Pharmaceutical residues may have serious impacts on nontarget biological organisms in aquatic ecosystems, and have therefore precipitated numerous investigations worldwide. Many pharmaceutical compounds available on the market need to be prioritized based on their potential ecological and human health risks in order to develop sound management decisions. We prioritized veterinary pharmaceuticals in Korea by their usage, potential to enter the environment, and toxicological hazard. Twenty compounds were identified in the top priority class, most of which were antibiotics. Among these compounds, 8 were identified as deserving more immediate attention: amoxicillin, enramycin, fenbendazole, florfenicol, ivermectin, oxytetracycline, tylosin, and virginiamycin. A limitation of this study is that we initially screened veterinary pharmaceuticals by sales tonnage for veterinary use only. However, this is the first attempt to prioritize veterinary pharmaceuticals in Korea, and it provides important concepts for developing environmental risk management plans for such contaminants in aquatic systems. Copyright © 2008 Elsevier B.V. All rights reserved.

  2. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, July 1, 1994--September 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This document references information pertaining to the presence of hazardous materials in the Mississippi River Basin. Topics discussed include: The biological fate, transport, and ecotoxicity of toxic and hazardous wastes; biological uptake and metabolism; sentinels of aquatic contamination; bioremediation; microorganisms; biomarkers of exposure and ecotoxicity; expert geographical information systems for assessing hazardous wastes in aquatic environments; and enhancement of environmental education at Tulane and Xavier

  3. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  4. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me......-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex...... interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains...

  5. Biocide by-products in aquatic environments. Annual report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Anderson, D.R.; Bean, R.M.; Gibson, C.I.

    1979-01-01

    The Biocide By-Products in Aquatic Environments Program is composed of analytical chemistry and biological phases with freshwater and marine biological subdivisions. The objectives of the analytical studies are: to identify those chloroorganic chemical compounds that result from the addition of chlorine to fresh or saltwater; to develop methods for detecting chlorinated organics in the effluents discharged to receiving water bodies from nuclear stations; and to verify laboratory findings through analysis for chlorination by-products in water and biota samples from cooling water bodies of nuclear power stations. The objectives of the biological studies are: to investigate the immediate toxicity of specific chlorination by-products (chloroform in freshwater and bromoform in marine waters); to evaluate the chronic toxicity of chlorination by-products; to follow their pathways of action; and to analyze for bioaccumulation or biomagnification of halogenated hydrocarbons on selected aquatic or marine biota

  6. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  7. Cadmium in the aquatic environment. Volume 19. Advances in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, J.O.; Sprague, J.B. (eds.)

    1987-01-01

    This book addresses the biogeochemistry of cadmium in the marine and freshwater aquatic environment and comprises 10 chapters on: distribution and cycling of cadmium in the environment; evidence for anthropogenic modification of global transport of cadmium; cadmium in fresh water: The Great Lakes and St. Lawrence River; cadmium associations in freshwater and marine sediment; biological cycling of cadmium in fresh water; toxicity of cadmium to freshwater microorganisms, phytoplankton, and invertebrates; effects of cadmium on freshwater fish; effects of cadmium on marine biota; biological cycling of cadmium in marine environment; and methods of cadmium detection. Although there is some overlap of chapter topics, the major compartments of the aquatic system are addressed: atmosphere, water, sediment, phytoplankton, macrophytes, zooplankton, and fish. These chapters are well written and critically review the available data in each area. The research cited is heavily dominated by studies of the Great Lakes and Western European rivers such as the Rhine, but this reflects the degree of cadmium contamination of these important water bodies and the environmental concerns they have raised. Many of the chapters strive to critically address the problems of data quality, which are a result of the great difficulty in detecting cadmium at the ng/L or ..mu..g/kg levels at which cadmium contamination occurs.

  8. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  9. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review.

    Science.gov (United States)

    Gani, Khalid Muzamil; Tyagi, Vinay Kumar; Kazmi, Absar Ahmad

    2017-07-01

    Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.

  10. Pharmaceutical pollution of aquatic environment: an emerging and enormous challenge

    Directory of Open Access Journals (Sweden)

    Rzymski Piotr

    2017-06-01

    Full Text Available The global use of pharmaceuticals is on the systematic rise and leads to contamination of surface waters with xenobiotic compounds with a wide range of bioactivity. Waters that receive urban and medical effluents are particularly threatened. The presence of pharmaceuticals in these ecosystems can lead to unpredictable ecological impacts and responses, and may also have an impact on human health. At the same time the identification and quantification of these chemicals, to a large extent remains a subject to scientific investigation than part of a thorough monitoring programme. Their biological effects on aquatic organisms are mainly recognized experimentally and often using concentrations far exceeding environmentally relevant levels. This review paper defines the main sources of pharmaceuticals in the aquatic environment, discusses the fate of these compounds and summarizes the current state-of-the-art of pharmaceutical monitoring in Polish surface waters.

  11. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  12. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  13. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  15. The aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-10-15

    The rapid increase in technological development and the broad societal benefit it has brought has been accompanied by a corresponding increase in environmental and societal problems. This has established a need to asses the impacts of new technologies, including nuclear industries. We are now entering an age which will see a rapid proliferation of nuclear power plants all over the world. As long as man continues to utilize nuclear energy, some releases of radioactive materials to the environment seem to be inescapable consequences. The problem therefore is to limit and control such releases, so that adverse effects on man and his environment can be reduced to acceptable levels. We can now draw on three decades of experience of the environmental impact of radioactive materials. To review this experience and to survey recent results of studies related to the safety of releases of nuclear facilities into fresh water, estuaries and sea water, the International Symposium on 'Radiological Impacts of Releases from Nuclear Facilities into Aquatic Environments' was held at Otaniemi, near Helsinki, Finland. (author)

  16. Pharmaceuticals and personal care products (PPCPs in the freshwater aquatic environment

    Directory of Open Access Journals (Sweden)

    Anekwe Jennifer Ebele

    2017-03-01

    Full Text Available Pharmaceuticals and personal care products (PPCPs are a unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in human at low doses. An increasing number of studies has confirmed the presence of various PPCPs in different environmental compartments, which raises concerns about the potential adverse effects to humans and wildlife. Therefore, this article reviews the current state-of-knowledge on PPCPs in the freshwater aquatic environment. The environmental risk posed by these contaminants is evaluated in light of the persistence, bioaccumulation and toxicity criteria. Available literature on the sources, transport and degradation of PPCPs in the aquatic environment are evaluated, followed by a comprehensive review of the reported concentrations of different PPCP groups in the freshwater aquatic environment (water, sediment and biota of the five continents. Finally, future perspectives for research on PPCPs in the freshwater aquatic environment are discussed in light of the identified research gaps in current knowledge.

  17. Modeling dynamics of biological and chemical components of aquatic ecosystems

    International Nuclear Information System (INIS)

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  18. Patterns of transuranic uptake by aquatic organisms: consequences and implications

    International Nuclear Information System (INIS)

    Eyman, L.D.; Trabalka, J.R.

    1980-01-01

    Literature on the behavior of plutonium and transuranic elements in aquatic organisms is reviewed. The commonality of observed distribution coefficients over a wide array of aquatic environments (both freshwater and marine) and the lack of biomagnification in aquatic food chains from these environments are demonstrated. These findings lead to the conclusion that physical processes dominate in the transfer of transuranic elements from aquatic environments to man. The question of the nature of the association of plutonium with aquatic biota (surface sorption vs biological incorporation) is discussed as well as the importance of short food chains in the transfer of plutonium to man

  19. Waste heat discharges in the aquatic environment -- impact and monitoring 2

    International Nuclear Information System (INIS)

    Kamath, P.R.

    1980-01-01

    Studies on ecological impacts, on fishes in particular, of waste heat discharges in the aquatic environment are briefly reviewed. These studies cover the susceptibility of fishes to disease and predation, population biology, parasite proliferation and its impact on fishes, synergistic effects due to heat and other stresses such as chemicals, pollutant, lowering of saturation limit of dissolved oxygen at elevated temperature and radioactivity. Experiences of monitoring waste heat discharges at the Rajasthan Atomic Power Station (RAPS) and the Tarapur Atomic Power Station (TAPS) are presented. Entrainment losses and impingement losses are also reviewed. Requirements for thermal monitoring are mentioned. (M.G.B.)

  20. Aquatic toxicology: past, present, and prospects.

    OpenAIRE

    Pritchard, J B

    1993-01-01

    Aquatic organisms have played important roles as early warning and monitoring systems for pollutant burdens in our environment. However, they have significant potential to do even more, just as they have in basic biology where preparations like the squid axon have been essential tools in establishing physiological and biochemical mechanisms. This review provides a brief summary of the history of aquatic toxicology, focusing on the nature of aquatic contaminants, the levels of contamination in...

  1. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  2. Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?

    Science.gov (United States)

    Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.

    2009-04-01

    After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that

  3. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  4. Hazardous materials in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    1993-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

  5. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    Science.gov (United States)

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK. The occurrence and phase association of selected pharmaceuticals propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid in contrasting aquatic environments (river, sewage effluent, and groundwater) were studied. Colloids were isolated by cross-flow ultrafiltration (CFUF). Water samples were extracted by solid-phase extraction (SPE), while SPM was extracted by microwave. All sample extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring. Five compounds propranolol, sulfamethoxazole, carbamazepine, indomethacine, and diclofenac were detected in all samples, with carbamazepine showing the highest concentrations in all phases. The highest concentrations of these compounds were detected in STW effluents, confirming STW as a key source of these compounds in the aquatic environments. The calculation of partition coefficients of pharmaceuticals between SPM and

  6. Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments

    Science.gov (United States)

    There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...

  7. Macrobrachium amazonicum: an alternative for microbiological monitoring of aquatic environments in Brazil

    Directory of Open Access Journals (Sweden)

    Raimunda Sâmia Nogueira Brilhante

    2014-11-01

    Full Text Available This study aimed to evaluate the role of the Amazon River prawn, Macrobrachium amazonicum, as carrier of Candida spp., by analyzing the correlation between Candida spp. from these prawns and their environment (surface water and sediment, through M13-PCR fingerprinting and RAPD-PCR. For this purpose, 27 strains of Candida spp. were evaluated. These strains were recovered from the gastrointestinal tract of adult M. amazonicum (7/27 from Catú Lake, Ceará State, Brazil and from the aquatic environment (surface water and sediment of this lake (20/27. Molecular comparison between the strains from prawns and the aquatic environment was conducted by M13-PCR fingerprinting and RAPD-PCR, utilizing the primers M13 and OPQ16, respectively. The molecular analysis revealed similarities between the band patterns of eight Candida isolates with the primer M13 and 11 isolates with the primer OPQ16, indicating that the same strains are present in the digestive tract of M. amazonicum and in the aquatic environment where these prawns inhabit. Therefore, these prawns can be used as sentinels for environmental monitoring through the recovery of Candida spp. from the aquatic environment in their gastrointestinal tract

  8. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  9. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  10. Kinesiological Analysis of Stationary Running Performed in Aquatic and Dry Land Environments

    Directory of Open Access Journals (Sweden)

    Lima Alberton Cristine

    2015-12-01

    Full Text Available The purpose of the present study was to analyze the electromyographic (EMG signals of the rectus femoris (RF, vastus lateralis (VL, semitendinosus (ST and short head of the biceps femoris (BF during the performance of stationary running at different intensities in aquatic and dry land environments. The sample consisted of 12 female volunteers who performed the stationary running exercise in aquatic and dry land environments at a submaximal cadence (80 beats·min-1 controlled by a metronome and at maximal velocity, with EMG signal measurements from the RF, VL, ST and BF muscles. The results showed a distinct pattern between environments for each muscle examined. For the submaximal cadence of 80 beats·min-1, there was a reduced magnitude of the EMG signal in the aquatic environment, except for the ST muscle, the pattern of which was similar in both environments. In contrast to the submaximal cadence, the pattern of the EMG signal from all of the muscles showed similar magnitudes for both environments and phases of movement at maximal velocity, except for the VL muscle. Therefore, the EMG signals from the RF, VL, ST and BF muscles of women during stationary running had different patterns of activation over the range of motion between aquatic and dry land environments for different intensities. Moreover, the neuromuscular responses of the lower limbs were optimized by an increase in intensity from submaximal cadence to maximal velocity.

  11. The biological control of aquatic weeds in South Africa: Current status and future challenges

    Directory of Open Access Journals (Sweden)

    Martin P. Hill

    2017-03-01

    Full Text Available Background: Aquatic ecosystems in South Africa are prone to invasion by several invasive alien aquatic weeds, most notably, Eichhornia crassipes (Mart. Solms-Laub. (Pontederiaceae (water hyacinth; Pistia stratiotes L. (Araceae (water lettuce; Salvinia molesta D.S. Mitch. (Salviniaceae (salvinia; Myriophyllum aquaticum (Vell. Conc. Verd. (parrot’s feather; and Azolla filiculoides Lam. (Azollaceae (red water fern. Objective: We review the biological control programme on waterweeds in South Africa. Results: Our review shows significant reductions in the extent of invasions, and a return on biodiversity and socio-economic benefits through the use of this method. These studies provide justification for the control of widespread and emerging freshwater invasive alien aquatic weeds in South Africa. Conclusions: The long-term management of alien aquatic vegetation relies on the correct implementation of biological control for those species already in the country and the prevention of other species entering South Africa.

  12. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  13. Learning from data for aquatic and geothenical environments

    NARCIS (Netherlands)

    Bhattacharya, B.

    2005-01-01

    The book presents machine learning as an approach to build models that learn from data, and that can be used to complement the existing modelling practice in aquatic and geotechnical environments. It provides concepts of learning from data, and identifies segmentation (clustering), classification,

  14. Biological assessment of aquatic pollution: a review, with emphasis on plants as biomonitors.

    Science.gov (United States)

    Doust, J L; Schmidt, M; Doust, L L

    1994-05-01

    In a number of disciplines including ecology, ecotoxicology, water quality management, water resource management, fishery biology etc., there is significant interest in the testing of new materials, environmental samples (of water or sediments) and specific sites, in terms of their effects on biota. In the first instance, we consider various sources of aquatic pollution, sources typically associated with developed areas of the world. Historically, much water quality assessment has been performed by researchers with a background in chemistry or engineering, thus chemical analysis was a dominant form of assessment. However, chemical analyses, particularly of such materials as organochlorines and polyaromatic hydrocarbons can be expensive, and local environmental factors may cause the actual exposure of an organism to be little correlated with chemical concentrations in the surrounding water or sediments. To a large extent toxicity testing has proceeded independently of environmental quality assessment in situ, and the work has been done by different, and differently-trained researchers. Here we attempt to bring together the various forms of biological assessment of aquatic pollution, because in our opinion it is worth developing a coherent framework for the application of this powerful tool. Biotic assessment in its most primitive form involves the simple tracking of mortality in exposed organisms. However, in most natural environments it is extended, chronic exposure to contaminants that has the most wide-ranging and irreversible repercussions--thus measures of sub-lethal impairment are favoured. From an ecological standpoint, it is most valuable to assess ecological effects by direct study of in situ contaminant body burdens and impairment of growth and reproduction compared with 'clean' sites. A distinction is made here between bioindication and biomonitoring, and a case is made for including aquatic macrophytes (angiosperms) in studies of contaminant levels and

  15. Occurrence of antibiotics as emerging contaminant substances in aquatic environment.

    Science.gov (United States)

    Milić, Nataša; Milanović, Maja; Letić, Nevena Grujić; Sekulić, Maja Turk; Radonić, Jelena; Mihajlović, Ivana; Miloradov, Mirjana Vojinović

    2013-01-01

    The occurrence of pharmaceutical residues in the environment has become a subject of growing concern. Due to the constant input of the emerging contaminants in the surface water via wastewater which leads to the long-term adverse effects on the aquatic and terrestrial organisms, special attention is being paid to their presence in the aquatic environment. Most of the emerging substances, especially pharmaceuticals, could not be completely removed using the wastewater treatment. Pharmaceuticals are usually water soluble and poorly degradable. They can pass through all natural filtrations and then reach the groundwater and, finally, the drinking water. The trace levels of antibiotics could have a negative impact on the environment and public health because of their inherent bioactivity. This article is an overview of the presence of the antibiotic residual concentrations, methods and levels of detection and possible risks to both health and environment.

  16. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  17. Speciation and Persistence of Dimethoate in the Aquatic Environment

    African Journals Online (AJOL)

    Speciation and Persistence of Dimethoate in the Aquatic Environment: Characterization in Terms of a Rate Model that Takes Into Account Hydrolysis, Photolysis, Microbial Degradation and Adsorption of the Pesticide by Colloidal and Sediment Particles.

  18. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.

    Science.gov (United States)

    Ribeiro, Cláudia; Ribeiro, Ana Rita; Tiritan, Maria Elizabeth

    Aquatic environments are among the most noteworthy ecosystems regarding chemical pollution due to the anthropogenic pressure. In 2000, the European Commission implemented the Water Framework Directive, with the aim of progressively reducing aquatic chemical pollution of the European Union countries. Therefore, the knowledge about the chemical and ecological status is imperative to determine the overall quality of water bodies. Concerning Portugal, some studies have demonstrated the presence of pollutants in the aquatic environment but an overall report is not available yet. The aim of this paper is to provide a comprehensive review about the occurrence of priority substances included in the Water Framework Directive and some classes of emerging organic pollutants that have been found in Portuguese aquatic environment. The most frequently studied compounds comprise industrial compounds, natural and synthetic estrogens, phytoestrogens, phytosterols, pesticides, pharmaceuticals and personal care products. Concentration of these pollutants ranged from few ng L(-1) to higher values such as 30 μg L(-1) for industrial compounds in surface waters and up to 106 μg L(-1) for the pharmaceutical ibuprofen in wastewaters. Compounds already banned in Europe such as atrazine, alkylphenols and alkylphenol polyethoxylates are still found in surface waters, nevertheless their origin is still poorly understood. Beyond the contamination of the Portuguese aquatic environment by priority substances and emerging organic pollutants, this review also highlights the need of more research on other classes of pollutants and emphasizes the importance of extending this research to other locations in Portugal, which have not been investigated yet.

  19. Biogeochemistry of radionuclides in aquatic environments. Annual progress report, 1975--1976

    International Nuclear Information System (INIS)

    Schell, W.R.

    1976-01-01

    The present work is a combination of studies on natural radionuclides 210 Po and 210 Pb in aquatic environments and on the biogeochemistry of the transuranium elements 239 Pu, 240 Pu, and 241 Am, in the Bikini Lagoon. The objectives of the biogeochemical studies are to evaluate the cycling of the radionuclides in the aquatic environment from their sources, their distribution within ecosystems, their uptake by biota, and their sinks. Detailed studies of the conditions which now exist some 17 years since the last nuclear detonations at Bikini should give a basis for predicting the effects of large-scale or low-level continuous releases of nuclear waste products in the marine environment

  20. NOVANA. National Monitering and Assessment Programme for the Aquatic and Terrestrial Environments

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    This report is Part 2 of the Programme Description of NOVANA - the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 2 comprises a de-tailed description of the nine NOVANA subprogrammes: Background monitoring of air......This report is Part 2 of the Programme Description of NOVANA - the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 2 comprises a de-tailed description of the nine NOVANA subprogrammes: Background monitoring of air...

  1. Adaptation to the aquatic environment: from penguin heart rates to cetacean brain morphology

    OpenAIRE

    Wright, Alexandra

    2016-01-01

    The evolutionary process of adaptation to the aquatic environment has dramatically modified the anatomy and physiology of secondarily-aquatic, air-breathing seabirds and marine mammals to address oxygen constraints and unique sensorimotor conditions. As taxa that have arguably undergone significant evolutionary transformations, deep-diving sphenisciforms (penguins) and obligatorily aquatic cetaceans (whales, dolphins, and porpoises) provide an excellent opportunity to study such physiological...

  2. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  3. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B.

    2012-01-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  4. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  5. Are We Underestimating Microplastic Contamination in Aquatic Environments?

    Science.gov (United States)

    Conkle, Jeremy L.; Báez Del Valle, Christian D.; Turner, Jeffrey W.

    2018-01-01

    Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most ( 80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g-1 of product or 1649 to 31,266 particles g-1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.

  6. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  7. Occurrence of aminopolycarboxylates in the aquatic environment of Germany

    International Nuclear Information System (INIS)

    Schmidt, Carsten K.; Fleig, Michael; Sacher, Frank; Brauch, Heinz-Juergen

    2004-01-01

    Aminopolycarboxylic acids, such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), 1,3-propylenediaminetetraacetic acid (1,3-PDTA), β-alaninediacetic acid (β-ADA), and methylglycinediacetic acid (MGDA), are used in large quantities in a broad range of industrial applications and domestic products in order to solubilize or inactivate various metal ions by complex formation. Due to the wide field of their application, their high polarity and partly low degradability, these substances reach the aquatic environment at considerable concentrations (in the μg/L-range) and have also been detected in drinking water. This review evaluates and summarizes the results of long-term research projects, monitoring programs, and published papers concerning the pollution of the aquatic environment by aminopolycarboxylates in Germany. Concentrations and loads of aminopolycarboxylates are presented for various types of water including industrial and domestic waste waters, surface waters (rivers and lakes), raw waters, and drinking waters

  8. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  9. Detection and identification of free-living amoeba from aquatic environment in Taiwan

    Science.gov (United States)

    Jiun Tzeng, Kai; Che Tung, Min; Hsu, Bing Mu; Tsai, Hsiu Feng; Huang, Po Hsiang; Hao Huang, Kuan; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng

    2013-04-01

    Free-living amoebae including Acanthamoeba, Naegleria, Balamuthia and Hartmannella are widely distributed in water, soil, and air. They can infect humans and can lead to serious illness even death. The aim of this study is to investigate the presence of free-living amoebae from aquatic environment in Taiwan, and to compare the differences between Acanthamoeba and Naegleria in different cultivation methods and conditions. In this study, we used molecular method with specific primers by Polymerase Chain Reaction (PCR) to amplify and to analyze the occurrence of free-living amoebae in aquatic environment. We collected 92 samples from environmental water in Taiwan. The results show that 33 water samples (35.9%) and 11 water samples (12.0%) were detected positive for Acanthamoeba and Naegleria, respectively. Furthermore, both Acanthamoeba and Naegleria can be cultured by PYG in 30° C, but not all free-living amoebae can be enriched and isolated by using storage-cultivation method. Due to the presence of Acanthamoeba and Naegleria in aquatic environment, the water quality monitoring should be more conscious. Keywords: free-living amoebae; Acanthamoeba; Naegleria; Balamuthia; Hartmannella; PCR

  10. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    Science.gov (United States)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  11. Measurements for modeling radionuclide transfer in the aquatic environment

    International Nuclear Information System (INIS)

    Kahn, B.

    1976-01-01

    Analytical methods for measuring radionuclides in the aquatic environment are discussed for samples of fresh water and seawater, fish and shellfish, biota such as algae, plankton, seaweed, and aquatic plants, and sediment. Consideration is given to radionuclide collection and concentration, sample preservation, radiochemical and instrumental analysis, and quality assurance. Major problems are the very low environmental levels of the radionuclides of interest, simultaneous occurrence of radionuclides in several chemical and physical forms and the numerous factors that affect radionuclide levels in and transfers among media. Some radionuclides of importance in liquid effluents from nuclear power stations are listed, and sources of radiochemical analytical methods are recommended

  12. The phytoremediation of crude oil-polluted aquatic environment by ...

    African Journals Online (AJOL)

    A phytoremediation experiment was carried out in the Department of Wildlife and Fisheries Management, University of Ibadan, Nigeria to examine the ability of water hyacinth (Eichhornia crassipes) to detoxify crude oil-polluted aquatic environments. There were fifteen (15) experimental units; twelve (12) had water hyacinth ...

  13. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  14. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  15. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    Science.gov (United States)

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  17. Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects.

    Science.gov (United States)

    Wagner, Stephan; Hüffer, Thorsten; Klöckner, Philipp; Wehrhahn, Maren; Hofmann, Thilo; Reemtsma, Thorsten

    2018-08-01

    Tire wear particles (TWP), generated from tire material during use on roads have gained increasing attention as part of organic particulate contaminants, such as microplastic, in aquatic environments. The available information on properties and generation of TWP, analytical techniques to determine TWP, emissions, occurrence and behavior and ecotoxicological effects of TWP are reviewed with a focus on surface water as a potential receptor. TWP emissions are traffic related and contribute 5-30% to non-exhaust emissions from traffic. The mass of TWP generated is estimated at 1,327,000 t/a for the European Union, 1,120,000 t/a for the United States and 133,000 t/a for Germany. For Germany, this is equivalent to four times the amount of pesticides used. The mass of TWP ultimately entering the aquatic environment strongly depends on the extent of collection and treatment of road runoff, which is highly variable. For the German highways it is estimated that up to 11,000 t/a of TWP reach surface waters. Data on TWP concentrations in the environment, including surface waters are fragmentary, which is also due to the lack of suitable analytical methods for their determination. Information on TWP properties such as density and size distribution are missing; this hampers assessing the fate of TWP in the aquatic environment. Effects in the aquatic environment may stem from TWP itself or from compounds released from TWP. It is concluded that reliable knowledge on transport mechanism to surface waters, concentrations in surface waters and sediments, effects of aging, environmental half-lives of TWP as well as effects on aquatic organisms are missing. These aspects need to be addressed to allow for the assessment of risk of TWP in an aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  19. Prediction of oil droplet size distribution in agitated aquatic environments

    International Nuclear Information System (INIS)

    Khelifa, A.; Lee, K.; Hill, P.S.

    2004-01-01

    Oil spilled at sea undergoes many transformations based on physical, biological and chemical processes. Vertical dispersion is the hydrodynamic mechanism controlled by turbulent mixing due to breaking waves, vertical velocity, density gradients and other environmental factors. Spilled oil is dispersed in the water column as small oil droplets. In order to estimate the mass of an oil slick in the water column, it is necessary to know how the droplets formed. Also, the vertical dispersion and fate of oil spilled in aquatic environments can be modelled if the droplet-size distribution of the oil droplets is known. An oil spill remediation strategy can then be implemented. This paper presented a newly developed Monte Carlo model to predict droplet-size distribution due to Brownian motion, turbulence and a differential settling at equilibrium. A kinematic model was integrated into the proposed model to simulate droplet breakage. The key physical input of the model is the maximum droplet size permissible in the simulation. Laboratory studies were found to be in good agreement with field studies. 26 refs., 1 tab., 5 figs

  20. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic environm......Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...

  1. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  2. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    Science.gov (United States)

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  3. Expanding Aquatic Observations through Recreation

    Directory of Open Access Journals (Sweden)

    Robert J. W. Brewin

    2017-11-01

    Full Text Available Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment—including lakes, rivers, wetlands, estuaries, coastal and open oceans—is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation, the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling.

  4. [Quantification of parasites in aquatic environments in the Province of Salta, Argentina].

    Science.gov (United States)

    Cacciabue, Dolores Gutiérrez; Juárez, María M; Poma, Hugo R; Garcé, Beatriz; Rajal, Verónica B

    2014-01-01

    Microbiological pollution of recreational waters is a major problem for public health as it may transmit waterborne diseases. To assess water quality, current legislation only requires limits for bacterial indicators; however, these organisms do not accurately predict the presence of parasites. Small number of parasites is usually present in water and although they are capable of causing disease, they may not be high enough to be detected. Detection therefore requires water samples to be concentrated. In this work three recreational aquatic environments located in the province of Salta were monitored over one year. For parasite quantification, water samples were collected every three months and concentrated by ultrafiltration. Detection was performed by microscopy. In addition, monthly monitoring was carried out in each aquatic environment: physicochemical variables were measured in situ and bacteriological counts were determined by traditional microbiological techniques. Of 14 parasites identified, at least nine were detected in each aquatic environment sampled. While bacteriological contamination decreased in most cases during winter (76-99%), parasites were present year-round, becoming a continual threat to public health. Thus, we here propose that it is necessary to use specific parasitological indicators to prevent waterborne disease transmission. Our results suggest that Entamoeba would be a suitable indicator as it was found in all environments and showed minimal seasonal variation. The results obtained in this study have epidemiological relevance and will allow decision-makers to propose solutions for water protection in order to care for population health. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. Use of micronucleus test in the assessment of radiation effects in aquatic environments

    International Nuclear Information System (INIS)

    Araujo, Edvaldo F. de; Silva, Luanna R.S.; Lima, Pedro A. de S.; Amancio, Francisco F.; Melo, Ana Maria M. de A.; Silva, Edvane B. da; Silva, Ronaldo C. da

    2011-01-01

    The study of the effects of radioactive substances on the environment is accomplished by radioecology. This science has played an important role in combating all forms of pollution. The uncontrolled use of physical and chemical agents has been a concern for environmental regulatory agencies, due to the serious damage to ecosystems. Aquatic organisms are exposed to a variety of pollutants harmful to aquatic systems. The mollusks Biomphalaria glabrata has been featured as a bioindicator to possess characteristics such as short reproductive cycle ease of maintenance in the laboratory and low maintenance cost. The micronucleus assay has been shown to be a great test to identify mutagenic effects caused by physical and chemical agents. In this study the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to high doses of 60 Co gamma radiation contributing to a further standardization of this test as an indicator of the presence of radioactive contamination in aquatic environments. The young adult snails of Biomphalaria glabrata were divided into groups and subjected to a dose of 0 (control), 40 and 60 Gy of gamma radiation. The results showed that snails irradiated with 40 Gy showed a smaller number of haemocytes, whereas those exposed to 60 Gy had a greater quantity of these cells compared to control group. It can be concluded that the morphological analysis and the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to 60 Co gamma radiation may be used in studies of the action of high doses of radiation in aquatic environments (author)

  6. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  7. 1988 activity report of the Atmospheric and Aquatic Environment Department

    International Nuclear Information System (INIS)

    Mery, P.

    1988-01-01

    The 1988 activity report of the Atmospheric and Aquatic Environment Department of EDF (Electricity of France) is presented. The activities are focused on the following subjects: development studies in the fields of hydraulic, hydrobiology, meteorology and atmospheric polluants physico-chemistry; application studies involving data analysis from operating or under development power systems; actions concerning cooperation with the Minister of the Environment and the Minister of the Industry. The investigations related to water and atmosphere are reported, as well as congress communications and papers [fr

  8. Fluxes of carbon dioxide and methane from diverse aquatic environments in an agricultural landscape

    Science.gov (United States)

    Stanley, E. H.; Crawford, J. T.; Loken, L. C.; Casson, N. J.; Gubbins, N. J.; Oliver, S. K.

    2014-12-01

    The contribution of aquatic environments to landscape carbon cycling is particularly apparent in carbon- and water-rich regions. Such areas arguably represent an end member in terms of the relative significance of aquatic carbon cycling, while dry, carbon-poor zones are the likely opposing end member. Not surprisingly, most limnological attention has focused on these former regions, leaving open questions as to how aquatic systems in other locales influence larger-scale carbon dynamics. This includes human-dominated landscapes where agricultural and urban land uses can fundamentally alter carbon dynamics. Surveys of streams, ponds, and lakes in a southern Wisconsin landscape highlight three findings relevant to understanding the role of these aquatic systems in larger-scale carbon dynamics. First, streams and ponds had unexpectedly high summertime concentrations in and fluxes of CO2 and CH4. These values were approximately an order of magnitude greater than for less disturbed, forest and wetland-dominated landscapes in northern Wisconsin. Second, while mean C gas concentrations in lakes were lower than in streams and ponds, detailed spatial measurements demonstrate variability in surface water CO2 (43-1090 ppm pCO2) and CH4 (6-839 ppm pCH4) within a lake on a single day is similar to that observed among 25 streams included in our survey (260-6000 ppm pCO2; 50-600 ppm pCH4). This small-scale heterogeneity highlights a basic challenge for upscaling site-specific data collected at one or a few points to the whole lake and across lakes. Third, while agricultural and urban ecosystems are not necessarily carbon-rich environments, area-specific carbon storage in streams and ponds is substantial (up to 3000-5000 g C per m2). Further, carbon storage was strongly related to CH4 concentrations in streams, as C-rich sediments provided both an environment and substrate to fuel methanogenesis. The picture that emerges of C processing in aquatic environments throughout this human

  9. Methodology for monitoring aquatic environment impacts derived from petrochemical and similar industries; Metodologia para monitoramento de impactos ambientais sobre o meio aquatico provenientes de industria petroquimica e afins

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Eduardo von [Minas Gerais Univ., Belo Horizonte, MG (Brazil)

    1994-12-31

    Methodological suggestions concerning the implementation of monitoring programs in aquatic environments subjected to impacts derived from petrochemical industries are presented. Some considerations are made about assessment criteria, with emphasis in the utilization hydro biological indicators, whose response capacity is far superior than that of the physicochemical parameters. (author). 1 ref.

  10. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review.

    Science.gov (United States)

    Harrison, Jesse P; Boardman, Carl; O'Callaghan, Kenneth; Delort, Anne-Marie; Song, Jim

    2018-05-01

    Plastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether 'biodegradable' materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems. Here, we review existing international industry standards and regional test methods for evaluating the biodegradability of plastics within aquatic environments (wastewater, unmanaged freshwater and marine habitats). We argue that current standards and test methods are insufficient in their ability to realistically predict the biodegradability of carrier bags in these environments, due to several shortcomings in experimental procedures and a paucity of information in the scientific literature. Moreover, existing biodegradability standards and test methods for aquatic environments do not involve toxicity testing or account for the potentially adverse ecological impacts of carrier bags, plastic additives, polymer degradation products or small (microscopic) plastic particles that can arise via fragmentation. Successfully addressing these knowledge gaps is a key requirement for developing new biodegradability standard(s) for lightweight carrier bags.

  11. Ecological imperatives for aquatic CO2-concentrating mechanisms.

    Science.gov (United States)

    Maberly, Stephen C; Gontero, Brigitte

    2017-06-01

    In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  14. Occurrence of β-N-methylamino-l-alanine (BMAA and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    Directory of Open Access Journals (Sweden)

    Emilie Lance

    2018-02-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA, a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC. The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB, β-amino-N-methyl-alanine (BAMA and N-(2-aminoethyl glycine (AEG. This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  15. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans.

    Science.gov (United States)

    Lance, Emilie; Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-02-14

    The neurotoxin β- N -methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino- N -methyl-alanine (BAMA) and N -(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  16. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  17. Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2017-12-01

    Full Text Available Ramie (Boehmeria nivea (L. Gaud. is a traditionally terrestrial fiber crop. However, hydroponic technology can enhance the quantity and quality of disease free Ramie plant seedlings for field cultivation. To date, few studies have attempted to examine the hydroponic induction of ramie roots and the molecular responses of ramie roots to aquatic environment. In this study, ramie tender stems was grown in the soil or in a hydroponic water solution, and cultured in the same environmental conditions. Root samples of terrestrial ramie, and different developmental stages of hydroponic ramie (5 days, 30 days, were firstly pooled for reference transcriptome sequencing by Illumina Hiseq 2000. Gene expression levels of each samples were quantified using the BGISEQ500 platform to help understand the distribution of aquatic root development related genes at the macro level (GSE98903. Our data resources provided an opportunity to elucidate the adaptation mechanisms of ramie seedlings roots in aquatic environment.

  18. Are we going about chemical risk assessment for the aquatic environment the wrong way?

    Science.gov (United States)

    Johnson, Andrew C; Sumpter, John P

    2016-07-01

    The goal of protecting the aquatic environment through testing thousands of chemicals against hundreds of aquatic species with thousands of endpoints while also considering mixtures is impossible given the present resources. Much of the impetus for studies on micropollutants, such as pharmaceuticals, came from the topic of endocrine disruption in wild fish. But despite concern over reductions in fish fertility, there is little evidence that fish populations are in peril. Indeed, fish biologists suggest that many cyprinid populations have been recovering for the past 30 to 40 yr. The central assumption, key to current risk assessment, that effects observed in the laboratory or predicted by models are readily transferrable to the population level, is therefore questionable. The neglect in monitoring wildlife populations is the key weakness in environmental protection strategies. If we do not know whether aquatic wildlife species are declining or increasing, how valuable are our other ecotoxicological activities? Environ Toxicol Chem 2016;35:1609-1616. © 2016 SETAC. © 2016 SETAC.

  19. Search for the evidence of endocrine disruption in the aquatic environment: Lessons to be learned from joint biological and chemical monitoring in the European Project COMPREHEND

    NARCIS (Netherlands)

    Eggen, R.I.L.; Bengtsson, B.E.; Bowmer, C.T.; Gerritsen, A.A.M.; Gibert, M.; Hylland, K.; Johnson, A.C.; Leonards, P.E.G.; Nakari, T.; Norrgren, L.; Sumpter, J.P.; Suter, M.J.F.; Svenson, A.; Pickering, A.D.

    2003-01-01

    Between January 1999 and December 2001, the European Community project COMPREHEND was performed. The overall aim of COMPREHEND was to assess endocrine disruption in the aquatic environment in Europe, consequent to effluent discharge, with emphasis on estrogenic activity. COMPREHEND demonstrated the

  20. Occurrence of anionic surfactants in treated sewage: Risk assessment to aquatic environment

    International Nuclear Information System (INIS)

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-01-01

    A comparative evaluation of occurrence of and risk to aquatic environment due to anionic surfactants (AS) in treated effluents from three main treatment processes, i.e. activated sludge process (ASP), oxidation pond (OP), and upflow anaerobic sludge blanket reactor (UASBR) is presented. UASBR effluents contained substantial concentrations of AS (4.25-5.91 mg/L as average AS removal was not found to exceed 18%). Post-treatment of UASBR effluent using 1-1.6 days detention, anaerobic polishing ponds (PP) was also found quite ineffective. In UASBR-PP combine, AS reduced only up to 30%. Effluents from OP based sewage treatment plants (STPs) also contained significant concentrations of AS. On the contrary, effluent AS or linear alkylbenzene sulfonate (LAS) concentrations recorded in ASP effluents were quite low (less than 0.2 mg/L). Unlike UASBR, LAS or AS removals greater than 99% are achieved in ASP. Treated effluents from UASBR and OP based STPs when discharged to aquatic ecosystems are likely to cause substantial risk to aquatic environment due to the presence of AS while effluents from ASP are not supposed to pose risk. Need to find an effective aerobic post-treatment unit to UASBR for desired removal of AS is emphasized

  1. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  2. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment.

    Science.gov (United States)

    de Zwart, Dick; Adams, William; Galay Burgos, Malyka; Hollender, Juliane; Junghans, Marion; Merrington, Graham; Muir, Derek; Parkerton, Thomas; De Schamphelaere, Karel A C; Whale, Graham; Williams, Richard

    2018-03-01

    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes, from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent, or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the event mean concentration concept, with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modeling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed of the role of nonchemical stressors in such highly modified urban water bodies. Environ Toxicol Chem 2018;37:703-714. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  3. A review of chemosensation and related behavior in aquatic insects.

    Science.gov (United States)

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  4. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  5. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China.

    Science.gov (United States)

    Zhang, Lulu; Liu, Jingling; Liu, Huayong; Wan, Guisheng; Zhang, Shaowei

    2015-07-01

    Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and the demand for PAEs has grown rapidly, especially in China. This trend will lead to much more environmental PAE contamination. PAEs are listed as priority substances in the European Union and are therefore subject to ecological risk assessments. This paper reviews the literature concerning the pollution status of PAEs and their ecological risk to aquatic environments. Risk quotients (RQs) based on the predicted no effect concentration and PAE concentrations in aquatic environments demonstrated significant (10 ≤ RQ plastics are produced.

  6. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    Science.gov (United States)

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines

  7. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  8. Antibiotics in the aquatic environments: A review of the European scenario.

    Science.gov (United States)

    Carvalho, Isabel T; Santos, Lúcia

    2016-09-01

    The discovery of antibiotics is considered one of the most significant scientific achievements of the 20th century, revolutionizing both human and veterinary medicine. However, antibiotics have been recently recognized as an emerging class of environmental contaminants since they have been massively administrated in humans and animals and persist in the environment through a complex vicious cycle of transformation and bioaccumulation. The diffusion of antibiotics in the environment, particularly in natural water systems, contributes to the development and global dissemination of antibiotic resistance. This phenomenon is one of the most important challenges to the health care sector in the 21st century. As a result, studies on the occurrence, fate, and effects of antibiotics in European aqueous environments have increased in the last years. Nevertheless, their potential aquatic ecotoxicity and human toxicity via environmental exposure routes remain unknown. Consequently, antibiotics are not regulated through the current European environmental water quality standards, which requires evidence concerning their widespread environmental contamination and intrinsic hazard. In this context, this literature review summarizes the state of knowledge on the occurrence of antibiotics in the different aqueous environmental systems across the Europe, as reported since 2000. Relating this subject to antibiotic consumption and their dynamic behavior in the environment, the acquired insights provide an improved understanding on aquatic pollution by antibiotics to outline the European scenario. Moreover, it addresses challenges, prospects for future research, and typical topics to stimulate discussion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  10. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions...

  11. Experiences of simulated tracer dispersal studies using effluent discharges at Tarapur aquatic environment

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Sawane, Pratibha; Rao, D.D.; Hegde, A.G.

    2007-01-01

    The nuclear complex in Tarapur, Maharashtra is a multi facility nuclear site comprising of power reactors and research facilities. Each facility has independent liquid effluent discharge line to Arabian Sea. Experimental studies were conducted to evaluate dilution factors in the aquatic environment using liquid effluent releases as tracer from one of the facilities. 3 H and 137 Cs radioisotopes present in the routine releases were used as simulated tracer nuclides. The dilution factors(D.F) observed for tritium were in the range of 20-20000 in a distance range of 10 m to 1500 m respectively and for 137 Cs the D.F. were in the range of 50 to 900 over a distance range of 10-200 m. The paper describes the analytical methodology and sampling scenarios and the results of dilution factors obtained for Tarapur aquatic environment. (author)

  12. Consequences of radioactive deposition on aquatic environments

    International Nuclear Information System (INIS)

    Suolanen, V.

    1994-12-01

    The publication concentrates on the analyses of the main effects of radioactive deposition on Nordic aquatic environments. A modelling approach is applied for predicting the temporal behaviour of concentrations in fish of inland freshwater ecosystems. The observed values are considered in parallel with the calculations. The time-integrated consequences, the radiation doses are estimated for the relatively significant dose pathways. After a preliminary study of various lake environments in Nordic countries, three representative examples of lake systems were selected for closer consideration: small forest lake, medium-sized forest lake and mountain lake. The effects of changes in the trophic levels of lakes are also tentatively accounted for. The results of the analyses indicate that the radiological consequences of shallow forest lakes are greater than those of mountain lakes which usually have shorter turnover times compared to forest lakes. In long-term consideration, the fish ingestion pathway may in general become important and, in addition to the external exposure, has a high contribution to the expected doses. (orig.) (8 refs., 11 figs., 9 tabs.)

  13. Research on accumulating the harmful elements in geothermal water with aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Bingbing; Guo, Licong; Peng, Yongqing [Institute of Energy Sources (China); The Institute of Biology (China))

    1988-11-10

    As a result of component analyses for geothermal water, environmental pollution potentialities with use of geothermal water were generally recognized with high mineral material and high content of F{sup -}in North China. Although injection methods are effective to eliminate the environment pollution of geothermal fluid, the technique and cost of injection are not practical at present yet for the technical level and financial capacity of China and other developing countries. Through the comparison of physical, chemical and biological methods, the biological method possesses low cost and great disposed quantity. After making the test for accumulating harmful elements in geothermal water with aquatic plants to find suitable one, nine kinds of aquatic plants, which can accumulate elements of Cl{sup -}, Na{sup +} and F{sup -}, were selected for further tests. As a test result, the aquatic plants which could comprehensively accumulate Na{sup +}, Cl{sup -} and F{sup -} were Ceratophyllum demersum, Mymphoides pettatum and Spirodela polyrrhiza, the aquatic plant which could comprehensively accumulate Na{sup +} and Cl{sup -} was Alternanthera philoxenoids, and the aquatic plant which could accumulate F{sup -} was Lemna minor. These aquatic plants were considered as the optimized plants for purifying geothermal water. 4 refs., 5 tabs.

  14. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    International Nuclear Information System (INIS)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-01-01

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  15. Plutonium in the aquatic environment around the Rocky Flats facility

    International Nuclear Information System (INIS)

    Thompson, M.A.

    1975-01-01

    The Rocky Flats Plant of the United States Energy Research and Development Administration has been fabricating and chemically recovering plutonium for over 20 years. During that time, small amounts of plutonium have been released with liquid process and sanitary waste discharges. The liquid waste flows through a series of holding ponds from which it is discharged into a creek that is part of a municipal drinking water supply. The water flows for about 1.5 km between the last holding pond and the municipal drinking water reservoir. In addition, liquid wastes containing high levels of chemical contaminants and plutonium concentrations less than allowable drinking water standards have been discharged to large evaporation ponds. The fate of the plutonium in both the surface and subsurface aquatic environment has been extensively monitored and studied. It has been found that plutonium does not move very far or very rapidly through subsurface water. The majority of the plutonium released through surface water has been contained in the sediments of the plant holding ponds. Small amounts of plutonium have also been found in the sediments of the draining creek and in the sediments of the receiving reservoir. Higher than normal amounts of plutonium were released from the waste treatment plants during times when suspended solids were high. Various biological species have been examined and plutonium concentration factors determined. Considerably less than 1% of the 210 mCi of plutonium released has been detected in biological systems including man. After more than 20 years of large scale operations, no health or environmental hazard has been identified due to the release of small amounts of plutonium. (author)

  16. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    John A. McLachlan

    2003-12-01

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial

  17. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    Science.gov (United States)

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  18. Exposure assessment of metal-based nanoparticles in aquatic environments: interactive influence of water chemistry and nanopaticle characteristics

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2014-09-01

    Full Text Available Transformation and bioavailability information of engineered nanoparticles (ENPs) in environmental systems impedes assessment of their potential risks to aquatic environments. In aqueous environments ENPs undergo numerous transformation processes...

  19. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2017-11-01

    Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The organic tritium in the environment

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1979-01-01

    Sources, organization process, and biological availability of organic tritium released in the environment, transfer of organic tritium in the environment from methane or soil to plants and from food to mammals, transfer of tritium in aquatic ecosystems, and dose to man resulting of the ingestion of tritiated food were reviewed and discussed. Some data about transfer of organic tritium in terrestrial and aquatic ecosystems reported by literatures were summarized and were supplied with recent data on biological accumulation of organic tritium in the food chain. It was stressed that more research must be done in future because data available were still insufficient. Last, some research programs in progress or planned were stated. (Tsunoda, M.)

  1. Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview

    NARCIS (Netherlands)

    Brack, W.; Ait-Aissa, S.; Burgess, R.M.; Creusot, N.; Di Paolo, C.; Escher, B.I.; Hewitt, L.M.; Hilscherova, K.; Hollender, J.; Hollert, H.; Jonker, W.; Kool, J.; Lamoree, M.H.; Muschket, M.; Neumann, S.; Rostkowski, P.; Ruttkies, C.; Schollee, J.; Schymanski, E.L.; Schulze, T.; Seiler, T.; Tindall, A.J.; De Aragão Umbuzeiro, G.; Vrana, B.; Krauss, M.

    2016-01-01

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse

  2. Fish otoliths as archives of metal concentrations in the aquatic environment

    International Nuclear Information System (INIS)

    Lim, R.; Markich, S.; Prince, K.; Twining, J.

    2000-01-01

    Full text: Little is known of the relationship between the concentrations of metals in the laminations of the fish otolith and that in the environment. It is imperative that a concentration response relationship be demonstrated if otoliths are to be used as archives of metal concentrations in the aquatic environment. The aim of this preliminary study was to determine if there was an increase in concentration of Mn in the laminations of the fish otolith when fish were exposed to an elevated level of this metal. SIMS was used to measure Mn in the otolith. The findings will be discussed

  3. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are environmental contaminants found in aquatic ecosystems throughout the world as a result of both anthropogenic and natural production. The ecological risk posed by these compounds to organisms in freshwater environments, with a specific focus on aquatic macrophytes, was characterized. The plants evaluated were Lemna gibba, Myriophyllum spicatum and M. sibiricum and the HAAs screened were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). Laboratory toxicity data formed the basis of the risk assessment, but field studies were also utilized. The estimated risk was calculated using hazard quotients (HQ), as well as effect measure distributions (EMD) in a modified probabilistic ecological risk assessment. EMDs were used to estimate HAA thresholds of toxicity for use in HQ assessments. This threshold was found to be a more sensitive measure of low toxicity than the no observed effect concentrations (NOEC) or the effective concentration (EC 10 ). Using both deterministic and probabilistic methods, it was found that HAAs do not pose a significant risk to freshwater macrophytes at current environmental concentrations in Canada, Europe or Africa for both single compound and mixture exposures. Still, HAAs are generally found as mixtures and their potential interactions are not fully understood, rendering this phase of the assessment uncertain and justifying further effects characterization. TCA in some environments poses a slight risk to phytoplankton and future concentrations of TFA and CDFA are likely to increase due to their recalcitrant nature, warranting continued environmental surveillance of HAAs. - Current environmental concentrations of haloacetic acids do not pose a risk to aquatic macrophytes, but could impact plankton

  4. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  5. Crude oil derived petroleum products in the aquatic environment: priorities for control

    International Nuclear Information System (INIS)

    Grimwood, M.J.

    2001-01-01

    The available data on the environmental fate, behaviour and toxicity of five groups of petroleum products is reviewed and the information used to identify the priority of oil products for pollution control to protect the aquatic environment. The oil product groups comprise gasolines, kerosenes, other light fuel oil distillates, residual heavy fuel oils and lubricating oils. (author)

  6. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    Science.gov (United States)

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  7. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-12-31

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  8. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  9. NOVANA - National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environment

    DEFF Research Database (Denmark)

    Svendsen, L. M.

    This report is Part 1 of the Programme Description of NOVANA - the Nationwide Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 1 comprises a general description of the background for the programme, including the international obliga-tions and requirements...... for monitoring of nature and the environment. The overall objective and the scientific and strategic background for the priorities upon which NOVANA pro-gramme is based are described, as are the organization of the programme, the overall economy and the technical assumptions made. Finally the scientific content...

  10. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  11. Impact of PETIT-SAUT hydroelectric dam on aquatic life (French Guyana)

    International Nuclear Information System (INIS)

    Sissakian, C.

    1992-01-01

    The construction of the hydroelectric scheme of PETIT-SAUT in French Guyana creates a reservoir which covers 310 km 2 of tropical rain forest. This hydroelectric scheme has an influence on the various aspects of the environment. One of the most important aspects is the modification of the water quality and of the aquatic life due to the degradation of organic matter. Some studies of the biology of these area fishes are initiated. At the same time, Electricite de France studies some constructive arrangements and reservoir managements to assure, the most rapidly possible, a return to an aquatic normal life. 6 refs

  12. Envisioning the future of aquatic animal tracking: Technology, science, and application

    DEFF Research Database (Denmark)

    Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.

    2017-01-01

    Electronic tags are significantly improving our understanding of aquatic animal behavior and are emerging as key sources of information for conservation and management practices. Future aquatic integrative biology and ecology studies will increasingly rely on data from electronic tagging. Continued...... of animals and the environment through which they are moving. Improved data collection will be accompanied by greater data accessibility and analytical tools for processing data, enabled by new infrastructure and cyberinfrastructure. To operationalize advances and facilitate integration into policy......, there must be parallel developments in the accessibility of education and training, as well as solutions to key governance and legal issues...

  13. Pharmaceuticals and personal care products in the aquatic environment in China: a review.

    Science.gov (United States)

    Bu, Qingwei; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2013-11-15

    Pharmaceuticals and personal care products (PPCPs) have been detected as contaminants of emerging concern ubiquitously in the aquatic environment in China and worldwide. A clear picture of PPCP contamination in the Chinese aquatic environment is needed to gain insight for both research and regulatory needs (e.g. monitoring, control and management). The occurrence data of 112 PPCPs in waters and sediments in China has been reviewed. In most cases, the detected concentration of these PPCPs in waters and sediments were at ng/L and ng/g levels, which were lower than or comparable to those reported worldwide. A screening level risk assessment (SLERA) identified six priority PPCPs in surface waters, namely erythromycin, roxithromycin, diclofenac, ibuprofen, salicylic acid and sulfamethoxazole. The results of SLERA also revealed that the hot spots for PPCP pollution were those river waters affected by the megacities with high density of population, such as Beijing, Tianjin, Guangzhou and Shanghai. Limitations of current researches and implications for future research in China were discussed. Some regulatory issues were also addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  15. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  16. Investigation of tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Cohen, L.K.

    1977-01-01

    The behavior, cycling and distribution of tritium in an aquatic ecosystem was studied in the field and in the laboratory from 1969 through 1971. Field studies were conducted in the Hudson River Estuary, encompassing a 30 mile region centered about the Indian Point Nuclear Plant. Samples of water, bottom sediment, rooted emergent aquatic plants, fish, and precipitation were collected over a year and a half period from more than 15 locations. Specialized equipment and systems were built to combust and freeze-dry aquatic media to remove and recover the loose water and convert the bound tritium into an aqueous form. An electrolysis system was set up to enrich the tritium concentrations in the aqueous samples to improve the analytical sensitivity. Liquid scintillation techniques were refined to measure the tritium activity in the samples. Over 300 samples were analyzed during the course of the study

  17. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    Science.gov (United States)

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  18. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  19. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate.

    Science.gov (United States)

    Ahrens, Lutz

    2011-01-01

    The occurrence and fate of polyfluoroalkyl compounds (PFCs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. PFCs comprise a diverse group of chemicals that are widely used as processing additives during fluoropolymer production and as surfactants in consumer applications for over 50 years. PFCs are known to be persistent, bioaccumulative and have possible adverse effects on humans and wildlife. As a result, perfluorooctane sulfonate (PFOS) has been added to the persistent organic pollutants (POPs) list of the Stockholm Convention in May 2009. However, their homologues, neutral precursor compounds and new PFCs classes continue to be produced. In general, several PFCs from different classes have been detected ubiquitously in the aqueous environment while the concentrations usually range between pg and ng per litre for individual compounds. Sources of PFCs into the aqueous environment are both point sources (e.g., wastewater treatment plant effluents) and nonpoint sources (e.g., surface runoff). The detected congener composition in environmental samples depends on their physicochemical characteristics and may provide information to their sources and transport pathways. However, the dominant transport pathways of individual PFCs to remote regions have not been conclusively characterised to date. The objective of this article is to give an overview on existing knowledge of the occurrence, fate and processes of PFCs in the aquatic environment. Finally, this article identifies knowledge gaps, presents conclusions and recommendations for future work.

  20. The Impact of Mining Activity upon the Aquatic Environment in the Southern Apuseni Mountains

    Directory of Open Access Journals (Sweden)

    SIGISMUND DUMA

    2009-01-01

    Full Text Available In the Southern Apuseni Mountains, mining activities have taken place since Antiquity, leaving their marks upon the natural environment, the aquatic one inclusively. If the traditional technologies had a low impact upon the aquatic environment, the ones in the modern period have affected it up to the “dead water” level. It is about the disorganization of the hydrographical basins and especially about aggressive pollution of surface waters with some of the most toxic chemical substances such as cyanides, as well as by an increase in the contents of metallic ions, chlorides, sulphides, sulphates, suspensions and fixed residuum. The decrease in pH, and implicitly the acidification of waters, is also remarkable. It must be mentioned that no systematic studies of the impact of mining activities upon the aquatic environment have been conducted in the area in the last years. In these conditions, the data about water quality have been taken over from the studies conducted by author between 1996 and 1998. The cause of the lack of concern in the field is no other but the cease in ore valorization activities in the majority of the mining objectives in the area. As none of the tailings settling ponds has guard canals, the direct pluvial waters and the ones drained from the slopes transport tailings with noxes which they subsequently discharge in the local pluvial network. In these conditions, both the quality of the mine waters which run freely into the emissary and of the ones that flow from the waste dumps remain mainly in the qualitative parameters analyzed and presented in the study.

  1. Ecological implications of mercury pollution in aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, R C

    1971-07-01

    Mercury compounds discharged into the environment from industrial, agricultural, and domestic sources have contaminated a substantial portion of the hydrosphere and other parts of the biosphere. Their effects on aquatic ecosystems are a result of their low solubility in water, chemical stability in sediments, and accumulation through biological concentration and magnification in food-webs. The limited data available on the environmental chemistry and toxicity of mercurials prevent the establishment of adequate standards for the protection of biotic communities.

  2. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    Science.gov (United States)

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  3. Abstracts of the 31. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Burridge, L.E.; Haya, K.; Niimi, A.J.

    2004-01-01

    This conference provided an opportunity for an informal exchange of recent research information and knowledge on aquatic and environmental toxicology. Topics ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The workshops were attended by representatives from industry, governments and universities. The current challenges and approaches to deal with aquatic toxicology and their biological effect on aquatic biota were discussed. The sessions were entitled as follows: environmental effects monitoring; pesticides; ecological risk assessment; sediment disposal at sea; oil and gas; pharmaceuticals; artifactual toxicity in municipal waste water; sediment and soil toxicity; contaminants in aquatic systems; biological effects; and discoveries in aquatic sciences. The conference included 4 plenary sessions and 119 platform papers, of which 24 papers have been indexed separately for inclusion in this database. refs., tabs., figs

  4. Ultrafiltration technique in conjunction with competing ligand exchange method for Ni–humics speciation in aquatic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Boissel, M.; Reuillon, A.; Babu, P.V.R.; Parthiban, G.

    The combination of ultrafiltration technique with competing ligand exchange method provides a better understanding of interactions between Ni and different molecular weight fractions of humic acid (HA) at varying pH in aquatic environment...

  5. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...

  6. A novel photosynthetic strategy for adaptation to low-iron aquatic environments

    Science.gov (United States)

    Chauhan, D.; Folea, I.M.; Jolley, C.C.; Kouril, R.; Lubner, C.E.; Lin, S.; Kolber, D.; Wolfe-Simon, Felisa; Golbeck, J.H.; Boekema, E.J.; Fromme, P.

    2011-01-01

    Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments. ?? 2010 American Chemical Society.

  7. The Chernobyl reactor accident and the aquatic environment of the UK: a fisheries viewpoint

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Camplin, W.C.; Leonard, D.R.P.

    1986-01-01

    The monitoring programme undertaken by the Directorate throughout the UK following the Chernobyl reactor accident is described. The results of sampling and analysis of fish, shellfish, seaweed and other materials are discussed. Chernobyl fallout was readily detected in all sectors of the aquatic environment, particularly during May when the highest concentrations were observed. An assessment of the radiological impact of the fallout shows that freshwater fish were the most important source of individual (critical group) exposure though, based on cautious assumptions, the effective dose equivalent is around 1 mSv in a year. The collective effective dose equivalent commitment from Chernobyl due to aquatic ingestion pathways, predominantly marine fish, is estimated to be 30 man Sv. (author)

  8. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    International Nuclear Information System (INIS)

    1993-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases

  9. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  10. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  11. Multilocus Sequence Typing and Staphylococcal Protein A Typing Revealed Novel and Diverse Clones of Methicillin-Resistant Staphylococcus aureus in Seafood and the Aquatic Environment.

    Science.gov (United States)

    Murugadas, V; Toms, C Joseph; Reethu, Sara A; Lalitha, K V

    2017-03-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a global health concern since the 1960s, and isolation of this pathogen from food-producing animals has been increasing. However, little information is available on the prevalence of MRSA and its clonal characteristics in seafood and the aquatic environment. In this study, 267 seafood and aquatic environment samples were collected from three districts of Kerala, India. Staphylococcal protein A (spa) typing and multilocus sequence typing (MLST) was performed for 65 MRSA strains isolated from 20 seafood and aquatic environment samples. The MRSA clonal profiles were t657-ST772, t002-ST5, t334-ST5, t311-ST5, t121-ST8, t186-ST88, t127-ST1, and two non-spa assignable strains. Whole spa gene sequence analysis along with MLST confirmed one strain as t711-ST6 and another as a novel MRSA clone identified for the first time in seafood and the aquatic environment with a t15669 spa type and a new MLST profile of ST420-256-236-66-82-411-477. The MRSA strains were clustered into five clonal complexes based on the goeBURST algorithm, indicating high diversity among MRSA strains in seafood and the aquatic environment. The novel clone formed a separate clonal complex with matches to three loci. This study recommends large-scale spa typing and MLST of MRSA isolates from seafood and the aquatic environment to determine the prevalence of new MRSA clones. This monitoring process can be useful for tracing local spread of MRSA isolates into the seafood production chain in a defined geographical area.

  12. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment.

    Science.gov (United States)

    Connon, Richard E; Geist, Juergen; Werner, Inge

    2012-01-01

    Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of "adverse outcome pathways (AOP)" links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  13. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  14. Detection of Helicobacter and Campylobacter spp. from the aquatic environment of marine mammals.

    Science.gov (United States)

    Goldman, C G; Matteo, M J; Loureiro, J D; Degrossi, J; Teves, S; Heredia, S Rodriguez; Alvarez, K; González, A Beltrán; Catalano, M; Boccio, J; Cremaschi, G; Solnick, J V; Zubillaga, M B

    2009-01-13

    The mechanism by which Helicobacter species are transmitted remains unclear. To examine the possible role of environmental transmission in marine mammals, we sought the presence of Helicobacter spp. and non-Helicobacter bacteria within the order Campylobacterales in water from the aquatic environment of marine mammals, and in fish otoliths regurgitated by dolphins. Water was collected from six pools, two inhabited by dolphins and four inhabited by seals. Regurgitated otoliths were collected from the bottom of dolphins' pools. Samples were evaluated by culture, PCR and DNA sequence analysis. Sequences from dolphins' water and from regurgitated otoliths clustered with 99.8-100% homology with sequences from gastric fluids, dental plaque and saliva from dolphins living in those pools, and with 99.5% homology with H. cetorum. Sequences from seals' water clustered with 99.5% homology with a sequence amplified from a Northern sea lion (AY203900). Control PCR on source water for the pools and from otoliths dissected from feeder fish were negative. The findings of Helicobacter spp. DNA in the aquatic environment suggests that contaminated water from regurgitated fish otoliths and perhaps other tissues may play a role in Helicobacter transmission among marine mammals.

  15. Monitoring aquatic environment pollution: a major component of environment management systems

    International Nuclear Information System (INIS)

    Khan, I.H.; Khan, M.H.; Sheikh, I.M.

    1999-01-01

    The paper is based on the international experiences mostly of the UK (United Kingdom) and Europe on monitoring aquatic pollution and controlling water pollution which have a long history of the legislation involved. The U.K. control of water pollution and regulatory laws are very effective as in shown by the fact that 96 percent of rivers in England and Wales are suitable for potable supplies with conventional water treatment. Current British legislation is basically contained n the 1951, 1960 and 1974 acts of parliament in the U.K. A common feature of all this environment legislation is the high level of consultation which has taken place between government and all concerned and al those concerned in the development of legislation and drawing up regulations etc. and involved in implementation of them. Similarly considerable discussion takes place with the controlling authorities by dischargers over the detailed implementation of legislation in the U.K. Consequently these harmonious attitudes have been responsible for the effectiveness of the U.K. legislation. In the U.K. control of discharges of industrial effluents to sewers and to all natural waters including underground water is vested in the regional water authorities, which on application, issue consent permitting discharges of industrial effluents to sewers and to all natural waters including underground waters in vested in the regional water authorities, which on application, issue consent permitting discharges to be made subject to conditions and limitations in the consent/authorisation/approval. The paper critically reviews major aspects of the philosophy of aquatic pollution control and monitoring, as statistics reveal deadly state of liquid effluent contamination water bodies in Pakistan. Without prompt installation of treatment plants we may face a tragedy of catastrophic magnitude. (author)

  16. Aquatic worms eating waste sludge in a continuous system

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes

  17. Environmental Risk Assessment Caused by Selected Pollutants to Aquatic Environment on the Example of the Klodnica River

    Directory of Open Access Journals (Sweden)

    Marta Wiesner-Sękala

    2017-12-01

    Full Text Available The waterbody Kłodnica to Promna as was analysed an example of watercourse located in the densely populated and highly urbanized area of the Upper Silesian Industrial Region. The aim of the study was to assess the risk posed to the aquatic ecosystem by priority substances (Ni, Pb, Cd, Hg and specific non-synthetic pollutants (Cu, Zn, which are released to Kłodnica river. The analysis of the risk assessment was carried out by comparing the concentration of metals in the aquatic environment to the environmental quality standards and by using M-BAT and Pb Screening Tool which are user-friendly simplified BLM models (Biotic Ligand Model. These tools allowed to assess the potential risks posed by metals such as Cu, Ni, Zn, and Pb for the aquatic environment, taking into account the physicochemical parameters of water that affect the bioavailability of metals in the aquatic environment (DOC, Ca, pH. The results obtained by means of these tools showed that the risk caused by the toxicity of Cu, Ni and Pb has not occurred in any of the analyzed samples. On the other hand, high probability of risk due to the presence of Zn in surface water has been identified in all sampling points. The results of the analysis confirmed that the local conditions in terms of physicochemical water parameters have a significant impact on the risk assessment. The results of this study confirmed that the tools which are simplified version of complex BLM are an important element supporting the monitoring process in urbanized river catchment in the context of the Water Framework Directive requirements.

  18. Photobiogeochemistry of organic matter. Principles and practices in water environments

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, Khan M.G. [Chinese Academy of Sciences, Guiyang, Guizhou (China). Inst. of Geochemistry; Yoshioka, Takahito [Kyoto Univ. (Japan). Field Science Education; Mottaleb, M. Abdul [Northwest Missouri State Univ., MO (United States). Dept. of Chemistry and Physics; Vione, Davide (eds.) [Turin Univ. (Italy). Dipt. di Chimica Analitica

    2013-03-01

    Gives a comprehensive account of photo and biological processes of key biogeochemical functions and their interrelations in the aquatic environment. Discusses essential issues refering to the aquatic environment. Designed as a study text for students. Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO x; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results''.

  19. Guidelines to Avoid Biocontamination of Antarctic Subglacial Aquatic Environments: Forward Contamination Concerns, Environmental Management and Scientific Stewardship of Icy analogue environments

    Science.gov (United States)

    Race, M. S.; Hobbie, J.; et al.

    2007-12-01

    For more than a decade, scientists and space mission planners have recognized the importance of collaborative information exchange with the Antarctic research community to address their many shared exploration challenges, from drilling methods, remote sample collection, and data interpretation, to concerns about cross contamination that could adversely impact both the environment and interpretation of scientific data. Another shared concern exists in the regulatory realm; both the Antarctic and outer space environments are subject to separate international treaties that impose regulatory controls and oversight with serious implications for exploration planning. In recent years, both communities have faced the need to adjust their regulatory controls in light of fast-paced advances in scientific understanding of extreme environments, particularly related to potential microbial life. Both communities have sought and received advice from the National Research Council (NRC) through studies that suggested ways to update their respective oversight and regulatory systems while allowing for continued scientific exploration. A recently completed NRC study "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship" provided a suite of recommendations to address1) 'cleanliness' levels necessary for equipment and devices used in exploration of subglacial aquatic environments, as well as 2) the scientific basis for contamination standards, and 3) the steps for defining an overall exploration strategy conducive to sound environmental management and scientific stewardship. This talk will present the findings of the recent multinational NRC study, which is likely to translate into useful information for analogue studies that proceed to test techniques and capabilities for exploring an Europan ocean, other icy celestial locations, and related science targets on Earth. As the science and exploration of subglacial environments grows beyond its

  20. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    1975-01-01

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  1. Charcoal as a capture material for silver nanoparticles in the aquatic environment

    Science.gov (United States)

    McGillicuddy, Eoin; Morrison, Liam; Cormican, Martin; Morris, Dearbháile

    2017-04-01

    Background: The reported antibacterial activity of silver nanoparticles (AgNPs) has led to their incorporation into numerous consumer products including; textiles, domestic appliances, food containers, cosmetics, paints, medical and medicinal products. The AgNPs incorporated into these products can be released into the environment and aquatic system during their production, use and end of life disposal. In the aquatic environment, uncertainties surround the concentration, fate and effects of AgNPs. The aim of this project is to examine charcoal as a potential material for capture of silver nanoparticles from the aquatic environment. Material/methods: Activated charcoal is a commonly used filter material and was selected for this project to determine its suitability as a capture material for AgNPs in water samples. Activated charcoal (Norit® CA1 (Sigma-Aldrich)) was exposed to 100 ppb, 25 nm PVP coated AgNPs (nanoComposix) prepared in Milli-Q water. These solutions were exposed to unaltered charcoal granules for 20 hours after which the decrease of silver in the solution was measured using ICP-MS. In order to improve the removal, the surface area of the charcoal was increased firstly by grinding with a pestle and mortar and secondly by milling the charcoal. The milled charcoal was prepared using an agate ball mill running at 500 rpm for 5 minutes. The activated charcoal was then exposed to samples containing 10 ppb AgNPs. Results: In the initial tests, approximately 10% of the silver was removed from the water samples using the unaltered activated charcoal granules. Further experiments were carried out to compare the unaltered granules with the ground and milled charcoal. These tests were carried out similarly to the previous test however lower concentration of 10 ppb was used. After 20 hours of exposure the granule samples, as previously, showed approximately a 10% reduction in silver content with the ground charcoal giving approximately 30% reduction in silver

  2. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  3. Phenotypic analysis of antibiotic resistant E. coli recovered from urban aquatic environment in Banda Aceh, Indonesia

    Science.gov (United States)

    Suhartono, S.; Ismail, Y. S.; Yulvizar, C.; Nursanty, R.; Mahyuddin, M.; Jannah, M.

    2018-03-01

    Of aquatic environment, antibiotic resistant bacteria, including total coliforms and E. coli disseminate and emerge at an alarming rate. The study aims to determine enumerate, isolate,E. coliand determine their antibiotic resistance and compare between those which were recovered from residentials and home industries in Banda Aceh and its surrounding area. The bacterial density and antibiotic susceptibility of total coliforms and E. coli were determined using Standard Total Coliform Multiple-Tube (MPN) Fermentation method and the disk diffusion method, respectively. Despite there was no significant difference of total coliforms and E. coli population between residentials and home industries (P > 0.05) in this study, their density as well as prevalence remained high in the water sample. This might expose serious health risks since the resistance might be easily spread acquired through horizontal gene transfer within the aquatic environment.

  4. The main sources of pollution of the aquatic environment in Hellas

    Science.gov (United States)

    Koumantakis, J.; Dimitrakopoulos, D.; Markantonis, K.; Grigorakou, E.; Vassiliou, E.

    2003-04-01

    The research team of the laboratory of Engineering Geology &Hydrogeology of NTUA and P.P.C. have carried out several research projects since 1990. The conclusions of these projects for the main sources of pollution of the aquatic environment in Hellas are the following: Human activities : a) Urban and industrial wastes (solid and liquids) are disposed or discharged to the surface or groundwater bodies causing degradation of their quality (case studies of Athens Basin, Lavrio region, Atalanti plain), b) intensive use of pesticides and fertilizers for agriculture, through the process of percolation or leaching causes the deterioration of aquifers and surface water (case studies of Plolemais Basin, Korinth region, Elassona Basin, Atalanti plain, Thrapsana Basin Iraklio), c) current exploitations and old or abandoned mining sites, disturb the aquatic environment and create new hydraulic connections between clean and polluted aquifers or the sea (case studies of Lavrio region, Ptolemais Basin, Megalopoli Basin), d) over-pumping of aquifers mainly for irrigation but also in some cases for dewatering of mines, results in continues drawdown of the groundwater level and intrusion of sea (case studies of Korinth region, Athens basin, Naxos island, Nea Peramos Kavala, Marathon, Argolida Field, Atalanti plain, Achaia region, Stratoni area Chalkidiki, Gouves Iraklio). Geological Environment: a) extensive karstification of limestones that spread up all over the Greek region (33%) causes the intrusion of the sea far into the land (case studies of Lavrio region, Kefalonia island, Hymettus mountain), b) the chemical composition of the geological formations through the process of ion exchange and solubility pollute the groundwater resources (case studies of Vegoritis Basin, Katsika Chalkidiki, Florina region). The proposed measures to face these problems are : - the orthological management of the water resources - the artificial recharge of the aquifers, - proper waste management

  5. Tritium in the aquatic environment and the associated risk

    International Nuclear Information System (INIS)

    Tort, V.; Lefaure, C.; Linden, G.; Herbelet, J.

    1997-01-01

    Tritium, which is naturally present in the environment under tritiated water form, participates to the global water cycle. Today, nuclear fuel cycle facilities represent the main source of man-made tritium. The civilian production is estimated to be about 2 x 10 4 TBq/y, corresponding to a third of the natural production. Due to the fact that tritium releases are very local, concentrations in water higher than natural background (of 0.1 to 0.9 Bq/l for surface waters) are observed around these sites. Measurements in French aquatic environment reveal tritium concentration generally below 10 Bq/1 for underground waters and below 20 Bq/l for rivers. Nevertheless, some ground waters and some rivers presents locally a concentration up to a few hundreds of Bq/l. Moreover, measurements performed in France are generally coherent with monitoring in other European countries. Furthermore, the associated radiological impact for a potential individual taking all this water needs from a 100 Bq/l tritiated water source, was evaluated to about one thousandth of the natural background. (authors)

  6. Forestry and the aquatic environment: studies in an Irish context

    Directory of Open Access Journals (Sweden)

    P. S. Giller

    2004-01-01

    Full Text Available Research on the interaction between plantation forestry and aquatic environments is essential to develop environmentally compatible and sustainable management further. Given, in Ireland, the generally low levels of atmospheric pollution, its geology and maritime climate, and the unique fauna and flora due to its island history, such studies are important not only in the regional context, but also internationally, as they provide an opportunity to examine the effect of forestry and forest management practices on aquatic systems per se, without the complications of acidification. Here, some of the major findings of forestry and water research in Ireland have been reviewed and compared with those from the UK and elsewhere. Plantation forests do not exacerbate acidification in the south of Ireland (Munster as a whole so that the influence of forestry on water chemistry is far less important than in other parts of the country (such as Wicklow and Mayo. The main forestry influence on streams in Munster is more likely through physical factors, but their nature is unclear. In a few catchments some negative effects are evident, but in many others apparently positive forest effects occur. In this context, smaller scale catchment-level effects appear to be more important in explaining the various relationships between plantation forests and stream ecology than larger scale regional factors. The management of riparian zones, particularly in forested catchments, is of major importance for the structure and functioning of aquatic communities and further work is needed on best management practices. It is suggested that it is unreasonable to base forest management on national Forest-Fisheries guidelines since regions vary too much and the signal from local conditions is too strong. The approach for environmentally benign, scientifically sound forestry management has to be at the catchment scale. Trees in the right places may be beneficial ecologically but

  7. Can aquatic macrophytes mobilize technetium by oxidizing their rhizosphere?

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1991-01-01

    Technetium (Tc) is very mobile in aerated surface environments, but is essentially immobile and biologically unavailable in anaerobic sediments. Aquatic macrophyte roots penetrate anaerobic sediments, carrying O 2 downward and frequently creating oxidizing conditions in their rhizosphere. The authors hypothesized that this process could mobilize otherwise unavailable Tc, possibly leading to incorporation of Tc into human or animal foods. Through experiments with rice (Oryza sativa L.), and with a novel artificial macrophyte root, they concluded that this pathway is unlikely to be important for annual plants, especially in soils with a high biological oxygen demand. The relatively slow oxidation of Tc limited its mobilization by short-lived root systems

  8. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  9. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  10. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    International Nuclear Information System (INIS)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-01-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  11. Identification of Endocrine Disruptive Effects in the Aquatic Environment - a Partial Life Cycle Study in Zebrafish

    NARCIS (Netherlands)

    Wester PW; Brandhof EJ van den; Vos JH; Ven LTM van der; TOX; LER

    2003-01-01

    In this project, an assay was developed and applied to identify hormone active substances in the aquatic environment. Laboratory fish were exposed during the reproductive and development phase to a range of established endocrine active compounds; these were estrogen (17 beta-estradiol),

  12. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review

    International Nuclear Information System (INIS)

    Amde, Meseret; Liu, Jing-fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2017-01-01

    Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs. - Highlights: • Current state-of-the-knowledge on the transformation and bioavailability of MeO-NPs in the environment has been provided. • Effects of MeO-NPs behavior on their transformations have been reviewed. • Role of the transformation processes on bioavailability of the NPs have been discussed. • Future research directions required to fill the existing research gaps have been provided. - Transformations of MeO-NPs depend on nature of the NPs themselves and chemistry of the medium, and can significantly affect their fate, bioavailability and toxic-effects.

  13. Antibiotic resistant Pseudomonas spp. in the aquatic environment: A prevalence study under tropical and temperate climate conditions.

    Science.gov (United States)

    Devarajan, Naresh; Köhler, Thilo; Sivalingam, Periyasamy; van Delden, Christian; Mulaji, Crispin K; Mpiana, Pius T; Ibelings, Bastiaan W; Poté, John

    2017-05-15

    Microbial populations which are resistant to antibiotics are an emerging environmental concern with potentially serious implications for public health. Thus, there is a growing concern in exploring the occurrence of antibiotic resistance in the environment with no limitations to the factors that contribute to their emergence. The aquatic environment is considered to be a hot-spot for the acquisition and spread of antibiotic resistance due to pollution with emerging contaminants derived from anthropogenic activities. In this study, we report on the isolation and characterization of 141 Pseudomonas spp. from aquatic sediments receiving partially (un)treated hospital and communal effluents from three distinct geographical locations: Democratic Republic of the Congo (DRC), India (IN), and Switzerland (CH). P. putida (42%) and P. aeruginosa (39%) were the dominant Pseudomonas species. The highest frequency of antibiotic resistance against eight anti-pseudomonas agents was found among IN isolates (35-60%), followed by DRC (18-50%) and CH (12-54%). CTX-M was the most frequent β-lactamase found in CH (47% of isolates), while VIM-1 was dominant in isolates from DRC (61%) and IN (29%). NDM-1 was found in 29% of the total IN isolates and surprisingly also in 6% of CH isolates. Chromosomally-encoded efflux mechanisms were overexpressed in P. aeruginosa isolates from all three geographic locations. In vitro conjugative transfers of antibiotic resistance plasmids occurred more frequently under tropical temperatures (30 and 37 °C) than under temperate conditions (10 °C). The presence of Extended Spectrum β-lactamases (ESBLs) and Metallo β-lactamases (MBLs) in the isolates from environmental samples has important implications for humans who depend on public water supply and sanitation facilities. To our knowledge, this is the first study to demonstrate a comparison between treated/untreated effluents from urban and hospital settings as a source of microbial resistance

  14. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  15. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  16. Transfer of radionuclides at the uranium and thorium decay chains in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Letourneau, C.

    1987-04-01

    This report examines the transfer of radionuclides from the uranium and thorium decay chains (U-238, Ra-226, Th-232, Th-230, Po-210 and Pb-210) through the aquatic and terrestrial environment. This transfer is characterized by a transfer coefficient; environmental and experimental factors which cause this coefficient to vary are presented and discussed in this report. Furthermore, based on a literature survey, the report indicates the range of coefficients found for the aquatic sector (that is, sediment and freshwater and marine organisms) and for the terrestrial sector (that is, plants and domestic and wild animals). Afterwards, generalisations are formulated on the transfer of the different radionuclides through the multiple environmental compartments. 75 refs

  17. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  18. Nanomaterials in the aquatic environment

    DEFF Research Database (Denmark)

    Selck, Henriette; Handy, Richard D; Fernandes, Teresa F.

    2016-01-01

    when assessing NM hazards (e.g., uptake routes, bioaccumulation, toxicity, test protocols, and model organisms). The authors' recommendation is to place particular importance on studying the ecological effects of aged/weathered NMs, as-manufactured NMs, and NMs released from consumer products...... in addressing the following overarching research topics: 1) NM characterization and quantification in environmental and biological matrices; 2) NM transformation in the environment and consequences for bioavailability and toxicity; 3) alternative methods to assess exposure; 4) influence of exposure scenarios......The European Union–United States Communities of Research were established in 2012 to provide a platform for scientists to develop a “shared repertoire of protocols and methods to overcome nanotechnology environmental health and safety (nanoEHS) research gaps and barriers” (www.us-eu.org/). Based...

  19. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  20. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    Science.gov (United States)

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  1. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-10-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC (dissolved organic carbon) in aquatic environments, little is known of the large-scale patterns in biologically and photochemically degradable DOC (BDOC and PDOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explored the patterns in the concentrations and proportions of BDOC and PDOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophic status and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of BDOC and PDOC covaried across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM; identified by fluorescence analyses) in ambient waters. Concentrations of nutrients and protein-like fluorescent DOM (FDOM) explained nearly half of the variation in BDOC, whereas PDOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific FDOM pools that we experimentally determined. The concentrations of colored DOM (CDOM), which we use here as a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both BDOC and PDOC. The concentrations of CDOM and of the putative biolabile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in darker streams and wetlands. This suggests a baseline autochthonous BDOC pool fueled by internal production that is gradually overwhelmed by land-derived BDOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photochemically degradable DOC for

  2. Geotoxic materials in the surface environment

    International Nuclear Information System (INIS)

    Koranda, J.J.; Cohen, J.J.; Smith, C.F.; Ciminesi, F.J.

    1981-01-01

    The toxicology and natural occurrence of several recognized geotoxic elements including arsenic, cadmium, chromium, nickel, lead, selenium, uranium, and vanadium is reviewed. The behavior of these elements in the environment and in biological systems is examined. The properties of these eight toxic elements are summarized and presented in a toxicity matrix. The toxicity matrix identifies each of the elements in terms of average crustal abundance, average soil concentration, drinking water standards, irrigation water standards, daily human intake, aquatic toxicity, phytotoxicity, mammalian toxicity, human toxicity, and bioaccumulation factors for fish. Fish are the major aquatic environment contribution to the human diet and bioaccumulation in aquatic ecosystems has been demonstrated to be an important factor in the cycling of elements in aquatic ecosystems. The toxicity matrix is used as a first approximation to rank the geotoxicity of elements for the purpose of focusing future efforts. The ranking from highest to lowest toxicity with respect to the toxicity parameters being discussed is as follows: arsenic, cadmium, lead, selenium, chromium, vanadium, nickel, and uranium

  3. Geotoxic materials in the surface environment

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Cohen, J.J.; Smith, C.F.; Ciminesi, F.J.

    1981-12-07

    The toxicology and natural occurrence of several recognized geotoxic elements including arsenic, cadmium, chromium, nickel, lead, selenium, uranium, and vanadium is reviewed. The behavior of these elements in the environment and in biological systems is examined. The properties of these eight toxic elements are summarized and presented in a toxicity matrix. The toxicity matrix identifies each of the elements in terms of average crustal abundance, average soil concentration, drinking water standards, irrigation water standards, daily human intake, aquatic toxicity, phytotoxicity, mammalian toxicity, human toxicity, and bioaccumulation factors for fish. Fish are the major aquatic environment contribution to the human diet and bioaccumulation in aquatic ecosystems has been demonstrated to be an important factor in the cycling of elements in aquatic ecosystems. The toxicity matrix is used as a first approximation to rank the geotoxicity of elements for the purpose of focusing future efforts. The ranking from highest to lowest toxicity with respect to the toxicity parameters being discussed is as follows: arsenic, cadmium, lead, selenium, chromium, vanadium, nickel, and uranium.

  4. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  5. Development of a fluorescent antibody method for the detection of Enterococcus faecium and its potential for coastal aquatic environment monitoring.

    Science.gov (United States)

    Caruso, Gabriella; Monticelli, L S; Caruso, R; Bergamasco, A

    2008-02-01

    A direct, microscopic fluorescent antibody method was developed to detect the occurrence of Enterococcus faecium in coastal aquatic environments and was compared with the conventional membrane filtering method. The "in situ" application of the antibody-based protocol in the analysis of water samples collected from coastal polyhaline habitats demonstrated good sensitivity and ease of implementation. Data obtained with the microscopic technique were in agreement with those obtained from culture counts. The fluorescent antibody method proved to be a rapid and reliable technique for the detection of E. faecium. The advantages and limitations intrinsic to the method are discussed, highlighting the potential of this new technique for monitoring coastal aquatic environments.

  6. Comparison of atmosphere/aquatic environment concentration ratio of volatile chlorinated hydrocarbons between temperate regions and Antarctica.

    Science.gov (United States)

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna

    2009-09-01

    For the purpose of understanding the transport and deposition mechanisms and the air-water distribution of some volatile chlorinated hydrocarbons (VCHCs), their atmosphere/aquatic environment concentration ratio was evaluated. In addition, for the purpose of differentiating VCHC behaviour in a temperate climate from its behaviour in a polar climate, the atmosphere/aquatic environment concentration ratio evaluated in matrices from temperate zones was compared with the concentration ratio evaluated in Antarctic matrices. In order to perform air samplings also at rigid Antarctic temperatures, the sampling apparatus, consisting of a diaphragm pump and canisters, was suitably modified. Chloroform, 1,1,1-trichloroethane, tetrachloromethane, 1,1,2-trichloroethylene and tetrachloroethylene were measured in air, water and snow using specific techniques composed of a purpose-made cryofocusing-trap-injector (for air samples) and a modified purge-and-trap injector (for aqueous samples) coupled to a gas chromatograph with mass spectrometric detection operating in selected ion monitoring mode. The VCHCs were retrieved in all the investigated matrices, both Italian and Antarctic, with concentrations varying from tens to thousands of ng m(-3) in air and from digits to hundreds of ng kg(-1) in water and snow. The atmosphere/aquatic environment concentration ratios were always found to be lower than 1. In particular, the Italian air/water concentration ratios were smaller than the Antarctic ones, by reason of the higher atmospheric photochemical activity in temperate zones. On the other hand, the Antarctic air/snow concentration ratios proved to be largely in favour of snow with respect to the Italian ratios, thus corroborating the hypothesis of a more efficient VCHC deposition mechanism and accumulation on Antarctic snow.

  7. Aquatic Insect from Iran for Possible Use of Biological Control of Main Vector-Borne Disease of Malaria and Water Indicator of Contamination

    Directory of Open Access Journals (Sweden)

    Zahra Saeidi

    2018-03-01

    Full Text Available Iran has a wide variety of zoogeographical regions and different seasons. Here are some important mosquito-borne diseases. Mosquitoes normally live in waters. Its aquatic insect fauna is highly unexplored. To being resolved this faunal gap, a variety of literature records from previous century in different parts of Iran was reviewed. In some southern and southeastern foci in Iran, Malaria is still a main endemic disease which is unstable with two seasonal spring and autumn peaks even though Iran is lunching Malaria elimination. This review article showed the wide variety of aquatic insects throughout the country. Researchers can discuss water pollutant and its quality by using aquatic insect fauna as well as biological control for vectors. Types of aquatic in­sects and macroinvertebrates sampling can be useful for water quality monitoring as indicators. Looking at aquatic insects’ life in water could be one of the most cost-effective and the easiest method to assess the water contaminations by different pollutants and will provide a guideline for scientific communities and environmental agencies for decision making.

  8. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  9. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Shi, Junpeng [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2015-07-15

    Highlights: • In the dark, AgNPs formed chain-like structures through bridging effects with NOM. • NOM decelerated the photoreaction of AgNPs but did not stop the photoconversion. • Under extended irradiation, NOM substituted for citrate as a stabilizer. • In different aquatic systems AgNPs would suffer distinct environmental behavior. - Abstract: With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag{sup +} in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.

  10. A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments

    NARCIS (Netherlands)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2015-01-01

    We have performed incubation experiments in order to examine the behaviour of soil-derived branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to evaluate the processes that potentially take place during their fluvial transport from land to

  11. Spatial and temporal distribution of free-living protozoa in aquatic environments of a Brazilian semi-arid region

    Directory of Open Access Journals (Sweden)

    Maria Luisa Quinino de Medeiros

    2013-08-01

    Full Text Available Free-living protozoa organisms are distributed in aquatic environments and vary widely in both qualitative and quantitative terms. The unique ecological functions they exhibit in their habitats help to maintain the dynamic balance of these environments. Despite their wide range and abundance, studies on geographical distribution and ecology, when compared to other groups, are still scarce. This study aimed to identify and record the occurrence of free-living protozoa at three points in Piancó-Piranhas-Açu basin, in a semi-arid area of Rio Grande do Norte (RN state, and to relate the occurrence of taxa with variations in chlorophyll a, pH and temperature in the environments. Samples were collected in the Armando Ribeiro Gonçalves Dam, from two lentic environments upstream and a lotic ecosystem downstream. Sixty-five taxa of free-living protozoa were found. The Student's t-test showed significant inter-variable differences (p <0.05. Similar protozoan species were recorded under different degrees of trophic status according to chlorophyll a concentrations, suggesting the organisms identified are not ideal for indicating trophic level. We hypothesize that food availability, the influence of lentic and lotic systems and the presence of aquatic macrophytes influenced protozoan dynamics during the study period.

  12. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  13. Interaction of 238PuO2 heat sources with terrestrial and aquatic environments

    International Nuclear Information System (INIS)

    Patterson, J.H.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.

    1975-01-01

    Radioisotope thermoelectric generators used in space missions are designed with a great factor of safety to ensure that they will withstand reentry from orbit and impact with the earth, and safely contain the nuclear fuel until it is recovered. Existing designs, utilizing 238 PuO 2 fuel, have proved more than adequately safe. More data about the interaction of this material with terrestrial and aquatic environments is continually being sought to predict the behavior of these heat sources in the extremely unlikely contact of these materials with the land or ocean. Terrestrial environments are simulated with large environmental chambers that permit control of temperature, humidity, and rainfall using different kinds of soils. Rain falling on thermally hot chunks of 238 PuO 2 causes the spallation of the surface of the fuel into extremely fine particles, as small as 50 nm, that are later transported downward through the soil. Some of the plutonia particles become agglomerated with soil particles. Plutonium transport is more significant during winter than during summer because evaporation losses from the soil are less in winter. Aquatic environments are simulated with large aquaria that provide temperature and aeration control. Earlier fuel designs that employed a plutonia-molybdenum cermet showed plutonium release rates of about 10 μCi/m 2 - s, referred to the total surface area of the cermet. Present advanced fuels, employing pure plutonium oxide, show release rates of about 20 nCi/m 2 - s in seawater and about 150 nCi/m 2 - s in freshwater. The temperature of these more advanced heat sources does not seem to affect the release rate in seawater. (auth)

  14. Reactivity and transfer of tributyl-tin and mercury in aquatic environments; Etude de la reactivite et du transfert du tributyletain et du mercure dans les environnements aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, E

    2004-12-15

    Aquatic ecosystems are particularly affected by tributyl-tin (TBT) and mercury (Hg) chronic contamination. These micro-pollutants are ubiquitous and persistent and occurred at trace level, likely to drastically impair aquatic environments. TBT and Hg biogeochemical cycles are driven by transformation and transfer mechanisms between the different environmental compartments. These natural processes have been studied in details by using novel analytical methods and environmental design to improve the risk assessment. The first part of this work focus on the mechanistic study of TBT and Hg reactivity and transfer in reconstituted aquatic ecosystems. These experiments involve both state-of-the-art analytical speciation techniques, partly based on quantification by isotopic dilution and experimental tools simulating the environmental conditions. Kinetics of TBT and Hg distribution (adsorption, bioaccumulation, biodegradation, clearance) have been simultaneously characterized in all compartments of the microcosms presenting a simple biological organization. In a second step, volatilization kinetics of TBT at real interfaces have been studied to assess the potential remobilization and elimination pathways of butyl-tin compounds. Finally, in a third part, stable isotopic tracers of Hg have been employed to discriminate and quantify the coupled methylation and demethylation kinetics in estuarine sediments, by forcing different environmental factors (oxygenation, microbial activity). (author)

  15. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment.

    Science.gov (United States)

    Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang

    2017-10-01

    Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-02

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2017-10-01

    Full Text Available In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF is crucial since it gives insights about: (i environmental fate (i.e., occurrence, distribution, removal processes and (biodegradation; (ii illicit discharges; (iii consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides; and (iv enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs and polycyclic musks (PCMs. Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents and direct methods (chiral stationary phases. The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.

  18. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  19. Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-05-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in

  20. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    Science.gov (United States)

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  1. Prediction of climate impacts on pesticide leaching to the aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Hans Joergen; Rosenbom, A.; van der Keur, P.; Kjaer, J.; Sonnenborg, T. [GEUS Danmark, Copenhagen (Denmark); Olesen, J.E. [Aarhus Univ., Tjele (Denmark); Nistrup Joergensen, L. [Aarhus Unv., Slagelse (Denmark); Boessing Christensen, O. [Danmarks Meteorologiske Institut (DMI), Copenhagen (Denmark)

    2013-10-01

    The report evaluates direct (precipitation, actual evapotranspiration and temperature) and indirect (crop rotations, crop management, and pesticide use) climatic change effects on pesticide-leaching to groundwater and the aquatic environment by use of MACRO and MIKE SHE model. The analysis is based on five model pesticides: low-dose herbicides, ordinary herbicides, strongly sorbing herbicides, fungicides and insecticides, and selected farm types (arable and dairy) for the variable saturated sandy soil (Jyndevad) and loamy soil (Faardrup). The evaluation has the aim at describing the implications of future climatic factors on pesticide leaching to groundwater as realistic as possible, based on realistic doses and parameters from MACRO setups from the Danish Pesticide Leaching Assessment Programme. (Author)

  2. Innovative biological approaches for monitoring and improving water quality

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2015-08-01

    Full Text Available Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.

  3. Innovative biological approaches for monitoring and improving water quality

    Science.gov (United States)

    Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.

    2015-01-01

    Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034

  4. Biological conservation of aquatic inland habitats: these are better days

    OpenAIRE

    Ian J. Winfield

    2013-01-01

    The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack...

  5. How can increased use of biological N2 fixation in agriculture benefit the environment?

    International Nuclear Information System (INIS)

    Jensen, Erik Steen; Hauggaard-Nielsen, Henrik

    2001-01-01

    Asymbiotic, associative or symbiotic biological N 2 fixation (BNF), is a free and renewable resource, which should constitute an integral part of sustainable agro-ecosystems. Yet there has been a rapid increase in use of fertiliser N and a parallel decline in the cultivation of leguminous plants and BNF, especially in the developed world. Fertilisers have boosted crop yields, but intensive agricultural systems have increasingly negative effects on the atmospheric and aquatic environments. BNF, either alone or in combination with fertilisers and animal manures, may prove to be a better solution to supply nitrogen to the cropping systems of the future. This review focuses on the potential benefit of BNF on the environment especially on soil acidification, rhizosphere processes and plant CO 2 fixation. As fertiliser N has supplanted BNF in agriculture the re-substitution of BNF is considered. What is the consequence of fertiliser N production on energy use? The effect of fertiliser use on the release of the greenhouse gas CO 2 is estimated at approximately 1 % of the global anthropogenic emission of CO 2 . The role of BNF on nitrogen cycling, ammonia volatilisation, N 2 O emission and NO 3 leaching suggests that BNF is less likely than fertilisers to cause losses during pre-cropping and cropping. Sometimes however the post-harvest losses may be greater, due to the special qualities of legume residues. Nevertheless, legumes provide other 'ecological services' including improved soil structure, erosion protection and greater biological diversity. (author)

  6. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    Science.gov (United States)

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

  7. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  8. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects.

    Science.gov (United States)

    Duis, Karen; Coors, Anja

    2016-01-01

    Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be

  9. An assessment of the long-term persistence of prion infectivity in aquatic environments

    International Nuclear Information System (INIS)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernández-Borges, Natalia; Píquer, Juan; Girones, Rosina; Andreoletti, Olivier; Torres, Juan-María

    2016-01-01

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP C transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP Res persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater conventional

  10. An assessment of the long-term persistence of prion infectivity in aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernández-Borges, Natalia; Píquer, Juan [Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid (Spain); Girones, Rosina [Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona (Spain); Andreoletti, Olivier [UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse (France); Torres, Juan-María, E-mail: jmtorres@inia.es [Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid (Spain)

    2016-11-15

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP{sup C} transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP{sup Res} persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater

  11. Uptake and release kinetics of 134Cs by goldfish (Carassius auratus) and 137Cs by zebra fish (Brachydanio rerio) in controlled aquatic environment

    International Nuclear Information System (INIS)

    Srivastava, A.; Reddy, S.J.; Kelber, O.; Urich, K.; Denschlag, H.O.

    1994-01-01

    The uptake and release kinetics of 134 Cs by Goldfish (Carassius auratus) and 137 Cs by Zebra Fish (Brachydanio rerio) from aquatic media of different ionic compositions and temperature was studied in controlled laboratory conditions. The accumulation of radiocesium in the case of Brachydanio rerio is observed to be strongly dependent on the potassium ion concentration of the aquatic medium, but in the case of Carassius auratus this dependence is quite weak. The biological half-lives of the cesium isotopes incorporated into the fish investigated in the present work vary from 19 to 80 days and are influenced by the temperature and the ionic composition of the aquatic medium. (author) 19 refs.; 1 fig.; 3 tabs

  12. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2012-02-01

    Full Text Available Southeast Asia has become the center of rapid industrial development and economic growth. However, this growth has far outpaced investment in public infrastructure, leading to the unregulated release of many pollutants, including wastewater-related contaminants such as antibiotics. Antibiotics are of major concern because they can easily be released into the environment from numerous sources, and can subsequently induce development of antibiotic-resistant bacteria. Recent studies have shown that for some categories of drugs this source-to-environment antibiotic resistance relationship is more complex. This review summarizes current understanding regarding the presence of quinolones, sulfonamides, and tetracyclines in aquatic environments of Indochina and the prevalence of bacteria resistant to them. Several noteworthy findings are discussed: 1 quinolone contamination and the occurrence of quinolone resistance are not correlated; 2 occurrence of the sul sulfonamide resistance gene varies geographically; and 3 microbial diversity might be related to the rate of oxytetracycline resistance.

  13. The influence of the physical environment on simulations of complex aquatic ecosystem dynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan

    hydrodynamics. To test the hypothesis that the physical environment may induce strong influence on ecosystem processes, we applied and compared PCLake applications, with the same standard ecosystem model parameterization, for three different physical environment representations of the same volume of water body......The field of aquatic ecosystem modelling has been active since the late 1970s, and in recent decades the models have grown in complexity in terms of ecosystem components and included processes. However, the complexity in ecosystem conceptualizations generally comes at the expense of simple...... or no hydrodynamic representation, in particular for ecosystem models where higher trophic levels, such as fish, are included. On the other hand, physically resolved hydrodynamic models often include none or only simple representations of ecosystem dynamics. To overcome this discrepancy in complexity between...

  14. C.E.B.A.S., a closed equilibrated biological aquatic system as a possible precursor for a long-term life support system?

    Science.gov (United States)

    Blüm, V.

    C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utlizitation in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recycling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a ``Closed Equilibrated Biological Aquatic System'' (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related resrearch. It furtheron discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.

  15. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    International Nuclear Information System (INIS)

    Ghosh, T.K.

    2001-01-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  16. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, T K [Ecotechnology Division, National Environmental Engineering Research Inst., Nagpur (India)

    2001-06-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  17. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  18. [Aquatic heteroptera from Mariana County, Minas Gerais, Brazil].

    Science.gov (United States)

    de Souza, Marco A A; de Melo, Alan L; Vianna, Gustavo J C

    2006-01-01

    In surveys carried out in lotic and lentic environments in Mariana County, Minas Gerais state, Brazil, 35 genera and 64 species of aquatic and semi-aquatic Heteroptera were recorded, distributed in 13 families. Thirty four species were collected in lentic environments, while in lotic environments 48 species were collected, some of them common to both environments. Nepomorpha presented the greatest number of species (45), markedly for the family Naucoridae, represented by 12 species. Among the 19 Gerromorpha species collected, eight were Veliidae and six were Gerridae.

  19. Transuranic radionuclides dispersed into the aquatic environment, a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.; Stoker, A.C.; Wong, Kai M. [and others

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

  20. Marine invasions by non-sea snakes, with thoughts on terrestrial-aquatic-marine transitions.

    Science.gov (United States)

    Murphy, John C

    2012-08-01

    Few species of snakes show extensive adaptations to aquatic environments and even fewer exploit the oceans. A survey of morphology, lifestyles, and habitats of 2552 alethenophidian snakes revealed 362 (14%) that use aquatic environments, are semi-aquatic, or aquatic; about 70 (2.7%) of these are sea snakes (Hydrophiinae and Laticaudinae). The ancient and aquatic family Acrochordidae contains three extant species, all of which have populations inhabiting brackish or marine environments, as well as freshwater. The Homalopsidae have the most ecologically diverse representatives in coastal habitats. Other families containing species exploiting saline waters with populations in freshwater environments include: the Dipsadidae of the western hemisphere, the cosmopolitan Natricidae, the African Grayinae, and probably a few Colubridae. Species with aquatic and semi-aquatic lifestyles are compared with more terrestrial (fossorial, cryptozoic, and arboreal) species for morphological traits and life histories that are convergent with those found in sea snakes; this may provide clues to the evolution of marine snakes and increase our understanding of snake diversity.

  1. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  2. Extracellular enzyme activities of aquatic bacteria in polluted environment: 2. Amylolytic activity

    International Nuclear Information System (INIS)

    Arbaciauskiene, V.

    2003-01-01

    Water samples were taken from Lake Drukshiai tributaries (Ricanka); Gulbinele Stream affected by urban rain sewerage from Visaginas; Gulbinele Stream into which municipal sewage from Visaginas (MS) and industrial rain sewerage from the Ignalina NPP and their mouth, and Lake Dringis. Lake Dringis, in Aukstaitija National Park, was selected as an ecosystem pattern of a weak anthropogenic influence, while Lake Drukshiai was chosen as a regularly polluted water body. Lake Drukshiai, the cooling basin of the Ignalina NPP (IRS-1.2), is being polluted with industrial and municipal sewage through its tributaries. The amylolytic activity (AA) of heterotrophic aquatic bacteria was tested. The highest total mean AA of aquatic bacteria was calculated in Lake Dringis. Here, the results were significantly higher than in Lake Drukshiai tributaries and their mouths, excepting the mouths of the Ricanka and MS. The lowest mean of AA in Lake Drukshiai was characteristic of the IRS-1.2 tributary. A comparison of the mean AA of active isolates showed that certain bacterial strains from the sites of varying degrees of pollution could be noted for a relatively high level of enzymatic activity. Thus, anthropogenic pollution exerts a negative effect on the total mean AA, although certain strains of bacteria are able to adapt to the stressful environment and remain active. (author)

  3. Diversity and abundance of aquatic macroinvertebrates in a lotic environment in Midwestern São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Lucas Bochini

    2009-04-01

    Full Text Available This study analyzed the diversity and abundance of an aquatic macroinvertebrate community in the Vargem Limpa stream located in Bauru, Midwestern São Paulo State, and characterized the water quality based on biological parameters. The sampling was carried out during the rain season (December, 2004. It was analyzed and identified 3,068 organisms belonging to 9 macroinvertebrate families. The system showed low richness and diversity of organisms in response to water quality.

  4. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  5. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Tsai, Yu-Ting; Yu, Tsung-Hsien

    2014-05-01

    The current article maps perfluoroalkyl acids (PFAAs) contamination in the largest Science Park of Taiwan. The occurrence of ten target PFAAs in the effluent of an industrial wastewater treatment plant (IWWTP), its receiving rivers, rainwater, sediment, and the muscles and livers of fish was investigated. All target PFAAs were found in effluent of IWWTP, in which perfluorooctane sulfonate (PFOS) (6,930 ng/L), perfluorohexyl sulfonate (PFHxS) (2,662 ng/L) and perfluorooctanoic acid (PFOA) (3,298 ng/L) were the major constituents. Concentrations of PFBS and PFOS in the IWWTP downstream areas have exceeded safe concentration levels of avian and aquatic life, indicating a potential risk to wildlife in those areas. In sediment samples, predominant contaminants were PFOS (1.5-78 ng/g), PFOA (0.5-5.6 ng/g), and perfluorododecanoic acid (PFDoA) (nd-5.4 ng/g). In biological tissue samples, concentrations as high as 28,933 ng/g of PFOS were detected in tilapia and catfish liver samples. A positive correlation for log (C sediment/C water) and log (C tissue/C water) was found. The concentration and proportion (percentage of all PFAAs) of PFOS found in biotissue samples from the Keya River (which receives industrial wastewater) were found to be much greater (200 times) than those of samples from the Keelung River (which receives mainly domestic wastewater). These findings suggest that the receiving aquatic environments and, in turn, the human food chain can be significantly influenced by industrial discharges.

  6. LADTAP-2, Organ Doses to Man and Other Biota from Aquatic Environment

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.; Whelan, G.

    1989-01-01

    1 - Description of problem or function: LADTAP2 performs environmental dose analyses for releases of liquid effluents from light-water nuclear power plants into surface waters during routine operation. The analyses estimate radiation doses to individuals, population groups, and biota from ingestion (aquatic foods, water, and terrestrial irrigated foods) and external exposure (shoreline, swimming, and boating) pathways. The calculated doses provide information for National Environmental Policy Act (NEPA) evaluations and for determining compliance with Appendix I of 10 CFR 50 (the 'ALARA' philosophy). The program consists of a hydrologic model chosen to represent mixing in the effluent impoundment system and the receiving surface waters and the exposure pathway models which estimate exposure of selected groups at various water usage locations in the environment. Two types of population doses are calculated. An ALARA analysis is performed based on exposure of people within 50 miles of the site, and a NEPA analysis is performed based on exposure of the entire U.S. population to effluents from the site. A population-dose analysis prepared in the form of a cost-benefit table presents the total-body and thyroid doses from each radionuclide released and the population doses (total-body and thyroid) per curie of each radionuclide released. 2 - Method of solution: The impoundment system is represented by one of four hydrologic models: direct release to the receiving water, linear flow with no mixing (the plug-flow model), linear flow through the impoundment with partial recirculation through the reactor (the partially mixed model), or complete mixing in the impoundment with partial recirculation through the reactor (the completely mixed model). The last three account for radiological decay during transit through the impoundment system. Optional models are available to estimate dilution in nontidal rivers and near-shore lake environments. The consequence calculation part of

  7. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  8. Photocatalytic Role of Zinc Oxide Nanoparticles on Synthetic Activated Carbon to Remove Antibiotic from Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2017-10-01

    Full Text Available Background & Aims of the Study: The presence of antibiotics in the environment, especially in aquatic environments is a major concern for health and the environment. The advanced oxidation process due to the ease of use, economical advantages and high performance have attracted a lot of attention. The purpose of this study was Evaluating of the photocatalytic role of zinc oxide on synthetic activated carbon to remove antibiotic from aquatic environment. Materials & Methods: This experimental study was done in batch reactor that has a 1 L volume. In this study effect of parameters such as initial pH (3-9, initial concentration of cefazolin (20-200 mg/L, modified photocatalyst concentration (20-100 mg/L and reaction time (10-60 min was investigated. In this study a low-pressure mercury lamp with the power of 55 watts in stainless case has been used. The cefazolin concentrations in different steps were measured using UV-Vis spectrophotometer in Wavelength of 262 nm. Results: The results showed that the highest removal efficiency (96% of cefazolin was at the pH=3, 0.1 mg/L of modified photocatalyst, retention time of 60 min and cefazolin concentrations of 100 mg/L. In the case of changing any of the above mentioned values, process efficiency was decreased. Conclusion: The results showed that the photocatalytic process of zinc oxide nanoparticles on synthetic activated carbon can be used as an advanced oxidation process to effectively remove pollutants like cefazolin and other similar pollutants.

  9. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  10. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.

    Science.gov (United States)

    Shen, Li; Fischer, Jillian; Martin, Jonathan; Hoque, Md Ehsanul; Telgmann, Lena; Hintelmann, Holger; Metcalfe, Chris D; Yargeau, Viviane

    2016-11-01

    Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22μm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters. Copyright © 2016 Elsevier B.V. All

  11. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  12. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  13. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  14. nTiO_2 mass transfer and deposition behavior in an aquatic environment

    International Nuclear Information System (INIS)

    Wei, Xiuzhen; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan; Lv, Bosheng

    2016-01-01

    Nano-TiO_2 (nTiO_2) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO_2 can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO_2 in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO_2 in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO_2 deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO_2 stability in the river and limited its aggregation most effectively, resulting in slow nTiO_2 deposition and nTiO_2 transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.

  15. Tropical dermatology: marine and aquatic dermatology.

    Science.gov (United States)

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  16. Behavior of Ra-226 and Pb-210 in the aquatical environment of the first Brazilian uranium mine and mill

    International Nuclear Information System (INIS)

    Franca, E.P.; Amaval, E.C.S.; Stoffel, M.G.

    1982-01-01

    The first Brazilian uranium mine and mill will start operation in 1981, on the Pocos de Caldas plateau, in the central state of Minas Gerais. The pre-operational environmental survey indicated that the critical radionuclides in the region will be: 226 Ra due to the tailing pond liquid effluent and 21 Pb produced via 222 Rn dispersion, natural fall-out and accumulation on the ground. Sorption and desorption studies of 226 Ra and 210 Pb on their interaction with local water, suspended matter and sediments have been carried out in the laboratory to understand their behavior in the regional aquatic environment. The laboratory experiments gave indications that, in the aquatic environment of Pocos de Caldas, 210 Pb should remain mostly sorbed on bottom sediments. Its transport should occur essentially bound to suspended matter. By contrast, 226 Ra should be transported mostly in the soluble form

  17. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  18. Impact on the aquatic environment of hydro-peaking in hydroelectric plants

    International Nuclear Information System (INIS)

    Sabaton, C.; Lauters, F.; Valentin, S.

    1996-01-01

    There are a number of types of hydroelectric installations on French rivers. Some of these intermittently turbine water stored in dammed reservoirs, in order to use available reserves at the most opportune moment for power generation. These plants, run under 'hydro-peaking' management procedures, cause variations in discharge in river sections downstream of the restitution, on a daily or weekly scale. To answer questions concerning the impact of such variations in discharge on the aquatic environment, EDF launched a research program aimed at describing and better understanding the physical and biological phenomena related to hydro-peaking and assessing the possible impact of this type of plant management on French streams. Seven sites subjects to hydro-peaking were studied on rivers with mean flow rates lower than 20 m 3 /s (which corresponds to over 65 % of EDF hydro-peaking sites). Four themes in particular were examined: hydraulic characterization of hydro-peaking, modifications in thermal regime and water quality, response of benthic invertebrates and response of fish populations to hydro-peaking. For fish as well as for invertebrates, the role of the base discharge - in the absence of peaking flow - and that of the morphology of the river bed (and, in particular, the presence of shelter for fish) during periods of strong discharge were clearly highlighted. Impact assessment requires a precise diagnosis of the state of biocenoses. To carry out such a diagnosis, one must reason in terms of species, life phase (particularly the most sensitive phases) and population structure as well as the type of stream and the faunizone involved. A risk assessment is possible by means of simultaneous study of the morphology of the river bed and the response of the signal generated by hydro-peaking in terms of hydrology and physical characteristics downstream of the restitution. (authors)

  19. Assessment of the environmental status of the coastal and marine aquatic environment in Europe: A plea for adaptive management

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Slijkerman, D.M.E.; Vethaak, A.D.; Schobben, J.H.M.

    2012-01-01

    Policymakers and managers have a very different philosophy and approach to achieving healthy coastal and marine ecosystems than scientists. In this paper we discuss the evolution of the assessment of the chemical status in the aquatic environment and the growing rift between the political intention

  20. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    Science.gov (United States)

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  1. Reviving a neglected celestial underwater polarization compass for aquatic animals.

    Science.gov (United States)

    Waterman, Talbot H

    2006-02-01

    Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.

  2. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total phytoplankton biomass in a nutrient...

  3. Review of heavy metal accumulation on aquatic environment in Northern East Mediterrenean Sea part I: some essential metals.

    Science.gov (United States)

    Yılmaz, Ayşe Bahar; Yanar, Alper; Alkan, Ela Nur

    2017-03-01

    All pollutants can reach the aquatic environments and the levels of heavy metals in upper members of the food web like fish can reach values many times higher than those found in aquatic environment or in sediments. Although heavy metals are essential or non-essential, all heavy metals are potentially harmful to humans and most organisms at some level of exposure and absorption. Marine organisms are good indicators for long-term monitoring of metal accumulation. The present review study is for evaluation of the data from previous studies about the toxic effects of selected heavy metals, like essential metals (copper, zinc, iron, chromium, and manganese), on seawater, sediment, and in different tissues of aquatic animals (demersal and bentic fish, invertabres) collected from different areas in Northern East Mediterrenean Sea since the 1990s. Some concern arose from previous studies, particularly in terms of safety for human consumption. For this purpose, 86 articles and 4 theses were examined and information was collected on the table to open a forward-looking view of the pollution of studied area. In previous studies, the variations in feeding habits, habitats, and the level of copper found in edible muscles of the demersal fish species (deep water fish species, carnivore) such as Mullus barbatus barbatus, Solea lascaris, Sparus aurata were always higher than those found in pelagic (omnivore) Mugil cephalus, Liza aurata. Results show discrepancies caused by many factors; thus, more work must be done carefully.

  4. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.

    Science.gov (United States)

    Chen, Kuang-Yu; Chou, Pei-Hsin

    2016-06-01

    Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals.

    Science.gov (United States)

    Hecker, Nikolai; Sharma, Virag; Hiller, Michael

    2017-11-01

    Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    Science.gov (United States)

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  7. Watershed-Scale Modeling of Land-Use and Altered Environment Impacts on Aquatic Weed Growth in the Delta

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, and water quality have all been suspected as playing role in the dramatic expansion of invasive aquatic plants and their impact on ecosystems of the San Francisco Bay / California Delta complex. NASA Ames Research Center, USDA-Agricultural Research Service, the State of California, UC Davis, and local governments have partnered under a USDA sponsored project (DRAAWP) to develop science-based, adaptive-management strategies for invasive aquatic plants in Sacramento-San Joaquin Delta. Critical to developing management strategies is to understand how the Delta is affected by both the magnitude of fluctuations in land-use and climate / drought induced altered environments and how the plants respond to these altered environments. We utilize the Soil Water Assessment Tool (SWAT), a watershed-scale model developed to quantify the impact of land management practices in large and complex watersheds on water quality, as the backbone for a customized Delta model - Delta-SWAT. The model uses land-use, soils, elevation, and hydrologic routing to characterize pesticide and nutrient transport from the Sacramento and San Joaquin rivers watersheds and loading into the Delta. Land-use within the Delta, as well as water extraction to supply those functions, and the resulting return of water to Delta waterways are included in Delta-SWAT. Hydrologic transport within the Delta has required significant attention to address the lack of elevation driven transport processes. Delta-SWAT water quality trend estimates are compared with water quality monitoring conducted throughout the Delta. Aquatic plant response to water quality and other environmental factors is carried out using a customized

  8. On the challenge of quantifying man-made nanoparticles in the aquatic environment.

    Science.gov (United States)

    Howard, Alan G

    2010-01-01

    Technologies based on nanomaterials are developing daily, finding applications as diverse as new sensors for improved monitoring and detection, new medical imaging techniques, novel approaches to the treatment and remediation of contaminated land and green technologies for chemical production. An inevitable consequence of Man's exploitation of nanotechnology is both the deliberate and accidental release of manufactured nanomaterials into the environment. This presents the analytical science community with a challenge for which it is, at present, poorly prepared--the quantification of specific nanoparticles in the environment. The problem is the development of trace analysis methods targeted at solid phase species, rather than the dissolved species measured, for example, in a typical pesticide residue analysis. This will require the adoption of radically different approaches and techniques, many of which will be unfamiliar to the conventionally trained environmental analyst. This paper sets out to give a very brief overview of the techniques that are available, specifically questioning their suitability for the quantification of man-made nanoparticles in the aquatic environment. Suggestions are made as to how these techniques might be transferred from the characterization of synthetic products to the field of trace analysis. The analytical community is presented with a new frontier of environmental investigation that can only commence with the development of innovative approaches to the quantitative measurement of man-made nanomaterials in the environment.

  9. Toxaphene in the aquatic environment of Greenland

    International Nuclear Information System (INIS)

    Vorkamp, Katrin; Rigét, Frank F.; Dietz, Rune

    2015-01-01

    The octa- and nonachlorinated bornanes (toxaphene) CHBs 26, 40, 41, 44, 50 and 62 were analysed in Arctic char (Salvelinus alpinus), shorthorn sculpin (Myoxocephalus scorpius), ringed seal (Pusa hispida) and black guillemot eggs (Cepphus grylle) from Greenland. Despite their high trophic level, ringed seals had the lowest concentrations of these species, with a Σ 6 Toxaphene median concentration of 13–20 ng/g lipid weight (lw), suggesting metabolisation. The congener composition also suggests transformation of nona- to octachlorinated congeners. Black guillemot eggs had the highest concentrations (Σ 6 Toxaphene median concentration of 971 ng/g lw). Although concentrations were higher in East than in West Greenland differences were smaller than for other persistent organic pollutants. In a circumpolar context, toxaphene had the highest concentrations in the Canadian Arctic. Time trend analyses showed significant decreases for black guillemot eggs and juvenile ringed seals, with annual rates of −5 to −7% for Σ 6 Toxaphene. The decreases were generally steepest for CHBs 40, 41 and 44. - Highlights: • Toxaphene was detected in freshwater and marine species of Greenland. • Relatively low concentrations in ringed seal suggest metabolisation. • The concentrations in Greenland appear lower than those in the Canadian Arctic. • Significant decreases were found in juvenile ringed seals and black guillemot eggs. - The banned insecticide toxaphene is widely present in the aquatic environment of Greenland, but concentrations are decreasing

  10. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Biological Monitoring Using Macroinvertebrates as Bioindicators of Water Quality of Maroaga Stream in the Maroaga Cave System, Presidente Figueiredo, Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Christiane Brito Uherek

    2014-01-01

    Full Text Available Aquatic environments are being modified by anthropogenic activities regarding their biological, physical, and chemical conditions; even pristine aquatic ecosystems can be threatened. This study focused on the biological monitoring of Maroaga Stream—a first order stream located in an Environmental Protection Area in the Amazon using the Biological Monitoring Working Party (BMWP Score System. The BMWP Score System revealed that the Maroaga Stream was a Class I stream (score of 138 points, indicating clean or not significantly altered water quality. The results suggest the adequate environmental conditions and ecological responses of the Maroaga Stream.

  12. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  13. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  14. A Study on the Evaluation Techniques of Pollutant Transport in Aquatic Environment

    International Nuclear Information System (INIS)

    Suh, Kyung Suk; Kim, Jin Hyuk; Kim, Ki Chel; Park, Geon Hyeong

    2010-06-01

    A study on the numerical modeling has been performed to evaluate the characteristics of hydrodynamics and pollutant transport in aquatic environment such as river, lake, estuary and coastal areas. A EFDC among the lots of codes was selected to analyze the characteristics of code and the applications. A EFDC is a general-purpose modeling package for simulating three-dimensional flow, transport, and biogeochemical processes in surface water systems including rivers, lakes, estuaries, reservoirs, wetlands and coastal regions. The structure of the EFDC model includes four major modules: a hydrodynamic model, a water quality model, a sediment transport model, and a toxic model. This report was described the characteristics of the EFDC model and examples of application in lake, river, estuary and ocean

  15. The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments.

    Science.gov (United States)

    Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta

    2015-08-22

    Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. © 2015 The Author(s).

  16. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  17. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    example, the salmonids in the coastal rivers and streams, and the larger interconnected streams, rivers, and lakes of the interior exhibit a variety of ecotypes and migratory life histories (Healey 1986; Trotter 1989; Larson and McIntire 1993; Northcote 1997). This life-history variation appears to be associated with adaptation to spatial and temporal variation in environment (e.g., Schaffer and Elson 1975; Carl and Healey 1984; Beacham and Murray 1987), and there is some evidence of the genetic heritability of life-history traits (Carl and Healey 1984; Gharrett and Smoker 1993; Hankin, Nicholas, and Downey 1993). Persistence of any level of biological organization (e.g., life-history type, population, metapopulation, subspecies, species, community) is related to the interaction of environmental and biological components, and intraspecific diversity is a means of spreading risk (sensu den Boer 1968) of extirpation in dynamic environments (Gresswell 1999). Unfortunately, despite the broad distribution and extensive intraspecific diversity, persistence of native fishes is uncertain in the Pacific Northwest. Many populations of anadromous salmonids, once synonymous with vigorous biological communities throughout the region, are threatened with extinction (Nehlsen, Williams, and Lichatowich 1991; Frissell 1993; Thurow, Lee, and Rieman 1997). Furthermore, over half of the native taxa in the Columbia River Basin are either listed under the Endangered Species Act, are being considered for listing, or are deemed sensitive by the management agencies (Lee et al. 1997; Thurow, Lee, and Rieman 1997). Potamodromous species like bull trout Salvelinus confluentus are estimated to occur as strong populations in less than 5% of their potential range (Rieman, Lee, and Thurow 1997). Although not currently listed under the endangered species list, the coastal cutthroat trout Oncorhynchus clarki is managed as a sensitive species in Oregon and California (Hall, Bisson, and Gresswell 1997

  18. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  19. Ecology of aerobic anoxygenic phototrophs in aquatic environments

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal

    2015-01-01

    Roč. 39, č. 6 (2015), s. 854-870 ISSN 0168-6445 R&D Projects: GA ČR GA13-11281S; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : photoheterotrophs * microbial loop * aquatic food webs Subject RIV: EE - Microbiology, Virology Impact factor: 13.687, year: 2015

  20. Aquatic Plant Management Program current status and seasonal workplan

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.R.; Bates, A.L.; Webb, D.H.

    1993-07-01

    The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.

  1. Micro/nanofabricated environments for synthetic biology.

    Science.gov (United States)

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  3. 40 CFR 161.490 - Wildlife and aquatic organisms data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Wildlife and aquatic organisms data... § 161.490 Wildlife and aquatic organisms data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the wildlife and aquatic organisms data requirements and the...

  4. Does aquatic foraging impact head shape evolution in snakes?

    Science.gov (United States)

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  5. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review

    International Nuclear Information System (INIS)

    Zhang, Dongqing; Gersberg, Richard M.; Ng, Wun Jern; Tan, Soon Keat

    2014-01-01

    Pharmaceuticals and personal care products (PPCPs) in the aquatic environment are regarded as emerging contaminants and have attracted increasing concern. The use of aquatic plant-based systems such as constructed wetlands (CWs) for treatment of conventional pollutants has been well documented. However, available research studies on aquatic plant-based systems for PPCP removal are still limited. The removal of PPCPs in CWs often involves a diverse and complex set of physical, chemical and biological processes, which can be affected by the design and operational parameters selected for treatment. This review summarizes the PPCP removal performance in different aquatic plant-based systems. We also review the recent progress made towards a better understanding of the various mechanisms and pathways of PPCP attenuation during such phytoremediation. Additionally, the effect of key CW design characteristics and their interaction with the physico-chemical parameters that may influence the removal of PPCPs in functioning aquatic plant-based systems is discussed. -- Highlights: • Investigation of the removal performance of PPCPs in CW systems. • Investigation of the mechanisms and pathways contributing to PPCP removal in CWs. • Investigation of the effect of CW design parameters on PPCP removal. • Investigation of the correlation between physico-chemical parameters and PPCP removal. -- This review gives an overview of the present state of research on the removal of pharmaceutical and personal care products by means of constructed wetlands

  6. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    Science.gov (United States)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  7. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    International Nuclear Information System (INIS)

    Ide, C.

    1996-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, 'Biomarkers and Risk Assessment in Bayou Trepagnier, LN', is particularly relevant to the US Department of Energy's Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex

  8. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Yang Suwen; Yan Zhenguang; Xu Fanfan; Wang Shengrui; Wu Fengchang

    2012-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  9. Aquatic studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Thermal stress to microorganisms was measured by the production of dissolved organic matter by algal communities and the mineralization of glucose by heterotrophic populations. Mutagenic activity as measured by the Ames/Salmonella/microsome assay indicate that such activity does not occur in Par Pond, although limited mutagenic activity does occur in a nearby canal system due to chlorination of cooling water. Sodium hypochlorite, used as an algicide in the reactor fuel storage basins, caused increased pitting corrosion to reactor fuel targets. Five other compounds selected for testing proved to be superior to sodium hypochlorite. Legionella pneumophila, the pathogen which causes Legionnaire's disease, was found to be a natural part of aquatic ecosystems. It occurs over a wide range of environments and is able to utilize nutrients provided by primary producers. Phytoplankton size classes of less than 3 μm (less than 5% of the total phytoplankton biomass) accounted for 15 to 40% of the total primary productivity in Par Pond, Pond C, and Clark Hill Reservoir. Three major biological data sets were compiled and are available in the SRL computer system for analysis: the SRP deer herd data; 20 years of Par Pond data; and 25 years of biological data on the Savannah River. Results of marine studies indicated that nearly all plutonium in the Savannah River and its estuary resulted from nuclear weapons fallout. The plutonium concentration in the Savannah River is about one fourth the concentration in the Newport River which has no nuclear operations associated with it

  10. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  11. FABM-PCLake – linking aquatic ecology with hydrodynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan; Bolding, Karsten; Bruggeman, Jorn

    2016-01-01

    This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem model, which we implemented in the Framework for Aquatic Biogeochemical Models (FABM). In contrast to the original model, which was designed for temperate, fully mixed freshwater lakes, the new FABM......-PCLake represents an integrated aquatic ecosystem model that can be linked with different hydrodynamic models and allows simulations of hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well as three-dimensional environments. FABM-PCLake describes interactions between multiple......, including water currents, light and temperature influence a wide range of biogeochemical processes. The model enables studies on ecosystem dynamics in physically heterogeneous environments (e.g., stratifying water bodies, and water bodies with horizontal gradients in physical and biogeochemical properties...

  12. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  13. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  14. Radioactivity in the aquatic environment. A review of UK research 1994-1997 and recommendations for future work

    International Nuclear Information System (INIS)

    1998-07-01

    The national Radioactivity Research and Environmental Monitoring Committee (RADREM) provides a forum for liaison on UK research and monitoring in the radioactive substances and radioactive waste management fields. The committee aims to ensure that there is no unnecessary overlap between, or significant omission from, the research programmes of the various parts of Government, the regulatory bodies or industry. This report has been produced by the Aquatic Environment Sub-Committee (AESC) of RADREM. AESC is responsible for providing RADREM with scientific advice in the field of research relating to radionuclides in the aquatic environment, for reporting on the progress of research in this field and on future research requirements. The objectives of this report are presented in Section 2, and the membership of AESC given in Section 3. This report describes a review of research undertaken in the field of radioactivity in aquatic systems over the last three years (Section 4). The review updates previous reviews, the most recent of which being in 1993 (AESC, 1994). Future research requirements have been identified by AESC, considering past work and work in progress, and are presented in Section 5. Specific research requirements are discussed in Section 5, whilst Section 6 summarises the main areas where future research is identified as a priority. These areas are as follows: the movement and uptake of 99 Tc and 14 C in aquatic systems and biota; geochemical processes; off-shore sediments; non-equilibrium systems; radiation exposure during civil engineering works; further work on movement of radionuclides in salt marshes; development and validation of models. The specific objectives of this report are as follows: 1. To provide a summary of research undertaken in this field over the last three years. 2. To identify future research requirements. 3. To attach priorities to the future research requirements. It should be noted that the purpose of the report is to identify

  15. Impact of treated effluents released from processing of radioactive mineral on the aquatic environment of Periyar river

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Haridasan, P.P.; Radhakrishna Pillai, K.; Pillai, P.M.B.; Khan, A.H.

    2005-01-01

    The chemical processing of monazite/ thorium concentrate for the separation of thorium, uranium and rare earths results in the generation of effluents, both acidic and alkaline. Indian Rare Earths Ltd (IREL), Udyogamandal was carrying out processing of monazite for nearly 50 years. Presently (since 2004) Indian Rare Earths Ltd, Udyogamandal is processing earlier stocked thorium hydroxide concentrate retrieved from Silos to produce Thorium Oxalate (along with a small percentage of Rare Earth elements), Nuclear Grade Ammonium Di-Uranate (NGADU), and small quantities of Nuclear Grade Thorium Oxide ('THRUST' Project). The treated effluents after monitoring are discharged to river Periyar. River Periyar is the recipient water body for treated effluents from IREL as well as a host of other chemical industries. Indian Rare Earths Ltd, Udyogamandal had been carrying out chemical processing of monazite for the past 50 years. Recently, from 2004, the plant has shifted from monazite processing to processing of thorium concentrate (THRUST Project). The present paper discusses the characteristics of the effluents generated as per this project, their treatment, monitoring methodology, discharge and impact on the aquatic environment of river Periyar. It has been noted that the impact on the aquatic environment by way of enhancing the natural background radioactivity in the river had been insignificant. (author)

  16. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing

    International Nuclear Information System (INIS)

    Kammer, Frank von der; Ottofuelling, Stephanie; Hofmann, Thilo

    2010-01-01

    Assessment of the behavior and fate of engineered nanoparticles (ENPs) in natural aquatic media is crucial for the identification of environmentally critical properties of the ENPs. Here we present a methodology for testing the dispersion stability, ζ-potential and particle size of engineered nanoparticles as a function of pH and water composition. The results obtained from already widely used titanium dioxide nanoparticles (Evonik P25 and Hombikat UV-100) serve as a proof-of-concept for the proposed testing scheme. In most cases the behavior of the particles in the tested settings follows the expectations derived from classical DLVO theory for metal oxide particles with variable charge and an isoelectric point at around pH 5, but deviations also occur. Regardless of a 5-fold difference in BET specific surface area particles composed of the same core material behave in an overall comparable manner. The presented methodology can act as a basis for the development of standardised methods for comparing the behavior of different nanoparticles within aquatic systems. - The behavior of engineered nanoparticles in the aquatic environment can be elucidated using a multi-dimensional parameter set acquired by a semi automated experimental set-up.

  17. Chapter 5. Assessing the Aquatic Hazards of Veterinary Medicines

    Science.gov (United States)

    In recent years, there has been increasing awareness of the widespread distribution of low concentrations of veterinary medicine products and other pharmaceuticals in the aquatic environment. While aquatic hazard for a select group of veterinary medicines has received previous s...

  18. Effects of climate change on native fish and other aquatic species [Chapter 5

    Science.gov (United States)

    Daniel J. Isaak; Michael K. Young; Cynthia Tait; Daniel Duffield; Dona L. Horan; David E. Nagel; Matthew C. Groce

    2018-01-01

    The diverse landscapes of the Intermountain Adaptation Partnership (IAP) region contain a broad range of aquatic habitats and biological communities. A number of aquatic species are regional endemics, several are threatened or endangered under the U.S. Endangered Species Act (ESA), and many have declined because of the introduction of nonnative aquatic species, habitat...

  19. Preliminary investigation of a sensitive biomarker of organotin pollution in Chinese coastal aquatic environment and marine organisms

    International Nuclear Information System (INIS)

    Zhou Qunfang; Li Zhongyang; Jiang Guibin; Yang Ruiqiang

    2003-01-01

    A new sensitive biomarker can be potentially used to indicate the pollution status of organotin in oceanic environment. - In nine batches of sea bivalves collected from Chinese coastal cities during the year of 2000 to 2002, a special sample named Mya arenaria was found to have strong ability of butyltin accumulation compared with the other sampled bivalves in the corresponding batches. Tributyltin compound was the predominant pollutant with the detection rate high up to 100%. Special high levels of μg Sn/g were detected in some Mya arenaria samples. The results obtained showed that Mya arenaria was potentially a biomarker to indicate organotin pollution in coastal aquatic environment

  20. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  1. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.

    Science.gov (United States)

    Kranzler, Chana; Kessler, Nivi; Keren, Nir; Shaked, Yeala

    2016-12-01

    Iron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria. Some cyanobacteria secrete iron solubilizing ligands called siderophores, yet many environmentally relevant strains do not have this ability. This work explores the bioavailability of amorphous synthetic Fe-oxides (ferrihydrite) to the non-siderophore producing, unicellular cyanobacterium, Synechocystis sp PCC 6803. Iron uptake assays with 55 ferrihydrite established dissolution as a critical prerequisite for iron transport. Dissolution assays with the iron binding ligand, desferrioxamine B, demonstrated that Synechocystis 6803 enhances ferrihydrite dissolution, exerting siderophore-independent biological influence on ferrihydrite bioavailability. Dissolution mechanisms were studied using a range of experimental conditions; both cell-particle physical proximity and cellular electron flow were shown to be important determinants of bio-dissolution by Synechocystis 6803. Finally, the effects of ferrihydrite stability on bio-dissolution rates and cell physiology were measured, integrating biological and chemical aspects of ferrihydrite bioavailability. Collectively, these findings demonstrate that Synechocystis 6803 actively dissolves ferrihydrite, highlighting a significant biological component to mineral phase iron bioavailability in aquatic environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    International Nuclear Information System (INIS)

    Kosma, Christina I.; Lambropoulou, Dimitra A.; Albanis, Triantafyllos A.

    2016-01-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  3. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Christina I. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Albanis, Triantafyllos A. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece)

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  4. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment.

    Science.gov (United States)

    Zhang, Yuanyuan; Leu, Yu-Rui; Aitken, Robert J; Riediker, Michael

    2015-07-24

    Consumer products containing engineered nanoparticles (ENP) are already entering the marketplace. This leads, inter alia, to questions about the potential for release of ENP into the environment from commercial products. We have inventoried the prevalence of ENP-containing consumer products in the Singapore market by carrying out onsite assessments of products sold in all major chains of retail and cosmetic stores. We have assessed their usage patterns and estimated release factors and emission quantities to obtain a better understanding of the quantities of ENP that are released into which compartments of the aquatic environment in Singapore. Products investigated were assessed for their likelihood to contain ENP based on the declaration of ENP by producers, feature descriptions, and the information on particle size from the literature. Among the 1,432 products investigated, 138 were "confirmed" and 293 were "likely" to contain ENP. Product categories included sunscreens, cosmetics, health and fitness, automotive, food, home and garden, clothing and footwear, and eyeglass/lens coatings. Among the 27 different types of nanomaterials identified, SiO2 was predominant, followed by TiO2 and ZnO, Carbon Black, Ag, and Au. The amounts of ENP released into the aquatic system, which was estimated on the basis of typical product use, ENP concentration in the product, daily use quantity, release factor, and market share, were in the range of several hundred tons per year. As these quantities are likely to increase, it will be important to further study the fate of ENP that reach the aquatic environment in Singapore.

  5. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2015-07-01

    Full Text Available Consumer products containing engineered nanoparticles (ENP are already entering the marketplace. This leads, inter alia, to questions about the potential for release of ENP into the environment from commercial products. We have inventoried the prevalence of ENP-containing consumer products in the Singapore market by carrying out onsite assessments of products sold in all major chains of retail and cosmetic stores. We have assessed their usage patterns and estimated release factors and emission quantities to obtain a better understanding of the quantities of ENP that are released into which compartments of the aquatic environment in Singapore. Products investigated were assessed for their likelihood to contain ENP based on the declaration of ENP by producers, feature descriptions, and the information on particle size from the literature. Among the 1,432 products investigated, 138 were “confirmed” and 293 were “likely” to contain ENP. Product categories included sunscreens, cosmetics, health and fitness, automotive, food, home and garden, clothing and footwear, and eyeglass/lens coatings. Among the 27 different types of nanomaterials identified, SiO2 was predominant, followed by TiO2 and ZnO, Carbon Black, Ag, and Au. The amounts of ENP released into the aquatic system, which was estimated on the basis of typical product use, ENP concentration in the product, daily use quantity, release factor, and market share, were in the range of several hundred tons per year. As these quantities are likely to increase, it will be important to further study the fate of ENP that reach the aquatic environment in Singapore.

  6. Fate of ethinylestradiol in the aquatic environment and the associated effects on organisms of different trophic levels

    OpenAIRE

    Maes, Hanna

    2011-01-01

    The accumulation kinetics of an important, highly effective, and persistent xeno-estrogen, 17alpha-ethinylestradiol (EE2), in the aquatic environment were investigated in indicator species representing the different trophic levels of an ecosystem: a primary producer (Desmodesmus suspicatus), a primary consumer of the water phase (Daphnia magna) and one of the sediment (Chironomus riparius), and a secondary consumer (Danio rerio). Algae highly concentrated 14C-EE2 (72 h Calgae/Cwater: 2200 L/k...

  7. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  8. Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research.

    Science.gov (United States)

    Walters, Chavon R; Pool, Edmund J; Somerset, Vernon S

    2014-01-01

    There has been extensive growth in nanoscale technology in the last few decades to such a degree that nanomaterials (NMs) have become a constituent in a wide range of commercial and domestic products. With NMs already in use in several consumer products, concerns have emerged regarding their potential adverse environmental impacts. Although research has been undertaken in order to minimise the gaps in our understanding of NMs in the environment, little is known about their bioavailability and toxicity in the aquatic environment. Nano-toxicology is defined as the study of the toxicity of nanomaterials. Nano-toxicology studies remain poorly and unevenly distributed. To date most of the research undertaken has been restricted to a narrow range of test species such as daphnids. Crabs are bio-indicators that can be used for toxicological research on NMs since they occupy a significant position in the aquatic food chain. In addition, they are often used in conventional ecotoxicological studies due to their high sensitivity to environmental stressors and are abundantly available. Because they are benthic organisms they are prone to contaminant uptake and bioaccumulation. To our knowledge the crab has never been used in nano-toxicological studies. In this context, an extensive review on published scientific literature on the ecotoxicity of silver NPs (AgNPs) on aquatic organisms was conducted. Some of the most common biomarkers used in ecotoxicological studies are described. Emphasis is placed on the use of biomarker responses in crabs as monitoring tools, as well as on its limitations. Additionally, the gaps in nano-toxicological research and recommendations for future research initiatives are addressed.

  9. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Occurrence of veterinary pharmaceuticals in the aquatic environment in Flanders

    Science.gov (United States)

    Servaes, K.; Vanermen, G.; Seuntjens, P.

    2009-04-01

    There is a growing interest in the occurrence of pharmaceuticals in the aquatic environment. Pharmaceuticals are classified as so-called ‘emerging pollutants'. ‘Emerging pollutants' are not necessarily new chemical compounds. Often these compounds are already present in the environment for a long time. But, their occurrence and especially their impact on the environment has only recently become clear. Consequently, data on their occurrence are rather scarce. In this study, we focus on the occurrence of veterinary pharmaceuticals in surface water in Flanders. We have only considered active substances administered to cattle, pigs and poultry. Based on the literature and information concerning the use in Belgium, a selection of 25 veterinary pharmaceuticals has been made. This selection consists of the most important antibiotics and antiparasitic substances applied in veterinary medicine in Belgium. We develop an analytical methodology based on UPLC-MS/MS for the detection of these veterinary pharmaceuticals in surface water. Therefore, the mass characteristics as well as the optimum LC conditions will be determined. To obtain limits of detection as low as possible, the samples are concentrated prior to analysis using solid phase extraction (SPE). Different SPE cartridges will be tested during the method development. At first, this SPE sample pre-treatment is performed off-line. In a next step, online SPE is optimized for this purpose. The analytical procedure will be subject to an in-house validation study, thereby determining recovery, repeatability (% RSD), limits of detection and limits of quantification. Finally, the developed methodology will be applied for monitoring the occurrence of veterinary pharmaceuticals in surface water and groundwater in Flanders. These water samples will be taken in areas characterized by intensive cattle breeding. Moreover, the samples will be collected during springtime. In this season, farmers apply manure, stored during winter

  11. Research Trends in Emerging Contaminants on the Aquatic Environments of Tanzania

    Directory of Open Access Journals (Sweden)

    H. Miraji

    2016-01-01

    Full Text Available The continuity for discovery and production of new chemicals, allied products, and uses has currently resulted into generation of recent form of contaminants known as Emerging Contaminants (ECs. Once in the aquatic environment ECs are carcinogenic and cause other threats to both human’s and animals’ health. Due to their effects this study was aimed at investigating research trends of ECs in Tanzania. Findings revealed that USA and EU countries were leading in ECs researches, little followed by Asia, South Africa, and then Zambia. Only few guidelines from USA-EPA, WHO, Canada, and Australia existed. Neither published guidelines nor regulations for ECs existed in Tanzania; rather only the occurrence of some disinfection by-products and antibiotics was, respectively, reported in Arusha and Dar es Salaam, Tanzania. As these reports had a limited coverage of ECs, henceforth, these findings constitute the first-line reference materials for ECs research in Tanzania which shall be useful for future monitoring and regulation planning.

  12. Research Trends in Emerging Contaminants on the Aquatic Environments of Tanzania

    Science.gov (United States)

    Miraji, H.; Othman, O. C.; Ngassapa, F. N.; Mureithi, E. W.

    2016-01-01

    The continuity for discovery and production of new chemicals, allied products, and uses has currently resulted into generation of recent form of contaminants known as Emerging Contaminants (ECs). Once in the aquatic environment ECs are carcinogenic and cause other threats to both human's and animals' health. Due to their effects this study was aimed at investigating research trends of ECs in Tanzania. Findings revealed that USA and EU countries were leading in ECs researches, little followed by Asia, South Africa, and then Zambia. Only few guidelines from USA-EPA, WHO, Canada, and Australia existed. Neither published guidelines nor regulations for ECs existed in Tanzania; rather only the occurrence of some disinfection by-products and antibiotics was, respectively, reported in Arusha and Dar es Salaam, Tanzania. As these reports had a limited coverage of ECs, henceforth, these findings constitute the first-line reference materials for ECs research in Tanzania which shall be useful for future monitoring and regulation planning. PMID:26998381

  13. nTiO{sub 2} mass transfer and deposition behavior in an aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiuzhen, E-mail: xzwei@zjut.edu.cn; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan, E-mail: cjy1128@zjut.edu.cn; Lv, Bosheng, E-mail: zjhzlbs@zjut.edu.cn [Zhejiang University of Technology, College of Environment (China)

    2016-12-15

    Nano-TiO{sub 2} (nTiO{sub 2}) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO{sub 2} can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO{sub 2} in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO{sub 2} in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO{sub 2} deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO{sub 2} stability in the river and limited its aggregation most effectively, resulting in slow nTiO{sub 2} deposition and nTiO{sub 2} transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.

  14. Environmental aspects: - Atmospheric, - aquatic, - terrestrial dispersion of radionuclides

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1982-01-01

    After general introductory remarks the paper deals with the dispersion of radionuclides in the atmosphere and in the aquatic environment as well as with the transfer through the terrestrial environment. (RW)

  15. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Bogle, M.A.; Brantley, J.N.

    1979-01-01

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239 Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  16. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam.

    Science.gov (United States)

    Chau, H T C; Kadokami, K; Duong, H T; Kong, L; Nguyen, T T; Nguyen, T Q; Ito, Y

    2018-03-01

    The rapid increase in the number and volume of chemical substances being used in modern society has been accompanied by a large number of potentially hazardous chemicals being found in environmental samples. In Vietnam, the monitoring of chemical substances is mainly limited to a small number of known pollutants in spite of rapid economic growth and urbanization, and there is an urgent need to examine a large number of chemicals to prevent impacts from expanding environmental pollution. However, it is difficult to analyze a large number of chemicals using existing methods, because they are time consuming and expensive. In the present study, we determined 1153 substances to grasp a pollution picture of microcontaminants in the aquatic environment. To achieve this objective, we have used two comprehensive analytical methods: (1) solid-phase extraction (SPE) and LC-TOF-MS analysis, and (2) SPE and GC-MS analysis. We collected 42 samples from northern (the Red River and Hanoi), central (Hue and Danang), and southern (Ho Chi Minh City and Saigon-Dongnai River) Vietnam. One hundred and sixty-five compounds were detected at least once. The compounds detected most frequently (>40 % samples) at μg/L concentrations were sterols (cholesterol, beta-sitosterol, stigmasterol, coprostanol), phthalates (bis(2-ethylhexyl) phthalate and di-n-butyl phthalate), and pharmaceutical and personal care products (caffeine, metformin). These contaminants were detected at almost the same detection frequency as in developed countries. The results reveal that surface waters in Vietnam, particularly in the center of large cities, are polluted by a large number of organic micropollutants, with households and business activities as the major sources. In addition, risk quotients (MEC/PNEC values) for nonylphenol, sulfamethoxazole, ampicillin, acetaminophen, erythromycin and clarithromycin were higher than 1, which indicates a possibility of adverse effects on aquatic ecosystems.

  17. Effect of a physical activity programme in the aquatic environment on haemodynamic constants in pregnant women.

    Science.gov (United States)

    Vázquez-Lara, Juana María; Ruiz-Frutos, Carlos; Rodríguez-Díaz, Luciano; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen; Torres-Luque, Gema

    2017-09-20

    To evaluate the effect of a physical activity programme in the aquatic environment with immersion up to the neck, of six weeks duration, on haemodynamic constants in pregnant women. A six-week physical activity programme in the aquatic environment was carried out with a total of 46 pregnant women, who were distributed into an experimental group (n = 18), which participated in the programme, and a control group (n = 28), which followed routine care. In both groups different haemodynamic measurements were evaluated before and after the program. At the beginning of the programme the mean systolic blood pressure was similar between groups, but diastolic blood pressure was slightly higher in the experimental group. When the measurements at the last session were compared, arterial pressures (systolic, diastolic and mean) were significantly higher in the control group (p <.050). Similarly, the initial plasma volume values did not differ between groups, but after the intervention, the control group women showed a higher mean (p <.010). The fraction of sodium excretion (FENa) increased significantly in the experimental group, after the programme, with a mean three times higher (p <.050). Aldosterone plasma levels did not show significant differences between the groups in the different measurements. A programme of swimming and immersion exercises in pregnant women contributes to hydrosaline balance, preventing an excessive increase in usual plasma volume during pregnancy and in the activity of the renin-aldosterone axis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  18. Aquatic environment as an occupational therapeutic scenario for the development of body scheme in Down syndrome

    Directory of Open Access Journals (Sweden)

    Chrystiane Maria Veras Pôrto

    2010-12-01

    Full Text Available Objective: To assess the effect of aquatic environment while an occupational therapeutic scenario in the development of body scheme of a child with Down Syndrome, considering the therapeutic properties of water. Description of the case: An interventionist research, with a qualitative and descriptive approach, conducted in an adapted pool of the Núcleo de Atenção Médica Integrada (NAMI of Fortaleza University (UNIFOR, Ceara, during the period of March to May, 2005. The subject of the study was a female child, aged 10 years old, diagnosed with Down Syndrome. Data collection had as instruments an interview guide for anamnesis, an evaluation form of psychomotor development, besides a field diary to record clinical observations during the sessions. This information was organized and analyzed based on clinical reasoning of occupational therapists and then described as a case study. We observed an evolution in the development of skills related to body scheme, such as the perception of fine parts of her own body, as well as large parts in someone else’s body, the imitation of positions, finishing with more active participation in activities of daily living. Final Considerations: We verified the effectiveness of occupational therapeutic activities conducted in aquatic environment for the development of the body scheme of the child in the study. This may be useful for conducting further research on the subject – whose literature is scarce – and contributing to the crescent update of occupational therapy practices.

  19. Assessing the suitability of stream water for five different uses and its aquatic environment.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.

  20. Sound the alarm: A meta-analysis on the effect of aquatic noise on fish behavior and physiology.

    Science.gov (United States)

    Cox, Kieran; Brennan, Lawrence P; Gerwing, Travis G; Dudas, Sarah E; Juanes, Francis

    2018-07-01

    The aquatic environment is increasingly bombarded by a wide variety of noise pollutants whose range and intensity are increasing with each passing decade. Yet, little is known about how aquatic noise affects marine communities. To determine the implications that changes to the soundscape may have on fishes, a meta-analysis was conducted focusing on the ramifications of noise on fish behavior and physiology. Our meta-analysis identified 42 studies that produced 2,354 data points, which in turn indicated that anthropogenic noise negatively affects fish behavior and physiology. The most predominate responses occurred within foraging ability, predation risk, and reproductive success. Additionally, anthropogenic noise was shown to increase the hearing thresholds and cortisol levels of numerous species while tones, biological, and environmental noise were most likely to affect complex movements and swimming abilities. These findings suggest that the majority of fish species are sensitive to changes in the aquatic soundscape, and depending on the noise source, species responses may have extreme and negative fitness consequences. As such, this global synthesis should serve as a warning of the potentially dire consequences facing marine ecosystems if alterations to aquatic soundscapes continue on their current trajectory. © 2018 John Wiley & Sons Ltd.

  1. The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife.

    Science.gov (United States)

    Adlard, Robert D; Miller, Terrence L; Smit, Nico J

    2015-04-01

    Aquatic wildlife is increasingly subjected to emerging diseases often due to perturbations of the existing dynamic balance between hosts and their parasites. Accelerating changes in environmental factors, together with anthropogenic translocation of hosts and parasites, act synergistically to produce hard-to-predict disease outcomes in freshwater and marine systems. These outcomes are further complicated by the intimate links between diseases in wildlife and diseases in humans and domestic animals. Here, we explore the interactions of parasites in aquatic wildlife in terms of their biodiversity, their response to environmental change, their emerging diseases, and the contribution of humans and domestic animals to parasitic disease outcomes. This work highlights the clear need for interdisciplinary approaches to ameliorate disease impacts in aquatic wildlife systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Antimony in aquatic systems

    OpenAIRE

    Filella, Montserrat; Belzile, Nelson; Chen, Yuwei; Elleouet, C.; May, P. M.; Mavrocordatos, D.; Nirel, P.; Porquet, A.; Quentel, F.; Silver, S.

    2003-01-01

    Antimony is ubiquitous in the environment. In spite of its proven toxicity, it has received scant attention so far. This communication presents an overview of current knowledge as well as the early results of a concerted, multidisciplinary effort to unveil antimony behaviour and fate in natural aquatic systems.

  3. Investigation of individual radiation exposures from discharges to the aquatic environment: techniques used in habits surveys

    International Nuclear Information System (INIS)

    Leonard, D.R.P.; Hunt, G.J.; Jones, P.G.W.

    1982-01-01

    The techniques used by the Fisheries Radiobiological Laboratory (FRL) in conducting habits surveys are described and discussed. The main objectives of these surveys are to investigate exposure pathways to the public resulting from radioactive discharges to the aquatic environment and to provide the basic data from which critical groups can be identified. Preparation, conduct and interpretation of the results of surveys are described and possible errors obtained by the interview technique are highlighted. A means of verifying the results of interviews by a logging technique has been devised and some comparative results are presented. (author)

  4. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    pollution of the Ase-creek. Metal concentrations in the fish species and aquatic plants in this study .... analysis of water, fishes and aquatic plants samples from Ase-Creek in the Niger .... Speciation in the Environment. Blackie A and P, New.

  5. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    OpenAIRE

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aqu...

  6. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  7. A floodplain mesocosm study: Distribution, mobility, aging, and functioning of engineered silver nanoparticles at the aquatic-terrestrial interface

    Science.gov (United States)

    Metreveli, George; Kurtz, Sandra; Philippe, Allan; Tayyebi, Narjes; Seitz, Frank; Rosenfeldt, Ricki R.; Grün, Alexandra; Kumahor, Samuel K.; Baumann, Thomas; Bundschuh, Mirco; Lang, Friederike; Klitzke, Sondra; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg; Schaumann, Gabriele E.

    2017-04-01

    With increasing use of engineered nanoparticles (ENPs) in different commercial products the risk for their release into the environment is continuously increased. The aging, distribution, mobility, biological availability, and ecotoxicological impact of ENPs in aquatic and terrestrial compartments will be influenced especially by the natural dynamics of meadow areas, which represent a sensible zone between these two compartments. In this study we present a newly developed floodplain stream mesocosm system linking aquatic and terrestrial aging of ENPs in one system. Using this system we investigated the distribution, mobility, and biological effects of silver nanoparticles (Ag NPs) at the aquatic-terrestrial interface. The mesocosm consists of a main channel, floodplain area, and transport columns simulating an aquatic compartment with river bed, aquatic-terrestrial transition zone, and terrestrial area, respectively. The system contained water sampled from the River Rhine, quartz sand as sediment phase and natural repacked soil from a Rhine floodplain. Every 3 weeks floodplain area was flooded for four days by increasing the water level in the main channel. The dispersions of Ag NPs were injected into the main channel as a pulse function with the pulse duration of 3 weeks and interval of 3 weeks between pulses. The biological effects of Ag NPs on the benthic organism Gammarus fossarum were evaluated in the bioassays during and between the Ag NP pulses. The total duration of the experiment was 33 weeks. The results of mesocosm experiments showed a fluctuating but successively increasing concentrations of total silver in the aqueous phase. At the end of the experiment 0.5% of the silver was still available in the aqueous phase mostly as nanoparticles. Although the major part of silver was immobilized in sediment and soil especially in their top layer, the feeding activity of Gammarus fossarum was not consistently affected. It is most likely due to the low

  8. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters.

  9. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  10. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  11. Aquatic Pest Control. Sale Publication 4071.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…

  12. Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA

    Directory of Open Access Journals (Sweden)

    Thomas Simon

    2015-01-01

    Full Text Available The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species. Habitat quality was highest in the Muscatatuck River drainage with increased amounts of forested habitats compared to the Patoka River drainage. Biological integrity of the three refuges ranked the Patoka NWR as the lowest biological integrity (mean IBI reach scores = 35 IBI points, while Big Oaks had the highest biological integrity (mean IBI reach score = 41 IBI points. The Muscatatuck NWR had a mean IBI reach score of 31 during June, which seasonally increased to a mean of 40 IBI points during summer. Watershed IBI scores and habitat condition were highest in the Big Oaks NWR.

  13. Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA

    Science.gov (United States)

    Morris, Charles C.; Robb, Joseph R.; McCoy, William

    2015-01-01

    Abstract The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species. Habitat quality was highest in the Muscatatuck River drainage with increased amounts of forested habitats compared to the Patoka River drainage. Biological integrity of the three refuges ranked the Patoka NWR as the lowest biological integrity (mean IBI reach scores = 35 IBI points), while Big Oaks had the highest biological integrity (mean IBI reach score = 41 IBI points). The Muscatatuck NWR had a mean IBI reach score of 31 during June, which seasonally increased to a mean of 40 IBI points during summer. Watershed IBI scores and habitat condition were highest in the Big Oaks NWR. PMID:25632261

  14. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy , Adèle; Carré , Catherine; Caupos , Émilie; de Gouvello , Bernard; Deroubaix , José-Frédéric; Deutsch , Jean-Claude; Mailler , Romain; Marconi , Anthony; Neveu , Pascale; Paulic , Laurent; Pichon , Sébastien; Rocher , Vincent; Severin , Irina; SOYER , Mathilde; Moilleron , Régis

    2016-01-01

    International audience; The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pract...

  15. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  16. A concept for biological valuation in the marine environment

    Directory of Open Access Journals (Sweden)

    Eric Willem Maria Stienen

    2007-03-01

    Full Text Available In order to develop management strategies for sustainable useand conservation in the marine environment, reliable and meaningful,but integrated ecological information is needed. Biological valuationmaps that compile and summarize all available biological andecological information for a study area, and that allocate anoverall biological value to subzones, can be used as baselinemaps for future spatial planning at sea. This paper providesa concept for marine biological valuation which is based on aliterature review of existing valuation criteria and the consensusreached by a discussion group of experts.

  17. Computer modeling of dosimetric pattern in aquatic environment of ...

    African Journals Online (AJOL)

    ... solving the dose rates to aquatic organisms with emphasis on the coastal areas of Nigeria where oil exploration activities involve the use of radioactive materials. Solution of the dose function representing the baseline have been modeled the result of which can be employed in assessing future contamination in the area.

  18. A modelling framework for the transport, transformation and biouptake of manufactured nanoparticles in the aquatic environment

    Science.gov (United States)

    Lofts, Stephen; Keller, Virginie; Dumont, Egon; Williams, Richard; Praetorius, Antonia; von der Kammer, Frank

    2016-04-01

    The development of innovative new chemical products is a key aspect of the modern economy, yet society demands that such development is environmentally sustainable. Developing knowledge of how new classes of chemicals behave following release to the environment is key to understanding the hazards that will potentially result. Nanoparticles are a key example of a class of chemicals that have undergone a significant expansion in production and use in recent years and so there is a need to develop tools to predict their potential hazard following their deliberate or incidental release to the environment. Generalising the understanding of the environmental behaviour of manufactured nanoparticles in general is challenging, as they are chemically and physically diverse (e.g. metals, metal oxides, carbon nanotubes, cellulose, quantum dots). Furthermore, nanoparticles may be manufactured with capping agents to modify their desired behaviour in industrial applications; such agents may also influence their environmental behaviour. Also, nanoparticles may become significantly modified from their as-manufactured forms both prior to and after the point of environmental release. Tools for predicting nanoparticle behaviour and hazard need to be able to consider a wide range of release scenarios and aspects of nanoparticle behaviour in the environment (e.g. dissolution, transformation of capping agents, agglomeration and aggregation behaviour), where such behaviours are not shared by all types of nanoparticle. This implies the need for flexible, futureproofed tools capable of being updated to take new understanding of behavioural processes into account as such knowledge emerges. This presentation will introduce the NanoFASE model system, a multimedia modelling framework for the transport, transformation and biouptake of manufactured nanoparticles. The complete system will comprise atmospheric, terrestrial and aquatic compartments to allow holistic simulation of nanoparticles; this

  19. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  20. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  1. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  2. A new reactor concept for sludge reduction using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, B.G.; Buisman, C.J.N.

    2006-01-01

    Biological waste water treatment results in the production of waste sludge. The final treatment option in The Netherlands for this waste sludge is usually incineration. A biological approach to reduce the amount of waste sludge is through predation by aquatic worms. In this paper we test the

  3. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzi Cortez, Fernando, E-mail: lecotox@unisanta.br [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil); Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Dias Seabra Pereira, Camilo [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Ramos Santos, Aldo Ramos [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Cesar, Augusto; Choueri, Rodrigo Brasil [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Martini, Gisela de Assis [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Bohrer-Morel, Maria Beatriz [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC{sub 50} = 0.490 mg L{sup -1}) and embryo-larval development (IC{sub 50} = 0.135 mg L{sup -1}) tests were above environmental relevant concentrations (ng L{sup -1}) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L{sup -1}, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: Black-Right-Pointing-Pointer Triclosan causes biological adverse effects at environmental relevant concentrations. Black-Right-Pointing-Pointer Mechanisms of action oriented assays were more sensitive to detect biological damages. Black-Right-Pointing-Pointer Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  4. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Sanzi Cortez, Fernando; Dias Seabra Pereira, Camilo; Ramos Santos, Aldo Ramos; Cesar, Augusto; Choueri, Rodrigo Brasil; Martini, Gisela de Assis; Bohrer-Morel, Maria Beatriz

    2012-01-01

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC 50 = 0.490 mg L −1 ) and embryo-larval development (IC 50 = 0.135 mg L −1 ) tests were above environmental relevant concentrations (ng L −1 ) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L −1 , demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  5. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  6. Identifying the plant-associated microbiome across aquatic and terrestrial environments: the effects of amplification method on taxa discovery

    Energy Technology Data Exchange (ETDEWEB)

    Jackrel, Sara L. [Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street Chicago IL 60637 USA; Owens, Sarah M. [Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont IL 60439 USA; Gilbert, Jack A. [Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont IL 60439 USA; The Microbiome Center, Department of Surgery, The University of Chicago, 5841 S Maryland Ave Chicago IL 60637 USA; Pfister, Catherine A. [Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street Chicago IL 60637 USA

    2017-01-25

    Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free-living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host-associated sequences. We assessed the efficacy of chloroplast and mitochondria-blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal-associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast-blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14-bp sequence in the Proteobacteria that matches the 17-bp chloroplast-blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14-bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle-blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n-mer oligonucleotides of each PNA sequence.

  7. Expert geographical information system for assessing hazardous materials in aquatic environments

    International Nuclear Information System (INIS)

    Regens, J.L.; White, L.; Wright, J.D.; Rene, A.; Mielke, H.; Bakeer, R.; Belkhouche, B.; Barber, M.

    1993-01-01

    Hazardous substances, including radionuclides, heavy metals, chlorinated hydrocarbons, and industrial solvents, pose unique challenges in terms of environmental restoration and waste management, especially in aquatic environments. When stored, used or disposed of improperly, hazardous materials including transuranic wastes, high level wastes, low level wastes, greater than class C wastes, mixed wastes or chemical wastes can contaminate an array of environmental receptors ranging from soils, sediments, groundwater to surface water. Depending on the specific hazardous substance and site attributes, environmental restoration and waste management can be a complex, problematic activity. This is particularly true for the major Defense Programs facilities managed by the Department of Energy (DOE). This research cluster consists of two discrete elements. Project Element No. 1 develops and applies GIS-based approaches to decision support for environmental restoration by delineating potential exposures and health risks at the Rocky Flats Plant and profiling contemporary and historical demographic/land use patterns at Sandia National Laboratories. Project Element No. 2 develops ESS software for surface water and ground water contaminants in the Mississippi River Basin

  8. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  9. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    Science.gov (United States)

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  10. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and environmental variables. The results can be formulated in three main conclusions. 1) Primary production and respiration in stratified lakes are not evenly distributed in the water column. Generally you can expect the net production to decreases with depth as gross primary production (GPP) decreases with depth......, unless it is a very clear lake, while respiration is relatively stable. Metabolism estimates based on data from the epilimnion will only represent a minor proportion of the whole lake metabolism under conditions of strong stratification and high water transparency. At a low depth of the upper mixed layer...

  11. Aquatic pathway 2

    International Nuclear Information System (INIS)

    1977-01-01

    This third part of the investigation discusses the preliminary results of sub-investigations concerning problems of the release of radioactive substances into the environment via the water pathway. On the basis of papers on the emission into the draining ditch and the exchange processes there, investigations of a possible incorporation via different exposure pathways are reported. Special regard is paid to drinking water supply aquatic foodstuffs, the river sediment, the utilisation of the agricultural surfaces and the draining ditch including its pre-pollution. The dynamics of contamination processes is reported on with regard to the problem of accidents. The colloquium will give an outline of the progress made so far and admit participants' suggestions for further work on the sub-investigations. The following colloquia will report further findings, in particular effects on aquatic ecosystems. (orig.) [de

  12. Reconstructing Anaximander's biological model unveils a theory of evolution akin to Darwin's, though centuries before the birth of science.

    Science.gov (United States)

    Trevisanato, Siro Igino

    2016-08-01

    Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.

  13. Parental effects of endocrine disrupting compounds in aquatic wildlife: Is there evidence of transgenerational inheritance?

    Science.gov (United States)

    Schwindt, Adam R

    2015-08-01

    The effects of endocrine disrupting compounds (EDCs) on aquatic wildlife are increasingly being recognized for their complexity. Investigators have detected alterations at multiple levels of biological organization in offspring exposed to EDCs through the blood or germ line of the parents, suggesting that generational consequences of EDCs are evident. Exposure to EDCs through the parents is concerning because if the resulting phenotype of the offspring is heritable and affects fitness, then evolutionary consequences may be evident. This review summarizes the evidence for transgenerational effects of EDCs in aquatic wildlife and illustrates cases where alterations appear to be transmitted maternally, paternally, or parentally. The literature indicates that EDC exposure to the parents induces developmental, physiological, endocrinological, and behavioral changes as well as increased mortality of offspring raised in clean environments. What is lacking, however, is a clear demonstration of heritable transgenerational effects in aquatic wildlife. Therefore, it is not known if the parental effects are the result of developmental or phenotypic plasticity or if the altered phenotypes are durably passed to subsequent generations. Epigenetic changes to gene regulation are discussed as a possible mechanism responsible for EDC induced parental effects. Additional research is needed to evaluate if heritable effects of EDCs are evident in aquatic wildlife, as has been demonstrated for terrestrial mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Marine and Other Aquatic Dermatoses.

    Science.gov (United States)

    Sridhar, Surg Capt Jandhyala; Deo, Surg Cdr Rajeev

    2017-01-01

    Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. "Suit squeeze" due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  15. Marine and other aquatic dermatoses

    Directory of Open Access Journals (Sweden)

    Jandhyala Sridhar

    2017-01-01

    Full Text Available Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. “Suit squeeze” due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  16. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  17. Biological monitoring program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Ashwood, T.L.; Beaty, T.W.; Brandt, C.C.; Christensen, S.W.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.S.

    1997-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  18. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Science.gov (United States)

    Anderson, Jennifer L; Shearer, Carol A

    2011-01-14

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km). Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring populations of T

  19. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2011-01-01

    Full Text Available Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391 were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km. Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring

  20. Ways forward for aquatic conservation: Applications of environmental psychology to support management objectives.

    Science.gov (United States)

    Walker-Springett, Kate; Jefferson, Rebecca; Böck, Kerstin; Breckwoldt, Annette; Comby, Emeline; Cottet, Marylise; Hübner, Gundula; Le Lay, Yves-François; Shaw, Sylvie; Wyles, Kayleigh

    2016-01-15

    The success or failure of environmental management goals can be partially attributed to the support for such goals from the public. Despite this, environmental management is still dominated by a natural science approach with little input from disciplines that are concerned with the relationship between humans and the natural environment such as environmental psychology. Within the marine and freshwater environments, this is particularly concerning given the cultural and aesthetic significance of these environments to the public, coupled with the services delivered by freshwater and marine ecosystems, and the vulnerability of aquatic ecosystems to human-driven environmental perturbations. This paper documents nine case studies which use environmental psychology methods to support a range of aquatic management goals. Examples include understanding the drivers of public attitudes towards ecologically important but uncharismatic river species, impacts of marine litter on human well-being, efficacy of small-scale governance of tropical marine fisheries and the role of media in shaping attitudes towards. These case studies illustrate how environmental psychology and natural sciences can be used together to apply an interdisciplinary approach to the management of aquatic environments. Such an approach that actively takes into account the range of issues surrounding aquatic environment management is more likely to result in successful outcomes, from both human and environmental perspectives. Furthermore, the results illustrate that better understanding the societal importance of aquatic ecosystems can reduce conflict between social needs and ecological objectives, and help improve the governance of aquatic ecosystems. Thus, this paper concludes that an effective relationship between academics and practitioners requires fully utilising the skills, knowledge and experience from both sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The effect of operating conditions on aquatic worms eating waste sludge

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, H.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Several techniques are available for dealing with the waste sludge produced in biological waste water treatment. A biological approach uses aquatic worms to consume and partially digest the waste sludge. In our concept for a worm reactor, the worms (Lumbriculus variegatus) are immobilised in a

  2. Transfer factor for 137Cs in fresh water aquatic environment

    International Nuclear Information System (INIS)

    Varughese, K.G.; Ramkumar, S.; John, Jaison T.; Rajan, M.P.; Gurg, R.P.

    2002-01-01

    137 Cs is one of the most abundant radionuclides produced in nuclear fission and due to its long radiological half-life and chemical similarity to potassium it has greater biological significance. Radioactive waste materials generated at nuclear facilities are generally disposed within the plant premises under its administrative control for effective radiation protection practices. However trace quantities of radionuclides are released into the environment through liquid and gaseous releases under the guidelines of regulatory agencies. The concentration of these radioactive elements in the environment is not detectable under normal circumstances due to the large dispersion and dilutions available in the environment. But these radionuclides can get accumulated in environmental matrices like silt, weed etc. and indicate the presence of radioactivity in the environment. This paper presents the results of a face-controlled studies conducted at Environmental Survey Laboratories at the Rajasthan Atomic Power Station (RAPS) and Kakrapar Atomic Power Station (KAPS) to estimate distribution of low-level radioactivity in the fresh water system. An attempt has been made to derive the Transfer Factor for 137 Cs in fish, weed, and silt and to evaluate the concentration of 137 Cs in water samples, which is otherwise not detectable under normal procedure of measurement. (author)

  3. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  4. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  5. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.

    1978-01-01

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  6. Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed

    Science.gov (United States)

    2012-01-01

    Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed Matthew Keeter1, Daniel Moore2,3, Ryan Muller2,3, Eric Nieters1, Jennifer...Many applications for autonomous vehicles involve three-dimensional domains, notably aerial and aquatic environments. Such applications include mon...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Cooperative Search With Autonomous Vehicles In A 3D Aquatic Testbed 5a

  7. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    Science.gov (United States)

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-01-28

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.

  8. Integration of DNA barcoding approaches into aquatic bioassessments

    Science.gov (United States)

    The Clean Water Act directs states to protect water resources by developing criteria based in part on biological assessments of natural aquatic ecosystems. Current protocols can be limited by the availability of taxonomic expertise and concerns about precision and accuracy in mor...

  9. Investigation of the transport of actinide-bearing soil colloids in the soil-aquatic environment

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Campbell, M.J.; Kittrick, J.; Cheng, T.

    1980-04-01

    Uranium-233 particle size dependent distribution ratios for the 10 to 60 range were determined for muscatine silt loam, Burbank loamy sand, Ritzville silt loam, Fuquay sand, and Idaho sandy clay. A mathematical method for the analysis of centrifuge data was developed to determine particle size dependent distribution ratio for the 10 to 60 nm range. Comparison of the distribution ratio data for the 0 to 60 nm particle size range strongly suggests that particles in the 1 to 10 nm (8000 to 50,000 MW) range play a dominate role. Since these particles are probably humic acid polymers, future research should be focused on humic acid complexing of radionuclides. A mathematical analysis is given to demonstrate the role of humic acid complexing in the transport of radionuclides in the soil-aquatic environment

  10. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  11. AquaEnv: an aquatic acid–base modelling environment in R

    NARCIS (Netherlands)

    Hofmann, A.F.; Soetaert, K.E.R.; Middelburg, J.J.; Meysman, F.J.R.

    2010-01-01

    AquaEnv is an integrated software package for aquatic chemical model generation focused on ocean acidification and antropogenic CO2 uptake. However, the package is not restricted to the carbon cycle or the oceans: it calculates, converts, and visualizes information necessary to describe pH, related

  12. Biomimetic aquatic hair sensors design

    NARCIS (Netherlands)

    Izadi, N.; Krijnen, Gijsbertus J.M.; Wiegerink, Remco J.

    2008-01-01

    “Touch in distance��? is a term that has been used to describe function of lateral line of the fish as well as other aquatic animals that use mechanoreceptor hairs to discern spatial information about their immediate environment. In this work we address the requirements for fabrication technology of

  13. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Science.gov (United States)

    Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  14. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    Science.gov (United States)

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  15. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Directory of Open Access Journals (Sweden)

    Christina L Mogren

    Full Text Available The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae and Tidarren haemorrhoidale (Araneae: Theridiidae and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1. Buenoa scimitra accumulated 5120±406 ng g(-1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  16. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    Science.gov (United States)

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  17. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    Science.gov (United States)

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  18. Passive sampling of pharmaceuticals and personal care products in aquatic environments

    Czech Academy of Sciences Publication Activity Database

    Křesinová, Zdena; Petrů, Klára; Lhotský, O.; Rodsand, T.; Cajthaml, Tomáš

    2016-01-01

    Roč. 6, č. 1 (2016), s. 43-46 ISSN 1805-0174 Institutional support: RVO:61388971 Keywords : passive sampling * polar organic chemical integrative samplers * aquatic matrices Subject RIV: EE - Microbiology, Virology

  19. TAME - the terrestrial-aquatic model of the environment: model definition

    International Nuclear Information System (INIS)

    Klos, R.A.; Mueller-Lemans, H.; Dorp, F. van; Gribi, P.

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs

  20. TAME - the terrestrial-aquatic model of the environment: model definition

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mueller-Lemans, H. [Tergoso AG fuer Umweltfragen, Sargans (Switzerland); Dorp, F. van [Nationale Genossenschaft fuer die Lagerung Radioaktiver Abfaelle (NAGRA), Baden (Switzerland); Gribi, P. [Colenco AG, Baden (Switzerland)

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs.

  1. Biological condition gradient: Applying a framework for determining the biological integrity of coral reefs

    Science.gov (United States)

    The goals of the U.S. Clean Water Act (CWA) are to restore and maintain the chemical, physical and biological integrity of water resources. Although clean water is a goal, another is to safeguard biological communities by defining levels of biological integrity to protect aquatic...

  2. Comparison of passive sampling and biota for monitoring of tonalide in aquatic environment.

    Science.gov (United States)

    Tumova, Jitka; Grabicova, Katerina; Golovko, Oksana; Koba, Olga; Kodes, Vit; Fedorova, Ganna; Grabic, Roman; Kroupova, Hana Kocour

    2017-10-01

    Synthetic musk compounds are extensively used in personal care and cosmetic products all over the world. Afterwards, they are discharged into the environment mainly because they are not completely removed in wastewater treatment plants. The aim of this study was to investigate if a passive sampler is applicable for the monitoring of tonalide, a polycyclic musk compound, in the aquatic environment and to compare the levels of tonalide in pesticide-polar organic chemical integrative sampler (POCIS) and biota. For this purpose, four sampling localities on the three biggest rivers in the Czech Republic were selected. Tonalide was determined in POCIS at all sampling sites in the concentration ranging from 9 ng/POCIS (Labe River, Hradec Králové) to 25 ng/POCIS (Morava River, Blatec). The locality with the most frequent occurrence of tonalide in biota samples was the Morava River which well corresponded with the highest tonalide concentration in POCIS among sampling sites. The highest number of positive tonalide detections among all studied biota samples was found in fish plasma. To the best of our knowledge, this is the first evidence that tonalide bioaccumulates in fish blood. Tonalide levels were below the limit of quantification in benthos samples at all sampling sites.

  3. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    Science.gov (United States)

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  4. Arsenic speciation in biological environmental samples of aquatic ecosystems by using HPLC-ICP-MS; Speciation von Arsen in biologischen Umweltproben aus aquatischen Oekosystemen mittels HPLC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Falk, K.

    1999-09-01

    The physicochemical forms of arsenic (arsenic species) which are present in the environment vary significantly with respect to toxicity, bioavailability, stability and transport behaviour. Therefore, it is necessary for an assessment of the toxic potential to humans and the environment to investigate not only the total arsenic concentrations but also to differentiate the single species. By that the knowledge about ecological correlations and pathways will be increased. The present thesis reports the results of a Ph.D. study on the development and optimisation of analytical methods for arsenic speciation and their application to biological samples from different aquatic ecosystems in Germany. The method development included separation of 12 naturally occurring arsenic species by high-performance liquid chromatography (HPLC) followed by an arsenic selective detection by inductively coupled plasma-mass spectrometry (ICP-MS). The arsenic species As (III), As (V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AB), arsenocholine (AC), trimethylarsine oxid (TMAO) and tetramethylarsonium (Tetra) were separated with ion-exchange chromatography, whereas reversed-phase chromatography was used for the separation of four arsenosugars. Because of the partly low arsenic concentration in biological samples a very good detection power was required. Therefore, an HPLC-ICP-MS system was tested with different nebulizers. Using the high efficiency nebulizer HHPN (Hydraulic High Pressure Nebulizer), detection limits in the low pg-range could be achieved. The developed analytical methods were applied to arsenic speciation in four marine matrices, which are representative of different trophic levels in the food chain. All samples originated from an ecosystem in the North Sea.

  5. Radiation doses to aquatic organisms from natural radionuclides

    International Nuclear Information System (INIS)

    Brown, J E; Jones, S R; Saxen, R; Thoerring, H; Batlle, J Vives i

    2004-01-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210 Po and 226 Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments

  6. Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Rist, Sinja; Hartmann, Nanna B.

    2017-01-01

    The widespread occurrence of microplastics in the aquatic environment is well documented through international surveys and scientific studies. Further degradation and fragmentation, resulting in the formation of nanosized plastic particles – nanoplastics – has been highlighted as a potentially...... important issue. In the environment, both microplastics and nanoplastics may have direct ecotoxicological effects, as well as vector effects through the adsorption of co-contaminants. Plastic additives and monomers may also be released from the polymer matrix and cause adverse effects on aquatic organisms...

  7. Numerical simulation of seasonality in the distribution and fate of pyrene in multimedia aquatic environments with Markov chains.

    Science.gov (United States)

    Sun, Caiyun; Xu, Liang; Sun, Dazhi; Chen, Libo; Zou, Jiying; Zhang, Zhenxing

    2017-08-29

    This case study investigated the distribution and fate of organic pollutants in aquatic environments based on laboratory experiments and modeling. Pyrene (Pyr) is a hydrocarbon pollutant with adverse effects on aquatic ecosystems and human health, and was thus selected for this case study. The movement of Pyr was primarily influenced by its sorption from water onto sediment, and its desorption from sediment into water. Its elimination was mainly via biodegradation by microorganisms in sediment and by volatilization from water into air. The transport and elimination rates for Pyr were considerably influenced by temperature and moisture. Results of modeling with Markov chains revealed that the elimination of Pyr from water/sediment systems was the most rapid under wet conditions. Under average conditions, a Pyr concentration of 100 μg/L of in water in such a system declined to a negligible level over 250 h. Under wet conditions, this decrease occurred over 120 h. Finally, under dry conditions, it took 550 h to achieve the same degree of elimination.

  8. Applications of a broad-spectrum tool for conservation and fisheries analysis: aquatic gap analysis

    Science.gov (United States)

    McKenna, James E.; Steen, Paul J.; Lyons, John; Stewart, Jana S.

    2009-01-01

    Natural resources support all of our social and economic activities, as well as our biological existence. Humans have little control over most of the physical, biological, and sociological conditions dictating the status and capacity of natural resources in any particular area. However, the most rapid and threatening influences on natural resources typically are anthropogenic overuse and degradation. In addition, living natural resources (i.e., organisms) do not respect political boundaries, but are aware of their optimal habitat and environmental conditions. Most organisms have wider spatial ranges than the jurisdictional boundaries of environmental agencies that deal with them; even within those jurisdictions, information is patchy and disconnected. Planning and projecting effects of ecological management are difficult, because many organisms, habitat conditions, and interactions are involved. Conservation and responsible resource use involves wise management and manipulation of the aspects of the environment and biological communities that can be effectively changed. Tools and data sets that provide new insights and analysis capabilities can enhance the ability of resource managers to make wise decisions and plan effective, long-term management strategies. Aquatic gap analysis has been developed to provide those benefits. Gap analysis is more than just the assessment of the match or mis-match (i.e., gaps) between habitats of ecological value and areas with an appropriate level of environmental protection (e.g., refuges, parks, preserves), as the name suggests. Rather, a Gap Analysis project is a process which leads to an organized database of georeferenced information and previously available tools to examine conservation and other ecological issues; it provides a geographic analysis platform that serves as a foundation for aquatic ecological studies. This analytical tool box allows one to conduct assessments of all habitat elements within an area of interest

  9. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment.

    Science.gov (United States)

    Bayer, Anne; Asner, Robert; Schüssler, Walter; Kopf, Willi; Weiß, Klaus; Sengl, Manfred; Letzel, Marion

    2014-09-01

    Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L(-1), respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.

  10. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Illustrated field guide for aquatic insects study: A collection that lets you view life

    Directory of Open Access Journals (Sweden)

    Andrea Castiblanco-Zerda

    2017-01-01

    Full Text Available This work was developed from the aquatic insects collection (CIA of National Pedagogical University of Colombia, Bogotá. A field guide and ID portable key was outlined, which contributed to the study of aquatic insects with alternative collection methods, through the development of methodologies for observation of living organisms (in situ and in vivo for identification until taxonomic level of family during the field practice and its subsequent return to the habitat, taking into account students’ practical work needs in the field and the active use of Biology Department biological resources. It was concluded that the recognition of aquatic insects families allows articulation between collection and field practices, as well as students’ reflection on methods and goals of the collection, and evaluation of other procedural possibilities as those presented in this work.

  12. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time.

    OpenAIRE

    Jennifer L Anderson; Carol A Shearer

    2011-01-01

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribu...

  13. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  14. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  15. Effects of radioactive nuclides on the reproduction of aquatic organisms

    International Nuclear Information System (INIS)

    Egami, N.

    1979-01-01

    Among various organisms in aquatic environments, fishes are more radiosensitive and critical creatures in terms of the biological effects of radionuclides on the ecosystem. The hatchability of fish eggs is not very sensitive criterion for radiation injury. The differentiation and development of the germ cells of fish embryos are inhibited by the small dose of radiation, and there is some possibility that they are more sensitive indicators of radiation effects. Chromosome aberration is used as an indicator of the effect of small dose of radiation in both cultured cells and cleaved egg cells of fishes. The late effects of radiation have been seen in fishes one or more years after the exposure to the relatively small dose of radiation. The biological materials for detecting the effect of radiation on the quantitative base in future in vitro and in vivo have been established. Current studies are directed toward finding more sensitive indicators of radiation effects, estimating more quantitatively the late effects of radiation on fishes, and analyzing the mechanism of radiation injuries. (Yamashita, S.)

  16. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  17. Distribution coefficients for radionuclides in aquatic environments. Volume 2. Dialysis experiments in marine environments

    International Nuclear Information System (INIS)

    Sibley, T.H.; Nevissi, A.E.; Schell, W.R.

    1981-05-01

    The overall objective of this research program was to obtain new information that can be used to predict the fate of radionuclides that may enter the aquatic environment from nuclear power plants, waste storage facilities or fuel reprocessing plants. Important parameters for determining fate are the distribution of radionuclides between the soluble and particulate phases and the partitioning of radionuclides among various suspended particulates. This report presents the results of dialysis experiments that were used to study the distribution of radionuclides among suspended sediments, phytoplankton, organic detritus, and filtered sea water. Three experiments were conducted to investigate the adsorption kinetics and equilibrium distribution of (59)Fe, (60)Co, (65)Zn, (106)Ru, (137)Cs, (207)Bi, (238)Pu, and (241)Am in marine system. Diffusion across the dialysis membranes depends upon the physico-chemical form of the radionuclides, proceeding quite rapidly for ionic species of (137)Cs and (60)Co but much more slowly for radionuclides which occur primarily as colloids and solid precipitates such as (59)Fe, (207)Bi, and (241)Am. All the radionuclides adsorb to suspended particulates although the amount of adsorption depends upon the specific types and concentration of particulates in the system and the selected radionuclide. High affinity of some radionuclides - e.g., (106)Ru and (241)Am - for detritus and phytoplankton suggests that suspended organics may significantly affect the eventual fate of those radionuclides in marine ecosystems

  18. Effect of aquatic exercise training on lipids profile and glycaemia: A systematic review

    Directory of Open Access Journals (Sweden)

    R. Delevatti

    2015-12-01

    Full Text Available The objective of this study was to investigate the acute and chronic effects of aquatic exercise training on glycaemia and lipids profile. A systematic review of clinical trials was performed assessing the effects of aquatic exercise and/or training in upright position on lipids profile and glycaemic index. Two raters independently assessed the eligibility criteria and the methodological quality of the studies using the PEDro scale. Average and standard deviation of all variables significantly altered by the interventions were extracted for calculating percentage alterations. Three studies involving the acute effect of aquatic aerobic exercise on the variables of interest were analysed, with two of them demonstrating the efficacy of this type of training in improving lipids profile. Nine studies involving the chronic effects of aquatic training on the same variables were also analysed; eight of them, which assessed different training interventions for different populations, reported benefits of exercise regarding these variables. In conclusion, the improvements found in response to aquatic exercise training in upright position in glycaemia and lipids profile indicate the aquatic environment as a favourable environment for conducting exercise programmes.

  19. Ecogenotoxicity testing of aquatic environment by comet assay in plants

    Directory of Open Access Journals (Sweden)

    Anita Mukherjee

    2015-05-01

    Full Text Available One of the goals of environmental monitoring is the detection of potentially hazardous compounds in water. We have set up a standard method to apply the Comet assay in aquatic plants that could be of great interest to evaluate cytotoxicity, genotoxicity and oxidative stress on the same species regarded as most sensitive to environmental pollutants. The aim of the present study was to set up of standardized procedure to evaluate genotoxicity in aquatic plants- Ceratophyllum demersum one that is submerged free floating and the other is Lemna minor - a fresh water floating plant by Comet assay. Electrophoresis and unwinding times were adapted to obtain minimum DNA migration evaluated as tail intensity % or tail moment in the control group and, at the same time maximum sensitivity for DNA damage with known genotoxicants. We further investigated the cytotoxicity and oxidative stress induced in the same species. Based on the repeatability of results obtained we suggest that Ceratophyllum, Lemna can serve as model species and Comet assay could be adopted to monitor the eco-genotoxicity of water pollutants.

  20. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  1. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  2. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  3. A Worldwide Web-portal for Aquatic Mesocosm Facilities: WWW.MESOCOSM.EU

    Science.gov (United States)

    Berger, S. A.; Nejstgaard, J. C.

    2016-02-01

    Experimental mesocosms are valuable tools to fill the gap between highly controlled/replicated lab experiments and uncontrolled/non-replicated natural environments such as rivers, lakes and oceans. WWW.MESOCOSM.EU is an open web-portal for leading aquatic mesocosm facilities around the world. It was created within the FP7 EU-project MESOAQUA (A network of leading MESOcosm facilities to advance the studies of future AQUAtic ecosystems from the Arctic to the Mediterranean). The goal of the portal is to increase international knowledge about existing mesocosm facilities, including information on locations, environment, equipment, contacts, research opportunities and mesocosm-based publications. MESOCOSM.EU specifically aims to be a tool to enhance the quality of research by facilitating international cooperative network building, announcement of new research initiatives, transfer of best practice, and dissemination of knowledge, public information and press releases. As an open platform for all aquatic ecosystem scale science (marine and freshwater), MESOCOSM.EU aims to fill the lack of a centralized, coordinating virtual infrastructure for international aquatic mesocosm research, from the mountains to the ocean and from polar to tropical regions.

  4. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  5. The role indigenous bacterial isolates for bioremediation agent in the uranium contaminated aquatic environment

    International Nuclear Information System (INIS)

    Mochd Yazid

    2014-01-01

    A Research on the role of indigenous bacterial isolates for bio-remediation agent of the uranium contaminated in the aquatic environment has been conducted. The objective of the research is to study the role of Pseudomonas sp and Bacillus sp. have been isolated from low level uranium waste for bioremediation agent in their environment, such as the determination of efficiency of the uranium binding compared by the non indigenous bacterial, location of these binding and the influences of added acethyl acid stimulant. The uranium reduction studied was measured by weighting bacterial biomass and uranium concentration was measured by spectrophotometer. The acethyl acid stimulant addition has been done with the variation of concentration and volume. The efficiency of the uranium reduction by indigenous bacterial isolate such as Pseudomonas sp were 84.99 % and Bacillus sp were 52.70 %, so the reduction efficiency by non indigenous bacterial such as Pseudomonas aerogenes were 78.47 % and Bacillus subtilis were 45.22 % for 54 hours incubation time. The result of this research can be concluded that Pseudomonas sp and Bacillus sp. Indigenous bacterial have been isolates from the liquid uranium waste can contributed in bioremediation agent for uranium radionuclide in the environment for 60 ppm concentration with reduction efficiency 52.70 %-84.99 %, that is higher non indigenous bacterial for 54 hours incubation time, the stimulant addition of acethyl acid, the efficiency can be increased up to 99.8 %. (author)

  6. Muscle electrical activity during exercises with and without load executed on dry land and in an aquatic environment

    Directory of Open Access Journals (Sweden)

    Indira Nayra Paz Santos

    Full Text Available Introduction Muscle activity in the aquatic environment was investigated using electromyographic analyses. The physical properties of water and the resistance used may influence the response of the muscle during exercise. The objective of this study was to evaluate the electrical activity in water and on the floor during flexion and knee extension exercises with and without load and aimed at understanding the muscular response while performing resistance exercises in water. Methods The sample consisted of 14 volunteers between 18 and 35 years old who were subjected to active exercises involving knee flexion and extension with and without load on the floor and in water. Electromyography was performed during the movement. Results A significant increase was found in the electrical activity of the rectus femoris muscle during exercises on the floor. The biceps femoris muscle showed increased electromyographic activity when resistance was used. A significant increase was found in the electrical activity of the rectus femoris muscle compared with exercises with and without load and the moment of rest in immersion. The electrical activity of the rectus and biceps femoris muscles was reduced in exercises with load and without load in a therapy pool compared with on the floor. Conclusion There was a reduction of the electromyographic activity in the aquatic environment compared with that on the ground, which could be attributed to the effects from hot water. Therefore, it is believed that resistance exercises can be performed early in a therapy pool, which will facilitate the prevention and treatment of musculoskeletal disorders.

  7. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment

    DEFF Research Database (Denmark)

    Hashemi, Fatemeh; Olesen, Jørgen Eivind; Dalgaard, Tommy

    2016-01-01

    Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns...... nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic...... processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions...

  8. [Study on contamimation of endocrine disrupting chemicals in aquatic environment of Qiantang River].

    Science.gov (United States)

    Cai, Delei; Chen, Jiang; Fu, Jianyun; Zheng, Yunyan; Song, Yanhua; Yan, Jun; Ding, Gangqiang

    2011-07-01

    To study contamination of endocrine disrupting chemicals (EDCs) in aquatic environment of Qiantang River. Carp vitellogenin (VTG) content in serum and ethoxyresorufin-o-deethylase (EROD) activity in liver of wild crucian, pesticide content including organic cholorine, organic phosphorus and pyrethroid in its muscle from 7 monitoring sites including Zhangtan (ZT), Jiekou (JK), Jiangjunyan (JJY), Yandongguan (YDG), Tonglu (TL), Fuyang (FY) and Yuanpu (YP) in Qiantang river were detected. And chemical analysis of water quality was carried on in four sites. EROD activity in crucian from ZT, JJY, FY and YP [(23.51 +/- 4.17), (16.79 +/- 7.39), (18.74 +/- 5.16), (18.65 +/- 8.86) nmol x g(-1) pro x min(-1), respectively] was significantly higher than that of control ((7.84 +/- 2.42) nmol x g(-1) pro x min(-1)), and VTG content in wild crucian from ZT, TL, FY and YP [(1.536 +/- 0.521), (16.404 +/- 13.579), (19.672 +/- 16.354) and (17.079 +/- 18.397)] microg/ml, respectively) was significantly higher than that of control [(0.400 +/- 0.099) (microg/ ml]. No significantly difference in biomarkers was observed between other site and control. From high to low, in total organophosphorus, it was followed as: TL, YDG, YP, FY, QZ, JK, JJY (EPN was up to 2695.64, 611.96 microg/kg in TL and YDG, respectively). In total organochlorine: TL, YP, YDG, FY, QZ, JK and JJY (tetradifon content in muscle of wild crucian from TL was up to 3962.17 microg/kg). For pyrethroid pesticides: TL, YDG, YP, ZT, JK, FY and JJY (alpha-tetramethrin and alpha-phenothrin was comparatively high in TL and YDG, up to 371.54, 239.62 microg/kg in the former, 416.23, 189.15 microg/kg in the latter, respectively). Aquatic environment of these sites including ZT, TL, FY and YP in Qiantang river received comparatively high EDCs, whose effects may be mainly due to pesticide pollution. Obvious organic contamination occurred in these sites including ZT, JJY, FY and YP. Changes of chemicals in water and EROD activity in

  9. A review of research on common biological agents and their impact on environment

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.

    2009-01-01

    Biological agents are unique class of microorganisms which can be used to produce the disease in large populations of humans, animals and plants. If used for hostile purposes, any disease-causing microorganism could be considered a weapon. The use of biological agents is not a new concept and history is replete with examples of biological weapon use. Before the twenty century, biological warfare took on three main forms by deliberate poisoning of food and water with infectious material, use of microorganisms or toxins in some form of weapon system, and use of biologically inoculated fabrics. Four kinds of biological warfare agents are bacteria, viruses, rickettsiae, fungi. These are distinguished by being living organisms, that reproduce within their host victims, who then become contagious with a deadly multiplier effect, bacteria, viruses, or fungi or toxin found in nature can be used to kill or injure people. Biological agents may be used for an isolated assassination, as well as to cause incapacitation or death to thousands. These biological agents represent a dangerous military threat because they are alive, and are therefore unpredictable and uncontrollable once released. The act of bioterrorism can range from a simple hoax to the actual use of biological weapons. Biological agents have the potential to make an environment more dangerous over time. If the environment is contaminated, a long-term threat to the population could be created. This paper discusses common biological agents, their mode of action in living organisms and possible impact on the environment. (author)

  10. Evaluation and modeling of the parameters affecting fluoride toxicity level in aquatic environments by bioassay method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Shamsollahi

    2014-04-01

    Full Text Available Background: Fluoride exists in various forms in nature and water resources. , The rising level of fluoride in water resources due to discharge of industrial effluents can cause toxicity in aquatic organisms. To prevent toxicity, it is necessary to determine maximum fluoride toxicity as well as effluent discharge limits. The aim of this study was to determine the maximum fluoride toxicity and the factors affecting fluoride toxicity to provide a model in order to determine the effluent discharge limits. Methods: Daphnia magna bioassay in the absence of confounding factors was used to determine the maximum level of fluoride toxicity. Then, bioassay was repeated in the presence of the confounding factors (hardness, temperature and exposure time to determine their effects. Results: In the absence of intervening factors, fluoride LC50 levels determined after 24, 48 and 72 hours exposure were 4.9, 46.5 and 38.7 mg/l, respectively.. Also, the influence of confounding factors on LC50 values was reported significant by Minitab software. Conclusion: Increasing the water hardness reduced fluoride toxicity, and increasing the water temperature and exposure time increased fluoride toxicity in aquatic environments. Therefore, while determining the wastewater discharge limit in terms of fluoride concentration, it is essential to take the effect of confounding factors on fluoride toxicity into account in order to prevent toxicity in the open water resources.

  11. Proceedings of the 36. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Martel, L.; Triffault-Bouchet, G.; Fournier, M.; Campbell, P.G.C.; Pellerin, J.; Lacroix, E.; Burridge, L.E.

    2010-01-01

    This workshop was held to discuss topics related to aquatic and environmental toxicology. Principles, issues, and recent innovations in aquatic toxicology were reviewed. New developments in environmental monitoring were discussed, as well as issues related to environmental regulation. The workshop was attended by a range of stakeholders from governments, universities, and industry. The sessions were entitled: legacy contaminants 1 organics; nanotoxicology; environmental effects monitoring; oil sands; BFR and other emerging contaminants; biomarkers; neuro and endocrine disrupting compounds; remediation of degraded aquatic environments; legacy contaminants 2 hydrocarbons; waterborne and diet-borne metals; water and sediment standards and criteria; pesticides; amphibians and wildlife toxicology; cyanobacteria; amphibians and wildlife toxicology 2; environmental risk assessment; genomics, protemics, and metabolomics; contamination in the Saguenay-St. Lawrence Marine park; legacy contaminants 3 organics and metals; community level indicators; toxicity tests; toxicity mechanisms; areas of concern; general aquatic toxicology; general legacy contaminants; emerging contaminants; cyanobacteria; amphibians and wildlife toxicology 1; omics in aquatic ecotoxicology; organism or population level indicators; and toxicity tests. The workshop featured 250 presentations, of which 24 have been catalogued separately for inclusion in this database. tabs., figs.

  12. Remote sensing of aquatic plants. [New York, Florida, Texas, Louisiana, Mississippi, South Carolina

    Science.gov (United States)

    Long, K. S.; Link, L. E., Jr.

    1977-01-01

    Various sensors were tested in terms of their ability to detect and discriminate among noxious aquatic macrophytes. A survey of researchers currently studying the problem and a brief summary of their work is included. Results indicated that the sensor types best suited to assessment of the aquatic environment are color, color infrared, and black-and-white infrared film, which furnish consistently high contrasts between aquatic plants and their surroundings.

  13. Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.; Cowley, Paul D.; Deng, Zhiqun D.; Fisk, Aaron T.; Harcourt, Robert G.; Heupel, Michelle; Hinch, Scott G.; Holland, Kim N.; Hussey, Nigel E.; Iverson, Sara J.; Kessel, Steven T.; Kocik, John F.; Lucas, Martyn C.; Flemming, Joanna Mills; Nguyen, Vivian M.; Stokesbury, Michael J. W.; Vagle, Svein; VanderZwaag, David L.; Whoriskey, Frederick G.; Young, Nathan

    2017-09-13

    Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animal tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.

  14. Study of a multitrophical integrated aquatic system for the teaching-learning of the subjects physics, chemistry and biology in the bachelor

    Science.gov (United States)

    Ramirez, Eva; Espinosa, Cecilia

    2017-04-01

    In Mexico exist due to the lack of water in the City, which is where the College of Sciences and Humanities Orient (at UNAM) is located. This is because a point of view from the Chemical, Physics and Biology subjects is important to find learning strategies that motivate students to seek solutions to problems such as these. As Science Mentors, students were asked to propose water treatment from the homes they live in. From these investigations the students concluded that it was necessary to study in depth the wetlands like Multi-trophic Aquatic System that allow the treatment of gray water, so that a prototype of Micro-scale Multitrophic Aquatic System was set up in the laboratory, where the pH was measured , The concentration of oxygen, phosphates, from a Chemical perspective. As for the subject of Biology, we worked on the search for mycorrhizal fungi associated with the growth of plants for the purification of water. In physics we worked the sedimentation system. Artificial wetlands are man-made zones in which, in a controlled manner, mechanisms for the removal of contaminants present in wastewater, occurring in natural wetlands through physical, biological and chemical processes, are constructed mechanically and Is waterproofed to prevent losses of water to the subsoil, the use of substrates different from the original land for rooting the plants and their selection that will colonize the wetland benefit the recovery of water. The present project aims to structure an Artificial Wetland to carry out didactic strategies, activities with students, as well as work on research projects in the sciences of Chemistry, Physics and Biology. Through the application of chemical, biological and physical concepts and processes, so that students of the different semesters of the College of Sciences and Humanities Plantel Oriente, appropriate the relevant knowledge in the area of experimental sciences, developing thinking skills and achieve Significant learning, which are

  15. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  16. Aquatic ecosystem characterisation strategy at a repository site

    Energy Technology Data Exchange (ETDEWEB)

    Kangasniemi, Ville; Ikonen, Ari T.K. [Environmental Research and Assessment EnviroCase, Ltd., Hallituskatu 1 D 4, 28100 Pori (Finland); Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Laulukuja 4, 00420 Helsinki (Finland); Kirkkala, Teija [Pyhaejaervi Institute, Sepaentie 7, 27500 Kauttua (Finland); Koivunen, Sari [Water and Environment Research of South-West Finland, Telekatu 16, 20360 Turku (Finland)

    2014-07-01

    Olkiluoto Island on the western coast of Finland has been selected as a repository site for spent nuclear fuel disposal. According to regulatory requirements, the safety assessment for the repository should have an assessment timeframe of several millennia. Due to the post-glacial land uplift, the relatively shallow sea areas around Olkiluoto Island will change gradually to lakes, rivers and terrestrial areas. As there are no limnic systems at present Olkiluoto site, the reference area was delineated and reference lakes and rivers were selected as an analogue. For the modelling of the transport and accumulation of possible radionuclide releases in the surface environment, aquatic ecosystems were identified and divided into biotopes. Despite the number of available templates, the division of aquatic environment for the biosphere assessment of the Olkiluoto spent fuel repository was necessary to made separately. In this contribution, the processes behind the identification of aquatic ecosystems (e.g. legislation, physical and chemical properties) together with the biotope selection methodology (e.g. light and bottom conditions) and the challenges related to the amount of variable input parameters for each biotope in the modelling are presented. (authors)

  17. Plastic ingestion in aquatic-associated bird species in southern Portugal.

    Science.gov (United States)

    Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I

    2018-01-01

    Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    Science.gov (United States)

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The ultraviolet environment of Mars: biological implications past, present, and future.

    Science.gov (United States)

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  20. The ultraviolet environment of Mars: biological implications past, present, and future

    Science.gov (United States)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  1. Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems

    Science.gov (United States)

    Dong, Quan; Walters, Katie D.

    2015-01-01

    The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.

  2. Protecting marine parks and sanctuaries from aquatic nuisance species releases from ballast during emergency response events

    Science.gov (United States)

    Phyllis A. Green

    2011-01-01

    Commercial shipping activities that release aquatic invasive species are recognized globally as a dominant transport vector for marine invasions. Aquatic nuisance species (ANS) introductions have resulted in billions of dollars of damages and immeasurable biological devastation within the Great Lakes. National Park Service managers are working with United States...

  3. Impact of Boron pollution to Biota Marine aquatic

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto-SBS; Imam Hamzah; Fepriadi

    2003-01-01

    Power plants and industrial facilities can release potentially harmful chemicals, like boron through direct aqueous discharges or cycling of cooling water to aquatic ecosystems environmental at plant surrounding. Boron is an essential trace element for the growth of marine biota, but can be toxic in excessive amount. Therefore will adversely affect of growth, reproduction or survival. Toxicity to aquatic organism, including vertebrates, invertebrates and plants can vary depending on the organism's life stage and environment. It is recommended that the maximum concentration of total boron for the protection of marine aquatic life should not exceed 1,2 mg B/L. Early stages of life cycle are more sensitive to boron than later ones, and the use of reconstituted water shows higher toxicity in lower boron concentrations than natural waters. (author)

  4. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

    Science.gov (United States)

    2007-12-20

    spectral bands are always facing the possibility of missing important spectral features of special cases, such as some coral reefs and/or seagrass ...Res. 1998, 103(C 10), 21,601-621,609. 16. Kirk, J. T. 0. 1994 Light & Photosynthesis in Aquatic Ecosystems, University Press, Cambridge. 17. Lee, Z

  5. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  6. Behavior of plutonium isotopes in the marine environment of Enewetak atoll

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Robison, W.L.; Eagle, R.J.

    1998-01-01

    There continue to be reports in the literature that suggest a difference in the behavior of 239+240 Pu and 238 Pu in some aquatic environments. Plutonium isotopes have been measured in marine samples collected over 3 decades form Enewetak atoll, one of the sites in the Marshall Islands used by the United States between 1946 and 1958 to test nuclear devices. The plutonium isotopes originated from a variety of complex sources and could possibly coexist in this environment as different physical-chemical species. However results indicate little difference in the mobility and biological availability of 239+240 Pu and 238 Pu. (author)

  7. Method of the Aquatic Environment Image Processing for Determining the Mineral Suspension Parameters

    Directory of Open Access Journals (Sweden)

    D.A. Antonenkov

    2016-10-01

    Full Text Available The present article features the developed method to determine the mineral suspension characteristics by obtaining and following processing of the aquatic environment images. This method is capable of maintaining its performance under the conditions of considerable dynamic activity of the water masses. The method feature consists in application of the developed computing algorithm, simultaneous use of morphological filters and histogram methods for image processing, and in a special calibration technique. As a whole it provides a possibility to calculate size and concentration of the particles on the images obtained. The developed technical means permitting to get the environment images of the required quality are briefly described. The algorithm of the developed software operation is represented. The examples of numerical and weight distribution of the particles according to their sizes, and the totals of comparing the results obtained by the standard and developed methods are represented. The developed method makes it possible to obtain the particle size data in the range of 50–1000 μm and also to determine the suspension concentration with ~12 % error. This method can be technically implemented for the instruments intended for in situ measurements using the gauges, allowing obtaining exposure time short values, such as applying the electron-optical converter, which acts as the image intensifier, and the high-speed electronic shutter. The completed method testing in the laboratory makes possible to obtain the results similar in accuracy with the results of the in situ measurements.

  8. Aquatic Coleoptera assemblages in protected wetlands of North-western Spain

    Directory of Open Access Journals (Sweden)

    Amaia Pérez-Bilbao

    2014-02-01

    Full Text Available Wetlands are diverse and productive ecosystems endangered by human pressure, which degradation implies a biodiversity loss worldwide. Among the biological assemblages of these habitats, aquatic Coleoptera is one of the most diverse and useful groups when assessing the ecological conditions of the ecosystems they inhabit. The aims of the present study were to analyze the diversity and composition of aquatic Coleoptera assemblages in 24 wetlands protected by the Natura 2000 network of North-western Spain and the influence of environmental variables on the distribution of species, in order to detect differences between the different types of standing water habitats. A total of 11,136 individuals of 105 species belonging to 12 families of aquatic Coleoptera (Gyrinidae, Haliplidae, Noteridae, Paelobiidae, Dytiscidae, Helophoridae, Hydrochidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae and Dryopidae were collected. In general, wetlands presented high richness and diversity values, Dytiscidae and Hydrophilidae having the highest species richness. Most of recorded species have a wide biogeographical distribution and only 12 endemic ones were captured. Cluster and Non-Metric Multi-Dimensional Scaling (NMDS analyses showed the clustering of the studied ponds and lagoons in four groups based on biological data. In general, the wetlands of each group seem to have distinct aquatic Coleoptera faunas, as showed by the most representative species. A combination of altitude, SST and hydroperiod was the best explaining factor of the distribution of the species throughout the study area. This study shows the high biodiversity of standing water habitats in North-western Spain and the usefulness of water beetles in establishing habitat typologies.

  9. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  10. A Problem-Solving Environment for Biological Network Informatics: Bio-Spice

    Science.gov (United States)

    2007-06-01

    user an environment to access software tools. The Dashboard is built upon the NetBeans Integrated Development Environment (IDE), an open source Java...based integration platform was demonstrated. During the subsequent six month development cycle, the first version of the NetBeans based Bio-SPICE...frameworks (OAA, NetBeans , and Systems Biology Workbench (SBW)[15]), it becomes possible for Bio-SPICE tools to truly interoperate. This interoperation

  11. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005)

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Baumier, D.; Fourre, E.; Dapoigny, A.; Clavel, B.

    2007-01-01

    The Creys-Malville nuclear plant, located on the left bank of the Rhone, was shut down in 1998. The facilities are currently in their initial stage of dismantling. In order to establish a baseline for tritium in the vicinity of the site prior to the main dismantling phase, we carried out a monitoring program between 2002 and 2005 in the main terrestrial and aquatic compartments of the local environment. Tritium levels in the groundwaters and in the Rhone waters correspond to the regional tritium concentration in precipitation. The data obtained for the terrestrial environment are also in good agreement with the regional background and do not show any specific signature linked to the nuclear plant. The various aquatic compartments of the Rhone (fish, plant, sediment) are significantly enriched in tritium both upstream and downstream of the power plant: although Tissue-Free Water Tritium concentrations are in equilibrium with the river water, the non-exchangeable fraction of organic bound tritium in plants and fishes shows values which outpace the river water background by one to two orders of magnitude, and up to four to five orders of magnitude in the sediments. This tritium anomaly is not related to the nuclear plant, as it is already present at the Swiss border 100 km upstream of the site. Although fine particles of tritiated polystyrene entering the composition of the luminous paints used by the clock industry have been suspected on several occasions, the exact nature and the origin of this tritium source remain unknown and require further investigations

  12. The swimming program effects on the gross motor function, mental adjustment to the aquatic environment, and swimming skills in children with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Jorgić Bojan

    2012-01-01

    Full Text Available The aim of this research was to determine the swimming program effects on the gross motor function, mental adjustment to the aquatic environment and the ability to move in the water and swim in children with cerebral palsy. The sample consisted of seven children (4 boys and 3 girls with spastic cerebral palsy and an average age of 9y 5mo ± 1y 3 mo. The swimming program lasted 6 weeks, with two swimming sessions per week. Each session lasted 45 minutes. The swimming program included the application of the Halliwick Method and swimming exercises which are used in a healthy population. The GMFM test was used for the assessment of gross motor functions. The WOTA2 test was applied to assess mental adjustment and swimming skills. The Wilcoxon matched pairs test was used to determine the statistically significant differences between the initial and final measuring. The results have indicated that there was statistically significant differences in the E dimension (p=0.04 and the total score T (p=0.03 of the GMFM test, then for mental adjustment to the aquatic environment WMA (p=0.02, ability to move in water andswimming skills WSW (p=0.03 and the overall result WTO (p=0.02 of the WOTA2 test. The applied swimming program had a statistically significant effect on the improvement in walking, running and jumping as well as the overall gross motor functions of children with cerebral palsy. The applied program also contributed to a statistically significant influence on the increase in mental adjustment to the aquatic environment and the ability to move in water and swim.

  13. Impact of long-term radiation exposure on aquatic biota within the Chernobyl exclusion zone: 30 years after accident

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Pomortseva, N.A.; Shevtsova, N.L.; Dzyubenko, E.V.; Nazarov, A.B.

    2016-01-01

    Self-purification of closed water bodies within the Chernobyl exclusion zone (EZ) is an extremely slow process. Therefore, ecosystems of the majority of lakes, dead channels and crawls possess high levels of radionuclide contamination of all components. Along with natural decontamination processes in aquatic ecosystems such as physical decay of radionuclides and their water transport outside the EZ, there is a change of physical and chemical forms of radioactive substances in soils of catchment areas, their transformation and transition in the mobile and bioavailable state, washout to the closed aquatic ecosystems and accumulation by hydrobionts. This essentially deteriorates the radiation situation in closed aquatic ecosystems, which are some kind of 'storage system' of radioactive substances in the EZ and results in increase of radiation dose to aquatic species and manifests in a variety of radiation effects at different levels of biological systems. We established dose-related effects in hydrobionts of lakes within the EZ which indicates a damage of biological systems at subcellular, cellular, tissue, organ, organism and population levels as a result of chronic exposure to low doses of ionizing radiation. The rate of chromosomal aberrations in cells of aquatic species, many-a-times exceeds the level of spontaneous mutagenesis level to aquatic biota. Increased levels of chromosome damages may be a manifestation of radiation-induced genetic instability, which is one of the main mechanisms for the protection of living organisms from exposure to stressors with subsequent implementation at higher levels of organization of biological systems. (author)

  14. Micronucleus test in fish genome: A sensitive monitor for aquatic ...

    African Journals Online (AJOL)

    The aquatic environment makes up the major part of our environment and resources, therefore its safety is directly related to the safety our health. In this study, three tilapia species (Oreochromis niloticus, Oreochromis aureus and Tilapia zilli) and Clarias gariepinus were employed to estimate water pollution using ...

  15. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, Jamie R., E-mail: Jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States); Baalousha, Mohammed, E-mail: Mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States)

    2016-10-15

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  16. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    International Nuclear Information System (INIS)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia; Lead, Jamie R.; Baalousha, Mohammed

    2016-01-01

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  17. Size matters: the interplay between sensing and size in aquatic environments

    Science.gov (United States)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  18. Environments: A New Cutting-Edge International and Interdisciplinary Scholarly Open Access Journal

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2014-01-01

    Full Text Available Environments across the earth comprise human and natural systems which are influenced and changed by natural processes and anthropogenic activities of various scales, both globally and locally [1–4]. Natural systems such as aquatic, atmospheric, and terrestrial environments without human intervention encompass all living and non-living things with interactions of processes such as environmental physical, chemical, biological, and biogeochemical. Such processes need to be examined in environmental studies using advanced techniques and analysis methods. Moreover, through such processes, the living and non-living are intimately related to each other as natural systems from aquatic, atmospheric, and terrestrial environments also provide natural resources for human needs [1]. Conversely, human systems comprise areas and components that human activities such as agricultural activities, industrialization, or urbanization heavily influence, possibly causing environmental pollution. Correspondingly, environmental analytical methods and techniques for pollution control and prevention, as well as conservation of natural resources all provide further insight into environmental chemistry, environmental biology, ecology, geosciences, and environmental physics in natural systems from the viewpoint of environmental planning, environmental engineering and policy, environmental health and toxicology. Environmental pollution and soil, air, and water-related disasters involve complex interactions among natural and anthropogenic causes [1,4–9]. However, as is well recognized, in addition to their increasing emphasis on the investigation of environmental science and related techniques, environmental studies also focus on environmental planning, environmental assessments, environmental management, and environmental policy that cross multiple disciplinary boundaries in order to solve environmental problems, and thus improve our environment. [...

  19. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

  20. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Newell, Silvia E; Yin, Guoyu; Yu, Chendi; Zhang, Hongli; Li, Xiaofei; Gao, Dengzhou; Gao, Juan; Wang, Rong; Liu, Cheng

    2017-08-01

    Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N 2 O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N 2 O production to AgNPs exhibited low-dose stimulation (production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N 2 O production pathway, and its contribution to N 2 O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N 2 O emission.

  1. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment.

    Science.gov (United States)

    Hashemi, Fatemeh; Olesen, Jørgen E; Dalgaard, Tommy; Børgesen, Christen D

    2016-12-15

    Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns within stream or river catchments have considerable influence on nutrient transport, transformation and retention processes that all eventually affect loadings to vulnerable aquatic environments. Therefore, in order to address options to reduce nutrient loadings, quantitative assessment of their effects in real catchments need to be undertaken. This involves setting up scenarios of the possible nutrient load reduction measures and quantifying their impacts via modelling. Over the recent two decades there has been a great increase in the use of scenario-based analyses of strategies to combat excessive nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic conditions, with a large focus on measures targeting land cover/use and land management for reducing the source load of N and P in the landscape. Some of the studies considered how to manage the flows of nutrients, or how changes in the landscape may be used to influence both flows and transformation processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions and climatic conditions. Most of the studies used existing catchment models such as SWAT and INCA, and the choice of the models may also have influenced the setup of the scenarios. The use of

  2. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  3. On the necessity of ecotoxicological assessments of aquatic sediments

    International Nuclear Information System (INIS)

    Krebs, F.

    1992-01-01

    The guidelines for dredged material adopted by the Oslo Commission in June 1991 impose stricter obligations on its member states regarding the management of dredged material in the marine environment. It can be assumed that the basic ideas of these guidelines will become the model for inland waterways as well. For an environmentally acceptable management of dredging operations and the collection of evidence against polluters, ecotoxicological investigations on the behaviour of contaminants in waters are required in addition to chemical analyses. The practical application of these guidelines is hampered by the fact that no standardized biotests for sediments exist in Germany to date. The paper describes situations in which standardized biotest methods of aquatic ecotoxicology can already be used. A concept for the biological assessment of sediments is still lacking. It is necessary to define quality objectives for the evaluation of chemical and ecotoxicological data with a view to ecologically acceptable management of dredged material. (orig.) [de

  4. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  5. The distribution of micro zooplankton in the lagoon environments; La distribuzione del microzooplancton negli ambienti lagunari

    Energy Technology Data Exchange (ETDEWEB)

    Grenni, P.; Creo, C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The aim of this work is to verify the possible use of micro zooplankton as a biological indicator in aquatic environments. In particular, studies carried out in lagoon environments are reported, relatively to the Venice lagoon and the Pontine coastal lakes (Italy). New methodologies to assess the micro plankton component are developed and tested, particularly the concentration and count steps. The use of the same methodologies to assess nano plankton component, as biological indicator. are reported. [Italian] Nel presente lavoro viene analizzata la possibilita' di utilizzare il microzooplancton quale indicatore biologico negli ambienti acquatici (mmarini, acquadulcicoli, salmastri). In particolare, vengono riportati gli studi effettuati dall'ENEA (National Agency for New Technology, Energy and the Environment) su tale componente in ambienti lagunari, con riferimento alla laguna di Venezia e alle lagune pontine.

  6. The distribution of micro zooplankton in the lagoon environments; La distribuzione del microzooplancton negli ambienti lagunari

    Energy Technology Data Exchange (ETDEWEB)

    Grenni, P; Creo, C [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The aim of this work is to verify the possible use of micro zooplankton as a biological indicator in aquatic environments. In particular, studies carried out in lagoon environments are reported, relatively to the Venice lagoon and the Pontine coastal lakes (Italy). New methodologies to assess the micro plankton component are developed and tested, particularly the concentration and count steps. The use of the same methodologies to assess nano plankton component, as biological indicator. are reported. [Italian] Nel presente lavoro viene analizzata la possibilita' di utilizzare il microzooplancton quale indicatore biologico negli ambienti acquatici (mmarini, acquadulcicoli, salmastri). In particolare, vengono riportati gli studi effettuati dall'ENEA (National Agency for New Technology, Energy and the Environment) su tale componente in ambienti lagunari, con riferimento alla laguna di Venezia e alle lagune pontine.

  7. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  8. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  9. Development of South African water quality guidelines for the natural aquatic environment

    CSIR Research Space (South Africa)

    MacKay, HM

    1995-01-01

    Full Text Available This paper describes the progress made by the Department of Water Affairs and Forestry in the development of documented water quality guidelines for aquatic ecosystems in South Africa, which will be able to take into account local and site...

  10. Fish as bioindicators in aquatic environmental pollution assessment: A case study in Lake Victoria wetlands, Uganda

    Science.gov (United States)

    Naigaga, I.; Kaiser, H.; Muller, W. J.; Ojok, L.; Mbabazi, D.; Magezi, G.; Muhumuza, E.

    Growing human population and industrialization have led to the pollution of most aquatic ecosystems and consequent deterioration in environmental water quality. Indicator organisms are needed to improve assessment programmes on the ecological impacts of anthropogenic activities on the aquatic environment. Fish have been widely documented as useful indicators of environmental water quality because of their differential sensitivity to pollution. This study investigated the environmental water quality of selected wetland ecosystems using fish as biological indicators. Fish community structure in relation to water quality was assessed in five wetlands along the shoreline of Lake Victoria from August 2006 to June 2008. Four urban wetlands were variedly impacted by anthropogenic activities while one rural wetland was less impacted, and served as a reference site. Fish species diversity, abundance and richness were assessed, and canonical correspondence analysis (CCA) was used to evaluate the relationship between the fish communities and environmental variables. Results revealed that urban effluent impacted negatively on water quality and consequently the fish community structure. A total of 29 fish species were recorded throughout the study with the lowest number of 15 species recorded in the most impacted site. Shannon diversity and Margalef species richness indices were highest at the references site and lowest at the most impacted site. Wetland haplochromis species dominated the reference site, while oreochromis species dominated the most impacted site. The inshore locations registered higher species diversity and low species richness than the offshore locations. Low dissolved oxygen, pH, secchi depth and high electrical conductivity, total phosphorous, and total nitrogen were strongly associated with the effluent-impacted sites and greatly influenced the fish community structure. This study recommends the use of fish as valuable biological indicators in aquatic

  11. Role of selenium toxicity and oxidative stress in aquatic birds

    Science.gov (United States)

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated

  12. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  13. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Report 1. Baseline Studies. Volume VIII. Summary of Baseline Studies and Data.

    Science.gov (United States)

    1982-05-01

    in May 1976, and, by July 1976, all sampling techniques were employed. In addition to routine displays of data analysis such as frequency tables and...amphibian and reptile communities in large aquatic habitats in Florida, comparison with similar herpetofaunal assemblages or populations is not possible... field environment was initiated at Lake Conway near Orlando, Fla., to study the effectiveness of the fish as a biological macrophyte control agent. A

  14. Biodiversity of Aquatic Insects of Zayandeh Roud River and Its Branches, Isfahan Province, Iran.

    Directory of Open Access Journals (Sweden)

    Mansoreh Shayeghi

    2014-12-01

    Full Text Available Aquatic insects are the major groups of arthropods that spend some parts of their life cycle in the water. These insects play an important role for transmission of some human and animal diseases. There is few information about the aquatic insects fauna of Iran.To study the aquatic insects fauna, adult, nymphal and larval collections were carried out from different habitats using the standard technique in Zayandeh Roud River, Isfahan Province,central Iran, during summer 2011.In total, 741 speimens of aquatic insects were collected and morphologically identified. They include 7 families and 12 genera representing 2 Orders. The order of Diptera (92.31% and Coleoptera (7.69%. The families Culicidae, Syrphidae and Chironomidae from Diptera order, Gyrinidae, Dytiscidae, Haliplidae, Hydrophilidae from Coleoptera order were identified.Some aquatic insects play an important role for transmission of human and animal diseases. These insects also are important for biological control. Therefore ecological study on aquatic insects can provide information about ecology of insects in an area for any decision making.

  15. Degradation of Endosulfan I and Endosulfan II in the Aquatic ...

    African Journals Online (AJOL)

    Degradation of Endosulfan I and Endosulfan II in the Aquatic Environment: A Proposed Enzymatic Kinetic Model that takes into account Adsorption/Desorption of the Pesticide by Colloidal and/or Sediment Particles.

  16. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D. [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  17. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge

  18. Daphnia as a model organism in limnology and aquatic biology: some aspects of its reproduction and development

    Directory of Open Access Journals (Sweden)

    Adam Petrusek

    2011-08-01

    Full Text Available Invertebrates comprise the overwhelming majority of all animal species - around 95% of described species, not including substantial cryptic variation. As it is an extremely diverse and heterogeneous group, research on various invertebrate taxa often follows parallel trajectories, with little interaction among experts on different groups. To promote sharing of knowledge within as well as across taxa, the International Society of Invertebrate Reproduction and Development (ISIRD was established in 1975 in Calicut, India. Since that time, the ISIRD has organised international conferences at three-year intervals where various aspects of invertebrate biology are presented and discussed, naturally with the focus on reproduction and development. Traditionally, marine invertebrate groups have been well represented at all ISIRD congresses, but freshwater invertebrates have often been relatively overlooked at these meetings. The 12th ISIRD congress took place between August 16 and 20, 2010 in Prague, the Czech Republic. Several different Czech institutions collaborated on the organisation of this meeting. As aquatic invertebrate research has a long tradition in the country, we decided to include a section dedicated to popular model organisms in aquatic ecology and evolutionary biology, the "water fleas", cladocerans of the genus Daphnia. The section entitled "Daphnia and other cladocerans as model organisms" was open to any aspects of cladoceran biology directly or indirectly related to their reproduction or development. Unfortunately, the timing of the Prague congress completely overlapped the triennial congress of the International Society of Theoretical and Applied Limnology (SIL in Cape Town, South Africa. This large meeting in a very attractive setting attracted many cladocerologists from all over the world, including Europe. Therefore, the Daphnia section of the Prague ISIRD meeting remained moderate in size, attracting 13 contributions (eight talks

  19. Design parameters for sludge reduction in an aquatic worm reactor

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be

  20. Monitoring aquatic environment pollution : a major component of environment management system part-II

    International Nuclear Information System (INIS)

    Khan, I.H.; Khan, M.H.; Sheikh, I.M.

    1999-01-01

    The quality of water suitable for simple disinfection and filtration is presented in this article. Aquatic monitoring requires sampling frequencies along the alignment of surface water bodies. It is necessary to control the industrial effluents discharge in to river and sewers. Unlike wastes from entirely domestic sources, however industrial effluents may contain a very large variety of unnatural components which necessitates greater considerations in setting suitable discharge limits and, perhaps closer surveillance to ensure that standards are met. Several suggestion and example of different types of effluent have been described. All the examples given are sufficiently convincing that Pakistan can learn a great deal from international experiences in environmental pollution to avoid catastrophes. (A.B.)

  1. {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am levels in the terrestrial and aquatic environment of the Loire and Garonne rivers basins (France)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, G.; Mokili, M.B.; Le Roy, C.; Pagano, V. [SUBATECH/IN2P3 (France); Gontier, G.; Boyer, C. [EDF-DPI-DIN-CIDEN (France); Chardon, P. [CNRS/IN2P3 (France); Hemidy, P.Y. [EDF-DPN-UNIE-GPRE-IEV (France)

    2014-07-01

    Plutonium and americium long-lived alpha emitter isotopes can be found in the environment because of atmospheric global fallout due to thermonuclear tests performed between 1945 and 1980, to the American SNAP 9A satellite explosion in 1964, to the Chernobyl nuclear power plant accident,... In France, the nuclear safety authority does not allow the release of artificial alpha emitters from nuclear power plants. Thus, monitoring is performed to verify the absence of these alpha emitters in liquid discharges to respect the limits set by the regulations. These thresholds ensure a very low dosimetric impact to the population compared to other radionuclides. With the objective of environmental monitoring around nuclear facilities, activity measurements of long-lived alpha emitters are carried out to detect the traces of these radionuclides. Analysis of low activity by alpha spectrometry after chemical steps were performed and used to determine the {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activities on a large set of environmental solid samples likely to be encountered in environmental monitoring as soils, sediments, terrestrial and aquatic bio-indicators. The samples collected in the terrestrial and aquatic environment of the Loire and Garonne rivers basins (France) was investigated for the 2009-2014 period. It was found that the mean activity concentration of the most frequently detected was for the radionuclide {sup 238}Pu: from <0.00031 to 0.0061 Bq/kg dry in terrestrial samples and from <0.00086 to 0.011 Bq/kg dry in aquatic samples; for the radionuclide {sup 239+240}Pu: from 0.00041 to 0.150 Bq/kg dry in terrestrial samples and from 0.0023 to 0.240 Bq/kg dry in aquatic samples and for the radionuclide {sup 241}Am: from <0.00086 to 0.087 Bq/kg dry in terrestrial samples and from 0.0022 to 0.120 Bq/kg dry in aquatic samples. {sup 238}Pu/{sup 239+240}Pu and {sup 241}Am/{sup 239+240}Pu ratios determined are in accordance with an environmental contamination due to

  2. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil

    Directory of Open Access Journals (Sweden)

    ESF Medeiros

    Full Text Available In most ecological field research, appropriate sampling is critical for the understanding of processes underlying fish populations and communities, and is even more important in heterogeneous environments such as the aquatic systems of the semi-arid region of Brazil. This study intends to make a contribution to the development of sampling programs and gear selection in aquatic systems of semi-arid Brazil by evaluating the effects of different fishing techniques on the assessment of richness and composition of the fish fauna in selected aquatic environments. Six sites were selected to represent typical artificial (reservoirs and natural (intermittent streams environments and four different types of sampling gear were applied to each site during four occasions. The present study shows that when selecting sampling techniques to be used in aquatic systems in semi-arid Brazil, one must consider the objectives of the study, e.g. ecological or taxonomic, in order to decide on inclusion of rare species in the sampling population. Also, the effect of the sampling gear on natural abundances of fish must be considered given that some sampling techniques are highly detrimental to fish population numbers.

  3. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  4. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    Directory of Open Access Journals (Sweden)

    Honda T

    2012-03-01

    Full Text Available Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials, for which there were many studies on aquatic exercise. Aquatic exercise, in this study, means walking in all directions, stretching, and various exercises and conditioning performed with the feet grounded on the floor of a swimming pool. We excluded swimming. We decided to treat aquatic exercise, underwater exercise, hydrotherapy, and pool exercise as all having the same meaning.Results: Aquatic exercise had significant effects on pain relief and related outcome measurements for locomotor diseases.Conclusion: Patients may become more active, and improve their quality of life, as a result of aquatic exercise.Keywords: aquatic exercise, health enhancement, evidence

  5. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database

    Science.gov (United States)

    The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...

  6. NASDA next-generation aquatic habitat for space shuttle and ISS

    Science.gov (United States)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Uchida, S.; Kono, Y.; Takamatsu, T.; Sakimura, T.

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. These include the Vestibular Function Experiment Unit (VFEU), Aquatic Animal Experiment Unit (AAEU) and another VFEU for marine fish. Each facility had functions such as life support for up to 15 days, water quality control system, gas exchange by artificial lung, video observation through a window by a crewmember, day/night cycle control, feeding system for medaka (AAEU only), and more. We are now studying the next -generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and Space Station use. AQH will have many new capabilities missing in earlier facilities. The following functions are of particular importance: long-term life support for up to 90 days, multigeneration breeding (for medaka and zebrafish), automatic feeding system adaptable for young of fish and amphibians, water quality control for long-term experiments, air-water interface, a computer-driven specimen-monitoring system housed in the facilities, and a specimen sampling system including eggs. A prototype breeding system and the specimen-monitoring system were designed and tested. The prototype breeding system consists of a closed water loop, two 700ml fish chambers with LED lighting, a small artificial lung, and a nitrification bacteria filter. Medaka adult fish were able to mate and spawn in this small breeding system, and the young could grow to adult fish. The water quality control system also worked successfully. For amphibians, the breeding test using tadpoles of xenopus is also starting. We have many difficult technological problems to resolve, but development of AQH is going well. In this paper, we will introduce the results of the component-level test and the concept of AQH. In the future, many space biological experiments will be conducted, especially in the areas of developmental biology, neurophisiology, and

  7. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment Sobrevivência e conjugação de Bacillus thuringiensis em ambiente aquático

    Directory of Open Access Journals (Sweden)

    Luciana Furlaneto

    2000-10-01

    Full Text Available Field and laboratory studies were conducted to assess the survival of cells and spores and plasmid transfer between Bacillus thuringienis strains in aquatic environment. Results indicated that cells and spores of B. thuringiensis can survive for 10 days in water, without altering their number. The sporulation process began after 12-15 hours of inoculation of water. B. thuringiensis was able to transfer conjugative plasmids in the aquatic environment.O presente trabalho é um estudo sobre a sobrevivência e a conjugação de linhagens de Bacillus thuringiensis em água. Os experimentos conduzidos no laboratório mostram que as células e os esporos de B. thuringiensis podem persistir pelo menos 10 dias na água. A esporulação inicia-se 12-15 horas após a inoculação. O processo de conjugação foi demonstrado em diferentes ambientes aquáticos, tanto em condições de laboratório quanto no meio ambiente.

  8. The uptake of radiationless by some fresh water aquatic biota review

    International Nuclear Information System (INIS)

    Abdel Malik, W.E.Y.; Ibrahim, A.S.; El-Shinawy, R.M.K.

    2005-01-01

    The work presented in this paper reviews many studies carried out by the authors along the last thirty years. The behaviour of the radionuclides in the aquatic ecology of Ismailia Canal stream is of great interest for the evaluation of the possible hazards that may occur to man through the movement of such radionuclides via food chain. Laboratory investigations have been carried out in order to understand the accumulation and release of some radionuclide by some aquatic biota (aquatic macrophyte aquatic plants, some snails species and some fish species) inhabiting this fresh water stream. Different parameters such as water ph, contact time, water salinity, etc. were used in these investigations. The kinetic analysis of the uptake process of some radio nuclides by certain biota was performed. From this analysis, it was possible (through the statistical methods) to investigate that the uptake process proceeded through different steps with different rates depending on the radionuclide and the biota species. It was possible to conclude that some of the selected biota can be used as biological indicators for certain radionuclides

  9. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    Science.gov (United States)

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  11. Analysis, fate studies and monitoring of the antifungal agent clotrimazole in the aquatic environment.

    Science.gov (United States)

    Peschka, Manuela; Roberts, Paul H; Knepper, Thomas P

    2007-10-01

    The analysis and presence of clotrimazole, an antifungal agent with logK(OW) > 4, was thoroughly studied in the aquatic environment. For that reason analytical methods based on gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry were developed and validated to quantify clotrimazole with limits of quantification down to 5 and 1 ng/L, respectively. Both methods were compared in an intercalibration exercise. The complete mass-spectrometric fragmentation pattern could be elucidated with the aid of quadrupole time of flight mass spectrometry. Since clotrimazole tends to adsorb to laboratory glassware, studies on its adsorption behaviour were made to ensure the appropriate handling of water samples, e.g. pH, storage time, pretreatment of sampling vessels or material of the vials used for final extracts. The phenomena of adsorption to suspended matter were investigated while analysing different waste-water samples. Application of the methods in various investigated wastewater and surface water samples demonstrated that clotrimazole could only be detected in the low nanogram per litre range of anthropogenic influenced unfiltered water samples after acidification to pH 2.

  12. Concentration and distribution of 14C in aquatic environment around Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Wang Zhongtang; Guo Qiuju; Hu Dan; Xu Hong

    2015-01-01

    In order to study the concentration and distribution of 14 C in aquatic environment in the vicinity of Qinshan Nuclear Power Plant (NPP) after twenty years' operation, an apparatus extracting dissolved inorganic carbon from water was set up and applied to pretreat the water samples collected around Qinshan NPP. The 14 C concentration was measured by accelerator mass spectrometer (AMS). The results show that the 14 C specific activities in surface seawater samples range from 196.8 to 206.5 Bq/kg 203.4 ± 5.6) Bq/kg in average), which are close to the background. The 14 C concentrations in cooling water discharged from Qinshan NPP are close to the 14 C values in near shore seawater samples out of liquid radioactive effluent discharge period. It can be further concluded that the 14 C discharged previously is diluted and diffused well, and no 14 C enrichment in seawater is found. Also, no obvious increment in the 14 C specific activities of surface water and underground water samples are found between Qinshan NPP region and the reference region. (authors)

  13. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments

    Science.gov (United States)

    Lumaret, Jean-Pierre; Errouissi, Faiek; Floate, Kevin; Römbke, Jörg; Wardhaugh, Keith

    2012-01-01

    The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin

  14. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.

    Science.gov (United States)

    Wang, Ying; Na, Guangshui; Zong, Humin; Ma, Xindong; Yang, Xianhai; Mu, Jingli; Wang, Lijun; Lin, Zhongsheng; Zhang, Zhifeng; Wang, Juying; Zhao, Jinsong

    2018-02-01

    Adverse outcome pathways (AOPs) are a novel concept that effectively considers the toxic modes of action and guides the ecological risk assessment of chemicals. To better use toxicity data including biochemical or molecular responses and mechanistic data, we further developed a species sensitivity-weighted distribution (SSWD) method for bisphenol A and 4-nonylphenol. Their aquatic predicted-no-effect concentrations (PNECs) were derived using the log-normal statistical extrapolation method. We calculated aquatic PNECs of bisphenol A and 4-nonylphenol with values of 4.01 and 0.721 µg/L, respectively. The ecological risk of each chemical in different aquatic environments near Tianjin, China, a coastal municipality along the Bohai Sea, was characterized by hazard quotient and probabilistic risk quotient assessment techniques. Hazard quotients of 7.02 and 5.99 at 2 municipal sewage sites using all of the endpoints were observed for 4-nonylphenol, which indicated high ecological risks posed by 4-nonylphenol to aquatic organisms, especially endocrine-disrupting effects. Moreover, a high ecological risk of 4-nonylphenol was indicated based on the probabilistic risk quotient method. The present results show that combining the SSWD method and the AOP concept could better protect aquatic organisms from adverse effects such as endocrine disruption and could decrease uncertainty in ecological risk assessment. Environ Toxicol Chem 2018;37:551-562. © 2017 SETAC. © 2017 SETAC.

  15. Methodologies for evaluation of environmental capacity and impact due to radioactive releases by critical path analysis and their application to the IPEN's aquatic environment as a typical case study

    International Nuclear Information System (INIS)

    Chandra, U.

    1986-01-01

    A brief description of the tested concepts, for determination of environmental capacity and impact by critical path analysis technique and of dose limitation/optmization for radioactive releases is made. These concepts/methodologies are being applied in the environment of IPEN. The aquatic environment of IPEN is dealt with in detal with a view to evaluate the possible critical paths, its capacity, and present and future radiological impacts. (Author) [pt

  16. Proceedings of the 22nd annual aquatic toxicity workshop: October 2-4, 1995, St. Andrews, New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Haya, K.; Niimi, A.J. [eds.

    1996-02-01

    The proceedings contain copies (in many cases in abstract form only) of the 4 plenary, 87 platform, and 28 poster presentations. The sessions are: working with industry; toxicology and chemistry in watershed management; bioassay: ecological risk assessment; toxicity identification and reduction; fate and effects of PAHs in the aquatic environment; PCBs in waterways: transport and toxicity; mercury in aquatic ecosystems; sediment toxicity; bio-markers of pollution; statistics for estimating potency from non-quantal data; advances in micro-scale aquatic toxicity; aquatic toxicity of water birds; and aquatic pathology and its role in forensic science. One paper is abstracted separately.

  17. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.

    Science.gov (United States)

    Heberer, Th; Reddersen, K; Mechlinski, A

    2002-01-01

    Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.

  18. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security.

    Science.gov (United States)

    Kriticos, Darren J; Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.

  19. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes, an Invasive Aquatic Plant Threatening the Environment and Water Security.

    Directory of Open Access Journals (Sweden)

    Darren J Kriticos

    Full Text Available Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional

  20. Uranium in Aquatic Sediments; Where are the Guidelines?

    Energy Technology Data Exchange (ETDEWEB)

    Iles, M., E-mail: michelle.iles@ewlsciences.com.au [Earth, Water and Life Sciences Pty Ltd, Darwin (Australia)

    2014-05-15

    Sediment data has been collected on and around the Ranger uranium mine for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanism, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality and a weighted multiple lines of evidence approach whereby the chemistry of sediments is compared with reference and guideline values and predictions of bio-availability, and biological effects data allows cause and effect relationships to be derived. However, where uranium in aquatic sediments is concerned there is a lack of national (Australian) and international guidelines that are applicable to tropical sediments and the biological effects data available are limited or confounded by other variables. In the absence of clear uranium guidelines for sediments an internationally reported “Predicted No Effect Concentration” (PNEC) for uranium in temperate sediments was used as a “pseudo-guideline” value to identify sites with concentrations that might present an environmental risk and that should be further investigated. The applicability of the PNEC to the tropical Ranger site was understandably questioned by stakeholders and peers. The issues raised highlighted the need for international guidelines for uranium in aquatic sediments for tropical and temperate climates and an internationally accepted approach for deriving same. (author)

  1. Current understanding of organically bound tritium (OBT) in the environment.

    Science.gov (United States)

    Kim, S B; Baglan, N; Davis, P A

    2013-12-01

    It has become increasingly recognized that organically bound tritium (OBT) is the more significant tritium fraction with respect to understanding tritium behaviour in the environment. There are many different terms associated with OBT; such as total OBT, exchangeable OBT, non-exchangeable OBT, soluble OBT, insoluble OBT, tritiated organics, and buried tritium, etc. A simple classification is required to clarify understanding within the tritium research community. Unlike for tritiated water (HTO), the environmental quantification and behaviour of OBT are not well known. Tritiated water cannot bio-accumulate in the environment. However, it is not clear whether or not this is the case for OBT. Even though OBT can be detected in terrestrial biological materials, aquatic biological materials and soil samples, its behaviour is still in question. In order to evaluate the radiation dose from OBT accurately, further study will be required to understand OBT measurements and determine OBT fate in the environment. The relationship between OBT speciation and the OBT/HTO ratio in environmental samples will be useful in this regard, providing information on the previous tritium exposure conditions in the environment and the current tritium dynamics. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding

    DEFF Research Database (Denmark)

    Valentini, Alice; Taberlet, Pierre; Miaud, Claude

    2016-01-01

    for species detection from DNA present into the environment. In this study, we tested if an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony......Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool...

  3. Modeling of radiocesium transport kinetics in system water-aquatic plants

    International Nuclear Information System (INIS)

    Svadlenkova, M.

    1988-01-01

    Compartment models were used to describe the kinetics of the transport of radionuclides in the system water-biomass of aquatic plants. Briefly described are linear models and models with time variable parameters. The model was tested using data from a locality in the environs of the Bohunice nuclear power plant. Cladophora glomerata algae were the monitored plants, 137 Cs the monitored radionuclide. The models may be used when aquatic plants serve as bioindicators of the radioactive contamination of surface waters, for monitoring the transport of radionuclides in food chains. (M.D.). 10 refs

  4. Brominated flame retardants in aquatic organisms from the North Sea in comparison with biota from the high Arctic marine environment.

    Science.gov (United States)

    Sørmo, Eugen G; Jenssen, Bjørn M; Lie, Elisabeth; Skaare, Janneche U

    2009-10-01

    The extent of trophic transfer of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) and seven polybrominated diphenyl ethers (PBDEs), were examined in pelagic and benthic aquatic animals (invertebrates and fish) in a near-shore estuary environment of the southeastern North Sea (Norway; 59 degrees N). Whole-body burdens of HBCD and several of the most abundant PBDEs biomagnified with increasing trophic position in the food web. Biomagnification of HBCD was particularly strong, resulting in whole-body burdens of this compound comparable to those of total PBDEs in the higher-trophic-level species. Body burdens of PBDEs were higher in pelagic than in benthic aquatic organisms. This was particularly evident for the lesser-brominated and volatile PBDE congeners. Atmospheric gas-water-phytoplankton exchange of these volatile compounds over the water surface may account for this observation. The PBDE burdens in pelagic zooplankton from the North Sea were more than 60-fold greater than those in corresponding pelagic zooplankton from the colder high Arctic latitudes (>78 degrees N) of Norway (Svalbard). This great difference may relate to reduced chemical gas-water exchange over open waters at the colder Arctic latitudes. However, previously measured whole-body burdens of BFRs in other aquatic marine organisms from the high Arctic were comparable or even exceeded those in the North Sea samples of the present study. These include sympagic (sea ice-associated) invertebrates and fish accumulating high burdens of particle-associated BFRs. The present study provides new insight regarding the distribution of BFRs in ecologically different compartments of marine ecosystems, essential information for understanding the food-web transfer and geographical dispersal of these compounds.

  5. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  6. Coal conversion and aquatic environments: overview of impacts and strategies for monitoring. Environmental Sciences Division publication No. 1112

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R. D.; Sanders, F. S.; Barnthouse, L. W.

    1977-01-01

    Impact assessment and environmental monitoring are difficult but crucial steps needed to ensure the environmentally safe development of coal conversion technologies. This paper summarizes strategies for impact assessment and monitoring developed at Oak Ridge National Laboratory for DOE's program to build demonstration facilities. Impacts on aquatic environments depend heavily on the abiotic and biotic characteristics of the site and details of facility design. Key issues include availability of water, use of ''zero-discharge'' designs, and methods of handling solid wastes. In monitoring programs emphasis is placed on (1) thorough use of existing data, (2) use of a synoptic reconnaissance survey, criteria for choosing parameters to be measured, and the search for ecologically meaningful, cost-effective methods.

  7. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  8. DNA-based identification of aquatic invertebrates useful in the South African context?

    Directory of Open Access Journals (Sweden)

    Hermoine J. Venter

    2016-05-01

    Full Text Available The concept of using specific regions of DNA to identify organisms processes such as DNA barcoding is not new to South African biologists. The African Centre for DNA Barcoding reports that 12 548 plant species and 1493 animal species had been barcoded in South Africa by July 2013, while the Barcode of Life Database (BOLD contains 62 926 records for South Africa, 11 392 of which had species names (representing 4541 species. In light of this, it is surprising that aquatic macroinvertebrates of South Africa have not received much attention as potential barcoding projects thus fa barcoding of aquatic species has tended to focus on invasive species and fishes. Perusal of the BOLD records for South Africa indicates a noticeable absence of aquatic macroinvertebrates, including families used for biomonitoring strategies such as the South African Scoring System. Meanwhile, the approach of collecting specimens and isolating their DNA individually in order to identify them (as in the case of DNA barcoding, has been shifting towards making use of the DNA which organisms naturally shed into their environments (eDNA. Coupling environmental and bulk sample DNA with high-throughput sequencing technology has given rise to metabarcoding, which has the potential to characterise the whole community of organisms present in an environment. Harnessing barcoding and metabarcoding approaches with environmental DNA (eDNA potentially offers a non-invasive means of measuring the biodiversity in an environment and has great potential for biomonitoring. Aquatic ecosystems are well suited to these approaches but could they be useful in a South African context?

  9. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO 2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance

  10. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches

    International Nuclear Information System (INIS)

    Monte, Luigi; Perianez, Raul; Boyer, Patrick; Smith, Jim T.; Brittain, John E.

    2009-01-01

    This paper is aimed at presenting and discussing the methodologies implemented in state-of-the-art models for predicting the physical processes of radionuclide migration through the aquatic environment, including transport due to water currents, diffusion, settling and re-suspension. Models are briefly described, model parameter values reviewed and values recommended. The different modelling approaches are briefly classified and the advantages and disadvantages of the various model approaches and methodologies are assessed.

  11. Biosphere modeling in waste disposal safety assessments -- An example using the terrestrial-aquatic model of the environment

    International Nuclear Information System (INIS)

    Klos, R.A.

    1998-01-01

    Geological disposal of radioactive wastes is intended to provide long-term isolation of potentially harmful radionuclides from the human environment and the biosphere. The long timescales involved pose unique problems for biosphere modeling because there are considerable uncertainties regarding the state of the biosphere into which releases might ultimately occur. The key to representing the biosphere in long-timescale assessments is the flexibility with which those aspects of the biosphere that are of relevance to dose calculations are represented, and this comes from the way in which key biosphere features, events, and processes are represented in model codes. How this is done in contemporary assessments is illustrated by the Terrestrial-Aquatic Model of the Environment (TAME), an advanced biosphere model for waste disposal assessments recently developed in Switzerland. A numerical example of the release of radionuclides from a subterranean source to an inland valley biosphere is used to illustrate how biosphere modeling is carried out and the practical ways in which meaningful quantitative results can be achieved. The results emphasize the potential for accumulation of radionuclides in the biosphere over long timescales and also illustrate the role of parameter values in such modeling

  12. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  13. REVIEW OF SELECTED BIOLOGICAL METHODS OF ASSESSING THE QUALITY OF NATURAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Beata Jakubus

    2015-04-01

    Full Text Available The xenobiotics introduced into the environment are the effect of human activities. It is especially soil contamination that leads to degradation of soils, which may finally be referred to the biological imbalance of the ecosystem. Normally chemical methods are used for the assessment of soil’s quality. Unfortunately, they are not always quick and inexpensive. Therefore, the practice and the science at environmental monitoring more frequently employ biological methods. Most of them meet the above mentioned conditions and become a supplement of routine laboratory practices. This publication shows an overview of selected common biological methods used to estimate the quality of the environment. The first part of the paper presents biomonitoring as a first step of environmental control which relies on the observation of indicator organisms. The next section was dedicated to the bioassays, indicating the greater or lesser practical applications confirmed by literature on the subject. Particular attention has been focused on phytotests and the tests based on the invertebrates.

  14. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay.

    Science.gov (United States)

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-12-12

    activity to other biological responses, could provide further understanding of adverse effects in aquatic environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luanna R.S.; Silva, Edvane B.; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (GERAR/DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia; Silva, Ronaldo C. da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica; Amancio, Francisco F. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia

    2011-07-01

    Ionizing radiation is a genotoxic agent, inducing gene mutations and cellular death. Several efforts have been defendants in the development of techniques for measurement of radiation damage in biological systems. Among these techniques, micronuclei test has been showing as a great bio marker of DNA damage, being used in environmental monitoring to detect genotoxic agents in the environment. Additionally, organisms as Biomphalaria glabrata, freshwater molluscs, presents itself as an excellent model to assess damage caused by physical and chemical agents, due their biological and environmental characteristics. The snails were divided into groups of 5 individuals exposed to doses of 0 (control), 25, 35, 45 and 55 Gy of {sup 60}Co. After 48 hours of irradiation, the hemo lymph was collected and prepared the slides, which were stained with Giemsa and analyzed the cellular changes in haemocytes Statistical analysis was accomplished through chi-square test, ANOVA and Tukey test (p< 0,05). The results indicated that B. glabrata showed to be sensitive to gamma radiation. The snails irradiated with 35 Gy showed a decrease of haemocytes, while that of 55 Gy increased. Cellular and morphological changes were observed at doses of 35, 45 and 55 Gy and the dose of 55 Gy, the most radiotoxic. (author)

  16. Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments

    International Nuclear Information System (INIS)

    Silva, Luanna R.S.; Silva, Edvane B.; Melo, Ana M.M.A.; Silva, Ronaldo C. da; Amancio, Francisco F.

    2011-01-01

    Ionizing radiation is a genotoxic agent, inducing gene mutations and cellular death. Several efforts have been defendants in the development of techniques for measurement of radiation damage in biological systems. Among these techniques, micronuclei test has been showing as a great bio marker of DNA damage, being used in environmental monitoring to detect genotoxic agents in the environment. Additionally, organisms as Biomphalaria glabrata, freshwater molluscs, presents itself as an excellent model to assess damage caused by physical and chemical agents, due their biological and environmental characteristics. The snails were divided into groups of 5 individuals exposed to doses of 0 (control), 25, 35, 45 and 55 Gy of 60 Co. After 48 hours of irradiation, the hemo lymph was collected and prepared the slides, which were stained with Giemsa and analyzed the cellular changes in haemocytes Statistical analysis was accomplished through chi-square test, ANOVA and Tukey test (p< 0,05). The results indicated that B. glabrata showed to be sensitive to gamma radiation. The snails irradiated with 35 Gy showed a decrease of haemocytes, while that of 55 Gy increased. Cellular and morphological changes were observed at doses of 35, 45 and 55 Gy and the dose of 55 Gy, the most radiotoxic. (author)

  17. Biological Methods and Manual Development

    Science.gov (United States)

    EPA scientists conduct research to develop and evaluate analytical methods for the identification, enumeration, evaluation of aquatic organisms exposed to environmental stressors and to correlate exposures with effects on chemical and biological indicators

  18. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  19. IMPACT OF HEAVY METALS CONTAMINATION ON SPRING ABUNDANCE OF AQUATIC MACRO-INVERTEBRATES INHABITING LAKE TIMSAH, EGYPT

    Directory of Open Access Journals (Sweden)

    Marwa Ibrahim Saad El-Din

    2017-04-01

    Full Text Available Lake Timsah, Egypt receives several kinds of pollutants coming from domestic sewage of unconnected areas adjoining the shore and possibly marine pollution. During the last decades heavy metals have become common contaminants of aquatic and wetland environments throughout the world because of human activity and technological development. Increasing attention has been given during the last decade to the protection of marine and freshwater aquatic environment against pollution, both nationally and internationally. Macro-benthoses are the most commonly organisms used as bio-indicators water quality assessment. All of the aquatic macro-invertebrates that were collected from El-Taween station, Lake Timsah, Egypt fell into three major groups that were fairly easy to identify. They were annelids (Polychaeta and Oligochaeta, molluscs (Bivalvia and Gastropoda and arthropods (Crustacea. The small sized crustacean Sphaeroma. serratum are considered suitable species for aquatic bio-monitoring because they hold an important position in the aquatic food chain responds to many pollutants, easy to culture and has short life cycles. Iron was most important determinant; it appears in high concentrations in both water sample and the tissue of crustacean sample (S. serratum.

  20. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data.

    Science.gov (United States)

    Laurenson, James P; Bloom, Raanan A; Page, Stephen; Sadrieh, Nakissa

    2014-03-01

    Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.

  1. ENVIRONMENT PROTECTION AND ENVIRONMENT MONITORING ISSUES IN THE PROJECTS OF SUBGLACIAL LAKES STUDIES IN ANTARCTICA

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2012-01-01

    Full Text Available Antarctic subglacial lakes can represent extreme natural habitats for microorganisms from the position of their evolution and adaptation, as well as they can contain the information on Antarctic ice sheet history and climatic changes in their sediments. Now only direct measurements and sampling from these habitats can answer on many fundamental questions. Special precaution should be complied at penetration into these unique relic environments without unfavorable impacts and contamination. A number of recommendations were developed on levels of cleanliness and sterility during direct exploration and research of subglacial environments. Documents considered in the article are the first and necessary steps for appropriate and long-term ecological management of subglacial Antarctic environments. Today there are three projects of subglacial aquatic environment research which are in preparation and realization – the Russian project of Lake Vostok, the similar British project of Lake Ellsworth and the American project on Whillans Ice Stream. The programs of ecological stewardship for direct exploration of these lakes are discussed. All these subglacial aquatic objects of further exploration and research are so various on their structure, age and regime, that only results of all programs as a whole can help to draw us a uniform picture of a subglacial ecological system. Ecological stewardship of these should provide the minimal ecological impact with maximal scientific results. On the basis of existing documents and recommendations the general approaches and the program of ecological stewardship for Lake Vostok research are discussed. Study of drilling fluid, drilling chips, Vostok ice core and the fresh frozen water will allow to make an assessment of biological and chemical contamination as a result of the first penetration and to modify the further stewardship program for the second penetration and direct exploration of lake water.

  2. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  3. Contamination of mercury in the biological and physical environment of northwest Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Delisle, C E

    1977-10-01

    Mercury and its compounds are present in the environment of northwest Quebec and present serious risks to human health. This study shows that all bodies of water investigated yield fish with mercury concentrations in excess of the Canadian safe limit (0.5 ppm) for human consumption. Data are reported for total mercury in 902 fishes from 58 bodies of water sampled between 1972 and 1976. Out of these, 158 were Coregonus clupeaformis with an average concentration of 0.27 ppm of mercury, 82 were Catostomus commersoni with 0.38 ppm, 287 were Stizostedion vitreum vitreum with 0.79 ppm, 364 were Esox lucius with 0.84 ppm, and 11 were Acipenser fulvescens with 0.36 ppm. It is concluded that walleye and pike are rarely safe to eat in northwest Quebec. Data on limited numbers of molluscs, benthic organisms, plankton, aquatic birds and aquatic mammals from this area are also reported and show only a few in excess of the safe level. Exceptions are found in ducks, grebes, mergansers and otters, mink and marten. Mercury in sediments varied from 50 ppb (background level) to more than 1000 ppb, depending on the body of water and its proximity to zones of influence of human activity. Surface waters rarely exceed 0.20 ppb mercury even in areas where sediment contamination is high. Ground water reached 48 ppb in some areas, however, suggesting contamination from natural sources.

  4. Biological Nutrient Removal in Compact Biofilm Systems

    OpenAIRE

    Bassin, J.P.

    2012-01-01

    The removal of nutrients such as nitrogen and phosphorus from both domestic and industrial wastewaters is imperative since they potentially harm the environment. One of the main consequences of excessive availability of nitrogen and phosphorus in aquatic ecosystems (freshwater, marine and estuarine) is the overgrowth of algae and other aquatic plants, a phenomenon designated as eutrophication. Algae and aquatic plants induce depletion of oxygen in water basins, resulting in massive death of e...

  5. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  6. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    The effect of green sponges on the abundance of aquatic mycotal species is caused by dissolved organic matter produced during photosynthesis by symbiotic zoochlorellae, a symbionts of green sponges and excreted into the water environment (S. fluviatilis excreted mean 12.8% of carbon fixation). Those excreted organic ...

  7. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  8. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  9. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  10. A Simple Model of Tetracycline Antibiotic Resistance in the Aquatic Environment (with Application to the Poudre River

    Directory of Open Access Journals (Sweden)

    Sarah Sanchez

    2011-02-01

    Full Text Available Antibiotic resistance is a major concern, yet it is unclear what causes the relatively high densities of resistant bacteria in the anthropogenically impacted environment. There are various possible scenarios (hypotheses: (A Input of resistant bacteria from wastewater and agricultural sources is significant, but they do not grow in the environment; (B Input of resistant bacteria is negligible, but the resistant bacteria (exogenous or endogenous grow due to the selection pressure of the antibiotic; (C Exogenous bacteria transfer the resistance to the endogenous bacteria and those grow. This paper presents a simple mechanistic model of tetracycline resistance in the aquatic environment. It includes state variables for tetracyclines, susceptible and resistant bacteria, and particulate and dissolved organic matter in the water column and sediment bed. The antibiotic partitions between freely dissolved, dissolved organic matter (DOM-bound and solids-bound phases, and decays. Bacteria growth is limited by DOM, inhibited by the antibiotic (susceptible bacteria only and lower due to the metabolic cost of carrying the resistance (resistant bacteria only. Resistant bacteria can transfer resistance to the susceptible bacteria (conjugation and lose the resistance (segregation. The model is applied to the Poudre River and can reproduce the major observed (literature data patterns of antibiotic concentration and resistance. The model suggests observed densities of resistant bacteria in the sediment bed cannot be explained by input (scenario A, but require growth (scenarios B or C.

  11. Perfluoroalkyl substances in aquatic environment-comparison of fish and passive sampling approaches.

    Science.gov (United States)

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Kodes, Vit; Golovko, Oksana; Zlabek, Vladimir; Randak, Tomas

    2016-01-01

    The concentrations of seven perfluoroalkyl substances (PFASs) were investigated in 36 European chub (Squalius cephalus) individuals from six localities in the Czech Republic. Chub muscle and liver tissue were analysed at all sampling sites. In addition, analyses of 16 target PFASs were performed in Polar Organic Chemical Integrative Samplers (POCISs) deployed in the water at the same sampling sites. We evaluated the possibility of using passive samplers as a standardized method for monitoring PFAS contamination in aquatic environments and the mutual relationships between determined concentrations. Only perfluorooctane sulphonate was above the LOQ in fish muscle samples and 52% of the analysed fish individuals exceeded the Environmental Quality Standard for water biota. Fish muscle concentration is also particularly important for risk assessment of fish consumers. The comparison of fish tissue results with published data showed the similarity of the Czech results with those found in Germany and France. However, fish liver analysis and the passive sampling approach resulted in different fish exposure scenarios. The total concentration of PFASs in fish liver tissue was strongly correlated with POCIS data, but pollutant patterns differed between these two matrices. The differences could be attributed to the metabolic activity of the living organism. In addition to providing a different view regarding the real PFAS cocktail to which the fish are exposed, POCISs fulfil the Three Rs strategy (replacement, reduction, and refinement) in animal testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic

    2017-10-01

    This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms -1 . The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the

  13. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Löwa, Norbert, E-mail: norbert.loewa@ptb.de; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non–linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment. - Highlights: • MPS signal amplitude: allows for MNP quantification in physiological environment. • MPS signal shape: specifically detects changes due to MNP interaction. • Correlation between changes in MPS amplitude and shape were found. • MPS signal (shape/amplitude) correlation allow for a quantification correction. • Reliable quantification result if the dynamic magnetic behavior of MNP do not change.

  14. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review.

    Science.gov (United States)

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exploitation of Aquatic Resources in Ahanve, Badagry, south-western Nigeria

    Directory of Open Access Journals (Sweden)

    Orijemie, Emuobosa Akpo

    2014-11-01

    Full Text Available The Badagry Cultural Area (BCA is one of the significant socio-cultural places in coastal south-western Nigeria. Palynological and archaeological studies at Ahanve, a settlement in the BCA were undertaken recently to improve the understanding of past human exploitation of aquatic resources. Collected data revealed contrasts in the availability and utilisation of aquatic resources between a first occupation phase (9th-17th centuries AD and a second occupation phase (17th century AD to present. The environment during the first phase was characterised by secondary forest and freshwater swamp. During this period, the inhabitants consumed cat-fish (Clariidae and bivalves (Anodonta sp., and engaged in salt production. The salt was produced from brine obtained from the Atlantic Ocean. Aquatic food resources were supplemented with terrestrial animal and plant foods. During the second occupation phase, aquatic resources (cat-fish and bivalves declined and subsequently disappeared; salt production was discontinued while terrestrial foods, particularly plant-based types, increased significantly. These events coincided with the arrival of European travellers. Oral sources suggest that the decline in the exploitation of aquatic resources was in part due to the fear of being taken captive while on fishing expeditions, restrictions by Europeans who controlled the water-ways, and the massive importation of salt which replaced local production.

  16. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    Science.gov (United States)

    Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, ...

  17. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients

    OpenAIRE

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exe...

  18. Evaluating bio environmental effects of Bushehr Nuclear Power Plant on water and aquatic organism of Persian Gulf

    International Nuclear Information System (INIS)

    Ayatti, F.

    2000-01-01

    The operation of nuclear power plants is always subjected to emission of some radioactive materials in the form of gaseous, liquids and solids in the environment. The heat from condenser coolant discharged to the sea can have some adverse effects on biological systems as thermal pollution. In this project, the radiation and thermal effects on Bushehr Nuclear Power Plants on aquatic animals in Persian Gulf were studied. The mathematical models for atmospheric dispersion of pollutant and pathways of radioactive materials from air to sea water and from sea to animals and human bodies were considered. some environmental samples from Persian Gulf were measured for radioactivity using high-purity Ge/Li detectors and Gamma-spectroscopy. The results indicates that the erection of B usher Nuclear Power Plants and its operation in the normal operation can have no adverse effects on environment, and also its thermal pollution is of no importance due to low area for coolant discharges

  19. The impact of different reference panels on spectral reflectance coefficients of some biological water pollutants

    Science.gov (United States)

    Jenerowicz, Agnieszka; Walczykowski, Piotr

    2015-10-01

    Monitoring of water environment and ecosystem, detecting water contaminants and understanding water quality parameters are most important tasks in water management and protection of whole aquatic environment. Detection of biological contaminants play a very important role in preserving human health and water management. To obtain accurate and precise results of determination of the level of biological contamination and to distinguish its type it is necessary to determine precisely spectral reflectance coefficients of several water biological pollutants with inter alia spectroradiometer. This paper presents a methodology and preliminary results of acquisition of spectral reflectance coefficients with different reference panels (e.g. with 5%, 20%, 50%, 80% and 96% of reflectivity) of several biological pollutants. The authors' main task was to measure spectral reflectance coefficients of different biological water pollutants with several reference panels and to select optimal reference standard, which would allow for distinguish different types of several biological contaminants. Moreover it was necessary to indicate the spectral range in which it is possible to discriminate investigated samples of biological contaminants. By conducting many series of measurements of several samples of different types of biological pollutants, authors had concluded how the reflectivity of reference panel influences the accuracy of acquisition of spectral reflectance coefficients. This research was crucial in order to be able to distinguish several types of biological pollutants and to determine the useful spectral range for detection of different kinds of biological contaminants with multispectral and hyperspectral imagery.

  20. Revisiting restored river reaches - Assessing change of aquatic and riparian communities after five years.

    Science.gov (United States)

    Lorenz, Armin W; Haase, Peter; Januschke, Kathrin; Sundermann, Andrea; Hering, Daniel

    2018-02-01

    Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take