WorldWideScience

Sample records for aqua modis satellite

  1. Validation of JAXA/MODIS Sea Surface Temperature in Water around Taiwan Using the Terra and Aqua Satellites

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2010-01-01

    Full Text Available The research vessel-based Conductivity Temperature Depth profiler (CTD provides underwater measurements of the bulk sea surface temperature (SST at the depths of shallower than 5 m. The CTD observations of the seas around Taiwan provide useful data for comparison with SST of MODIS (Moderate Resolution Imaging Spectroradiometers aboard Aqua and Terra satellites archived by JAXA (Japan Aerospace Exploration Agency. We produce a high-resolution (1 km MODIS SST by using Multi-Channel SST (MCSST algorithm. There were 1516 cloud-free match-up data pairs of MODIS SST and in situ measurements during the period from 2003 - 2005. The difference of the root mean square error (RMSE of satellite observations from each platform during the day and at night was: _ in Aqua daytime, _ in Aqua nighttime, _ in Terra daytime, and _ in Terra nighttime. The total analysis of MODIS-derived SST shows good agreement with a bias of _ and RMSE of _ The analyses indicate that the bias of Aqua daytime was always positive throughout the year and the large RMSE should be attributed to the large positive bias _ under diurnal warming. It was also found that the bias of Terra daytime was usually negative with a mean bias of _ its large RMSE should be treated with care because of low solar radiation in the morning.

  2. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 2002 on board the Aqua satellite platform (a...

  3. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to

  4. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.;

    2007-01-01

    contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation......) and 26.6% (72 W m-2) for Southern Arizona and the Island of Zealand, respectively. For both regions, hourly satellite estimates were shown to be more reliable than pyranometer measurements from ground stations only 15 km away from the point of interest, which is comparable to the accuracy level...

  5. Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST) Using an Ensemble Kalman Filter

    OpenAIRE

    Takuji Waseda; Varlamov, Sergey M.; Xinyu Guo; Hiroshi Murakami; Toru Miyama; Sourav Sil; Yasumasa Miyazawa

    2013-01-01

    We develop an assimilation method of high horizontal resolution sea surface temperature data, provided from the Moderate Resolution Imaging Spectroradiometer (MODIS-SST) sensors boarded on the Aqua and Terra satellites operated by National Aeronautics and Space Administration (NASA), focusing on the reproducibility of the Kuroshio front variations south of Japan in February 2010. Major concerns associated with the development are (1) negative temperature bias due to the cloud effects, and (2)...

  6. Inter-satellite comparison and evaluation of Navy SNPP VIIRS and MODIS-Aqua ocean color properties

    Science.gov (United States)

    Ladner, S. D.; Arnone, R.; Vandermeulen, R.; Martinolich, P.; Lawson, A.; Bowers, J.; Crout, R.; Ondrusek, M.; Fargion, G.

    2014-05-01

    Navy operational ocean color products of inherent optical properties and radiances are evaluated for the Suomi-NPP VIIRS and MODIS-Aqua sensors. Statistical comparisons with shipboard measurements were determined in a wide variety of coastal, shelf and offshore locations in the Northern Gulf of Mexico during two cruises in 2013. Product consistency between MODIS-Aqua, nearing its end-of-life expectancy, and Suomi-NPP VIIRS is being evaluated for the Navy to retrieve accurate ocean color properties operationally from VIIRS in a variety of water types. Currently, the existence, accuracy and consistency of multiple ocean color sensors (VIIRS, MODIS-Aqua) provides multiple looks per day for monitoring the temporal and spatial variability of coastal waters. Consistent processing methods and algorithms are used in the Navy's Automated Processing System (APS) for both sensors for this evaluation. The inherent optical properties from both sensors are derived using a coupled ocean-atmosphere NIR correction extending well into the bays and estuaries where high sediment and CDOM absorption dominate the optical signature. Coastal optical properties are more complex and vary from chlorophyll-dominated waters offshore. The in-water optical properties were derived using vicariously calibrated remote sensing reflectances and the Quasi Analytical Algorithm (QAA) to derive the Inherent Optical Properties (IOP's). The Naval Research Laboratory (NRL) and the JPSS program have been actively engaged in calibration/validation activities for Visible Infrared Imager Radiometer Suite (VIIRS) ocean color products.

  7. Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan Alden

    2013-01-01

    Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.

  8. AIRS Pixel Cloud Detection Based on MODIS Cloud Products on Aqua Satellite%EOS卫星上基于MODIS云产品的AIRS像素云检测

    Institute of Scientific and Technical Information of China (English)

    王丹凤; 张记龙; 王志斌; 陈媛媛; 陈友华

    2012-01-01

    联合使用搭载在地球观测系统(EOS) Aqua卫星上的中分辨力成像光谱仪MODIS和大气红外探测器AIRS,能够提高对全球云量分布情况的检测.利用几何扫描特性的空间匹配算法,MODIS云分类掩膜和云相态掩膜产品,结合业务上的云检测算法,实现了用空间匹配的MODIS数据对AIRS像素云特性的检测.结果表明,用MODIS 1 km分辨力产品可以鉴别出AIRS像素中不同的云类型、云层信息(低云、中云或者高云)和云相态信息(水云、冰云或者混合相态信息).%The combined systems of the Moderate Resolution Imaging Spectroradiometer(MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improve global monitoring of the distribution of clouds. Using the space collocation algorithms based on the scanning geometry, MODIS cloud phase mask, MODIS classification mask, also combing with the operational algorithm of MODIS cloud retrieval, the function of testing AIRS Subpixel Cloud Characterization based on space collocationed of MODIS data is realized. The results show that MODIS 1 km-spatial-resolution data is applied to identify various cloud types. Cloud-layer information(lower, midlevel, or high clouds) and phase information (water,ice,or mixed-phase clouds)within an AIRS footprint.

  9. Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua

    OpenAIRE

    Kittaka, C.; Winker, D. M.; M. A. Vaughan; Omar, A.; Remer, L. A.

    2011-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is carried on the CALIPSO satellite and has acquired global aerosol profiles since June 2006. CALIPSO is flown in formation with the Aqua satellite as part of the A-train satellite constellation, so that a large number of coincident aerosol observations are available from CALIOP and the MODIS-Aqua instrument. This study compares column aerosol optical depth at 0.532 μm derived from CALIOP aerosol profiles with MO...

  10. SST, Aqua MODIS, NPP, 0.0125 degrees, Indonesia, Daytime

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  11. Spectral Inpainting for the Restoration of Missing Data from Multispectral Satellite Sensors: Case study on Aqua MODIS Band 6

    OpenAIRE

    Bouali, Marouan; Ladjal, Saïd

    2011-01-01

    In this letter, we introduce an algorithm for the restoration of missing data from multi- spectral satellite imagery. The proposed approach combines two simple principles; non local or neighborhood filters used in the context of still image denoising/inpainting and spectral matching techniques based on spectral similarity measures and required for the classification of hyperspectral images. The resulting semi-physical approach, refered to as spectral inpaint- ing, is applied to the particular i...

  12. Retrieval of Aerosol Properties from MODIS Terra, MODIS Aqua, and VIIRS SNPP: Calibration Focus

    Science.gov (United States)

    Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia; Kleidman, Richard; Patadia, Falguni; Zhou, Yaping; Gupta, Pawan; Shi, Yingxi; Remer, Lorraine; Holz, Robert

    2016-01-01

    MODIS-DT Collection 6 - Aqua/Terra level 2, 3; entire record processed - "Trending" issues reduced - Still a 15% or 0.02 Terra vs Aqua offset. - Terra/Aqua convergence improved with C6+, but bias remains. - Other calibration efforts yield mixed results. VIIRS-­-DT in development - VIIRS is similar, yet different then MODIS - With 50% wider swath, VIIRS has daily coverage - Ensures algorithm consistency with MODIS. - Currently: 20% NPP vs Aqua offset over ocean. - Only small bias (%) over land (2012-­-2016) - Can VIIRS/MODIS create aerosol CDR? Calibration for MODIS - VIIRS continues to fundamentally important. It's not just Terra, or just Aqua, or just NPP-­-VIIRS, I really want to push synergistic calibration.

  13. Assessment of diverse algorithms applied on MODIS Aqua and Terra data over land surfaces in Europe

    OpenAIRE

    Glantz, P.; Tesche, M

    2012-01-01

    The aim of the present study is to validate AOT (aerosol optical thickness) and Ångström exponent (α), obtained with the SAER (Satellite AErosol Retrieval) algorithm for MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground) and MODIS Collection 5 (c005) standard product retrievals (10 km), against AERONET (AErosol RObotic NETwork) observations over land surfaces in Europe. The three time periods investigated in ...

  14. Summary of Terra and Aqua MODIS Long-Term Performance

    Science.gov (United States)

    Xiong, Xiaoxiong (Jack); Wenny, Brian N.; Angal, Amit; Barnes, William; Salomonson, Vincent

    2011-01-01

    Since launch in December 1999, the MODIS ProtoFlight Model (PFM) onboard the Terra spacecraft has successfully operated for more than 11 years. Its Flight Model (FM) onboard the Aqua spacecraft, launched in May 2002, has also successfully operated for over 9 years. MODIS observations are made in 36 spectral bands at three nadir spatial resolutions and are calibrated and characterized regularly by a set of on-board calibrators (OBC). Nearly 40 science products, supporting a variety of land, ocean, and atmospheric applications, are continuously derived from the calibrated reflectances and radiances of each MODIS instrument and widely distributed to the world-wide user community. Following an overview of MODIS instrument operation and calibration activities, this paper provides a summary of both Terra and Aqua MODIS long-term performance. Special considerations that are critical to maintaining MODIS data quality and beneficial for future missions are also discussed.

  15. Assessment of diverse algorithms applied on MODIS Aqua and Terra data over land surfaces in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-03-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained with the SAER (Satellite AErosol Retrieval algorithm for MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground and MODIS Collection 5 (c005 standard product retrievals (10 km, against AERONET (AErosol RObotic NETwork observations over land surfaces in Europe. The three time periods investigated in this study have been chosen to enable a validation of the algorithm for a maximal possible variation in sun elevations. For several of the cases analyzed here the Aqua and Terra satellites passed the investigation area twice during a day. Thus, beside a variation in the sun elevation the satellite retrievals have also on a daily basis been performed with a significant variation in the satellite-viewing geometry. An inter-comparison of the two algorithms has also been performed. The validation with AERONET shows that the MODIS c005 retrieved AOT is, for the wavelengths 0.469 and 0.500 nm, on the whole within the expected uncertainty for one standard deviation of the MODIS c005 retrievals over Europe (Δ AOT = ±0.05±0.15 AOT. The SAER estimated AOT for the wavelength 0.443 nm also agree reasonable well with AERONET. Thus, the majority of the SAER AOT values are within the MODIS expected uncertainty range, although somewhat larger root mean square deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between SAER and AERONET AOT is, however, substantially larger for the wavelength 488 nm, which means that the values are to a large extent outside of the expected MODIS uncertainty range. Both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms it was found that the SAER is able to obtain

  16. Estimation of Daily Sunshine Duration from Terra and Aqua MODIS Data

    OpenAIRE

    Kandirmaz, H. M.; K. Kaba

    2014-01-01

    Some studies have shown that the estimation of global sunshine duration can be done with the help of geostationary satellites because they can record several images of the same location in a day. In this paper, images obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensors of polar orbiting satellites Aqua and Terra were used to estimate daily global sunshine duration for any region in Turkey. A new quadratic correlation between daily mean cloud cover index and relati...

  17. Optimized Merger of Ocean Chlorophyll Algorithms of MODIS-Aqua and VIIRS

    OpenAIRE

    Kahru, M.; Kudela, RM; Anderson, CR; Mitchell, BG

    2015-01-01

    Standard ocean chlorophyll-a (Chla) products from currently operational satellite sensors Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Visible Infrared Imager Radiometer Suite (VIIRS) underestimate medium and high in situ Chla concentrations and have approximately 9% bias between each other in the California Current. By using the regional optimization approach of Kahru et al., we minimized the differences between satellite estimates and in situ match-ups as well as between e...

  18. Inter-comparison of Terra and Aqua MODIS Feflective Solar Bands using Suomi NPP VIIRS

    OpenAIRE

    Blonski, Slawomir; Cao, Changyong; Uprety, Sirish; Shao, Xi

    2013-01-01

    VIIRS (Visible Infrared Imager Radiometer Suite) onboard the Suomi NPP (National Polar-orbiting Partnership) satellite has been acquiring Earth observations for more than a year. During that time, SNO (Simultaneous Nadir Overpass) events have provided many opportunities for inter-comparisons between VIIRS and the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments from the Aqua and Terra satellites. The SNOs have occurred over snow-covered Antarctica, which provided bright surfa...

  19. Moderate Resolution Imaging Spectroradiometer (MODIS) - Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the multiple archive centers for the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard...

  20. 基于遗传算法综合Terra/Aqua MODIS热红外数据反演地表组分温度%Genetic algorithm based surface component temperatures retrieval by integrating MODIS TIR DATA from Terra and Aqua satellites

    Institute of Scientific and Technical Information of China (English)

    孙珂; 陈圣波

    2012-01-01

    混合像元组分温度相对来说更有应用价值,而多角度热红外遥感的发展推动了混合像元组分温度反演基础和方法的发展.根据前期数值模拟得到Terra和Aqua卫星上的MODIS测量可以认为是同一卫星在两个不同观测时间和观测角度上的测量,综合利用Terra和Aqua卫星上的MODIS数据反演混合像元内土壤和植被组分温度.根据混合像元热红外辐射模型,利用遗传算法,分别模拟Terra卫星MODIS的32和33通道,以及Terra和Aqua卫星上MODIS的32通道辐射反演了河北怀来试验区范围内植被覆盖率、土壤组分温度和比辐射率、植被组分温度和比辐射率等表面参数.通过与实测数据进行比较,综合利用上午Terra和下午Aqua卫星32通道数据反演的上午植被组分温度与地面同步测量温度偏差在1℃内,而利用上午Terra卫星32和33通道数据反演的上午植被组分温度与地面同步测量值偏差在1.4℃内.尽管利用双星数据反演的组分温度精度相对较高,但针对同一个像元,两个方案反演的结果有一定偏差.%The component temperatures are key parameters in the environment problems. The multi-angle thermal infrared data are important for the retrieval of component temperature. MODIS (Moderate Resolution Imaging Spectroradiom-eter) is one of the sensors onboard EOS-Terra and EOS-Aqua, two sun-synchronous polar orbiting satellites. The sensitivity analysis shows that the same MODIS bands of Terra and Aqua satellites measures in the same behavior under the same variations of atmospheric water vapor, solar and viewing geometries. These MODIS bands may be considered to be the observations of a satellite at two viewing angles and two viewing times. In the study, the foliage and soil component temperature were retrieved by integrating these MODIS data. Based on linear thermal infrared radiation model, the bands 32 and 33 in Terra-MODIS, or the band 32 in Tcrra-MODIS and Aqua-MODIS

  1. Use of LST images from MODIS/AQUA sensor as an indication of frost occurrence in RS

    Directory of Open Access Journals (Sweden)

    Débora de S. Simões

    2015-10-01

    Full Text Available ABSTRACTAlthough frost occurrence causes severe losses in agriculture, especially in the south of Brazil, the data of minimum air temperature (Tmin currently available for monitoring and predicting frosts show insufficient spatial distribution. This study aimed to evaluate the MDY11A1 (LST – Land Surface Temperature product, from the MODIS sensor on board the AQUA satellite as an estimator of frost occurrence in the southeast of the state of Rio Grande do Sul, Brazil. LST images from the nighttime overpass of the MODIS/AQUA sensor for the months of June, July and August from 2006 to 2012, and data from three conventional weather stations of the National Institute of Meteorology (INMET were used. Consistency was observed between Tmin data measured in weather stations and LST data obtained from the MODIS sensor. According to the results, LSTs below 3 ºC recorded by the MODIS/AQUA sensor are an indication of a favorable scenario to frost occurrence.

  2. Validation of MODIS Terra and Aqua Ice Surface Temperatures at Summit, Greenland

    Science.gov (United States)

    Hall, D. K.; Shuman, C. A.; Xiong, X.; Wenny, B. N.; DiGirolamo, N. E.

    2014-12-01

    Ice-surface temperature (IST) is used in many studies, for example for validation of model output and for detection of leads and thin ice in sea ice. The MODerate-resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites are useful for mapping IST of sea ice and the Greenland ice sheet (Hall et al., 2012), and validation of the ISTs derived from MODIS has been an ongoing effort (e.g., Koenig & Hall, 2010; Shuman et al., 2014). Recent results call into question the calibration of the MODIS-derived ISTs at very cold temperatures that are characteristic of the Greenland ice sheet high interior during winter (Shuman et al., 2014). In the present work, we investigate the calibration of MODIS IR bands 31 (10.780 - 11.280 µm) and 32 (11.770 - 12.270 µm) under very cold conditions. MODIS IR bands are calibrated using a quadratic algorithm. In Collection 6 (C6), the offset and nonlinear calibration coefficients are computed from data collected during the blackbody cool-down vs the warm-up data used in Collection 5 (C5). To improve the calibration accuracy for low-temperature scenes, the offset terms are set to 0. In general, Aqua MODIS bands 31 and 32 perform better than Terra MODIS bands 31 and 32. One of the reasons is that the Aqua bands have a lower saturation temperature (~340 K) than the Terra (~380 K) bands, and lower saturation or smaller dynamic range means better resolution. As compared to ~2-m NOAA air temperatures (TA) at Summit, Greenland, Shuman et al. (2014) show a small (~0.5°C) offset in Terra MODIS-derived IST vs TA near 0°C, and an increasingly larger offset (up to ~5°C) as TA drops to -60°C. To investigate this further, we compare Terra and Aqua C5 and C6 ISTs with TA data from Summit. This work will document the calibration of bands 31 and 32 at very low temperatures in C5 and C6. Hall, D.K., et al., 2012: Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet

  3. Early on-orbit calibration results from Aqua MODIS

    Science.gov (United States)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  4. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    Science.gov (United States)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  5. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    OpenAIRE

    Glantz, P.; Tesche, M

    2012-01-01

    The aim of the present study is to validate AOT (aerosol optical thickness) and Ångström exponent (α), obtained from MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground) with the SAER (Satellite AErosol Retrieval) algorithm and with MODIS Collection 5 (c005) standard product retrievals (10 km horizontal resolution), against AERONET (AErosol RObotic NETwork) sun photometer observations over land su...

  6. OW NASA MODIS Aqua Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Moderate Resolution Imaging Spectroradiometer...

  7. A Comparison of Cirrus Clouds Retrieved From POLDER-3/PARASOL and MODIS/Aqua

    Science.gov (United States)

    Zhang, Z.; Yang, P.; Riedi, J.; Kattawar, G.

    2007-12-01

    MODIS on board Aqua and POLDER-3 on board PARASOL are two key instruments in the A-Train constellation of satellites. MODIS has 36 spectral bands with wavelength ranging from 0.41 to 14.5 μm, but makes measurement at only one direction without information about polarization. POLDER performs multidirectional measurements, of both reflectance and polarization, at nine spectral channels (from 443 to 1020 nm). The two instruments offer different, and somehow complementary, advantages for the remote sensing of microphysical and optical properties of cirrus clouds. In this study, a comparison of cirrus clouds retrieved from the two instruments is made to obtain understanding of the possibility, advantages and limitations of synergetic retrieval. First, the comparison is made between the single scattering properties of "Inhomogeneous Hexagonal Monocrystals" (IHM) used in POLDER retrieval algorithm and the ice-crystal ensemble model used for MODIS. Substantial differences are found in the scattering phase matrix. Co-located cloud mask and cloud top height retrievals are compared, with the emphasis on high and thin cirrus clouds. The optical thicknesses of cirrus clouds retrieved by POLDER are compared with those by MODIS, with and without the constraint that the cloud effective particle size retrieved by MODIS must be similar to that of IHM.

  8. Aerosol retrieval over land by exploiting the synergy of TERRA and AQUA MODIS DATA

    Institute of Scientific and Technical Information of China (English)

    TANG; Jiakui; XUE; Yong; YU; Tong; GUAN; Yanning; CAI; Guoyin

    2006-01-01

    Aerosol retrieval over land from satellite remotely sensed data remains internationally a difficult task. By using MODIS data, the Dark Dense Vegetation (DDV) algorithm aerosol distribution and properties retrieval over land has shown excellent competence. However, this algorithm is restricted to lower surface reflectance such as water bodies and dense vegetation, which limits its actual application, and is unable to be used for high reflective surface such as over urban areas. In this paper, we introduce a new aerosol retrieval model by exploiting the Synergy of TERRA and AQUA MODIS data (SYNTAM), which can be used for various ground surfaces, including for high reflective surface. Preliminary validations have been carried out by comparing with AERONET measured data, which shows good accuracy and promising potential. Further research work is undergoing.

  9. One of the Possible Causes for Diatom Appearance in Ariake Bay Area in Japan In the Winter from 2010 to 2015 (Clarified with AQUA/MODIS

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2016-10-01

    Full Text Available One of the possible causes for diatom appearance in Ariake bay area I Japan in the winter seasons from 2010 to 2015 is clarified with AQUA/MODIS of remote sensing satellite. Two months (January and February AQUA/MODIS derived chlorophyll-a concentration are used for analysis of diatom appearance. Match-up data of AQUA/MODIS with the evidence of the diatom appearance is extracted from the MODIS database. Through experiments, it is found that diatom appears after a long period time of relatively small size of red tide appearance. Also, it depends on the weather conditions and tidal effect as well as water current in the bay area in particular.

  10. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  11. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  12. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  13. SST, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, Daytime

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  14. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Night time (4 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  15. SST, Aqua MODIS, NPP, 0.0125 degrees, East US, Day and Night

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  16. Global NOAA CoastWatch Chlorophyll Frontal Product from MODIS/Aqua (NCEI Accession 0110333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS/Aqua chlorophyll frontal products: the NOAA Okeanos operational production system produces near real-time chlorophyll frontal products (magnitude and...

  17. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  18. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  19. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence

    KAUST Repository

    Brewin, Robert J W

    2013-09-01

    The Red Sea is a unique marine environment but relatively unexplored. The only available long-term biological dataset at large spatial and temporal scales is remotely-sensed chlorophyll observations (an index of phytoplankton biomass) derived using satellite measurements of ocean colour. Yet such observations have rarely been compared with in situ data in the Red Sea. In this paper, satellite chlorophyll estimates in the Red Sea from the MODIS instrument onboard the Aqua satellite are compared with three recent cruises of in vivo fluorometric chlorophyll measurements taken in October 2008, March 2010 and September to October 2011. The performance of the standard NASA chlorophyll algorithm, and that of a new band-difference algorithm, is found to be comparable with other oligotrophic regions in the global ocean, supporting the use of satellite ocean colour in the Red Sea. However, given the unique environmental conditions of the study area, regional algorithms are likely to fare better and this is demonstrated through a simple adjustment to the band-difference algorithm. © 2013 Elsevier Inc.

  20. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  1. U.S. West Coast MODIS Aqua High Resolution CHLA Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  2. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  3. U.S. West Coast MODIS Aqua High Resolution SST Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover...

  4. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  5. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, OSU DB, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  7. Diffuse Attenuation Coef. K490, Aqua MODIS, 0.125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSU distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  8. Retrieved sea surface temperature analysis of MODIS and AMSR-E aboard AQUA satellite for the northern Indian Ocean%AQUA卫星的MODIS和AMSR-E反演的印度洋北部海域海表温度特征对比分析

    Institute of Scientific and Technical Information of China (English)

    霍文娟; 韩震

    2013-01-01

    In this paper, the northern Indian Ocean served as the study area. Characteristics of sea surface temperature retrieved from MODIS and AMSR-E sensor aboard AQUA satellite were analyzed from three aspects, namely, the location,the temperature curve and the inversion accuracy. The main characteristics showed that the difference of MODIS SST and the AMSR-E SST changed with the latitude obviously; AMSR-E SST failed to offer accurate sea surface temperature in the coastal region; the diversity of MODIS SST and AMSR-E SST changed with the temperature differences. In this paper, the retrieval accuracy of AMSR-E SST was often better than that of MODIS SST. The result of this study had important reference to the sea surface temperature quantitative inversion using the thermal infrared and passive microwave remote sensing technology.%以印度洋北部海域为研究区域,分别从地理位置、温度曲线和反演精度3个方面对AQUA卫星上的MODIS和AMSR-E反演的海表温度特征进行了对比分析。其主要特征表现为MODIS SST与AMSR-E SST之间的差异随纬度变化较为明显;在近岸区域,AMSR-E SST无法获得准确的海表面温度;MODIS SST与AMSR-E SST之间的差异随温度而不同;在本次研究中,AMSR-E SST反演精度总体优于MODIS SST。本次研究结果对利用热红外遥感和被动微波遥感进行海洋表面温度的定量反演具有重要的参考价值。

  9. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  10. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  11. EROS MODIS Normalized Difference Vegetation Index: 2001-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5...

  12. Electronic Crosstalk in Aqua MODIS Long-Wave Infrared Photovoltaic Bands

    Directory of Open Access Journals (Sweden)

    Junqiang Sun

    2016-09-01

    Full Text Available Recent investigations have discovered that Terra MODerate-resolution Imaging Spectroradiometer (MODIS long-wave infrared (LWIR photovoltaic (PV bands, bands 27–30, have strong crosstalk among themselves. The linear model developed to test the electronic crosstalk effect was instrumental in the first discovery of the effect in Terra MODIS band 27, and through subsequent investigations the model and the correction algorithm were tested further and established to be correct. It was shown that the correction algorithm successfully mitigated the anomalous features in the calibration coefficients as well as the severe striping and the long-term drift in the Earth view (EV retrievals for the affected Terra bands. Here, the examination into Aqua MODIS using the established methodology confirms the existence of significant crosstalk contamination in its four LWIR PV, although the finding shows the overall effect to be of lesser degree. The crosstalk effect is characterized and the crosstalk correction coefficients are derived for all four Aqua LWIR PV bands via analysis of signal contamination in the lunar imagery. Sudden changes in the crosstalk contamination are clearly seen, as also in the Terra counterparts in previous investigations. These sudden changes are consistent with the sudden jumps observed in the linear calibration coefficients for many years, thus this latest finding provides an explanation to the long-standing but unexplained anomalies in the calibration coefficients of the four Aqua LWIR bands. It is also shown that the crosstalk contamination for these bands are of similar level for the two MODIS instruments in the early mission that can lead to as much as 2 K increase in brightness temperature for the affected bands, thus demonstrating significant impact on the science results already started at the early going. As Aqua MODIS is a legacy sensor, the crosstalk correction to its LWIR PV bands will be important to remove the impact of

  13. Evaluation of monthwise and overall trends of AOD over Indian cities using MODIS Aqua and Terra retrievals

    Science.gov (United States)

    Banerjee, Subhasis; Ghosh, Sanjay

    2016-07-01

    Atmospheric aerosols have been shown to have profound impact on climate system and human health. Regular and systematic monitoring of ambient air is thus necessary in order to asses its impact. There are several ground based stations worldwide employed in this service but still their numbers are inadequate and it is even almost impossible to have such stations at difficult geographical terrains and take measurement throughout the year. Aerosol optical depth or AOD, which is a measure of extinction of incoming solar radiation, serves as proxy to atmospheric aerosol loading. Various sensors onboard different satellites take routine measurement of AOD throughout the year. Satellite based AOD is used in many studies due to their wide coverage and availability for a longer time period. Satellite measures reflected solar radiation at the top of the atmosphere. Column integrated value of aerosol are routinely estimated from those measurements using suitable inversion algorithms. MODIS instrument onboard Aqua and Terra satellites of Earth Observing System takes routine measurement in wide spectral range. We used those data to evaluate trend of AOD over almost fifty Indian cities having population more than a million. The cities we have chosen spread over almost entire length and breadth of the country. Few such studies have already been conducted using MODIS data. They typically used level 3 data. Since Level 3 data comes in 1x 1 degree gridded form they provide average value over a vast geographical region. We used level 2 dataset to enable us taking smaller region(1/2 x 1/2 degree here) centering the region of our interest . We used seasonal Mann-Kendall (M-K) statistics coupled with Sen's non-parametric slope estimation procedure to estimate monthwise and overall(i.e., yearly trend taking seasonality into account) AOD trend. We used median AOD for each month of every year to discard very high AOD's which we often get due to cloud contamination. Seasonal M-K test takes

  14. Evaluation of model simulated and MODIS-Aqua retrieved sea surface chlorophyll in the eastern Arabian Sea

    Science.gov (United States)

    Chakraborty, Kunal; Gupta, Anubhav; Lotliker, Aneesh A.; Tilstone, Gavin

    2016-11-01

    In this study we assess the accuracy of sea surface Chlorophyll-a (Chla) retrieved from satellite (MODIS-Aqua), using standard OC3M algorithm, and from a Regional Ocean Modelling System (ROMS) biophysical model against in situ data, measured in surface waters of the eastern Arabian Sea, from April 2009 to December 2012. MODIS-Aqua OC3M Chla concentrations showed a high correlation with the in situ data with slope close to unity and low root mean square error. In comparison, the ROMS model underestimated Chla, though the correlation was significant indicating that the model is capable of reproducing the trend in in situ Chla. Time Series trends in Chla were examined against wind driven Upwelling Indices (UIW) from April 2009 to December 2012 in north-eastern (Gujarat) and south-eastern (Kochi) coastal waters of the Arabian Sea. The annual peak in Chla along the Kochi coast during the summer monsoon was adequately captured by the model. It is well known that the peak in surface Chla along the Kochi and Gujarat coasts during the summer monsoon is the result of coastal upwelling, which the ROMS model was able to reproduce accurately. The maximum surface Chla along the Gujarat coast during the winter monsoon is due to convective mixing, which was also significantly captured by ROMS biophysical model. There was a lag of approximately one week between the maximum surface Chla and the peak in the Upwelling Index.

  15. MODIS-Aqua detects Noctiluca scintillans and hotspots in the central Arabian Sea.

    Science.gov (United States)

    Dwivedi, R; Priyaja, P; Rafeeq, M; Sudhakar, M

    2016-01-01

    Northern Arabian Sea is considered as an ecologically sensitive area as it experiences a massive upwelling and long-lasting algal bloom, Noctiluca scintillans (green tide) during summer and spring-winter, respectively. Diatom bloom is also found to be co-located with N. scintillans and both have an impact on ecology of the basin. In-house technique of detecting species of these blooms from Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data was used to generate a time-series of images revealing their spatial distribution. A study of spatial-temporal variability of these blooms using satellite data expressed a cyclic pattern of their spread over a period of 13 years. An average distribution of the blooms for January-March period revealed a peak in 2015 and minimum in 2013. Subsequently, a time-series of phytoplankton species images were generated for these 2 years to study their inter-annual variability and the associated factors. Species images during active phase of the bloom (February) in 2015 indicated development of N. scintillans and diatom in the central Arabian Sea also, up to 12° N. This observation was substantiated with relevant oceanic parameters measured from the ship as well as satellite data and the same is highlight of the paper. While oxygen depletion and release of ammonia associated with N. scintillans are detrimental for waters on the western side; it is relatively less extreme and supports the entire food chain on the eastern side. In view of these contrasting eco-sensitive events, it is a matter of concern to identify biologically active persistent areas, hot spots, in order to study their ecology in detail. An ecological index, persistence of the bloom, was derived from the time-series of species images and it is another highlight of our study. PMID:26690080

  16. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    Science.gov (United States)

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas.

  17. Aerosol Characterisitics Over Alberta Using Modis and OMI Satellite Data

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z., Sr.; Fu, L.; Gille, J. C.

    2015-12-01

    We present the first detailed analysis of optical aerosol characterization over Alberta based on satellite data analysis. Aerosol optical depth (AOD) at 550 nm for 11 years (2003-2013), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite, was analyzed. Additionally, UV aerosol index (AI) data for 9 years (2005-2013) retrieved from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite was used to examine absorbing aerosols. Comparing AERONET to MODIS 3 km and 10 km products indicated a stronger correlation (r=0.9 for the latter vs 0.7 for the former) thus 10 km product has been utilized for this study. Overall, gridded seasonal maps (0.1 deg.) of the 11 yr averaged AOD illustrate the highest AOD during summer, followed by spring, with the lowest observed values during fall (there is no enough valid MODIS data in winter due to cloud cover). Aerosol optical properties exhibited large spatio-temporal heterogeneity in the summer with mean AOD of 0.25, followed by spring, while the fall had less variability with mean AOD below 0.1 for the entire region. However, the spatial analysis indicated hot spots around Edmonton and Calgary cities even in the fall when AODs are very low (close to background). All of the datasets showed interannual variability with no significant trend. The AI values ranged from 0.5 during winter to as high as 5 during summer suggesting mid- and long range transport of boreal fire emissions. Map correlation between AOD and UV AI showed large variability (0.2 to 0.7) indicating presence of different types of aerosols. These low correlations imply the presence of non-absorbing particles (e.g. sulfate) that comprise a relatively large mass fraction of AOD and/or low altitude particles.

  18. Surface circulation patterns in the Gulf of California derived from MODIS Aqua 250 m

    Science.gov (United States)

    Martínez-Flores, G.; Salinas-González, F.; Gutiérrez de Velasco-Sanromán, G.; Godínez-Orta, L.

    2009-04-01

    The Gulf of California (GC) is a marginal elongated and semi-enclosed sea located at northwest of Mexico, between the Peninsula of Baja California and the mainland Mexico. The considered area average 150 km in width and 1500 km in length, from the mouth of the Colorado River to Cabo Corrientes, Jalisco. It has a maximum depth of 3600 m at the southern inlet and the northern region average 200 m in deep. The study of superficial circulation patterns in the GC is of interest because its relevance to the mechanisms of transport for distribution of a variety of materials -plankton, contaminants, microalgae, etc.- and its association with areas of sedimentary deposits, zones where there is a higher probability for fishing or related to the presence of certain species of marine life. Recent studies explain the circulation of the GC as a result of the Pacific Ocean's forcing, wind, heat fluxes on the sea surface and the interaction between the flow produced by these agents and bathymetry. The objective of this work was to obtain evidence of the patterns of surface circulation using a spatial resolution of 250 m over a period of two to seven days (depending on cloud cover), which offered images from the MODIS Level 1B. This essay is an attempt to contribute with more information to the understanding of the regional dynamics of the GC and its local influence on the zones bordering the coast. Thus, MODIS Aqua 250 m data was used, to which algorithms were applied in order to enhance the contrast of reflectance levels of these bands (0.620-0.670 and 0.841-0.876 µm) within the marine environment. The results are associated with suspended particulate matter (SPM), which we used as tracers of the surface circulation, using a sequence of images from January 2004 to December 2008. Algorithms for dust and cloud detection were used and incorporated with thermal band images, in which zones of terrigenous contribution by eolian transport were identified. Furthermore, pluvial

  19. Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa

    DEFF Research Database (Denmark)

    Horion, Stéphanie; Bergamino, N; Stenuite, S;

    2010-01-01

    Lake Tanganyika is one of the world's great freshwater ecosystems. In recent decades its hydrodynamic characteristics have undergone important changes that have had consequences on the lake's primary productivity. The establishment of a long-term Ocean Color dataset for Lake Tanganyika...... the MODIS-Aqua sensor. Standard MODIS Aqua Ocean Color products were found to not provide a suitable calibration for high altitude lakes such as the Lake Tanganyika. An optimization of the extraction process and the validation of the dataset were performed with independent sets of in situ measurements. Our...

  20. Fractional Snowcover Estimates from Earth Observing System (EOS) Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were

  1. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery

    International Nuclear Information System (INIS)

    Surface concentrations of particulate organic carbon (POC) in shallow inland lakes were estimated using MODIS Aqua data. A power regression model of the direct empirical relationship between POC and the atmospherically Rayleigh-corrected MODIS product (Rrc,645-Rrc,1240)/(Rrc,859-Rrc,1240) was developed (R2 = 0.72, RMSE = 35.86 μgL−1, p < 0.0001, N = 47) and validated (RMSE = 44.46 μgL−1, N = 16) with field data from 56 lakes in the Middle and Lower reaches of the Yangtze River, China. This algorithm was applied to an 11 year series of MODIS data to determine the spatial and temporal distribution of POC in a wide range of lakes with different trophic and optical properties. The results indicate that there is a general increase in minimum POC concentrations in lakes from middle to lower reaches of the Yangtze River. The temporal dynamics of springtime POC in smaller lakes were found to be influenced by local meteorological conditions, in particular precipitation and wind speed, while larger lakes were found to be more sensitive to air temperature. (letter)

  2. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  3. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  4. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    Science.gov (United States)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  5. Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Science.gov (United States)

    Sharma, Som; Vaishnav, Rajesh; Shukla, Munn V.; Kumar, Prashant; Kumar, Prateek; Thapliyal, Pradeep K.; Lal, Shyam; Acharya, Yashwant B.

    2016-02-01

    Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH), which is linked to cloud type, is one of the most important characteristics to describe the influence of clouds on the environment. In the present study, CBH observations from Ceilometer CL31 were extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E), India. A detailed comparison has been performed with the use of ground-based CBH measurements from Ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard Aqua and Terra satellite. CBH retrieved from MODIS is ˜ 1.955 and ˜ 1.093 km on 25 July 2014 and 1 January 2015 respectively, which matches well with ceilometer-measured CBH ( ˜ 1.92 and ˜ 1.097 km). Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during the Indian summer monsoon and post-monsoon period. Results indicate that the ceilometer is an excellent instrument to precisely detect low- and mid-level clouds, and the MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for the MODIS satellite is also able to capture the low-level clouds.

  6. MODIS/Aqua MYD11A2 Land Surface Temperature & Emissivity 8-Day L3 Global 1km Gird SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  7. MODIS/Aqua MYD11_L2 Land Surface Temperature and Emissivity 5-Minute L2 Swath 1 km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  8. MODIS/Aqua MYD11C3 Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  9. MODIS/Aqua MYD11A1 Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  10. MODIS/Aqua MYD11C2 Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  11. MODIS/Aqua MYD11B1 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  12. MODIS/Aqua MYD11C1 Land Surface Temperature and Emissivity Daily L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  13. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-12-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by ˜0.04 over bright (e.g., desert) and ˜0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by ˜10% and ˜5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  14. Prediksi Zona Tangkapan Ikan Menggunakan Citra Klorofil-a Dan Citra Suhu Permukaan Laut Satelit Aqua MODIS Di Perairan Pulo Aceh

    Directory of Open Access Journals (Sweden)

    Mursyidin Mursyidin

    2015-12-01

    prediction of fishing zone can be done by detecting chlorophyll-a and sea surface temperature distribution of Aqua MODIS Imagery. The aim of this study is to predict fishing zone on the waters of Pulo Aceh based on the chlorophyll distribution and sea surface temperature by utilizing the data of Aqua MODIS Satellite Imagery level 3. The stages of this study included collecting imagery, cutting the image according to the desired area, giving lands mark to display a more informative image, extracting information of chlorophyll-a and the distribution of sea surface temperature, and interpolating by using Kriging method. The highest distribution of chlorophyll-a happened in June and August, the spread moved from the the North Pulo Aceh to the South. The distribution of sea surface temperature that suitable for fishing was detected in August around the North Ujung Pulo Breuh and around pulau Keureusik. The potential zone of fishing on the waters of Pulo Aceh was only detected in August in the eastern of pulau Keureusik to Ujong Keumuroh. Pulo Aceh waters is suitable for fishing destination in August.

  15. A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data

    Directory of Open Access Journals (Sweden)

    Passang Dorji

    2016-06-01

    Full Text Available Knowledge of the concentration of total suspended sediment (TSS in coastal waters is of significance to marine environmental monitoring agencies to determine the turbidity of water that serve as a proxy to estimate the availability of light at depth for benthic habitats. TSS models applicable to data collected by satellite sensors can be used to determine TSS with reasonable accuracy and of adequate spatial and temporal resolution to be of use for coastal water quality monitoring. Thus, a study is presented here where we develop a semi-analytic sediment model (SASM applicable to any sensor with red and near infrared (NIR bands. The calibration and validation of the SASM using bootstrap and cross-validation methods showed that the SASM applied to Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua band 1 data retrieved TSS with a root mean square error (RMSE and mean averaged relative error (MARE of 5.75 mg/L and 33.33% respectively. The application of the SASM over our study region using MODIS-Aqua band 1 data showed that the SASM can be used to monitor the on-going, post and pre-dredging activities and identify daily TSS anomalies that are caused by natural and anthropogenic processes in coastal waters of northern Western Australia.

  16. Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2015-11-01

    Full Text Available Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH which is linked to cloud type is one of the important characteristic to describe the influence of clouds on the environment. In present study, CBH observations from ceilometer CL31 have been extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E, India. A detail comparison has been performed with the use of ground-based CBH measurements from ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer onboard Aqua and Terra satellite. Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during Indian summer monsoon and post-monsoon period. Results indicate that ceilometer is one of the excellent instruments to precisely detect low and mid-level clouds and MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for MODIS satellite is also able to capture the low-level clouds.

  17. Comparison of Reflected Solar Radiance Using Aqua Modis and Airborne Remote Sensing (case : Deep Convective Clouds and Cirrus Clouds)

    Science.gov (United States)

    Krisna, T. C.; Ehrlich, A.; Werner, F.; Wendisch, M.

    2015-12-01

    Deep Convective Clouds (DCCs) have key role in the tropical region. Despite they only have small spatial coverage, but they account most of the total precipitation in these region which often make flooding. There are such of aviation accidents caused by strong vertical wind, hailing, icing and lightning inside the clouds. Pollutions caused by biomass burning and land degradation can change the aerosol properties as well as cloud properties, therefore will influence the radiation and formation of the DCCs. Those are the major reasons that better understanding of DCCs formation and life cycle are necessary. Between Sept. 01 - Oct. 14, ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Concevtive Clouds Systems) campaign was conducted over Amazonia. It is suitable area to be the site-study due to has strong contrast environtment (pristine and polluted), regular convection activities and stable meteorological condition. In this study we focus on the 2 satellite validation missions designed to fly collocated but in different altitude with A-TRAIN constellation. In order to study DCCs-solar radiation interaction, we use SMART (Spectral Modular Airborne Radiation Measurements System) installed on HALO (High Altitude and Long-Range Research Aircraft) which measures spectral Irradiance (F) and Radiance (I) at the wavelength between 300-2200 nm corresponding to satellite. Due to the limitation in spatial and temporal, airborne measurements only give snapshots of atmosphere condition and DCCs formation, therefore we use multi-satellite data as DCCs have high vertical and horizontal distance, long temporal development and complex form. The comparison of AQUA MODIS and SMART Radiance at 645 nm (non-absorbing) in the clear-sky condition gives strong agreement, but in the multilayer-cloud condition gives worse and results in high underestimation (-86%) in SMART data especially at lower altitude. The bias is caused by interference from clouds

  18. Modeling and Mapping Oyster Norovirus Outbreak Risks in Gulf of Mexico Using NASA MODIS Aqua Data

    Science.gov (United States)

    Deng, Z.; Wang, J.

    2015-12-01

    Norovirus is a highly infectious virus and the leading cause of foodborne disease outbreaks such as oyster norovirus outbreaks. Currently, there is no vaccine to prevent norovirus infection and no drug to treat it. This paper presents an integrated modeling and mapping framework for predicting the risk of norovirus outbreaks in oyster harvesting waters in the Northern Gulf of Mexico coast. The framework involves (1) the construction of three novel remote sensing algorithms for the retrieval of sea surface salinity, sea surface temperature, and gage height (tide level) using NASA MODIS Aqua data; (2) the development of probability-based Artificial Neural Network (ANN) model for the prediction of oyster norovirus outbreak risk, and (3) the application of the Local Indicators of Spatial Association (LISA) for mapping norovirus outbreak risks in oyster harvesting areas in the Northern Gulf of Mexico using the remotely sensed NASA data, retrieved data from the three remote sensing algorithms, and the ANN model predictions. The three remote sensing algorithms are able to correctly retrieve 94.1% of sea surface salinity, 94.0% of sea surface temperature, and 77.8% of gage height observed along the US coast, including the Pacific coast, the Gulf of Mexico coast, and the Atlantic coast. The gage height, temperature, and salinity are the three most important explanatory variables of the ANN model in terms of spatially distributed input variables. The ANN model is capable of hindcasting/predicting all oyster norovirus outbreaks occurred in oyster growing areas along the Gulf of Mexico coast where environmental data are available. The integrated modeling and mapping framework makes it possible to map daily risks of norovirus outbreaks in all oyster harvesting waters and particularly the oyster growing areas where no in-situ environmental data are available, greatly improving the safety of seafood and reducing outbreaks of foodborne disease.

  19. Fuel type characterization based on coarse resolution MODIS satellite data

    OpenAIRE

    Lasaponara R; Lanorte A

    2007-01-01

    Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel ...

  20. MODIS/AQUA MYD14A1 Thermal Anomalies & Fire Daily L3 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  1. MODIS/AQUA MYD14 Thermal Anomalies & Fire 5-Min L2 Swath 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  2. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference

    OpenAIRE

    Yonghong Li; Aisheng Wu; Xiaoxiong Xiong

    2016-01-01

    This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) a...

  3. The comparison of MODIS-Aqua (C5 and CALIOP (V2 & V3 aerosol optical depth

    Directory of Open Access Journals (Sweden)

    J. Redemann

    2012-03-01

    Full Text Available We assess the consistency between instantaneously collocated level-2 aerosol optical depth (AOD retrievals from MODIS-Aqua (C5 and CALIOP (Version 2 & 3, comparing the standard MODIS AOD (MYD04_L2 data to the AOD calculated from CALIOP aerosol extinction profiles for both the previous release (V2 and the latest release (V3 of CALIOP data. Based on data collected in January 2007, we investigate the most useful criteria for screening the MODIS and CALIOP retrievals to achieve the best agreement between the two data sets. Applying these criteria to eight months of data (Jan, Apr, Jul, Oct 2007 and 2009, we find an order of magnitude increase for the CALIOP V3 data density (by comparison to V2, that is generally accompanied by equal or better agreement with MODIS AOD. Differences in global, monthly mean, over-ocean AOD (532 nm between CALIOP and MODIS range between 0.03 and 0.04 for CALIOP V3, with CALIOP generally biased low, when all available data from both sensors are considered. Root-mean-squares (RMS differences in instantaneously collocated AOD retrievals by the two instruments are reduced from values ranging between 0.14 and 0.19 using the unscreened V3 data to values ranging from 0.09 to 0.1 for the screened data. A restriction to scenes with cloud fractions less than 1% (as defined in the MODIS aerosol retrievals generally results in improved correlation (R2>0.5, except for the month of July when correlations remain relatively lower. Regional assessments show hot spots in disagreement between the two sensors in Asian outflow during April and off the coast of South Africa in July.

  4. An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors

    Science.gov (United States)

    Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.; Kaufman, Yoram J.; Tanre, Didier; Mattoo, Shana; Martins, J. Vandelei; Ichoku, Charles; Koren, Ilan; Hongbin, Yu; Holben, Brent N.

    2008-01-01

    The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea.

  5. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  7. Chlorophyll-a, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  8. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, East US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  9. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  10. Chlorophyll-a, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  11. Seasonal variability of cloud optical depth over northwestern China derived from CERES/MODIS satellite measurements

    Institute of Scientific and Technical Information of China (English)

    Yonghang Chen; Hongtao Bai; Jianping Huang; Hua Zhang; Jinming Ge; Xiaodan Guan; Xiaoqin Mao

    2008-01-01

    The seasonal variability of cloud optical depth over northwestern China derived from Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Edition 1B data from July 2002 to June 2004 is presented. The regions of interest are those with Asia monsoon influence, the Tianshan and Qilian Mountains, and the Taklimakan Desert. The results show that the instantaneous measurements presented here are much higher than the previous results derived from International Satellite Cloud Climatology Project (ISCCP) D2 monthly mean data. Generally the measurements of cloud optical depth are the highest in summer and the lowest in winter, however, Taklimakan Desert has the lowest measurements in autumn. The regional variation is quite significant over northwestern China.

  12. Feasibility of anomaly occurrence in aerosols time series obtained from MODIS satellite images during hazardous earthquakes

    Science.gov (United States)

    Akhoondzadeh, Mehdi; Jahani Chehrebargh, Fatemeh

    2016-09-01

    Earthquake is one of the most devastating natural disasters that its prediction has not materialized comprehensive. Remote sensing data can be used to access information which is closely related to an earthquake. The unusual variations of lithosphere, atmosphere and ionosphere parameters before the main earthquakes are considered as earthquake precursors. To date the different precursors have been proposed. This paper examines one of the parameters which can be derived from satellite imagery. The mentioned parameter is Aerosol Optical Depth (AOD) that this article reviews its relationship with earthquake. Aerosol parameter can be achieved through various methods such as AERONET ground stations or using satellite images via algorithms such as the DDV (Dark Dense Vegetation), Deep Blue Algorithm and SYNTAM (SYNergy of Terra and Aqua Modis). In this paper, by analyzing AOD's time series (derived from MODIS sensor on the TERRA platform) for 16 major earthquakes, seismic anomalies were observed before and after earthquakes. Before large earthquakes, rate of AOD increases due to the pre-seismic changes before the strong earthquake, which produces gaseous molecules and therefore AOD increases. Also because of aftershocks after the earthquake there is a significant change in AOD due to gaseous molecules and dust. These behaviors suggest that there is a close relationship between earthquakes and the unusual AOD variations. Therefore the unusual AOD variations around the time of earthquakes can be introduced as an earthquake precursor.

  13. Aerosol optical depth over central north Asia based on MODIS-Aqua data

    Science.gov (United States)

    Avgousta Foutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Biskos, George

    2016-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. To quantify these effects it is important to determine the aerosol load, and an effective way to do that is by measuring the aerosol optical depth (AOD). The central Asia region (mainly the Caspian and Aral sea basins), the arid and semi-arid regions of Western China as well as Siberia are of great interest due to the significant natural sources of mineral aerosols originating from local deserts and biomass burning from wildfires in boreal forests. What is of particular interest in the region is the phenomenal shrinking and desertification of the Aral Sea that drives an intense salt and dust transport from the exposed sea-bed to the surrounding regions with important implications in regional air quality. Anthropogenic particles are also observed due to fossil-fuel combustion occurring mainly at oil refineries in the Caspian Sea basin. Here we investigate the spatial and temporal variability of the AOD at 550 nm over central Asia, Siberia and western China, in the region located between 35° N - 65° N and 45° E - 110° E. For our analysis we use Level-3 daily MODIS - Aqua Dark Target - Deep Blue combined product, from the latest collection (006), available in a 1°×1° resolution (ca. 100 km × 100 km) over the period 2002-2014. Our results indicate a significant spatial variability of the aerosol load over the study region. The highest AODs are observed over the Aral Sea year-round, with extreme values reaching 2.1 during July. In the rest of our study region a clear seasonal cycle with highest AOD values (up to 1.2 over the Taklamakan Desert) during spring and summer is observed. The arid parts of central north Asia are characterized by larger aerosol loads during spring, lower but still high AOD in summer and much lower values in autumn and spring

  14. Inter-annual variability of aerosol optical depth over the tropical Atlantic Ocean based on MODIS-Aqua observations over the period 2002-2012

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikolaos

    2013-04-01

    The tropical Atlantic Ocean is affected by dust and biomass burning aerosol loads transported from the western parts of the Saharan desert and the sub-Sahel regions, respectively. The spatial and temporal patterns of this transport are determined by the aerosol emission rates, their deposition (wet and dry), by the latitudinal shift of the Intertropical Convergence Zone (ITCZ) and the prevailing wind fields. More specifically, in summer, Saharan dust aerosols are transported towards the Atlantic Ocean, even reaching the Gulf of Mexico, while in winter the Atlantic Ocean transport takes place in more southern latitudes, near the equator, sometimes reaching the northern parts of South America. In the later case, dust is mixed with biomass burning aerosols originating from agricultural activities in the sub-Sahel, associated with prevailing north-easterly airflow (Harmattan winds). Satellite observations are the appropriate tool for describing this African aerosol export, which is important to atmospheric, oceanic and climate processes, offering the advantage of complete spatial coverage. In the present study, we use satellite measurements of aerosol optical depth at 550nm (AOD550nm), on a daily and monthly basis, derived from MODIS-Aqua platform, at 1ox1o spatial resolution (Level 3), for the period 2002-2012. The primary objective is to determine the pixel-level and regional mean anomalies of AOD550nm over the entire study period. The regime of the anomalies of African export is interpreted in relation to the aerosol source areas, precipitation, wind patterns and temporal variability of the North Atlantic Oscillation Index (NAOI). In order to ensure availability of AOD over the Sahara desert, MODIS-Aqua Deep Blue products are also used. As for precipitation, Global Precipitation Climatology Project (GPCP) data at 2.5ox2.5o are used. The wind fields are taken from the National Center for Environmental Prediction (NCEP). Apart from the regime of African aerosol export

  15. Earth System Science Research Using Datra and Products from Terra, Aqua, and ACRIM Satellites

    Science.gov (United States)

    Hutchison, Keith D.

    2007-01-01

    The report describes the research conducted at CSR to extend MODIS data and products to the applications required by users in the State of Texas. This research presented in this report was completed during the timeframe of August 2004 - December 31, 2007. However, since annual reports were filed in December 2005 and 2006, results obtained during calendar year 2007 are emphasized in the report. The stated goals of the project were to complete the fundamental research needed to create two types of new, Level 3 products for the air quality community in Texas from data collected by NASA s EOS Terra and Aqua missions.

  16. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  17. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lasaponara R

    2008-02-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (Iadaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  18. On the Relative Stability of CERES Reflected Shortwave and MISR and MODIS Visible Radiance Measurements During the Terra Satellite Mission

    Science.gov (United States)

    Corbett, J. G.; Loeb, N. G.

    2015-01-01

    Fifteen years of visible, near-infrared, and broadband shortwave radiance measurements from Clouds and the Earth's Radiant Energy System (CERES), Multiangle Imaging Spectroradiometer (MISR), and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board NASA's Terra satellite are analyzed in order to assess their long-term relative stability for climate purposes. A regression-based approach between CERES, MODIS, and MISR (An camera only) reflectances is used to calculate the bias between the different reflectances relative to a reference year. When compared to the CERES shortwave broadband reflectance, relative drift between the MISR narrowbands is within 1%/decade. Compared to the CERES shortwave reflectance, the MODIS narrowband reflectances show a relative drift of less than -1.33%/decade. When compared to MISR, the MODIS reflectances show a relative drift of between -0.36%/decade and -2.66%/decade. We show that the CERES Terra SW measurements are stable over the time period relative to CERES Aqua. Using this as evidence that CERES Terra may be absolutely stable, we suggest that the CERES, MISR, and MODIS instruments meet the radiometric stability goals for climate applications set out in Ohring et al. (2005).

  19. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  20. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  1. Fluorescence, Aqua MODIS, NPP, 0.05 degrees, West US, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  2. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried...

  3. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day and Night

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried...

  4. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  5. Remote Sensing Reflectance at 667 nm , Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures the remote sensing reflectance (Rrs) at 667nm. This can be used to view very high concentrations of phytoplankton in the very surface of the water.

  6. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Night time (4 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried...

  7. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  8. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  9. MODIS/AQUA MYD13A3 Vegetation Indices Monthly L3 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  10. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  11. MODIS/AQUA MYD13A2 Vegetation Indices 16-Day L3 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  12. MODIS/AQUA MYD13Q1 Vegetation Indices 16-Day L3 Global 250m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  13. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  14. MODIS/AQUA MYD13A1 Vegetation Indices 16-Day L3 Global 500m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  15. MODIS/AQUA MYD09Q1 Surface Reflectance 8-Day L3 Global 250m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  16. MODIS/AQUA MYD09GQ Surface Reflectance Daily L2G Global 250m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  17. MODIS/AQUA MYD09A1 Surface Reflectance 8-Day L3 Global 500m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  18. Intercomparison of CALIOP and MODIS aerosol optical depth retrievals

    OpenAIRE

    Kittaka, C.; Winker, D. M.; M. A. Vaughan; Omar, A.; Remer, L. A.

    2010-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is carried on the CALIPSO satellite and has acquired global aerosol profiles since June 2006. CALIPSO is flown in formation with the Aqua satellite as part of the A-train satellite constellation, so that a large number of coincident aerosol observations are available from CALIOP and the MODIS-Aqua instrument. This study compares column aerosol optical depth at 0.532 μm derived from CALIOP aerosol profiles with MODIS-Aqua 0.55 μm ae...

  19. Winter wheat leaf area index retrieval with multi-angle and multi-spectral Terra/Aqua MODIS data%联合Terra/Aqua MODIS多角度多光谱数据反演冬小麦叶面积指数

    Institute of Scientific and Technical Information of China (English)

    何维; 杨华

    2013-01-01

      Terra 与 Aqua 双星搭载的 MODIS 传感器可实现每日上下午分别对同一地点观测一次,并且由于卫星轨道漂移形成累积连续多天的多角度观测特点,加上多通道的光谱响应,极大地丰富了地表目标的观测信息,为 LAI等地表参数的实时准确反演提供了可能。该文利用 MODIS 双星高质量的连续多天的多波段地表反射率数据,结合 PROSAIL(PROSPECT+SAIL,properties spectra + scattering by arbitrarily inclined leaves)模型和查找表方法反演冬小麦 LAI,并与 MODIS LAI 产品及野外采样点实测 LAI 对比,结果表明,联合双星高质量的多角度多波段数据能够较准确反演冬小麦 LAI,其反演结果无论从空间分布还是时序变化特征来讲,较 MODIS LAI 产品更符合实际情况,也更接近地面实测值。该文的研究为充分利用 MODIS 数据的角度和光谱信息反演小麦等农作物的 LAI提供了一定的借鉴。%MODIS sensors, carried onboard Terra and Aqua satellites, scan the same location daily at a fixed time. Because of the sequential multidirectional information contributed by satellite orbit drift along with multi-channel spectral responses, MODIS data greatly enriches the observations of land surface targets, which makes it possible to estimate the land surface parameters accurately and timely, such as leaf area index (LAI). Many researchers have focused on LAI estimation using MODIS data, among whom most used the multispectral data of a single satellite in one day or eight days, while few comprehensively utilized the multispectral and multidirectional information obtained by the both MODIS sensors in some sequence of days. MODIS LAI products have developed a series of generations, the fifth version (MODIS V005) has integrated data from both Terra and Aqua. It is proven that this version is improved with single satellite data, however, it only utilizes red and near-infrared band observations. It has been suggested

  20. Detection of frequently-burn locations using multi-temporal Terra/Aqua MODIS fire product (MOD14) in Oudomxay province, Laos

    International Nuclear Information System (INIS)

    Wildfire is natural and man-made disaster that relates to global warming and climate change. Wildfire is prominent disaster that destroys natural resources, and causes enormous danger to human life and property. The study on the spatial and temporal distribution of wildfire is significant to understand wildfire occurrence and behavior. In the past, people usually study on the pattern of wildfire and open-space burning according to the daily number of active fire detected by MODIS sensor onboard of Terra and Aqua satellites for a particular area at the time of satellite over pass. However, there is no study that focused on the active fire that frequently occurred at the same location for a given period of time. Therefore, in this paper, the authors has focused on the study of frequently-burn locations in Oudomxay province of Laos, which has the 3rd highest active fire number in burning season of year 2007-2009 using spatial and statistical analysis of the active fire distribution and occurrence by time and space. The results of the study show that the highest number of burning frequency is 6 and 7 times within the study period and these numbers are located at 3 districts. One is Xai district which has the highest frequently-burn location for 7 times during the study period at the coordinate of N20.72° and E101.88°. The second districts are Beng and Nga districts which has the 2nd highest frequently-burn location for 6 times during the study period at the coordinate of N 20.28°, E101.68°, and N20.17°, E102.02°, respectively. The obtained information on frequently-burn locations in the province would be useful to identify the repeat burning activity by the local people occurred in the same location and allows the forestry and agricultural officers understand the wildfire distribution pattern

  1. Contribution of MODIS Derived Snow Cover Satellite Data into Artificial Neural Network for Streamflow Estimation

    Science.gov (United States)

    Uysal, Gokcen; Arda Sorman, Ali; Sensoy, Aynur

    2014-05-01

    Contribution of snowmelt and correspondingly snow observations are highly important in mountainous basins for modelers who deal with conceptual, physical or soft computing models in terms of effective water resources management. Long term archived continuous data are needed for appropriate training and testing of data driven approaches like artificial neural networks (ANN). Data is scarce at the upper elevations due to the difficulty of installing sufficient automated SNOTEL stations; thus in literatures many attempts are made on the rainfall dominated basins for streamflow estimation studies. On the other hand, optical satellites can easily detect snow because of its high reflectance property. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite that has two platforms (Terra and Aqua) provides daily and 8-daily snow images for different time periods since 2000, therefore snow cover data (SCA) may be useful as an input layer for ANN applications. In this study, a multi-layer perceptron (MLP) model is trained and tested with precipitation, temperature, radiation, previous day discharges as well as MODIS daily SCA data. The weights and biases are optimized with fastest and robust Levenberg-Marquardt backpropagation algorithm. MODIS snow cover images are removed from cloud coverage using certain filtering techniques. The Upper Euphrates River Basin in eastern part of Turkey (10 250 km2) is selected as the application area since it is fed by snowmelt approximately 2/3 of total annual volume during spring and early summer. Several input models and ANN structures are investigated to see the effect of the contributions using 10 years of data (2001-2010) for training and validation. The accuracy of the streamflow estimations is checked with statistical criteria (coefficient of determination, Nash-Sutcliffe model efficiency, root mean square error, mean absolute error) and the results seem to improve when SCA data is introduced. Furthermore, a forecast study is

  2. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  3. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  4. Community Access to MODIS Satellite Reprojection and Reduction Pipeline and Data Sets

    Science.gov (United States)

    Hendrix, V.; Li, J.; Jackson, K.; Ramakrishnan, L.; Ryu, Y.; Beattie, K.; Morin, C.; Skinner, D.; van Ingen, C.; Agarwal, D.

    2012-12-01

    Moderate Resolution Imaging Spectroradiometer (MODIS), the key instrument aboard NASA's Terra and Aqua satellites, continuously generates data as the satellites cover the entire surface of earth every one to two days. This data is important to many scientific analyses, however, data procurement and processing can be challenging and cumbersome for user communities. Our current work is focused on enabling calculations using a combination of land and atmosphere products over land. Before performing the calculation the data must be downloaded and transformed, from a swath space and time system to a sinusoidal tiling system. Downloading data for a single product for an entire year can take several days for a single product and involves downloading via FTP many small files (on average ~83,000 files) in hierarchical data format (HDF4). The data processing, a swath-to-sinusoidal reprojection, is computationally intensive and currently available community tools only work for single sinusoidal tiles. We have developed a data-processing pipeline that downloads the MODIS products and reprojects them on HPC systems. HPC systems do not traditionally run these high-throughput data-intensive jobs and hence we need to address unique challenges for our pipeline. The first stage in the pipeline uses a catalog to determine what files need to be downloaded and downloads identified data sets. The downloaded files will in the future trigger an event that causes the reprojection job to be entered into a job queue. The output data is stored in an archival system. The resulting reprojected data will soon be widely available to the community through a front-end web portal. The portal will allow users to download reprojected data (~1 TB/year) for the following land and atmosphere products: MODO4_L2 (Aerosol), MOD05_L2 (Water Vapor), MOD06_L2 (Cloud), MOD07_L2 (Atmosphere Profile) and MOD11_L2 (Land Surface Temperature Emissivity). In this talk we will describe the architecture of the overall

  5. Predicting the Invasion Potential of a Puerto Rican Frog in Hawaii using MODIS Satellite Imagery

    Science.gov (United States)

    Bisrat, S. A.; White, M. A.

    2008-12-01

    The Puerto Rican coqui frog (Eleutherodactylus coqui, hereafter coqui), which was introduced into Hawaii accidentally via commercial nurseries, is an aggressive invasive species in Hawaii. The coqui threatens Hawaii's unique ecological communities because it predates upon endemic invertebrates, which comprise the large majority of Hawaii's endemic fauna. Coqui frogs also affect real estate valuations because of their loud mating calls. Despite this widespread problem, the potential coqui range in Hawaii is currently unknown, making control and management efforts difficult. We fitted linear discriminant analysis (LDA), logistic regression (LR) via generalized linear models (GLMs), generalized additive models (GAMs), classification trees (CTs), random forests (RF), and support vector machine (SVM) to model the species distribution and map their invasion potential. We used five MODIS satellite imagery-derived biophysical variables as explanatory variables: leaf area index (LAI), fraction of photosynthetically active radiation absorbed by vegetation (FPAR), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST) from three MODIS products: MOD11 (LST), MOD13 (LAI and FPAR), and MOD15 (Vegetation Index) (collection 4). We used 2000-2005 MODIS data from Aqua and Terra satellites to generate monthly climatologies for each biophysical variable. We collected presence/absence data from Puerto Rico and Hawaii using a 1 km grid overlaid over the entire islands of Puerto Rico and the Island of Hawaii by sampling every other pixel of the grid intersecting with the road network. We then used the dataset from Puerto Rico to train the six models while the Hawaii dataset was used as a test set. All six models predicted the invasion potential of coqui frogs in Hawaii with a moderate success with mean Kappa value of 0.31, mean area under the curve of receiver operating characteristics (AUC) of 0.75 and mean classification

  6. Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality Research over the Continental United States

    Directory of Open Access Journals (Sweden)

    J. H. Belle

    2016-10-01

    Full Text Available Satellite-retrieved aerosol optical depth (AOD has become an important predictor of ground-level particulate matter (PM and greatly empowered air pollution research worldwide. We evaluated the AOD parameters included in the Collection 6 aerosol product of the Moderate Resolution Imaging Spectroradiometer (MODIS for two key factors affecting their applications in air quality research—coverage and accuracy—over the continental US. For the high confidence retrievals (QAC 3, the 10 km DB-DT combined AOD has the best coverage nationwide (29.7% of the days in a year in any given 12 km grid cell. While the Eastern US generally had more successful AOD retrievals, the highest spatial coverage of AOD parameters were found in California (>55% and other vegetated parts of the Western US. If lower QAC retrievals were included, the coverage of the 10 km DB AOD was dramatically increased to 49.6%. In the Eastern US, the QAC 3 retrievals of all four AOD parameters are highly correlated with AERONET observations (correlation coefficients between 0.80 and 0.92. In the Western US, positive retrieval errors existed in all MODIS AOD parameters, resulting in lower correlations with AERONET. AOD retrieval errors showed significant dependence on flight geometry, land cover type, and weather conditions. To ensure appropriate use of these AOD values, air quality researchers should carefully balance the needs for coverage and accuracy, and develop additional data screening criteria based on their study design.

  7. Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrievals and FALL3D Transport Model

    OpenAIRE

    Corradini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Merucci, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Folch, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia

    2011-01-01

    The moderate Resolution Imaging Spectroradiometer (MODIS) is a multispectral satellite instrument operating from the visible to thermal infrared spectral range. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles. In this letter, quantitative comparison between the volcanic cloud ash mass and optical depth retrieved by MODIS and modeled by FALL3D has been performed. Three MODIS images collected on October 28, 29, and 30 on Mt. Etna volcano duri...

  8. MODIS/AQUA MYD14A2 Thermal Anomalies & Fire 8-Day L3 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  9. MODIS/Aqua Clear Sky Radiance Statistics Daily L3 Global 25km Equal Area V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS daily averaged clear-sky radiance (thermal bands) and reflectance (visible bands) statistics in selected MODIS bands are stored on a global grid map....

  10. MODIS/AQUA MYD14A2 Thermal Anomalies & Fire 8-Day L3 Global 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  11. MODIS/AQUA MYD14 Thermal Anomalies & Fire 5-Min L2 Swath 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  12. MODIS/AQUA MYD14A1 Thermal Anomalies & Fire Daily L3 Global 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  13. Drought Monitoring and Category of Vegetation Temperature Condition Index Using Aqua-MODIS Data%基于Aqua-MODIS数据的条件植被温度指数干旱等级监测研究

    Institute of Scientific and Technical Information of China (English)

    林巧; 王鹏新; 张树誉; 刘峻明; 李俐

    2014-01-01

    以陕西关中平原为研究区域,选取2003年~2012年每年3月~5月的Aqua-MODIS数据,计算MODIS-VTCI干旱监测结果,通过气象数据对结果进行验证,对比MODIS和AVHRR数据多年同一旬的VTCI干旱监测及等级划分结果,发现两种监测结果反映出的旱情分布规律相同.MODIS-VTCI干旱监测结果表明,2003年、2004年、2005年和2009年关中地区春旱严重,其中3月中旬至4月下旬旱情发生频率较高.2009年MODIS-VTCI干旱等级监测结果表明,关中地区2009年3月中旬、4月上旬和中旬干旱程度严重,且关中东部地区旱情比西部严重.

  14. Análise da dinâmica sazonal e separabilidade espectral de algumas fitofisionomias do cerrado com índices de vegetação dos sensores MODIS/TERRA e AQUA Analysis of the seasonal dynamics and spectral separability of some savanna physiognomies with vegetation indices derived from MODIS/TERRA AND AQUA

    Directory of Open Access Journals (Sweden)

    Veraldo Liesenberg

    2007-04-01

    Full Text Available Composições de 16 dias de índices de vegetação do sensor MODerate resolution Imaging Spectroradiometer (MODIS, com resolução espacial de 1km, a bordo dos satélites TERRA e AQUA, foram usadas para caracterizar a dinâmica sazonal em 2004 de cinco fitofisionomias de Cerrado e analisar a sua separabilidade espectral. Os índices Normalized Difference Vegetation Index (NDVI e Enhanced Vegetation Index (EVI, calculados a partir dos dados dos sensores de ambas as plataformas e de uma base comum de pixels, foram comparados entre si. Os resultados indicaram que: (a dentre as fitofisionomias estudadas, a Floresta Estacional decídua apresentou uma dinâmica sazonal muito marcante em função da perda de folhas da estação chuvosa para a seca (substancial redução nos índices e do rápido verdejamento com o início da precipitação no final de outubro (rápido incremento de NDVI e EVI; (b o NDVI mostrou maior variabilidade entre as classes de vegetação do que o EVI apenas na estação seca; (c a discriminação entre as fitofisionomias melhorou da estação chuvosa para a seca; (d o NDVI foi mais eficiente do que o EVI para discriminar as classes de vegetação na estação seca, ocorrendo o contrário na estação chuvosa; e (e na maioria das datas selecionadas para estudo, não houve diferenças estatisticamente significativas entre os índices de vegetação gerados de ambas as plataformas, apesar das variações na qualidade dos pixels selecionados para as composições de 16 dias e na geometria de iluminação e de visada.MODerate-resolution Imaging Spectroradiometer (MODIS 16-day vegetation index composites with 1 km of spatial resolution from TERRA and AQUA satellites were used to characterize the seasonal dynamics of five Brazilian savanna physiognomies and to analyze their spectral separability in 2004. The Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI, using data from both platforms and from a

  15. Application of the Coastal and Marine Ecological Classification Standard (CMECS) Water Column Component (WC) to data derived by the Naval Research Lab (NRL) Automated Processing System (APS) modeling of Moderate Resolution Imaging Spectroradiometer (MODIS) Imagery from the Aqua Earth Orbiting Satellite (EOS) PM in the Northern Gulf of Mexico from 2005-01 to 2009-12 (NODC Accession 0094007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-derived data for sea surface temperature, salinity, chlorophyll; euphotic depth; and modeled bottom to surface temperature differences were evaluated to...

  16. Space environment's effect on MODIS calibration

    Science.gov (United States)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  17. Chlorophyll increases off the coasts of Japan after the 2011 tsunami using NASA/MODIS data

    OpenAIRE

    E. Sava; Edwards, B; Cervone, G.

    2014-01-01

    Large chlorophyll anomalies are observed after the 2011 Japanese tsunami using the NASA MODIS instrument onboard the TERRA and AQUA satellites. These anomalies are observed both along the eastern coast of Japan, where the tsunami wave hit with maximum force, and in the deep water surrounding the epicentral region. Although both satellites show agreeing spatio-temporal patterns, larger anomalies are detected using the AQUA satellite. A temporal analysis shows increased chloro...

  18. Chlorophyll increases off the coasts of Japan after the 2011 Tsunami using NASA/MODIS data

    OpenAIRE

    E. Sava; Edwards, B; Cervone, G.

    2013-01-01

    Large chlorophyll anomalies are observed after the 2011 Japanese tsunami using the NASA MODIS instrument onboard the TERRA and AQUA satellites. These anomalies are observed both along the Eastern coast of Japan, where the tsunami wave hit with maximum force, and in the deep water surrounding the epicentral region. Although both satellites show agreeing spatio-temporal patterns, larger anomalies are detected using the AQUA satellite. A temporal analysis shows increased chloro...

  19. MYDTBGA: MODIS/AQUA Thermal Bands Daily L2G Global 1 km SIN Grid Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Version 6 MODIS Level 2 Gridded (L2G) Thermal Band product consists of brightness temperature data from MODIS bands 20, 31, and 32 and albedo data from band 20...

  20. MODIS/AQUA MYD13C2 Vegetation Indices Monthly L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  1. MODIS/Aqua MYD11A1 Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Terra Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based to...

  2. MODIS/AQUA MYD17A2 Gross Primary Productivity 8-Day L4 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODerate-resolution Imaging Spectroradiometer (MODIS) Gross Primary Productivity (GPP) products are a cumulative composite of GPP values based on the radiation...

  3. MODIS/AQUA MYD13C1 Vegetation Indices 16-Day L3 Global 0.05Deg CMG

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  4. MODIS/AQUA MYD13C2 Vegetation Indices Monthly L3 Global 0.05Deg CMG

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  5. MODIS/AQUA MYD09CMG Surface Reflectance Daily L3 Global 0.05Deg CMG

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  6. MODIS/AQUA MYD13A1 Vegetation Indices 16-Day L3 Global 500m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  7. MODIS/AQUA MYD13A3 Vegetation Indices Monthly L3 Global 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  8. MODIS/AQUA MYD09GA Surface Reflectance Daily L2G Global 1km and 500m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  9. MODIS/AQUA MYD09CMG Surface Reflectance Daily L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  10. MODIS/AQUA MYD13Q1 Vegetation Indices 16-Day L3 Global 250m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  11. MODIS/AQUA MYD09GA Surface Reflectance Daily L2G Global 1km and 500m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  12. MODIS/AQUA MYD09A1 Surface Reflectance 8-Day L3 Global 500m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  13. MODIS/AQUA MYD09Q1 Surface Reflectance 8-Day L3 Global 250m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  14. MODIS/AQUA MYD13A2 Vegetation Indices 16-Day L3 Global 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  15. MODIS/AQUA MYD09GQ Surface Reflectance Daily L2G Global 250m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric...

  16. MODIS/Aqua 8-Day Clear Sky Radiance Bias Daily L3 Global 1Deg Zonal Bands V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS 8-day clear-sky radiance bias (observed - calculated) statistics are provided for 1Deg latitudinal zones and selected thermal bands. Separation by day and...

  17. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  18. Improved VIIRS and MODIS SST Imagery

    OpenAIRE

    Irina Gladkova; Alexander Ignatov; Fazlul Shahriar; Yury Kihai; Don Hillger; Boris Petrenko

    2016-01-01

    Moderate Resolution Imaging Spectroradiometers (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP)/Joint Polar Satellite System (JPSS) satellites, are capable of providing superior sea surface temperature (SST) imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. ...

  19. MYDOCGA: MODIS/Aqua Ocean Reflectance Daily L2G-Lite Global 1 km SIN Grid Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Version 6 Level 2 Gridded (L2G) Ocean Reflectance product consists of 1 kilometer reflectance data from MODIS bands 8-16. The product is referred to as ocean...

  20. Cloud removal methodology from MODIS snow cover product

    OpenAIRE

    Gafurov, A.; Bárdossy, A.

    2009-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) employed by Terra and Aqua satellites provides spatially snow covered data with 500 m and daily temporal resolution. It delivers public domain data in raster format. The main disadvantage of the MODIS sensor is that it is unable to record observations under cloud covered regions. This is why this study focuses on estimating the pixel cover for cloud covered areas where no information is available. Our step to this product involves empl...

  1. Recent Progress on Deep Blue Aerosol Algorithm as Applied TO MODIS, SEA WIFS, and VIIRS, and Their Intercomparisons with Ground Based and Other Satellite Measurements

    Science.gov (United States)

    Hsu, N. Christina; Bettenhausen, Corey; Sawyer, Andrew; Tsay, Si-Chee

    2012-01-01

    The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol

  2. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    Science.gov (United States)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  3. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12years (2002-2014) based on Collection 006 MODIS-Aqua data.

    Science.gov (United States)

    Floutsi, A A; Korras-Carraca, M B; Matsoukas, C; Hatzianastassiou, N; Biskos, G

    2016-05-01

    The Mediterranean basin is a region of particular interest for studying atmospheric aerosols due to the large variety of air masses it receives, and its sensitivity to climate change. In this study we use the newest collection (C006) of aerosol optical depth from MODIS-Aqua, from which we also derived the fine-mode fraction and Ångström exponent over the last 12years (i.e., from 2002 to 2014), providing the longest analyzed dataset for this region. The long-term regional optical depth average is 0.20±0.05, with the indicated uncertainty reflecting the inter-annual variability. Overall, the aerosol optical depth exhibits a south-to-north decreasing gradient and an average decreasing trend of 0.0030 per year (19% total decrease over the study period). The correlation between the reported AOD observations with measurements from the ground AERONET stations is high (R=0.76-0.80 depending on the wavelength), with the MODIS-Aqua data being slightly overestimated. Both fine-fraction and Ångström exponent data highlight the dominance of anthropogenic aerosols over the northern, and of desert aerosols over the southern part of the region. Clear intrusions of desert dust over the Eastern Mediterranean are observed principally in spring, and in some cases in winter. Dust intrusions dominate the Western Mediterranean in the summer (and sometimes in autumn), whereas anthropogenic aerosols dominate the sub-region of the Black Sea in all seasons but especially during summer. Fine-mode optical depth is found to decrease over almost all areas of the study region during the 12-year period, marking the decreasing contribution of anthropogenic particulate matter emissions over the study area. Coarse-mode aerosol load also exhibits an overall decreasing trend. However, its decrease is smaller than that of fine aerosols and not as uniformly distributed, underlining that the overall decrease in the region arises mainly from reduced anthropogenic emissions. PMID:26878641

  4. Performance of the Star Tracker Lightshades on the Earth Observing Satellite (EOS) Aqua

    Science.gov (United States)

    Kenney, Thomas; Schroeder, Michael; Donnelly, Michael; McNally, Mark; Bauer, Frank H. (Technical Monitor)

    2003-01-01

    The TRW built EOS Aqua spacecraft uses two Ball Aerospace CT-602 star trackers to provide attitude updates to the 3-axis, zero momentum, controller. Two months prior to the scheduled launch of Aqua, Ball reported an error in the design of the star tracker lightshades. The lightshades, which had been designed specifically for the EOS Common spacecraft, were not expected to meet the stray light rejection requirements of the mission and thus impact the overall spacecraft pointing performance. What ensued was an effort to characterize the actual performance of the existing shade design, determine what could be done within the physical envelope available, and modify the hardware to meet requirements. Changes were made based on this review activity and Aqua was launched on May 4, 2002. To date the spacecraft is meeting all of its science pointing requirements. Reported here are the lightshade design predictions, test results, and the measured on orbit performance of these shades.

  5. Long-term trend of aerosol optical depth derived from MODIS Aqua using linear regression and ensemble empirical mode decomposition over East Asia

    Science.gov (United States)

    KIM, J.

    2015-12-01

    Aerosol has played an important role in air quality for short term and climate change for long term. Especially, it is important to understand how aerosol optical depth (AOD) has changed to date for the prognosis of future atmospheric state and radiation budget which are related to human life. In this study, the trend of AOD at 550 nm from MODIS Aqua (MYD08) was estimated for 10 years from 2004 to 2014 using linear regression method and ensemble empirical mode decomposition method (EEMD). Search region was selected to East Asia [18.5°N-51.5°N, 85.5°E-150.5°E] which is considered to be of great interest in emission source. The result of linear regression shows remarkably increasing trend in North and East China including Sanjiang, Hailun, Beijing, Beijing forest and Jinozhou Bay, than rather downward trend in other neighboring regions. Actually, however, AOD has seasonality itself and its trend is also affected by external source consistently, so non-linear trend analysis was conducted to analyze the changing tendency of AOD trends. Consequently, secular trends of AOD defined by EEMD showed almost similar values over the entire region, but their shapes over time are quite different with those of linear regression. Here, AOD linear trend in Beijing has monotonically increased [0.03% yr-1] since 2004, but its non-linear trend shows that initial increasing trend has alleviated and even turned into downward trend from about 2010. Lastly, the validation of MODIS AOD with AErosol RObotic NETwork (AERONET) was conducted additionally which showed fairly good agreement with those of AERONET (R=0.901, RMSE=0.226, MAE=0.031, MBE=-0.001).

  6. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS dark target retrieval algorithm

    OpenAIRE

    Gupta, P.; R. C. Levy; S. Mattoo; L. A. Remer; L. A. Munchak

    2016-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard two Earth Observing Satellites (EOS) Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 km and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air quality applications. However, the application of MODIS aerosol products for air quality concerns is limited by a reduction in retrieval accu...

  7. MODIS 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  8. Detection and classification of oil spills in MODIS satellite imagery

    OpenAIRE

    Alawadi, Fahad A.M.

    2011-01-01

    Using satellite imagery to achieve an early and accurate identification of oil spills will contribute towards the reduction of their impact on the marine ecosystem. Satellite imagery provided by the synthetic aperture radar (SAR) sensors are widely used for this task over the multi-temporal and multi-band visible near infra-red (VNIR) sensors. This is due to the SAR imaging capabilities through clouds, dust storms, soot and at night times, which limit the capability of VNIR sensors. However, ...

  9. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    Science.gov (United States)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  10. Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Petropoulos, George P.; Gupta, Manika; Dai, Qiang

    2016-04-01

    Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = -7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = -10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.

  11. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Genovese Vanessa

    2007-10-01

    Full Text Available Abstract Background A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS was used to estimate net primary productivity (NPP of forest stands at the Bartlett Experiment Forest (BEF in the White Mountains of New Hampshire. Results Net primary production (NPP predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP. Conclusion Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.

  12. Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

    Science.gov (United States)

    Pun, M.; Kilic, A.; Allen, R.

    2014-12-01

    Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors

  13. Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models

    OpenAIRE

    G. Myhre; F. Stordal; M. Johnsrud; Y. J. Kaufman; D. Rosenfeld; Storelvmo, T.; Kristjansson, J. E.; Berntsen, T. K.; Myhre, A.; I. S. A. Isaksen

    2007-01-01

    We have used the MODIS satellite data and two global aerosol models to investigate the relationships between aerosol optical depth (AOD) and cloud parameters that may be affected by the aerosol concentration. The relationships that are studied are mainly between AOD, on the one hand, and cloud cover, cloud liquid water path, and water vapour, on the other. Additionally, cloud droplet effective radius, cloud optical depth, cloud top pressure and aerosol Ångström exponent, have been a...

  14. Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    OpenAIRE

    H. S. Marey; J. C. Gille; H. M. El-Askary; Shalaby, E. A.; M. E. El-Raey

    2011-01-01

    Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) at 550 nm were examined for the 10 yr ...

  15. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data

    OpenAIRE

    Genovese Vanessa; Gross Peggy; Potter Christopher; Smith Marie-Louise

    2007-01-01

    Abstract Background A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire. Results Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation...

  16. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    OpenAIRE

    G. McCamley; Grant, I.; Jones, S; C. Bellman

    2012-01-01

    Bidirectional Reflectance Distribution Functions (BRDF) seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding ...

  17. Investigating the impact of haze on cloud detection of passive satellite by comparing MODIS, CloudSat and CALIPSO

    Science.gov (United States)

    Gong, W.; Mao, F.

    2015-12-01

    The cloud detection algorithm for passive sensors is usually based on a fuzzy logic system with thresholds determined from previous observations. In recent years, haze and high aerosol concentrations with high AOD occur frequently in China and may critically impact the accuracy of the MODIS cloud detection. Thus, we comprehensively explore this impact by comparing the results from MODIS/Aqua (passive sensor), CALIOP/CALIPSO (lidar sensor), and CPR/CloudSat (microwave sensor) of the A-Train suite of instruments using an averaged AOD as an index for an aerosol concentration value. Case studies concerning the comparison of the three sensors indicate that MODIS cloud detection is reduced during haze events. In addition, statistical studies show that an increase in AOD creates an increase in the percentage of uncertain flags and a decrease in hit rate, a consistency index between consecutive sets of cloud retrievals. Therefore, we can conclude that the ability of MODIS cloud detection is weakened by large concentrations of aerosols. This suggests that use of the MODIS cloud mask, and derived higher level products, in situations with haze requires caution. Further improvement of this retrieval algorithm, is desired as haze studies based on MODIS products are of great interest in a number of related fields.

  18. Moderate Resolution Imaging Spectroradiometer (MODIS) Overview

    Science.gov (United States)

    U.S. Geological Survey

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument that collects remotely sensed data used by scientists for monitoring, modeling, and assessing the effects of natural processes and human actions on the Earth's surface. The continual calibration of the MODIS instruments, the refinement of algorithms used to create higher-level products, and the ongoing product validation make MODIS images a valuable time series (2000-present) of geophysical and biophysical land-surface measurements. Carried on two National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satellites, MODIS acquires morning (EOS-Terra) and afternoon (EOS-Aqua) views almost daily. Terra data acquisitions began in February 2000 and Aqua data acquisitions began in July 2002. Land data are generated only as higher-level products, removing the burden of common types of data processing from the user community. MODIS-based products describing ecological dynamics, radiation budget, and land cover are projected onto a sinusoidal mapping grid and distributed as 10- by 10-degree tiles at 250-, 500-, or 1,000-meter spatial resolution. Some products are also created on a 0.05-degree geographic grid to support climate modeling studies. All MODIS products are distributed in the Hierarchical Data Format-Earth Observing System (HDF-EOS) file format and are available through file transfer protocol (FTP) or on digital video disc (DVD) media. Versions 4 and 5 of MODIS land data products are currently available and represent 'validated' collections defined in stages of accuracy that are based on the number of field sites and time periods for which the products have been validated. Version 5 collections incorporate the longest time series of both Terra and Aqua MODIS data products.

  19. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    Science.gov (United States)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    Aerosols are a key parameter for several atmospheric processes related to weather and climate of our planet. Specifically, the aerosol impact on Earth's climate is exerted and quantified through their radiative effects, which are induced by their direct, indirect and semi-direct interactions with radiation, in particular at short wavelengths (solar). It is acknowledged that the uncertainty of present and future climate assessments is mainly associated with aerosols and that a better understanding of their physico-chemical, optical and radiative effects is needed. The contribution of satellites to this aim is important as a complementary tool to climate and radiative transfer models, as well as to surface measurements, since space observations of aerosol properties offer an extended spatial coverage. However, such satellite based aerosol properties and associated model radiation computations have suffered from unavailability over highly reflecting surfaces, namely polar and desert areas. This is also the case for MODIS which, onboard the Terra and Aqua satellites, has been providing high quality aerosol data since 2000 and 2002, respectively. These data, more specifically the aerosol optical depth (AOD) which is the most important optical property used in radiative and climate models, are considered to be of best quality. In order to address this problem, the MODIS Deep Blue (DB) algorithm has been developed which enables the retrieval of AOD above arid and semi-arid areas of the globe, including the major deserts. In the present study we make use of the FORTH detailed spectral radiative transfer model (RTM) with MODIS DB AOD data, supplemented with single scattering albedo (SSA) and asymmetry parameter (AP) aerosol data from the Global Aerosol DataSet (GADS) to estimate the aerosol DREs over the arid and semi-arid regions of the globe. The RTM is run using surface and atmospheric data from the ISCCP-D2 dataset and the NCEP global reanalysis project and computes the

  20. Cloudiness and snow cover in Alpine areas from MODIS products

    OpenAIRE

    P. Da Ronco; De Michele, C.

    2014-01-01

    Snow cover maps provide an information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they allow to estimate the regional snow resource. Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. In this context, MODIS (MODerate resolution Imaging Spectroradiometeron on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tes...

  1. The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements

    Science.gov (United States)

    Korras-Carraca, M. B.; Hatzianastassiou, N.; Matsoukas, C.; Gkikas, A.; Papadimas, C. D.

    2015-11-01

    Atmospheric particulates are a significant forcing agent for the radiative energy budget of the Earth-atmosphere system. The particulates' interaction with radiation, which defines their climate effect, is strongly dependent on their optical properties. In the present work, we study one of the most important optical properties of aerosols, the asymmetry parameter (gaer), over sea surfaces of the region comprising North Africa, the Arabian Peninsula, Europe, and the Mediterranean Basin. These areas are of great interest, because of the variety of aerosol types they host, both anthropogenic and natural. Using satellite data from the collection 051 of MODIS (Moderate Resolution Imaging Spectroradiometer, Terra and Aqua), we investigate the spatiotemporal characteristics of the asymmetry parameter. We generally find significant spatial variability, with larger values over regions dominated by larger size particles, e.g., outside the Atlantic coasts of northwestern Africa, where desert-dust outflow takes place. The gaer values tend to decrease with increasing wavelength, especially over areas dominated by small particulates. The intra-annual variability is found to be small in desert-dust areas, with maximum values during summer, while in all other areas larger values are reported during the cold season and smaller during the warm. Significant intra-annual and inter-annual variability is observed around the Black Sea. However, the inter-annual trends of gaer are found to be generally small. Although satellite data have the advantage of broad geographical coverage, they have to be validated against reliable surface measurements. Therefore, we compare satellite-measured values with gaer values measured at 69 stations of the global surface AERONET (Aerosol Robotic Network), located within our region of interest. This way, we provide some insight on the quality and reliability of MODIS data. We report generally better agreement at the wavelength of 860 nm (correlation

  2. Comparisons of Terra- and Aqua MODIS in band reflectance and vegetation index%Terra MODIS和Aqua MODIS波段反射率及植被指数比较

    Institute of Scientific and Technical Information of China (English)

    王静; 郭铌

    2008-01-01

    对Terra MODIS和Aqua MODIS之间单波段反射率及植被指数进行了比较.结果表明:Terra MODIS和Aqua MODIS单波段反射率及植被指数具有极显著的相关性,植被指数较单波段反射率相关性更高些;Terra MODIS单波段反射率值普遍较Aqua MODIS值低,而植被指数值普遍较Aqua MODIS值高;不同时段Terra MODIS和Aqua MODIS单波段反射率及植被指数间差异不同,植被指数在冬季差异最大,而单波段反射率则在夏秋季差异较大;不同植被类型Terra MODIS和Aqua MODIS间植被指数差异总体规律相似,但单波段反射率间差异较为复杂;草甸、草原无论是单波段反射率还是植被指数,Terra MODIS和AquaMODIS的差异均比其他几种植被类型小,而阔叶林和一年两熟作物则差异相对大些.

  3. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  4. Response to Toward Unified Satellite Climatology of Aerosol Properties. 3; MODIS versus MISR versus AERONET

    Science.gov (United States)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.

  5. Testing estimation of water surface in Italian rice district from MODIS satellite data

    Science.gov (United States)

    Ranghetti, Luigi; Busetto, Lorenzo; Crema, Alberto; Fasola, Mauro; Cardarelli, Elisa; Boschetti, Mirco

    2016-10-01

    Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.

  6. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    Science.gov (United States)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in

  7. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    OpenAIRE

    Dumont, M; Gardelle, J.; P. Sirguey; A. Guillot; Six, D.; Rabatel, A.; Y. Arnaud

    2012-01-01

    Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ...

  8. Comparison of chlorophyll products derived from MODIS-Aqua and modification of operational algorithms in the South China Sea%南海海域MODIS-Aqua叶绿素浓度产品的精度对比和区域性算法修正

    Institute of Scientific and Technical Information of China (English)

    赵文静; 曹文熙; 王桂芬; 胡水波; 林俊芳; 许占堂

    2014-01-01

    利用2004~2012年在南海获得的9个航次的实测Chl-a数据,采用NASA标准业务化算法OC3和针对低Chl-a水体所发展的最新算法OCI反演获得了相应的MODIS-Aqua Chl-a产品.通过建立实测与遥感产品的时空匹配数据对,开展了Chl-a产品的适用性评估,并对比分析了上述两种算法的性能.在此基础上,利用南海实测遥感反射率(Rrs(λ))和MODIS-AquaRrs(λ)产品以及相应实测Chl-a的匹配数据集,分别对算法OC3和OCI进行了区域性修正.结果显示:基于算法OC3和OCI反演所得的MODIS-Aqua Chl-a产品值均高估了实测值,平均绝对误差(APD)的精度分别为56.30%和42.58%,且算法OCI可明显改善低Chl-a水体(<0.25 mg· m-3)的反演精度;采用南海MODIS-AquaRrs(λ)产品与实测Chl-a匹配数据集(N=82)修正后的区域性算法NOC3和NOCI的精度均有不同程度提高,APD精度分别为37.85%和36.74%;采用现场实测Rrs(λ)与Chl-a匹配数据集(N=123)进行区域性修正后的算法INOC3和INOCI的APD精度分别为36.61%和37.79%,上述两种方案精度较为接近.因此,对于南海海域而言,算法的区域性修正对于改善MODIS-Aqua Chl-a产品精度非常重要.

  9. Study of Modis satellite derived aerosol angstrom exponent and in-situ measured values using Sun photometer in part of the west coast of Indian Peninsula

    Digital Repository Service at National Institute of Oceanography (India)

    SunilKumar R.K.; Suresh, T.; Govindaraju; SureshKumar, B.V.

    comparatively high AAE with that of Malvan and Murdeshwar (Fig.6a,b) Based on industrial and mining activity. 6. Conclusions The study of comparing the in-situ estimated AAE with that the MODIS Aqua derived AAE has provided an opportunity to learn the method...

  10. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  11. Application of MODIS satellite products to the air pollution research in Beijing

    Institute of Scientific and Technical Information of China (English)

    LI Chengcai; MAO Jietai; Alexis K. H. Lau; YUAN Zibing; WANG Meihua; LIU Xiaoyang

    2005-01-01

    The direct correlation between NASA MODIS aerosol optical depth (AOD) products and the air pollution index (API) in Beijing was found relatively low based on the long-term comparison analysis. The correlation improved to some extent after taking account of the seasonal variation of scale height and the vertical distribution of aerosols. The correlation coefficient further improved significantly after considering the influencing factor of Relative Humidity (RH). This study concluded that satellite remote-sensing could serve as an efficient tool for monitoring the spatial distribution of particulate pollutants on the ground-level, as long as corrections have been made in the two aforementioned processes. Taking advantage of the MODIS information, we analyzed a pollution episode occurring in October 2004 in Beijing. It indicated that satellite remote-sensing could describe the formation process of the ground-level pollution episode in detail, and showed that regional transport and the topography were crucial factors to air quality in Beijing. The annual averaged distribution in the urban area of Beijing and its surroundings could be also obtained from the high-resolution retrieval results, implicating that high-resolution satellite remote-sensing might be potential in monitoring the source distribution of particulate pollutants.

  12. eMODIS: A User-Friendly Data Source

    Science.gov (United States)

    Jenkerson, Calli; Maiersperger, Thomas; Schmidt, Gail

    2010-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center is generating a suite of products called 'eMODIS' based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). With a more frequent repeat cycle than Landsat and higher spatial resolutions than the Advanced Very High Resolution Spectroradiometer (AVHRR), MODIS is well suited for vegetation studies. For operational monitoring, however, the benefits of MODIS are counteracted by usability issues with the standard map projection, file format, composite interval, high-latitude 'bow-tie' effects, and production latency. eMODIS responds to a community-specific need for alternatively packaged MODIS data, addressing each of these factors for real-time monitoring and historical trend analysis. eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5 Atmospherically Corrected Surface Reflectance production code and USGS EROS MODIS Direct Broadcast System (DBS) software to create surface reflectance and Normalized Difference Vegetation Index (NDVI) products. eMODIS is produced over the continental United States and over Alaska extending into Canada to cover the Yukon River Basin. The 250-meter (m), 500-m, and 1,000-m products are delivered in Geostationary Earth Orbit Tagged Image File Format (Geo- TIFF) and composited in 7-day intervals. eMODIS composites are projected to non-Sinusoidal mapping grids that best suit the geography in their areas of application (see eMODIS Product Description below). For eMODIS products generated over the continental United States (eMODIS CONUS), the Terra (from 2000) and Aqua (from 2002) records are available and continue through present time. eMODIS CONUS also is generated in an expedited process that delivers a 7-day rolling composite

  13. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  14. A SOAP Web Service for accessing MODIS land product subsets

    Energy Technology Data Exchange (ETDEWEB)

    SanthanaVannan, Suresh K [ORNL; Cook, Robert B [ORNL; Pan, Jerry Yun [ORNL; Wilson, Bruce E [ORNL

    2011-01-01

    Remote sensing data from satellites have provided valuable information on the state of the earth for several decades. Since March 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA s Terra and Aqua satellites have been providing estimates of several land parameters useful in understanding earth system processes at global, continental, and regional scales. However, the HDF-EOS file format, specialized software needed to process the HDF-EOS files, data volume, and the high spatial and temporal resolution of MODIS data make it difficult for users wanting to extract small but valuable amounts of information from the MODIS record. To overcome this usability issue, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics at Oak Ridge National Laboratory (ORNL) developed a Web service that provides subsets of MODIS land products using Simple Object Access Protocol (SOAP). The ORNL DAAC MODIS subsetting Web service is a unique way of serving satellite data that exploits a fairly established and popular Internet protocol to allow users access to massive amounts of remote sensing data. The Web service provides MODIS land product subsets up to 201 x 201 km in a non-proprietary comma delimited text file format. Users can programmatically query the Web service to extract MODIS land parameters for real time data integration into models, decision support tools or connect to workflow software. Information regarding the MODIS SOAP subsetting Web service is available on the World Wide Web (WWW) at http://daac.ornl.gov/modiswebservice.

  15. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  16. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data.

    Science.gov (United States)

    Ding, Jiachen; Yang, Ping; Holz, Robert E; Platnick, Steven; Meyer, Kerry G; Vaughan, Mark A; Hu, Yongxiang; King, Michael D

    2016-01-11

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6% and 9% for tropical and midlatitude ice clouds, respectively. PMID:26832292

  17. Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data

    Science.gov (United States)

    Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.

    2016-01-01

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.

  18. Automated dust storm detection using satellite images. Development of a computer system for the detection of dust storms from MODIS satellite images and the creation of a new dust storm database

    Science.gov (United States)

    El-Ossta, Esam Elmehde Amar

    Dust storms are one of the natural hazards, which have increased in frequency in the recent years over Sahara desert, Australia, the Arabian Desert, Turkmenistan and northern China, which have worsened during the last decade. Dust storms increase air pollution, impact on urban areas and farms as well as affecting ground and air traffic. They cause damage to human health, reduce the temperature, cause damage to communication facilities, reduce visibility which delays both road and air traffic and impact on both urban and rural areas. Thus, it is important to know the causation, movement and radiation effects of dust storms. The monitoring and forecasting of dust storms is increasing in order to help governments reduce the negative impact of these storms. Satellite remote sensing is the most common method but its use over sandy ground is still limited as the two share similar characteristics. However, satellite remote sensing using true-colour images or estimates of aerosol optical thickness (AOT) and algorithms such as the deep blue algorithm have limitations for identifying dust storms. Many researchers have studied the detection of dust storms during daytime in a number of different regions of the world including China, Australia, America, and North Africa using a variety of satellite data but fewer studies have focused on detecting dust storms at night. The key elements of this present study are to use data from the Moderate Resolution Imaging Spectroradiometers on the Terra and Aqua satellites to develop more effective automated method for detecting dust storms during both day and night and generate a MODIS dust storm database..

  19. 基于MODIS/Aqua的胶州湾及青岛近海叶绿素a浓度年变化特征分析%Analysis on the Annual Change Characteristics of Chlorophyll-a Concentration in the Jiaozhou Bay and Qingdao Coastal Area Based on MODIS/Aqua

    Institute of Scientific and Technical Information of China (English)

    刘晓燕; 杨倩; 周燕

    2015-01-01

    利用2002-2013年MODIS/Aqua的Level 1B数据,经标准大气校正算法和叶绿素a浓度[chl-a]波段比经验算法(OC2M-HI),获得近12 a的胶州湾及青岛近海海域晴空的MOIDS/Aqua叶绿素a浓度.根据GOCI/COMS和MODIS/Aqua叶绿素a浓度产品在胶州湾及青岛近海交叉比较的结果[1],对2002-2013年的MODIS/Aqua [chl-a]进行了修正.基于修正后的MODIS/Aqua[chl-a]分析了胶州湾及青岛近海的叶绿素a浓度年变化特征.该海域的叶绿素a浓度大致呈现北高南低,湾内高于近海的特点,且每年空间分布趋势基本一致;近12a的[chl-a]呈小的上升趋势,胶州湾的上升趋势大于青岛近海.胶州湾跨海大桥建设前,其附近区域叶绿素a浓度以0.47 μg/L/year的趋势上升,基值为2.62μg/L;大桥开建及通车后,其附近叶绿素a浓度年变化趋势不明显,但基值明显增大(4.00 μg/L).

  20. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...

  1. MODIS/Aqua MOD11C2 Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Terra Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based to...

  2. MODIS/AQUA MYD15A2H Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 500 m Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The level-4 MODIS global Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) product is composited every 8 days at 500-meter...

  3. MODIS/AQUA MYD13C1 Vegetation Indices 16-Day L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS Vegetation Indices Version 6 product provides a Vegetation Index (VI) value at a per pixel basis. There are 2 primary vegetation layers. The algorithm for...

  4. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  5. Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data

    Directory of Open Access Journals (Sweden)

    N. Foppa

    2011-09-01

    Full Text Available Snow cover plays a vital role in the Swiss Alps and therefore it is of major interest to determine and understand its variability on different spatiotemporal scales. Within the activities of the National Climate Observing System (GCOS Switzerland inter-annual variations of snow days over Switzerland were derived from 2000 to 2010 based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Terra satellite. To minimize the impact of cloud cover on the MODIS snow product MOD10C1, we implemented a post-processing technique based on a forward and backward gap-filling approach. Using the proposed methodology it was possible to determine the total number of annual snow days over Switzerland from 2000 to 2010 (SCDMODIS. The accuracy of the calculated snow days per year were quantitatively evaluated against three in situ snow observation sites representing different climatological regimes (SCDin_situ. The correlation (c between annual SCDMODIS and SCDin_situ is highest for the lowland regions by (c = 0.90 with a slightly lower correlation for the Central Alps of 0.82 and a mean absolute difference of −6 to −7 days (SCDin_situ − SCDMODIS. Differences were further analysed on a monthly and daily resolution over the entire period. The overall agreement between SCDMODIS and SCDin_situ on a daily basis over 10 yr is 88 % to 94 %, depending on the regional characteristics of each validation site. Differences between SCDMODIS and SCDin_situ vary with higher mean absolute differences during the snow accumulation period in autumn and smaller differences after spring, in particularly for the Central Alps. These findings are in agreement with other studies.

  6. Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2007-06-01

    Full Text Available We have used the MODIS satellite data and two global aerosol models to investigate the relationships between aerosol optical depth (AOD and cloud parameters that may be affected by the aerosol concentration. The relationships that are studied are mainly between AOD, on the one hand, and cloud cover, cloud liquid water path, and water vapour, on the other. Additionally, cloud droplet effective radius, cloud optical depth, cloud top pressure and aerosol Ångström exponent, have been analysed in a few cases. In the MODIS data we found, as in earlier studies, an enhancement in the cloud cover with increasing AOD. We find it likely that most of the strong increase in cloud cover with AOD, at least for AOD<0.2, is a result of aerosol-cloud interactions and a prolonged cloud lifetime. Large and mesoscale weather systems seem not to be a cause for the increase in cloud cover with AOD in this range. Sensitivity simulations show that when water uptake of the aerosols is not taken into account in the models the modelled cloud cover mostly decreases with AOD. Part of the relationship found in the MODIS data for AOD>0.2 can be explained by larger water uptake close to the clouds since relative humidity is higher in regions with higher cloud cover. The efficiency of the hygroscopic growth depends on aerosol type, the hygroscopic nature of the aerosol, the relative humidity, and to some extent the cloud screening. By analysing the Ångström exponent we find that the hygroscopic growth of the aerosol is not likely to be a main contributor to the cloud cover increase with AOD. Since the largest increase in cloud cover with AOD is for low AOD (~0.2 and thus also for low cloud cover, we argue that cloud contamination is not likely to play a large role. However, interpretation of the complex relationships between AOD and cloud parameters should be made with great care and further work is clearly needed.

  7. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 1999 on board the Terra satellite platform (a...

  8. Terrestrial Carbon Fluxes from Deforestation in the Brazilian Amazon and Cerrado Regions Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Klooster, S.; Potter, C.; Genovese, V.

    2008-12-01

    The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate tropical forest and savanna (Cerrado) carbon pools for the Brazilian Amazon region over the period 2000-2004. Adjustments for mean age of forest stands were carried out across the region, resulting in a new mapping of aboveground biomass pools based on MODIS satellite data. Yearly maps of newly deforested lands from the Brazilian PRODES (Programa de calculo do desflorestamento da Amazonia ) project were combined with these NASA-CASA biomass predictions to generate seasonal budgets of potential carbon and nitrogen trace gas losses from biomass burning events. Simulations of plant residue and soil carbon decomposition were conducted in the NASA-CASA model during and following deforestation events to track the fate of aboveground biomass pools that were cut and burned each year across the region.

  9. Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data

    OpenAIRE

    Foppa, N.; G. Seiz

    2012-01-01

    Snow cover plays a vital role in the Swiss Alps and therefore it is of major interest to determine and understand its variability on different spatiotemporal scales. Within the activities of the National Climate Observing System (GCOS Switzerland) inter-annual variations of snow days over Switzerland were derived from 2000 to 2010 based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. To minimize the impact of cloud cover o...

  10. A COMPARISON OF EMPIRICAL AND INTELIGENT METHODS FOR DUST DETECTION USING MODIS SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    M. Shahrisvand

    2013-09-01

    Full Text Available Nowadays, dust storm in one of the most important natural hazards which is considered as a national concern in scientific communities. This paper considers the capabilities of some classical and intelligent methods for dust detection from satellite imagery around the Middle East region. In the study of dust detection, MODIS images have been a good candidate due to their suitable spectral and temporal resolution. In this study, physical-based and intelligent methods including decision tree, ANN (Artificial Neural Network and SVM (Support Vector Machine have been applied to detect dust storms. Among the mentioned approaches, in this paper, SVM method has been implemented for the first time in domain of dust detection studies. Finally, AOD (Aerosol Optical Depth images, which are one the referenced standard products of OMI (Ozone Monitoring Instrument sensor, have been used to assess the accuracy of all the implemented methods. Since the SVM method can distinguish dust storm over lands and oceans simultaneously, therefore the accuracy of SVM method is achieved better than the other applied approaches. As a conclusion, this paper shows that SVM can be a powerful tool for production of dust images with remarkable accuracy in comparison with AOT (Aerosol Optical Thickness product of NASA.

  11. Aerosol Climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2011-04-01

    Full Text Available Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical depth (AOD at 550 nm were examined for the 10 yr 2000–2009. Significant monthly variability is observed with maxima in April or May (~0.5 and October (~0.45, and a minimum in December and January (~0.2. Monthly mean values of UV Aerosol Index (UVAI retrieved by the Ozone Monitoring Instrument (OMI for 4 yr (2005–2008 exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL, while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  12. Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2011-10-01

    Full Text Available Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical depth (AOD at 550 nm were examined for the 10 yr period from 2000–2009. Significant monthly variability is observed in the AOD with maxima in April or May (~0.5 and October (~0.45, and a minimum in December and January (~0.2. Monthly mean values of UV Aerosol Index (UVAI retrieved by the Ozone Monitoring Instrument (OMI for 4 yr (2005–2008 exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL, while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  13. Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.

    2010-01-01

    We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.

  14. Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data

    Science.gov (United States)

    Di Mauro, B.; Fava, F.; Busetto, L.; Crosta, G. F.; Colombo, R.

    2014-10-01

    In this study, a methodology based on the analysis of MODIS (MODerate-resolution Imaging Spectroradiometer) time series was developed to estimate post-fire resilience of Alpine vegetation. To this end, satellite images of two vegetation indices (VIs), the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) were used. The analysis was conducted on wildfire affected areas in the Lombardy region (Italy) between 2003 and 2007. Some land surface (LS) descriptors (i.e. mean and maximum VI, growing season start, end and length) were extracted to characterize the time evolution of the vegetation. The descriptors from a burned area were compared to those from an undisturbed adjacent control site by means of analysis of variance (one-way ANOVA). Post-fire resilience was estimated on the basis of the number of subsequent years exhibiting a statistical difference between burned area and control site. The same methodologies were also applied to events aggregated by main land cover (broadleaf forest, prairies and mixed forest). The averaged resilience of broadleaf forest was 5-6 years, whereas prairie ecosystems exhibited a faster response of 0-2 years. Phenological analysis revealed that fire induces a shift of the start and end of growing season in forest ecosystems but has no effect on prairies. The method provides a useful and quantitative insight into complex post-fire vegetation dynamics in the Alps from a remote sensing perspective; results can apply to post-fire forest management and to multi-risk analysis. to compare the performance of NDVI and EVI for inferring post fire resilience.; to evaluate different LS descriptors (i.e. mean and maximum VI, start, end and length of the growing season) for resilience estimations; to compare the resilience to fire of different land covers (LCs) (i.e. broadleaf forest, mixed forest and prairies) affected by fire in Alpine areas.

  15. Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx

    OpenAIRE

    King, N. J.; K. N. Bower; Crosier, J.; I. Crawford

    2013-01-01

    Microphysical measurements collected during eleven profiles, by the UK BAe-146 aircraft, through marine stratocumulus as part of the Variability of the American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) are compared to collocated overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra satellite platforms. The full depth of the cloud is sampled in each case using a Cloud Droplet Probe (CDP) and a Two-Dim...

  16. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data

    OpenAIRE

    Markus Neteler

    2010-01-01

    Continuous monitoring of extreme environments, such as the European Alps, is hampered by the sparse and/or irregular distribution of meteorological stations, the difficulties in performing ground surveys and the complexity of interpolating existing station data. Remotely sensed Land Surface Temperature (LST) is therefore of major interest for a variety of environmental and ecological applications. But while MODIS LST data from the Terra and Aqua satellites are aimed at closing the gap between...

  17. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions

    OpenAIRE

    X. Ma; Bartlett, K; K. Harmon; F. Yu

    2013-01-01

    Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide global vertical profiles of aerosol optical properties for the first time. In this study, we employed about 6 yr (2006–2011) of CALIPSO level 3 monthly mean gridded aerosol optical depth (AOD) products (daytime and nighttime) for cloud-free conditions, to compare with the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua level 3 monthly mean AOD dataset for the same time peri...

  18. Comparing near-earth and satellite remote sensing based phenophase estimates: an analysis using multiple webcams and MODIS (Invited)

    Science.gov (United States)

    Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.

    2010-12-01

    In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.

  19. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    Directory of Open Access Journals (Sweden)

    D. Painemal

    2013-10-01

    Full Text Available The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E, and cloud fraction (CF on MODIS cloud effective radius (re, retrieved from the 2.1 μm (re2.1 and 3.8 μm (re3.8 channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km, while heterogeneities (Hσ are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8–re2.1 differences are positive (Hσ 45 gm−2, and negative (up to −4 μm for larger Hσ. While re3.8–re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences – particularly evinced in mean regional maps – are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  20. Aerosol Optical Depth investigated with satellite remote sensing observations in China

    International Nuclear Information System (INIS)

    In this study, Aerosol Optical Depth (AOD) at 550nm from the MODIS sensor on board the Terra/Aqua satellites were compared with sun photometer (CE-318) measurements from 11 AERONET stations in China. The average correlation coefficient (R) value from the AOD product, using the Aqua-MODIS Deep Blue algorithm, in the Hexi Corridor was 0.67. The MODIS Dark Target algorithm AOD product is superior to Deep Blue algorithm AOD products in SACOL of the Semi-arid regions of the Loess Plateau. These two kinds of algorithm are not applicable to sites in Lanzhou city. The average R value of Dark Target algorithm AOD MODIS products is 0.91 for Terra and 0.88 for Aqua in the eastern part of China. According to the analysis of spatial and temporal characteristics of the two MODIS AOD products in China, high value areas are mainly distributed in the southern part of Xinjiang (0.5∼0.8), Sichuan Basin (0.8∼0.9), North China (0.6∼0.8) and the middle and lower reaches of the Changjiang River (0.8∼1.0). The Deep Blue algorithm for Aqua-MODIS is a good supplement for the retrieval of AOD above bright surfaces of deserts in Northwest China

  1. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  2. The resolution-dependence of satellite-based cloud retrievals: First results from ASTER and MODIS observations

    Science.gov (United States)

    Werner, F.; Wind, G.; Zhang, Z.; Platnick, S. E.; Di Girolamo, L.

    2015-12-01

    The spatial resolution dependence of retrieved optical and microphysical cloud properties of marine shallow convective water clouds is presented using data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as well as the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard the scientific research satellite Terra. Both instruments are characterized by vastly different spatial resolutions of 15m (ASTER) and 1000m (MODIS), respectively. Cloud optical thickness (τ) and effective droplet radius (reff) are derived by means of the Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system which yields MODIS-like cloud property retrievals via a shared-core architecture. The retrieval algorithm employs a standard bi-spectral retrieval scheme with two reflectances (ρ) in the visible to near-infrared spectral wavelength range (VNIR, 0.86μm) and shortwave infrared spectral wavelength range (SWIR, 2.1μm), respectively. For an exemplary granule the high-resolution ρ sampled by the ASTER instrument are aggregated from 15m to an increasingly coarse spatial resolution between (30-1000m). Subsequently, retrieved τ and reff from aggregated ρ are compared to the mean of the high-resolution cloud properties within the aggregated pixels. The differences in retrieved τ and reff are related to the sub-pixel covariance of ρ in the VNIR and SWIR band, as well as the inhomogeneity index (i.e., the ratio of standard deviation to mean value of ρ in the VNIR). This analysis highlights the impact of sub-pixel inhomogeneity and plane-parallel assumptions in the cloud property retrieval. CHIMAERA also allows for a comparison of ASTER and MODIS retrievals without introducing biases due to individual instrument algorithms. Retrieved τ and reff from the 1000m aggregated ρ sampled by ASTER are compared to the retrieved cloud properties provided by MODIS. The presented results highlight the different

  3. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    Science.gov (United States)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  4. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2012-10-01

    Full Text Available Surface skin temperatures of the Version 5 Level 3 products of MODIS and AIRS/AMSU have been compared in terms of monthly anomaly trends and climatology over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Both MODIS and AIRS/AMSU show cooling trends from −0.05 ± 0.06 to −0.14 ± 0.07 K (9 yr−1 over the globe, but warming trends (0.02 ± 0.12–0.15 ± 0.19 K (9 yr−1 in the high latitude regions. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times.

  5. Retrieval of snow grain size and soot pollution on sea ice with the optical satellite remote sensing instrument MODIS

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Heidrun; Heygster, Georg [Institute for Environmental Physics, University of Bremen (Germany); Zege, Eleonora [Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2009-07-01

    Snow fields have potentially significant effects on the planetary albedo and climate. Development of satellite remote sensing of snow is of a great importance particularly for monitoring of snow age, pollution, and grain sizes over the polar regions difficult to access. As it follows from numerous experimental studies of optical and microphysical snow properties, a snow layer is a multiple scattering close packed medium with irregular shaped non-uniform grains. The developed algorithm retrieves the effective snow grain size and pollution amount, which does not imply any specific snow model, do not use any a priori suggestions of snow grain shape, and uses the multi-spectral information provided by a satellite optical instrument MODIS. It is especially suitable for polar regions, as it provides a reliable retrieval even at low sun elevations.

  6. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2013-02-01

    Full Text Available Surface skin temperatures of the Level 3 products of MODIS Collection 5 (C5 and AIRS/AMSU version 5 (V5 have been compared in terms of monthly anomaly trends and climatologies over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS sea surface temperature (SST values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Meanwhile, the MODIS ice surface temperature product (MYD29E1D over the ocean is in better agreement with AIRS/AMSU temperatures, showing a root mean square error of 3.7–3.9 K. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times. Both MODIS and AIRS/AMSU show cooling rates from −0.05 ± 0.06 to −0.14 ± 0.07 K 9 yr−1 over the globe, but warming rates (0.02 ± 0.12 –0.15 ± 0.19 K 9 yr−1 in the high latitude regions.

  7. Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO

    Directory of Open Access Journals (Sweden)

    R. Levy

    2009-11-01

    Full Text Available The 14-channel Ames Airborne Tracking Sunphotometer (AATS was operated on a Jetstream 31 (J31 aircraft in March 2006 during MILAGRO/INTEX-B (Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment. We compare AATS retrievals of spectral aerosol optical depth (AOD and related aerosol properties with corresponding spatially coincident and temporally near-coincident measurements acquired by the MODIS-Aqua and MODIS-Terra satellite sensors. These comparisons are carried out for the older MODIS Collection 4 (C4 and the new Collection 5 (C5 data set, the latter representing a reprocessing of the entire MODIS data set completed during 2006 with updated calibration and aerosol retrieval algorithm. Our analysis yields a direct, validated assessment of the differences between select MODIS C4 and C5 aerosol retrievals. Our analyses of 37 coincident observations by AATS and MODIS-Terra and 18 coincident observations between AATS and MODIS-Aqua indicate notable differences between MODIS C4 and C5 and between the two sensors. For MODIS-Terra, we find an average increase in AOD of 0.02 at 553 nm and 0.01 or less at the shortwave infrared (SWIR wavelengths. The change from C4 to C5 results in less good agreement with the AATS derived spectral AOD, with average differences at 553 nm increasing from 0.03 to 0.05. For MODIS-Aqua, we find an average increase in AOD of 0.008 at 553 nm, but an increase of nearly 0.02 at the SWIR wavelengths. The change from C4 to C5 results in slightly less good agreement to the AATS derived visible AOD, with average differences at 553 nm increasing from 0.03 to 0.04. However, at SWIR wavelengths, the changes from C4 to C5 result in improved agreement between MODIS-Aqua and AATS, with the average differences at 2119 nm decreasing from −0.02 to −0.003. Comparing the Angstrom exponents calculated from AOD at 553nm and 855nm, we find an increased rms difference from

  8. Use of Linear Spectral Mixture Model to Estimate Rice Planted Area Based on MODIS Data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers.Shaoxing county of Zhcjiang Province in China was chosen to be the study site and early rice was selected as the study crop.The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day,which implies that MODIS data could be used as satellite data source for rice cultivation area estimation,possibly rice growth monitoring and yield forecasting on the regional scale.

  9. EROS MODIS Land Surface Temperature: 2002-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  10. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations

    Science.gov (United States)

    Ovakoglou, George; Alexandridis, Thomas K.; Crisman, Thomas L.; Skoulikaris, Charalampos; Vergos, George S.

    2016-09-01

    Lake morphometry is essential for managing water resources and limnetic ecosystems. For reservoirs that receive high sediment loads, frequent morphometric mapping is necessary to define both the effective life of the reservoir and its water storage capacity for irrigation, power generation, flood control and domestic water supply. The current study presents a methodology for updating the digital depth model (DDM) of lakes and reservoirs with wide intra and interannual fluctuations of water levels using satellite remote sensing. A time series of Terra MODIS satellite images was used to map shorelines formed during the annual water level change cycle, and were validated with concurrent Landsat ETM+ satellite images. The shorelines were connected with in-situ observation of water levels and were treated as elevation contours to produce the DDM using spatial interpolation. The accuracy of the digitized shorelines is within the mapping accuracy of the satellite images, while the resulting DDM is validated using in-situ elevation measurements. Two versions of the DDM were produced to assess the influence of seasonal water fluctuation. Finally, the methodology was applied to Lake Kerkini (Greece) to produce an updated DDM, which was compared with the last available bathymetric survey (1991) and revealed changes in sediment distribution within the lake.

  11. New methods for reducing cloud obscuration based on combination products of MODIS and AMSR2

    Science.gov (United States)

    Li, Muyi; Pan, Yaozhong; Zhu, Xiufang; Yin, Heyang

    2016-04-01

    As one of the main sources for water availability in semi-arid mountain regions, snow melt provides runoff and water supply for the downstream population and is of great importance for both human and environmental systems. For this reason, snow data such as snow cover (SCA) and snow depth (SD) is especially important. Snow cover has been mapped using many remote sensors in the visible, near-infrared, thermal, and microwave wavelengths. Since 1966, optical remote sensors such as AVHRR, Landsat and MODIS have obtained critically important data for observing the earth's snow cover. The Moderate Resolution Imaging Spectroradiometer (MODIS) employed by Terra and Aqua satellites provides spatially snow covered data with 500 m and daily temporal resolution. However the utility of the MODIS snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. In this paper, we developed a new method in order to reduce cloud obscuration. This method includes four parts: A) Combining various MODIS Terra and Aqua products; B) Temporal and spatial filtering; C) Zonal snowline approach and D) Combining the product deriving from the above three parts and the AMSR2 passive microwave snow depth product (with a spatial resolution of 10 km). In part D, the consistency of two different data (optical remote sensing data with spatial resolution of 500 m and passive microwave remote sensing data with a spatial resolution of 10 km) was evaluated. This study was carried out for Qinghai Province located in northwestern part of China during 1st, October, 2013 to 31st, March, 2015. In order to evaluate the performance of the proposed methodology, 14 MODIS snow cover product tiles (with cloud coverage less than 10%) were selected as possible "ground truth" data and cloud mask was generated for each tile randomly. The results show successful performances arising from the methods applied, which resulted in all cloud coverage being removed. The overall accuracy of

  12. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    Science.gov (United States)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-02-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  13. Detailed Evaluation of MODIS Fire Radiative Power Measurements

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has been gaining recognition as an important parameter for facilitating the development of various scientific studies relating to the quantitative characterization of biomass burning and their emissions. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to characterize the uncertainties associated with them, such as those due to the MODIS bow-tie effects and other factors, in order to establish their error budget for use in scientific research and applications. In this presentation, we will show preliminary results of the MODIS FRP data analysis, including comparisons with airborne measurements.

  14. An Overview of MODIS Radiometric Calibration and Characterization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for NASA's Earth Observing System (EOS), currently operating on both the Terra and Aqua satellites. The MODIS is a major advance over the previous generation of sensors in terms of its spectral, spatial, and temporal resolutions. It has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.1μm and 16 thermal emissive bands (TEB) with center wavelengths from 3.7 to 14.4μm,making observations at three spatial resolutions: 250 m (bands 1-2), 500 m (bands 3-7), and 1km (bands 8-36). MODIS is a cross-track scanning radiometer with a wide field-of-view, providing a complete global coverage of the Earth in less than 2 days. Both Terra and Aqua MODIS went through extensive pre-launch calibration and characterization at various levels. In orbit, the calibration and characterization tasks are performed using its on-board calibrators (OBCs) that include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a v-grooved flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch characterization and in-orbit operation. Key issues discussed in this paper include in-orbit efforts of monitoring the noise characteristics of the detectors,tracking the solar diffuser and optics degradations, and updating the sensor's response versus scan angle.The experiences and lessons learned through MODIS have played and will continue to play major roles in the design and characterization of future sensors.

  15. Estimating sub-monthly TWS using MODIS and GRACE satellite observations, a case study over Tonlé Sap floodplain

    Science.gov (United States)

    Steele-Dunne, S. C.; Tangdamrongsub, N.; Ditmar, P.; Gunter, B. C.; Sutanudjaja, E.

    2015-12-01

    Knowledge of Terrestrial Water Storage (TWS) can provide valuable information that can be used to improve our understanding of the hydrological cycle and the impact of extreme climate events. Global TWS observations are currently only available from the Gravity Recovery And Climate Experiment satellite mission (GRACE) at monthly time scales. In this study, we present a new approach to derive the sub-monthly TWS variation over a regularly inundated area by using MODIS reflectance data in addition to GRACE solutions. In the "training" phase, monthly TWS are computed from filtered GRACE solutions. A signal restoration method is applied to correct for signal leakage caused by filtering. In parallel, a time-series of mean monthly inundated area estimates is computed based on the Normalized Difference Water Index (NDWI), derived from MODIS data. The training phase completes by finding an empirical relationship between the inundated area and the GRACE-based TWS variations, using a regression analysis. Then, the estimated parameters can be used to convert inundated area estimates into TWS variations without a further need in GRACE data. This approach has 3 major advantages over the usage of GRACE data alone. First, it can be used to cross-validate GRACE and MODIS reflectance data in order to identify and eliminate unreliable estimates. Second, it can provide sub-monthly (e.g., 8-day) TWS variations without loss of spatial resolution. Lastly, it can be used to fill gaps in TWS estimates based on GRACE data and to extend the time-series of TWS estimates beyond the time interval when GRACE data are available. The methodology is demonstrated using the Tonlé Sap floodplain located in Central Cambodia as a test case. The analysis shows an excellent agreement between the 8-day NDWI-based TWS estimates averaged over monthly intervals and the GRACE-based monthly TWS variations. The approach developed would have similar application in other areas that experience regular large

  16. Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"

    Science.gov (United States)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didier

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account.

  17. Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data

    Directory of Open Access Journals (Sweden)

    G. Seiz

    2012-03-01

    Full Text Available Snow cover plays a vital role in the Swiss Alps and therefore it is of major interest to determine and understand its variability on different spatiotemporal scales. Within the activities of the National Climate Observing System (GCOS Switzerland inter-annual variations of snow days over Switzerland were derived from 2000 to 2010 based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Terra satellite. To minimize the impact of cloud cover on the MODIS snow product MOD10C1, we implemented a post-processing technique based on a forward and backward gap-filling approach. Using the proposed methodology it was possible to determine the total number of annual snow days over Switzerland from 2000 to 2010 (SCDMODIS. The accuracy of the calculated snow days per year were quantitatively evaluated against three in situ snow observation sites representing different climatological regimes (SCDin_situ. Various statistical indices were computed and analysed over the entire period. The overall accuracy between SCDMODIS and SCDin_situ on a daily basis over 10 yr is 88% to 94%, depending on the regional characteristics of each validation site. Differences between SCDMODIS and SCDin_situ vary during the snow accumulation period in autumn and smaller differences after spring, in particularly for the Central Alps.

  18. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2012-04-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave

  19. Validation of MODIS Total Precipitable Water Using Surface GPS Technology

    Science.gov (United States)

    Serra, Y. L.; Fears, A. J.; Moker, J.

    2014-12-01

    In this research we validate estimates of atmospheric total precipitable water (TPW) from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments onboard the Terra and Aqua satellites using surface Global Positioning System (GPS) derived TPW collected at ten stations across northwest Mexico during the 2013 North American monsoon (NAM) season. The MODIS Level 2 products provide TPW estimated from both the infrared (IR) and near-infrared (NIR) spectral bands and are available over the NAM region approximately twice per day. Our comparisons indicate that the correlations of Terra and Aqua IR TPW with the GPS observations are all significant at the 95% confidence level, while the NIR correlations show little or no significance. The analysis also finds that Terra and Aqua have significant seasonal biases with respect to the GPS for both the IR and NIR estimates at several locations, with the IR estimates showing better agreement than the NIR estimates. The dependence of the errors on elevation and time of overpass will be discussed to help identify contributing factors to the observed errors.

  20. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    Science.gov (United States)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  1. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    Directory of Open Access Journals (Sweden)

    H.-J. Kang

    2015-05-01

    Full Text Available Uncertainties in the satellite-derived Surface Skin Temperature (SST data in the polar oceans during two periods (16–24 April and 15–23 September of 2003–2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST, the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU, and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999 method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994. The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade−1 in the northern high latitude regions (70–80° N as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  2. MODIS On-orbit Calibration and Lessons Learned

    OpenAIRE

    Xiong, Xiaoxiong

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA’s Earth Observing System (EOS) Terra and Aqua missions. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively, and generated an unprecedented amount of data products for the science and user community over a wide range of applications. MODIS was developed with improved design and stringent calibration requirements over its heritage sensors in order to exte...

  3. Operationalizing a Research Sensor: MODIS to VIIRS

    Science.gov (United States)

    Grant, K. D.; Miller, S. W.; Puschell, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and NASA are jointly acquiring the next-generation civilian environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The primary sensor for the JPSS mission is the Visible/Infrared Imager Radiometer Suite (VIIRS) developed by Raytheon Space and Airborne Systems (SAS). The ground processing system for the JPSS mission is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS) which are both developed by Raytheon Intelligence and Information Systems (IIS). The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by Raytheon SAS for the NASA Earth Observing System (EOS) as a research instrument to capture data in 36 spectral bands, ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS data provides unprecedented insight into large-scale Earth system science questions related to cloud and aerosol characteristics, surface emissivity and processes occurring in the oceans, on land, and in the lower atmosphere. MODIS has flown on the EOS Terra satellite since 1999 and on the EOS Aqua satellite since 2002 and provided excellent data for scientific research and operational use for more than a decade. The value of MODIS-derived products for operational environmental monitoring motivated led to the development of an operational counterpart to MODIS for the next-generation polar-orbiting environmental satellites, the Visible/Infrared Imager

  4. Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland

    Science.gov (United States)

    Sporre, Moa K.; O'Connor, Ewan J.; Håkansson, Nina; Thoss, Anke; Swietlicki, Erik; Petäjä, Tuukka

    2016-07-01

    Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiälä, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 m (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m-2 (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.

  5. Satellite Monitoring of Asian Dust Storms from SeaWiFS and MODIS: Source, Pathway, and Interannual Variability

    Science.gov (United States)

    Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Sayer, A.

    2011-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces peop Ie indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be tran sported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over brightreflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as Sea WiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and

  6. A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations

    Directory of Open Access Journals (Sweden)

    T. A. Jones

    2011-06-01

    Full Text Available Using daily Goddard Chemistry Aerosol Radiation and Transport (GOCART model simulations and columnar retrievals of 0.55 μm aerosol optical thickness (AOT and fine mode fraction (FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS, we estimate the satellite-derived aerosol properties over the global oceans between June 2006 and May 2007 due to black carbon (BC, organic carbon (OC, dust (DU, sea-salt (SS, and sulfate (SU components. Using Aqua-MODIS aerosol properties embedded in the CERES-SSF product, we find that the mean MODIS FMF values for each aerosol type are SS: 0.31 ± 0.09, DU: 0.49 ± 0.13, SU: 0.77 ± 0.16, and (BC + OC: 0.80 ± 0.16. We further combine information from the ultraviolet spectrum using the Ozone Monitoring Instrument (OMI onboard the Aura satellite to improve the classification process, since dust and carbonate aerosols have positive Aerosol Index (AI values >0.5 while other aerosol types have near zero values. By combining MODIS and OMI datasets, we were able to identify and remove data in the SU, OC, and BC regions that were not associated with those aerosol types.

    The same methods used to estimate aerosol size characteristics from MODIS data within the CERES-SSF product were applied to Level 2 (L2 MODIS aerosol data from both Terra and Aqua satellites for the same time period. As expected, FMF estimates from L2 Aqua data agreed well with the CERES-SSF dataset from Aqua. However, the FMF estimate for DU from Terra data was significantly lower (0.37 vs. 0.49 indicating that sensor calibration, sampling differences, and/or diurnal changes in DU aerosol size characteristics were occurring. Differences for other aerosol types were generally smaller. Sensitivity studies show that a difference of 0.1 in the estimate of the anthropogenic component of FMF produces a corresponding change of 0.2 in the anthropogenic component of AOT (assuming a unit value of AOT. This uncertainty would then be passed

  7. Application of the Terra Modis Satellite Data for Environmental Monitoring in Western Siberia

    Science.gov (United States)

    Yashchenkoa, I. G.; Peremitina, T. O.

    2016-06-01

    Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands - four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.

  8. High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies

    Science.gov (United States)

    Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment

  9. APPLICATION OF THE TERRA MODIS SATELLITE DATA FOR ENVIRONMENTAL MONITORING IN WESTERN SIBERIA

    Directory of Open Access Journals (Sweden)

    I. G. Yashchenkoa

    2016-06-01

    Full Text Available Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands – four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.

  10. Assessment of the MODIS-Terra Collection 006 aerosol optical depth data over the greater Mediterranean basin and inter-comparison against MODIS C005 and AERONET

    Science.gov (United States)

    Betsikas, Marios; Hatzianastassiou, Nikos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew; Hsu, Christina; Vardavas, Ilias

    2016-04-01

    Aerosols are one of the key factors determining the Earth's solar radiation budget. The aerosol radiative effects are strongly dependent on aerosol optical depth (AOD) which is a good measure of atmospheric aerosol loading. Therefore, understanding better the spatial and temporal patterns of AOD at both global and regional scales is important for more accurate estimations of aerosol radiative effects. Nowadays, improved globally distributed AOD products are available largely based on satellite observations. Currently, one of the most acknowledged accurate AOD dataset is the one derived from measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument onboard the twin Earth Observing System (EOS) Terra and Aqua satellite platforms. The MODIS aerosol retrieval algorithm, which is used to produce AOD data, is continuously improved and updated, leading to releases of successive series, named as Collections. Recently, MODIS Collection 6 (C006) dataset has been made available. Despite their advantages, satellite AOD products have to be assessed through comparisons against ground based AOD products, such as those from AERosol Robotic Network (AERONET). The aim of the present study is to assess the newest MODIS C006 AOD product over the greater Mediterranean basin. The assessment is performed through comparisons of the MODIS-Terra C006 Level-3 AOD data against corresponding data from the previous C005 MODIS dataset, as well as versus AOD data from AERONET stations within the study region. The study period extends from 2001 to 2012 and our comparisons are performed on a monthly basis. Emphasis is given on differences between the MODIS C006 AOD data and corresponding previous C005 data, as to their spatial and temporal, seasonal and inter-annual, patterns. The results show a better agreement of MODIS C006 than C005 AOD data with AERONET, while the C006 data offer a complete spatial coverage of the study region, specifically over the northern African

  11. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; Xi, B.

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  12. Intercomparison of MODIS-Aqua C051 and C006 Level 3 Deep Blue AOD and Ångström exponent retrievals over the Sahara desert and the Arabian Peninsula during the period 2002-2014

    Science.gov (United States)

    Gkikas, Antonis; Basart, Sara; Korras-Carraca, Marios; Papadimas, Christos; Hatzianastassiou, Nikos; Sayer, Andrew; Hsu, Christina; Baldasano, Jose Maria

    2015-04-01

    Dust loads emitted from the arid regions of Northern Africa and the Arabian Peninsula account for the major portion of the global dust aerosol burden. Depending on prevailing atmospheric circulation they can be transported far away from their source areas. Considering the key role of dust aerosols to weather and climate a better description of their spatial and temporal variability it is an issue of great importance. The main target of the present study is to describe aerosols' regime over Northern Africa and Arabian Peninsula using Deep Blue aerosol optical depth (AOD550nm) and Ångström exponent (α412-470nm) measurements. Given the applied changes to the retrieval algorithm, emphasis is also given to the inter-comparison between the data from Collections 051 and 006. The analysis is performed using MODIS-Aqua daily Level 3 data at 1°x1° spatial resolution over the period 2002-2014. The study region extends from 20°W to 60°E and from 0° to 40°N. The obtained long-term geographical distributions reveal many similarities between C051 and C006 AOD retrievals. They both indicate a zone of high AODs along the parallel of 15°N, extending from the western coasts of Africa to Chad where the maximum values (~1.3) are recorded. In the Arabian Peninsula, the maximum AODs (up to 0.6) are found in Iraq. On the contrary, more apparent differences between the two collections are found for α412-470nm. It is evident a reduction of C006 retrievals, which is more pronounced across the Sahara desert. In C006, the α412-470nm values over the deserts of Northern Africa and Middle East mostly vary from 0 to 0.6 while higher values (up to 1.5) are observed in sub-sahel regions, west coasts of Saudi Arabia and Iran. During the study period, in both collections, AOD has decreased by up to 93% in N. Africa (northern parts of Algeria) while it has increased by up to 70% in the Middle East (northern parts of Iraq). Reversed tendencies are found for the α412-470nm retrievals. For

  13. Testing aerosol properties in MODIS (MOD04/MYD04 Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO

    Directory of Open Access Journals (Sweden)

    J. Redemann

    2009-05-01

    Full Text Available The 14-channel Ames Airborne Tracking Sunphotometer (AATS was operated on a Jetstream 31 (J31 aircraft in March 2006 during MILAGRO/INTEX-B (Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment. We compare AATS retrievals of spectral aerosol optical depth (AOD and related aerosol properties with corresponding spatially coincident and temporally near-coincident measurements acquired by the MODIS-Aqua and MODIS-Terra satellite sensors. These comparisons are carried out for the older MODIS Collection 4 (C4 and the new Collection 5 (C5 data set, the latter representing a reprocessing of the entire MODIS data set completed during 2006 with updated calibration and aerosol retrieval algorithm. Our analysis yields a direct, validated assessment of the differences between select MODIS C4 and C5 aerosol retrievals. Our analyses of 37 coincident observations by AATS and MODIS-Terra and 18 coincident observations between AATS and MODIS-Aqua indicate notable differences between MODIS C4 and C5 and between the two sensors. For MODIS-Terra, we find an average increase in AOD of 0.02 at 553 nm and 0.01 or less at the shortwave infrared (SWIR wavelengths. The change from C4 to C5 results in less good agreement with the AATS derived spectral AOD, with average differences at 553 nm increasing from 0.03 to 0.05. For MODIS-Aqua, we find an average increase in AOD of 0.008 at 553 nm, but an increase of nearly 0.02 at the SWIR wavelengths. The change from C4 to C5 results in slightly less good agreement to the AATS derived visible AOD, with average differences at 553 nm increasing from 0.03 to 0.04. However, at SWIR wavelengths, the changes from C4 to C5 result in improved agreement between MODIS-Aqua and AATS, with the average differences at 2119 nm decreasing from -0.02 to -0.003. Comparing the Angstrom exponents calculated from AOD at 553 nm and 855 nm, we find an increased rms difference from AATS

  14. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    Directory of Open Access Journals (Sweden)

    Hendrik J. van der Woerd

    2015-10-01

    Full Text Available The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10 of narrow (≈10 nm bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α. Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.

  15. The Characterization of Deep Convective Cloud Albedo as a Calibration Target Using MODIS Reflectances

    Science.gov (United States)

    Doelling, David R.; Hong, Gang; Morstad, Daniel; Bhatt, Rajendra; Gopalan, Arun; Xiong, Jack

    2010-01-01

    There are over 25 years of historical satellite data available to climate analysis. The historical satellite data needs to be well calibrated, especially in the visible, where there is no onboard calibration on operational satellites. The key to the vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable invariant or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS is now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard black-bodies. The natural variability of DCC albedo will be analyzed geographically and seasonally, especially difference of convection initiated over land or ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined. Although DCC clouds are nearly Lambertion, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models will be compared for consistency. Normalizing angular geostationary DCC reflectances, which were calibrated against MODIS, with SCIAMACHY spectral reflectances and comparing them to MODIS DCC reflectances will inspect the usage of DCC albedos as an absolute calibration target.

  16. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    Science.gov (United States)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; Hong, Gang; Bhatt, Rajendra

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  17. Intercomparison of Aerosol Optical Thickness Derived from MODIS and in Situ Ground Datasets over Jaipur, a Semi-arid Zone in India.

    Science.gov (United States)

    Payra, Swagata; Soni, Manish; Kumar, Anikender; Prakash, Divya; Verma, Sunita

    2015-08-01

    The first detailed seasonal validation has been carried out for the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellites Level 2.0 Collection Version 5.1 AOT (τMODIS) with Aerosol Robotic Network (AERONET) Level 2.0 AOT (τAERONET) for the years 2009-2012 over semi-arid region Jaipur, northwestern India. The correlation between τMODIS versus τAERONET at 550 nm is determined with different spatial and temporal size windows. The τMODIS overestimates τAERONET within a range of +0.06 ± 0.24 during the pre-monsoon (April-June) season, while it underestimates the τAERONET with -0.04 ± 0.12 and -0.05 ± 0.18 during dry (December-March) and post-monsoon (October-November) seasons, respectively. Correlation without (with) error envelope has been found for pre-monsoon at 0.71 (0.89), post-monsoon at 0.76 (0.94), and dry season at 0.78 (0.95). τMODIS is compared to τAERONET at three more ground AERONET stations in India, i.e., Kanpur, Gual Pahari, and Pune. Furthermore, the performance of MODIS Deep Blue and Aqua AOT550 nm (τDB550 nm and τAqua550 nm) with τAERONET is also evaluated for all considered sites over India along with a U.S. desert site at White Sand, Tularosa Basin, NM. The statistical results reveal that τAqua550 nm performs better over Kanpur and Pune, whereas τDB550 nm performs better over Jaipur, Gual Pahari, and White Sand High Energy Laser Systems Test Facility (HELSTF) (U.S. site). PMID:26158600

  18. A new map of global urban extent from MODIS satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A [Center for Sustainability and the Global Environment, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726 (United States); Friedl, M A [Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Potere, D, E-mail: aschneider4@wisc.ed, E-mail: friedl@bu.ed, E-mail: dpotere@princeton.ed [Office of Population Research, Princeton University, 207 Wallace Hall, Princeton, NJ 08544 (United States)

    2009-12-15

    Although only a small percentage of global land cover, urban areas significantly alter climate, biogeochemistry, and hydrology at local, regional, and global scales. To understand the impact of urban areas on these processes, high quality, regularly updated information on the urban environment-including maps that monitor location and extent-is essential. Here we present results from efforts to map the global distribution of urban land use at 500 m spatial resolution using remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach uses a supervised decision tree classification algorithm that we process using region-specific parameters. An accuracy assessment based on sites from a stratified random sample of 140 cities shows that the new map has an overall accuracy of 93% (k = 0.65) at the pixel level and a high level of agreement at the city scale (R{sup 2} = 0.90). Our results (available at http://sage.wisc.edu/urbanenvironment.html) also reveal that the land footprint of cities occupies less than 0.5% of the Earth's total land area.

  19. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Georgievsky, M V, E-mail: mgeorgievsky@hotmail.co [State Hydrological Institute, St Petersburg (Russian Federation)

    2009-10-15

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  20. A new map of global urban extent from MODIS satellite data

    International Nuclear Information System (INIS)

    Although only a small percentage of global land cover, urban areas significantly alter climate, biogeochemistry, and hydrology at local, regional, and global scales. To understand the impact of urban areas on these processes, high quality, regularly updated information on the urban environment-including maps that monitor location and extent-is essential. Here we present results from efforts to map the global distribution of urban land use at 500 m spatial resolution using remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach uses a supervised decision tree classification algorithm that we process using region-specific parameters. An accuracy assessment based on sites from a stratified random sample of 140 cities shows that the new map has an overall accuracy of 93% (k = 0.65) at the pixel level and a high level of agreement at the city scale (R2 = 0.90). Our results (available at http://sage.wisc.edu/urbanenvironment.html) also reveal that the land footprint of cities occupies less than 0.5% of the Earth's total land area.

  1. Improved VIIRS and MODIS SST Imagery

    Directory of Open Access Journals (Sweden)

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  2. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  3. Analysis of co-located MODIS and CALIPSO observations near clouds

    Science.gov (United States)

    Várnai, T.; Marshak, A.

    2012-02-01

    This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer) imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar measurements about the systematic aerosol changes that occur near clouds. The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies - due mainly to wind drift and differences in view angle - do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4-5 km range.

  4. Satellite-derived surface type and melt area of the Greenland ice sheet using MODIS data from 2000 to 2005

    Science.gov (United States)

    Fausto, Robert S.; Mayer, Christoph; Ahlstrøm, Andreas P.

    2007-10-01

    A new surface classification algorithm for monitoring snow and ice masses based on data from the moderate-resolution imaging spectroradiometer (MODIS) is presented. The algorithm is applied to the Greenland ice sheet for the period 2000-05 and exploits the spectral variability of ice and snow reflectance to determine the surface classes dry snow, wet snow and glacier ice. The result is a monthly glacier surface type (GST) product on a 1 km resolution grid. The GST product is based on a grouped criteria technique with spectral thresholds and normalized indices for the classification on a pixel-by-pixel basis. The GST shows the changing surface classes, revealing the impact of climate variations on the Greenland ice sheet over time. The area of wet snow and glacier ice is combined into the glacier melt area (GMA) product. The GMA is analyzed in relation to the different surface classes in the GST product. The results are validated with data from weather stations and similar types of satellite-derived products. The validation shows that the automated algorithm successfully distinguishes between the different surface types, implying that the product is a promising indicator of climate change impact on the Greenland ice sheet.

  5. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation

    Science.gov (United States)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Gala; Yang, Ping

    2016-05-01

    An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (τ) and effective radius (reff) retrievals perform best for ice clouds having 0.5 1 km) occurs for τ < 0.5. Analysis of 1 month of the OE-IR retrievals shows large τ and reff uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent τ and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 reff are found.

  6. Daily estimates of fire danger using multitemporal satellite MODIS data: the experience of FIRE-SAT in the Basilicata Region (Italy)

    Science.gov (United States)

    Lanorte, R.; Lasaponara, R.; De Santis, F.; Aromando, A.; Nole, G.

    2012-04-01

    Daily estimates of fire danger using multitemporal satellite MODIS data: the experience of FIRE-SAT in the Basilicata Region (Italy) A. Lanorte, F. De Santis , A. Aromando, G. Nolè, R. Lasaponara, CNR-IMAA, Potenza, Italy In the recent years the Basilicata Region (Southern Italy) has been characterized by an increasing incidence of fire disturbance which also tends to affect protected (Regional and national parks) and natural vegetated areas. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger/risk monitoring based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data were used. The spectral capability and daily availability makes MODIS products especially suitable for estimating the variations of fuel characteristics. This work presents new significant results obtained in the context of FIRE-SAT project. In order to obtain a dynamical indicator of fire susceptibility based on multitemporal MODIS satellite data, up-datable in short-time periods (daily), we used the spatial/temporal variations of following parameters: (1) Relative Greenness Index (2) Live and dead fuel moisture content (3) Temperature In particular, the dead fuel moisture content is a key factor in fire ignition. Dead fuel moisture dynamics are significantly faster than those observed for live fuel. Dead fine vegetation exhibits moisture and density values dependent on rapid atmospheric changes and strictly linked to local meteorological conditions. For this reason, commonly, the estimation of dead fuel moisture content is based on meteorological variables. In this study we propose to use MODIS data to estimate meteorological data (specifically Relative Humidity) at an adequate spatial and temporal resolution. The assessment of dead fuel moisture content plays a decisive role in determining a fire dynamic danger index in combination with other

  7. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions

    Directory of Open Access Journals (Sweden)

    X. Ma

    2013-09-01

    Full Text Available Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO provide global vertical profiles of aerosol optical properties for the first time. In this study, we employed about 6 yr (2006–2011 of CALIPSO level 3 monthly mean gridded aerosol optical depth (AOD products (daytime and nighttime for cloud-free conditions, to compare with the Moderate Resolution Imaging Spectroradiometer (MODIS Terra/Aqua level 3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as MODIS has higher frequency than CALIPSO for most bins of AOD. The correlation between MODIS and CALIPSO is better over ocean than over land. We focused on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China and two over biomass burning regions (South Africa and South America. It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum difference of 0.3 over the Saharan region and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum difference of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. We analyzed the impact of the satellite spatial and temporal sampling issue by using level 2 CALIPSO and MODIS products, and these systematic differences can still be found. The results of this study indicate that systematic differences of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite

  8. Estimation of snowpack matching ground-truth data and MODIS satellite-based observations by using regression kriging

    Science.gov (United States)

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In

  9. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data.

    Directory of Open Access Journals (Sweden)

    Jörn P W Scharlemann

    Full Text Available BACKGROUND: Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. CONCLUSIONS/SIGNIFICANCE: Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST, Normalised Difference Vegetation Index (NDVI, and Enhanced Vegetation Index (EVI are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling.

  10. MODIS 3 km aerosol product: applications over land in an urban/suburban region

    Directory of Open Access Journals (Sweden)

    L. A. Munchak

    2013-07-01

    Full Text Available MODerate resolution Imaging Spectroradiometer (MODIS instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 includes a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore–Washington D.C., USA, corridor during the summer of 2011 by comparing with spatially dense aerosol data measured by airborne High Spectral Resolution Lidar (HSRL and a network of 44 sun photometers (SP spaced approximately 10 km apart, collected as part of the DISCOVER-AQ field campaign. The HSRL instrument shows that AOD can vary by over 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to better characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably with nearly two-thirds of MODIS/SP collocations falling within an expected error envelope with high correlation (R > 0.90, although with a high bias of ~ 0.06. The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more noise, especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  11. MODIS 3 km aerosol product: applications over land in an urban/suburban region

    Directory of Open Access Journals (Sweden)

    L. A. Munchak

    2013-02-01

    Full Text Available MODerate resolution Imaging Spectroradiometer (MODIS instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign; these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL and a network of 44 sun photometers (SP spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90. The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of

  12. MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    Science.gov (United States)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.

    2013-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  13. Ocean color products retrieval and validation around China coast with MODIS

    Institute of Scientific and Technical Information of China (English)

    SUN Ling; GUO Maohua; WANG Xiaomei

    2010-01-01

    Waters along China coast are very turbid with high concentrations of suspended sediment nearly all the time, especially at the Hangzhou Bay, the Changjiang (Yangtze) River Estuary and the shoal along Jiangsu Province. In these turbid and optically complex waters, the standard MODIS ocean color products tend to have invalid values. Because the water-leaving radiances in the near-infrared (NIR) are significant resulting from the strong scattering of suspended particles, the standardMODIS atmospheric correction algorithm often gets no results or produces significant errors. And because of the complex water optical properties, the OC3 model used in the standard MODIS data processing tends to get extremely high chlorophyll-a (Chl-a) concentrations. In this paper, we present an atmospheric correction approach using MODIS short wave infrared (SWIR) bands based on the fact that water-leaving radiances are negligible in the SWlR region because of the extreme strong absorption of water even in turbid waters. A regional Chl-a concentration estimation model is also constructed for MODIS from in situ data. These algorithms are applied to MODIS Aqua data processing in the China coastal regions. In situ data collected in the Yellow Sea and the East China Sea in spring and autumn, 2003 are used to validate the performance. Reasonably good results have been obtained. It is noted that water-leaving reflectance in the NIR bands are significant in waters along the China coast with high sediment loadings. The satellite derived and in-situ reflectance spectra can match in the turbid waters along China coast, and there is relatively good linear relationship between satellite derived and in-situ reflectance. The RMSE value of Rrs(λ)is 0.0031 sr-1 for all the nine ocean color bands (412 to 869 nm). The satellite-derived Chl-a value is in the reasonable range and the root mean square percentage difference is 46.1%.

  14. Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia

    Institute of Scientific and Technical Information of China (English)

    XIA Xiang-ao; CHEN Hong-bin; WANG Pu-cai

    2004-01-01

    MODIS aerosol retrievals onboard Terra/Aqua and ground truth data obtained from AERONET(Aerosol Robtic Network) solar direct radiance measurements are collocated to evaluate the quality of the former in East Asia. AERONET stations in East Asia are separated into two groups according to their locations and the preliminary validation results for each station. The validation results showed that the accuracy of MODIS aerosol retrievals in East Asia is a little worse than that obtained in other regions such as Eastern U.S., Western Europe, Brazil and so on. The primary reason is due to the improper aerosol model used in MODIS aerosol retrieval algorithm, so it is of significance to characterize aerosol properties properly according to long term ground-based remote sensing or other relevant in situ observations in order to improve MODIS retrievals in East Asia. Cloud contamination is proved to be one of large errors, which is demonstrated by the significant relation between MODIS aerosol retrievals versus cloud fraction, as well as notable improvement of linear relation between satellite and ground aerosol data after potential cloud contamination screened. Hence, it is suggested that more stringent clear sky condition be set in use of MODIS aerosol data. It should be pointed out that the improvement might be offset by other error sources in some cases because of complex relation between different errors. Large seasonal variation of surface reflection and uncertainties associated with it result in large intercepts and random error in MODIS aerosol retrievals in northern inland of East Asia. It remains to be a big problem to retrieve aerosols accurately in inland characterized by relatively larger surface reflection than the requirement in MODIS aerosol retrieval algorithm.

  15. AquaBuOY

    DEFF Research Database (Denmark)

    Weinstein, Alla; Fredrikson, Göran; Claeson, Lennart;

    2003-01-01

    This paper describes development of the mathematical model simulating ocean performance of an offshore wave energy point absorber device-AquaBuOY. The AquaBuOY is the next generation of the technology, based on the IPS point absorber system and the hose pump, both of Sweden. AquaEnergy Group Ltd......., USA, is developing the system in cooperation with RAMBOLL, Denmark. In March 2003 the Danish Energy Authority awarded a grant for a design study that includes development of the numerical model for the AquaBuOY operation, experimental testing and design optimisation. The scale model tests...... results from the model tests on mooring forces under survival conditions will be presented during the conference in conjunction with different footprint configurations and different mooring systems. Finally the performance data based on theoretical and experimental results will be presented for the AquaBu...

  16. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    Science.gov (United States)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  17. Study of aerosol optical thickness using MODIS satellite data and sun photometer in a part of West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, R.K.; Suresh, T.; Govindaraju; Urs, J.R.; SureshKumar, B.V.

    DAS programme was used to process the downloaded raw MODIS data (level 0). Level 1A files contain radiance counts at each channel received by the MODIS sensors. Errors were eliminated by the atmospheric correction algorithm at level 1B. Level 1A is processed... distribution geo location file which contains latitudes and longitudes. Level 1A is processed to get the Level 1B file, it will check for meteorological, ozone, and other files for necessary data. Level 1B file is processed to get Level 2 file, and finally...

  18. Using MODIS data

    OpenAIRE

    Zidarič, Tine

    2007-01-01

    Remote sensing is used every day for gathering information about the environment, land, ocean or atmosphere. Many satellites circle the Earth equipped with sensors, which »observe« the Earth and provide us data about the health of our environment. In this work we focused on the MODIS sensor, which is one of the newest and most advanced satellite remote sensing sensors today. The first part of this work deals with reasons for design and launch of MODIS and its main attributes. Main technical a...

  19. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.

    Science.gov (United States)

    Cho, Hyoun-Myoung; Yang, Ping; Kattawar, George W; Nasiri, Shaima L; Hu, Yongxiang; Minnis, Patrick; Trepte, Charles; Winker, David

    2008-03-17

    This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (gamma') and layer-averaged depolarization ratio (delta) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low gamma' values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO delta-gamma' relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30 degrees -60 degrees and 60 degrees -90 degrees in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the delta-gamma' relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in

  20. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions

    Directory of Open Access Journals (Sweden)

    X. Ma

    2012-11-01

    Full Text Available Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO provide, for the first time, global vertical profiles of aerosol optical properties, but further research is needed to evaluate the CALIPSO products. In this study, we employed about 6 yr (2006–2011 of CALIPSO level-3 monthly mean gridded aerosol optical depth (AOD products (daytime and nighttime, for cloud free conditions, to compare with the MODIS Terra/Aqua level-3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as much more of the CALIPSO data is smaller than 0.1, while more of the MODIS data is greater than 0.1. We will focus on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China and two over biomass burning regions (South Africa and South America. It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum low bias of 0.3 over the Saharan region, and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum high bias of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. The results in this study indicate that systematic biases of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite retrievals, such as the assumed lidar ratios for CALIPSO retrievals over dust and biomass burning regions, or the surface reflectance information and/or the aerosol model utilized by MODIS algorithm

  1. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    Science.gov (United States)

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles. PMID:24258878

  2. Analysis of drought events in a Mediterranean semi-arid region, Using SPOT-VGT and TERRA-MODIS satellite products

    Science.gov (United States)

    Zribi, Mehrez; Dridi, Ghofrane; Amri, Rim; Lili-Chabaane, Zohra

    2015-04-01

    In semi-arid regions, and northern Africa in particular, the scarcity of rainfall and the occurrence of long periods of drought, represent one of the main environmental factors having a negative effect on agricultural productivity. This is the case in Central Tunisia, where the monitoring of agricultural and water resources is of prime importance. Vegetation cover is a key parameter to analyse this problem. Remote sensing has shown in the last decades a high potential to estimate these surface parameters. This study is based on two satellite products: SPOT-VGT (1998-2012) and TERRA-MODIS (2001-2012) NDVI products. They are used to study the dynamics of vegetation and land use. Different behaviors linked to drought periods have been observed. A strong agreement is observed between products proposed by the two sensors. Low spatial resolution SPOT-VGT and TERRA-MODIS NDVI images were used to map the land into three characteristic classes: olive trees, annual agriculture and pastures. An analysis of vegetation behaviour for dry years is proposed using the Windowed Fourier Transform (WTF). The Fourier Transform is able to analyze the frequency content of a signal in the time domain by decomposing the signal as the superposition of sine and cosine basis functions. Analysis for annual agricultural areas demonstrates a combined effect between climate and farmers behaviours. In these areas, bare soils show a high increasing for drought years. Highest percent of bare soil is retrieved with TERRA-MODIS than with SPOT-VGT. This could be explained by the spatial resolution of the two sensors. The temporal series of optical images are finally used to calculate a drought index, namely the VAI (Vegetation Anomaly Index), on the plain of Kairouan (Amri et al., 2011). This index shows a high correlation with precipitation statistics.

  3. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; Zelicoff, A. P.; Bunderson, L.; Crimmins, T. M.

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  4. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  5. Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea)

    Science.gov (United States)

    Cui, Tingwei; Zhang, Jie; Tang, Junwu; Sathyendranath, Shubha; Groom, Steve; Ma, Yi; Zhao, Wei; Song, Qingjun

    2014-01-01

    The validation of satellite ocean-color products is an important task of ocean-color missions. The uncertainties of these products are poorly quantified in the Yellow Sea (YS) and East China Sea (ECS), which are well known for their optical complexity and turbidity in terms of both oceanic and atmospheric optical properties. The objective of this paper is to evaluate the primary ocean-color products from three major ocean-color satellites, namely the Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Through match-up analysis with in situ data, it is found that satellite retrievals of the spectral remote sensing reflectance Rrs(λ) at the blue-green and green bands from MERIS, MODIS and SeaWiFS have the lowest uncertainties with a median of the absolute percentage of difference (APDm) of 15-27% and root-mean-square-error (RMS) of 0.0021-0.0039 sr-1, whereas the Rrs(λ) uncertainty at 412 nm is the highest (APDm 47-62%, RMS 0.0027-0.0041 sr-1). The uncertainties of the aerosol optical thickness (AOT) τa, diffuse attenuation coefficient for downward irradiance at 490 nm Kd(490), concentrations of suspended particulate sediment concentration (SPM) and Chlorophyll a (Chl-a) were also quantified. It is demonstrated that with appropriate in-water algorithms specifically developed for turbid waters rather than the standard ones adopted in the operational satellite data processing chain, the uncertainties of satellite-derived properties of Kd(490), SPM, and Chl-a may decrease significantly to the level of 20-30%, which is true for the majority of the study area. This validation activity advocates for (1) the improvement of the atmosphere correction algorithms with the regional aerosol optical model, (2) switching to regional in-water algorithms over turbid coastal waters, and (3) continuous support of the dedicated in situ data collection effort for the validation task.

  6. Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites

  7. Assessing differences in phenology patterns between burned and non burned areas using MODIS and Landsat time series satellite images. A case study in Peloponnisos (Greece) and Sardinia (Italy)

    Science.gov (United States)

    Koutsias, Nikos; Bajocco, Sofia

    2016-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series satellite images can be used to characterize vegetation phenology and thus can be helpful for assessing, for example, phenology patterns between burned and non-burned areas. The aim of this study is to define phenological patterns for the fire ignition points in two Mediterranean study areas located in Italy (Sardinia) and Greece (Peloponnisos) and compare them with control points created after random sampling techniques restricted to certain buffer zones. Remotely sensed data from MODIS (2000-2015) and LANDSAT (1984-2015) satellites were acquired and processed to extract the temporal profiles of the spectral signal of fire ignition points and of control points. Apart of the use of the original spectral data, we used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. Different metrics linked to key phenological events have been derived and used to assess vegetation phenology in the fire-affected areas.

  8. Satellite Remote Sensing of Pan-arctic Vegetation Productivity, Soil Respiration and net CO2 Exchange Using MODIS and AMSR-E Data

    Science.gov (United States)

    Nirala, M. L.; Heinsch, F. A.; Kimball, J. S.; Zhao, M.; Running, S.; Oechel, W.; McDonald, K.; Njoku, E.

    2005-05-01

    We have developed an approach for regional assessment and monitoring of land-atmosphere carbon dioxide (CO2) exchange, soil heterotrophic respiration (Rh) and vegetation productivity for arctic tundra using global satellite remote sensing at optical and microwave wavelengths. We use C- and X-band brightness temperatures from AMSR-E to extract surface wetness and temperature, and MODIS data to derive land cover, Leaf Area Index (LAI) and Net Primary Production (NPP) information. Calibration and validation activities involve comparisons between satellite remote sensing and tundra CO2 eddy flux tower and biophysical measurement networks and hydro-ecological process model simulations. We analyze spatial and temporal anomalies and environmental drivers of land-atmosphere net CO2 exchange at weekly and annual time steps. Surface soil moisture status and temperature as detected from satellite remote sensing observations are found to be major drivers spatial and temporal patterns of tundra net CO2 exchange and photosynthetic and respiration processes. We also find that satellite microwave measurements are capable of capturing seasonal variations and regional patterns in tundra soil heterotrophic respiration and CO2 exchange, while our ability to extract spatial patterns at the scale of surface heterogeneity is limited by the coarse spatial scale of the satellite remote sensing footprint. Our results also indicate that carbon cycle response to climate change is non-linear and strongly coupled to arctic surface hydrology. This work was performed at The University of Montana and Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Time-series MODIS satellite and in-situ data for spatio-temporal distribution of aerosol pollution assessment over Bucharest metropolitan area

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the increasing industrialization and urbanization, especially in the metropolis regions, aerosol pollution has highly negative effects on environment. Urbanization is responsible of three major changes that may have impact on the urban atmosphere: replacement of the natural surfaces with buildings and impermeable pavements, heat of anthropogenic origin and air pollution. The importance of aerosols for radiative and atmospheric chemical processes is widely recognized. They can scatter and/or absorb solar radiation leading to changes of the radiation budget. Also, the so-called indirect effect of aerosols describes the cloud-aerosol interactions, which can modify the chemical and physical processes in the atmosphere. Their high spatial variability and short lifetime make spaceborne sensors especially well suited for their observation. Remote sensing is a key application in global-change science and urban climatology. Since the launch of the MODerate resolution Imaging Spectroradiometer (MODIS) there is detailed global aerosol information available, both over land and oceans The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The objective of this work was to document the seasonal and inter-annual patterns of the aerosol pollution particulate matter in two size fractions (PM10 and PM2.5) loading and air quality index (AQI) over Bucharest metropolitan area in Romania based on in-situ and MODIS (Terra-Moderate Resolution Imaging Spectoradiometer) satellite time series data over 2010-2012 period. Accurate information of urban air pollution is required for environmental and health policy, but also to act as a basis for designing and stratifying future monitoring networks.

  10. Evaluation of hydrological balance in the eastern Amazon using a terrestrial ecosystem model, and satellite-based evapotranspiration (MODIS) and terrestrial water storage (GRACE)

    Science.gov (United States)

    Panday, P. K.; Coe, M. T.; Macedo, M.; Beck, P.

    2013-12-01

    High historical deforestation rates and a rapidly changing agricultural landscape may dramatically alter the energy and water balance of the eastern Amazon basin. Understanding the surface water dynamics and hydrological balance of the region is critical for accurately assessing the historical and potential future impacts of deforestation, land-use change, and land management practices. We examine the water balance of the Xingu river basin by combining the IBIS (Integrated Biosphere Simulator) terrestrial ecosystem model with satellite-based models of evapotranspiration (MOD16) and terrestrial water storage (GRACE). IBIS simulations were forced with prescribed climate to produce modeled evapotranspiration and runoff, which were then compared with MODIS evapotranspiration and observed discharge at Altamira (PA, Brazil). Results from both satellite observations and model simulations support earlier studies demonstrating that dry-season evapotranspiration is higher than wet-season evapotranspiration in the wetter forests of the northern Xingu basin, while the contrary is true in the seasonally dry forests of the southern Xingu. Seasonal variation in modeled soil water storage agrees with the GRACE measurements in both timing and magnitude. Soil moisture anomalies averaged over the Xingu basin suggest that annual changes in soil water storage account for a large part of the interannual variation in observed discharge. Field measurements of discharge and soil moisture in the southern Xingu also support the findings that changes in soil water storage drive inter-annual variations in river discharge. Figure 1. Comparison of observed discharge at Altamira (Pará, Brazil) against MODIS- derived P-E (PCRU-MODISET), IBIS simulated discharge, IBIS (PCRU-ETIBIS), and IBIS (PCRU-ETIBIS- Δ Soil moisture IBIS). The bottom panel shows annual basin precipitation from Climatic Research Unit (CRU) climatological data for the 2000-2008 period

  11. MODIS Instrument Operation and Calibration Improvements

    Science.gov (United States)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  12. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  13. Characterizing 13 Years of Surface Water Variability from MODIS-based Near Real-Time Flood Mapping Products in the Indus River, Tonle Sap Lake, and Lake Chad.

    Science.gov (United States)

    Slayback, D. A.; Brakenridge, G. R.; Policelli, F. S.

    2015-12-01

    Driven by an increase in extreme weather events in a warming world, flooding appears to be increasing in many regions. Since 2012, we have been using the twice-daily near-global observations of the two MODIS instruments to operate a near real-time flood mapping capability. Primarily intended to support disaster response efforts, our system generates daily near-global maps of flood water extent, at 250 m resolution. Although cloud cover is a challenge, the twice-daily coverage from the Terra and Aqua satellites helps to capture most major events. We use the MOD44W product (the "MODIS 250-m land-water mask") to differentiate "normal" water from flood water. Products from the system are freely available, and used by disaster response agencies and academic and industry researchers. An open question, however, is: how "normal" are recently observed floods? Destructive and — as reported by the press — record floods seem to be occurring more and more frequently. With the MODIS archive going back to 1999 (Terra satellite) and 2002 (Aqua satellite), we now have more than a decade of twice-daily near-global observations to begin answering this question. Although the 13 years of available twice-daily data (2002-2015) are not sufficient to fully characterize surface water normals (e.g., 100-year floods), we can start examining recent trends in surface water extent and flood frequency. To do so, we have back-processed our surface water product through mid-2002 (Aqua launch) for a few regions, and have used this to evaluate the variability in surface water extent and flood frequency. These results will eventually feed back into an improved characterization of flood water in our near real-time flood product. Here we will present results on trends in surface water extent and flood frequency for a few regions, including the Indus in Pakistan, the Tonle Sap lake in Cambodia, and lake Chad in Africa.

  14. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  15. Assessment of MODIS RSB detector uniformity using deep convective clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-05-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  16. Integrating TRMM and MODIS satellite with socio-economic vulnerability for monitoring drought risk over a tropical region of India

    Science.gov (United States)

    Yaduvanshi, Aradhana; Srivastava, Prashant K.; Pandey, A. C.

    Drought is a recurring feature of the climate, responsible for social and economic losses in India. In the present work, attempts were made to estimate the drought hazard and risk using spatial and temporal datasets of Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) in integration with socio-economic vulnerability. The TRMM rainfall was taken into account for trend analysis and Standardized Precipitation Index (SPI) estimation, with aim to investigate the changes in rainfall and deducing its pattern over the area. The SPI and average rainfall data derived from TRMM were interpolated to obtain the spatial and temporal pattern over the entire South Bihar of India, while the MODIS datasets were used to derive the Normalized Difference Vegetation Index (NDVI) deviation in the area. The Geographical Information System (GIS) is taken into account to integrate the drought vulnerability and hazard, in order to estimate the drought risk over entire South Bihar. The results indicated that approximately 36.90% area is facing high to very high drought risk over north-eastern and western part of South Bihar and need conservation measurements to combat this disaster.

  17. Validation of Two MODIS Aerosols Algorithms with SKYNET and Prospects for Future Climate Satellites Such as the GCOM-C/SGLI

    Directory of Open Access Journals (Sweden)

    Jules R. Dim

    2013-01-01

    Full Text Available Potential improvements of aerosols algorithms for future climate-oriented satellites such as the coming Global Change Observation Mission Climate/Second generation Global Imager (GCOM-C/SGLI are discussed based on a validation study of three years’ (2008–2010 daily aerosols properties, that is, the aerosol optical thickness (AOT and the Ångström exponent (AE retrieved from two MODIS algorithms. The ground-truth data used for this validation study are aerosols measurements from 3 SKYNET ground sites. The results obtained show a good agreement between the ground-truth data AOT and that of one of the satellites’ algorithms, then a systematic overestimation (around 0.2 by the other satellites’ algorithm. The examination of the AE shows a clear underestimation (by around 0.2–0.3 by both satellites’ algorithms. The uncertainties explaining these ground-satellites’ algorithms discrepancies are examined: the cloud contamination affects differently the aerosols properties (AOT and AE of both satellites’ algorithms due to the retrieval scale differences between these algorithms. The deviation of the real part of the refractive index values assumed by the satellites’ algorithms from that of the ground tends to decrease the accuracy of the AOT of both satellites’ algorithms. The asymmetry factor (AF of the ground tends to increase the AE ground-satellites discrepancies as well.

  18. Methodology to obtain 30 m resolution of snow cover area from FSCA MODIS and NDSI Landsat

    Science.gov (United States)

    Cepeda, Javier; Vargas, Ximena

    2016-04-01

    In the last years numerous free images and product satellites have been released, with different spatial and temporal resolution. Out of them, the most commonly used to describe the snow area are MODIS and Landsat. Fractional snow cover area (FSCA) is a daily MODIS product with a 500 m spatial resolution; Landsat images have around 16 days and 30 m respectively. In this work we use both images to obtain a new daily 30 m resolution snow distribution product based in probabilistic and geospatial information. This can be useful because a higher resolution can be used to improve the estimation of the accuracy of a physically-based distributed model to represent the snow cover distribution. We choose three basins in central Chile, with an important snow and glacier presence, to analyze the spatial and temporal distribution of snow using (1) the mean value between MOD10A1 (terra) and MYD10A1 (aqua) and (2) the corrected images by topography and atmosphere from Landsat 5 and Landsat 8 computing the normalized difference snow index (NDSI). When both satellites data are available in the same day, each MODIS pixel is studied considering the Landsat pixels contained in it. A new matrix is created, covering all MODIS pixels, using a 30 m spatial resolution, where each pixel value represents the probability of snow presence in time from Landsat images, and then each pixel is corrected by its neighbour's pixels, elevation, slope and aspect. Then snow is distributed, for each MODIS pixel, considering the corrected probability matrix and sorted between pixels with high probability until the area from FSCA is completed.

  19. Validation and empirical correction of MODIS AOTand AE over ocean

    OpenAIRE

    N. A. J. Schutgens; Nakata, M; Nakajima, T.

    2013-01-01

    We present a validation study of Coll. 5 MODIS level 2 Aqua and Terra AOT and AE over ocean by comparison to coastal and island AERONET sites for the years 2003–2009. We show that MODIS AOT exhibits significant biases due to windspeed and cloudiness of the observed scene, while MODIS AE although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against marine AERONET data, suggesting that ...

  20. Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data

    Science.gov (United States)

    Khalsa, Siri Jodha Singh; Weaver, Ron

    2003-01-01

    The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.

  1. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  2. A Web Service Tool (SOAR) for the Dynamic Generation of L1 Grids of Coincident AIRS, AMSU and MODIS Satellite Sounding Radiance Data for Climate Studies

    Science.gov (United States)

    Halem, M.; Yesha, Y.; Tilmes, C.; Chapman, D.; Goldberg, M.; Zhou, L.

    2007-05-01

    Three decades of Earth remote sensing from NASA, NOAA and DOD operational and research satellites carrying successive generations of improved atmospheric sounder instruments have resulted in petabytes of radiance data with varying spatial and spectral resolutions being stored at different data archives in various data formats by the respective agencies. This evolution of sounders and the diversities of these archived data sets have led to data processing obstacles limiting the science community from readily accessing and analyzing such long-term climate data records. We address this problem by the development of a web based Service Oriented Atmospheric Radiance (SOAR) system built on the SOA paradigm that makes it practical for the science community to dynamically access, manipulate and generate long term records of L1 pre-gridded sounding radiances of coincident multi-sensor data for regions specified according to user chosen criteria. SOAR employs a modification of the standard Client Server interactions that allows users to represent themselves directly to the Process Server through their own web browsers. The browser uses AJAX to request Javascript libraries and DHTML interfaces that define the possible client interactions and communicates the SOAP messages to the Process server allowing for dynamic web dialogs with the user to take place on the fly. The Process Server is also connected to an underlying high performance compute cluster and storage system which provides much of the data processing capabilities required to service the client requests. The compute cluster employs optical communications to NOAA and NASA for accessing the data and under the governance of the Process Server invokes algorithms for on-demand spatial, temporal, and spectral gridding. Scientists can choose from a variety of statistical averaging techniques for compositing satellite observed sounder radiances from the AIRS, AMSU or MODIS instruments to form spatial-temporal grids for

  3. Application of MODIS Data on the Drought Monitoring of Hubei Province%MODIS 数据在湖北旱情监测中的应用

    Institute of Scientific and Technical Information of China (English)

    刁伟; 孟令奎; 张东映; 郭善昕

    2013-01-01

      使用Aqua和Terra卫星MODIS传感器获取的遥感影像数据,结合历史库归一化的垂直干旱指数模型,对湖北省2012年8月份旱情进行重点监测和分析,并利用实测数据对监测结果进行应用评价。结果表明基于MODIS数据的归一化垂直干旱指数在湖北省旱情监测中具有良好的应用效果。%The drought of the Hubei province in August 2012 is detected with the MODIS sensor data of the Aqua and Terra satellites, using the normalized PDI with the history images. By comparing with the measured data by hydrologic station, we analysis the achievements of the monitoring results of MODIS data. This paper concludes that the normalized PDI based on MODIS data is applicable and has a potential application in the drought monitoring of Hubei province.

  4. Evaluating the Impact of Smoke Particle Absorption on Passive Satellite Cloud Optical Depth Retrievals

    Science.gov (United States)

    Alfaro-Contreras, R.; Zhang, J.; Reid, J. S.; Campbell, J. R.

    2013-12-01

    Absorbing aerosol particles, when lifted above clouds, can perturb top-of-atmosphere radiation radiances measured by passive satellite sensors through the absorption of reflected solar energy. This scenario, if not properly screened, impacts cloud physical retrievals, like cloud optical depth (COD), conducted using radiances/channels in the visible spectrum. We describe observations of smoke particle presence above cloud off the southwest coast of Africa, using spatially and temporally collocated Aqua Moderate Resolution Imaging Spectroradiometer (AQUA MODIS), Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. Results from this study indicate that above cloud aerosol episodes happen rather frequent in the smoke outflow region during the Northern Hemisphere summer where above cloud aerosol plumes introduce a significant bias to MODIS COD retrievals in the visible spectrum. This suggests that individual COD retrievals as well as COD climatology from MODIS can be affected over the smoke outflow region by above cloud aerosol contamination and thus showing the need to account for the presence of above cloud absorbing aerosols in the MODIS visible COD retrievals.

  5. Possible satellite oceanography on coastal waters during the NPP stage

    Science.gov (United States)

    Zhu, J.; Asanuma, I.; Zhao, C.; Huang, B.

    2007-09-01

    Ocean color monitoring on the coastal water is still under study because of an incomplete atmospheric correction over the turbid water like over the coastal water along the China main land. Currently available sensors for science as MODIS on Terra or Aqua will terminate their service in the near future and the NPOESS Preparatory Project (NPP) will be the next satellite to support the satellite oceanography on the coastal water. The Tokyo University of Information Sciences (TUIS) has updated the MODIS receiving system to capture and ingest the Visible/Infrared Imager/Radiometer Suite (VIIRS) data from NPP, which will be launched in 2008. Data processing software from the Direct Readout Laboratory (DRL), such as the Real-time Software Telemetry Processing (RT-STPS), Simulcast, and DB algorithms, will be core programs in our system. VIIRS has seven bands in VIS&NIR, which are for ocean color research. The spatial resolution is 0.742×0.259 meters at nadir. While the MODIS spatial resolution of the nine ocean color bands is 1000m. The higher spatial resolution MODIS data (250 meters) is used to illustrate the advantage of the higher spatial resolution remote sensing data, such as data from VIIRS. In this study, we propose to combine the higher spatial resolution data with the traditional products of chlorophyll-a and sea surface temperature in the low resolution so as to extract further information on the coastal ocean.

  6. Long-term Calibration Performance of MODIS Thermal Emissive Bands

    OpenAIRE

    Wenny, B.; Wu, A; Madhavan, S; Z. Wang; N. Chen; Li, Y.; Xiong, X

    2012-01-01

    Terra and Aqua MODIS, key instruments for NASA’s Earth Observing System missions, have operated continuously for more than 12 and 10 years respectively. The science products generated from MODIS data are used worldwide in studies of the Earth’s ocean, land, and atmosphere systems. As the sensors age well past their prime design life of 6 years, understanding the instrument on-orbit performance is imperative to continued production of high quality calibrated data. The 16 thermal emissive bands...

  7. The Collection 6 MODIS aerosol products over land and ocean

    OpenAIRE

    R. C. Levy; Mattoo, S; L. A. Munchak; Remer, L. A.; A. M. Sayer; F. Patadia; Hsu, N. C.

    2013-01-01

    The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impa...

  8. The Collection 6 MODIS aerosol products over land and ocean

    OpenAIRE

    R. C. Levy; Mattoo, S; L. A. Munchak; Remer, L. A.; A. M. Sayer; Hsu, N. C.

    2013-01-01

    The twin Moderate Imaging resolution Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an incredible dataset of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there is significant impact on the products ...

  9. Status of MODIS Instruments and Future Calibration Improvements

    Science.gov (United States)

    Xiong, X.; Angal, A.; Wu, A.; Salomonson, V. V.

    2015-12-01

    MODIS is one of the key instruments currently operated on two major missions for the NASA's Earth Observing System (EOS) program: Terra and Aqua launched in 1999 and 2002, respectively. Nearly 40 data products have been routinely generated from both Terra and Aqua MODIS observations and widely distributed to the science community and users worldwide for their studies of the earth's system and changes in its geophysical properties. To date, each MODIS instrument operation remains nominal and its on-board calibrators (OBC) continue to function satisfactorily. On a regular basis, MODIS reflective solar bands (RSB) calibration is performed by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (TEB), an on-board blackbody (BB) provides a scan-by-scan calibration reference. Since launch, extensive calibration and characterization activities have been scheduled and implemented by the MODIS Characterization Support Team (MCST) to produce and update calibration look-up tables (LUT). This presentation provides an overview of both Terra and Aqua MODIS instrument status, their on-orbit operation and calibration activities, and radiometric, spectral, and spatial performance. It describes calibration changes (algorithms and look-up tables) made for the MODIS Level 1B (L1B) data collection 6 (C6) and discusses remaining challenging issues and ongoing effort for future improvements. As expected, lessons from both Terra and Aqua MODIS have benefitted and will continue to help the S-NPP and JPSS VIIRS instruments in terms of on-orbit operation strategies and calibration enhancements.

  10. Developing and Evaluating RGB Composite MODIS Imagery for Applications in National Weather Service Forecast Offices

    Science.gov (United States)

    Oswald, Hayden; Molthan, Andrew L.

    2011-01-01

    Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.

  11. Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery

    Science.gov (United States)

    Park, Isaac W.

    2012-11-01

    This study demonstrates that phenological information included in digital herbarium archives can produce annual phenological estimates correlated to satellite-derived green wave phenology at a regional scale (R = 0.183, P = 0.03). Thus, such records may be utilized in a fashion similar to other annual phenological records and, due to their longer duration and ability to discriminate among the various components of the plant community, hold significant potential for use in future research to supplement the deficiencies of other data sources as well as address a wide array of important issues in ecology and bioclimatology that cannot be addressed easily using more traditional methods.

  12. MODIS/TERRA MOD11A2 Land Surface Temperature & Emissivity 8-Day L3 Global 1km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  13. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  14. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  15. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  16. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    Science.gov (United States)

    King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.

  17. Detection of dust and sandstorms from Taklamakan Desert to Japan by using MODIS mosaic images

    Science.gov (United States)

    Kato, Yoshinobu

    2008-12-01

    In recent years, the number of days which dust and sandstorms (DSS) events were observed is increasing in Japan, Korea, China and Mongolia. The Aerosol Vapor Index (AVI) method is a DSS detection method. The AVI is defined as AVI=Tb32-Tb31 for MODIS data of Terra and Aqua satellites, where Tb31 is the brightness temperature of band 31 (10.780-11.280μm) and Tb32 is that of band 32 (11.770-12.270μm). The MODIS mosaic images of true-color, AVI and thermal images are made for the detection of DSS from Taklamakan Desert to Japan. The detection of DSS is possible both at daytime and night, because the AVI method is used. The density of DSS is classified into six levels from 0 (DSS none) to 5 (DSS strong) according to the AVI values. The DSS phenomena during 6-11 April 2006 are analyzed by using the mosaic images of Terra-MODIS. The number of pixels, which is approximately equal to the area of square kilometers, at each level of DSS density is measured. The AVI value at sea is about 0.2-2.3K lower than that at land, because of the influence of water vapor. In daytime, the generation place of DSS hidden under the cloud can be estimated by comparing AVI image with true-color and thermal images.

  18. Suspended sediment concentration mapping based on the MODIS satellite imagery in the East China inland, estuarine, and coastal waters

    Science.gov (United States)

    Yang, Xianping; Sokoletsky, Leonid; Wei, Xiaodao; Shen, Fang

    2016-04-01

    The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration (SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R rs(λ) after atmospheric correction; 2) an estimation of R rs(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R rs(λ). Six different models for radiometric R rs(λ) determination and 28 models for SSC versus R rs(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.

  19. Long-term (2002-2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta

    Science.gov (United States)

    Kang, Na; Kumar, K. Raghavendra; Hu, Kang; Yu, Xingna; Yin, Yan

    2016-11-01

    The present study aims to investigate spatio-temporal evolution and trend in the aerosol optical properties (aerosol optical depth, AOD; Ångström exponent, AE), qualitatively identify different types and origin of aerosols over an urban city, Nanjing in the Yangtze River Delta, East China. For this purpose, the Collection 5.1 Level-2 data obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra and Aqua satellites and the Multi-angle Imaging Spectroradiometer (MISR) instrument for the period between 2002 and 2014 have been analyzed. An inter-comparison and validation of AOD were performed against the AOD measurements obtained from the ground-based Aerosol Robotic Network (AERONET) sunphotometer. The MODIS AOD550 exhibited wide spatial and temporal distributions over East China, while MISR AOD555 was consistently lower than that of Terra and Aqua AOD550 values. The temporal variations (monthly and seasonal mean) of MODIS (Terra and Aqua) and MISR AOD values exhibited a similar pattern. The seasonal mean AOD550 (AE470-660) was found to be maximum with 0.97 ± 0.48 during summer (1.16 ± 0.33 in summer) and a minimum of 0.61 ± 0.28 during the winter season (0.80 ± 0.28 in spring). The annual mean Terra AOD550 at Nanjing showed a strong decreasing trend (- 0.70% year- 1), while the Aqua exhibited a slight increasing trend (+ 0.01 year- 1) during the study period. Seasonal air mass back-trajectories obtained from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were also computed to infer on the transport component over the study region. Different aerosol types were identified via the relationship between AOD550 and fine mode fraction, which reveals that the biomass burning/urban-industrial type aerosols (desert dust) are abundant over the region in summer (spring), apart from the mixed aerosol type.

  20. Validation and empirical correction of MODIS AOT and AE over ocean

    OpenAIRE

    N. A. J. Schutgens; Nakata, M; Nakajima, T.

    2013-01-01

    We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness) and AE (Ångström exponent) over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork) sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer) AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than ...

  1. Science impact of MODIS C5 calibration degradation and C6+ improvements

    OpenAIRE

    A. Lyapustin; Wang, Y.; Xiong, X; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; S. Korkin; T. Hilker; Tucker, J; Hall, F; Sellers, P.; Wu, A; Angal, A.

    2014-01-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the b...

  2. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm

    Science.gov (United States)

    Gupta, Pawan; Levy, Robert C.; Mattoo, Shana; Remer, Lorraine A.; Munchak, Leigh A.

    2016-07-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard the two Earth Observing System (EOS) satellites Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air-quality applications. However, the application of MODIS aerosol products for air-quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. This is largely because the urban surface reflectance behaves differently than that assumed for natural surfaces. In this study, we address the inaccuracies produced by the MODIS Dark Target (MDT) algorithm aerosol optical depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS Land Surface Reflectance and Land Cover Type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the continental United States (CONUS). The new surface scheme takes into account the change in underlying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20 %. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sun photometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1 due to the ultra-sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.

  3. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    Science.gov (United States)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  4. Growing up MODIS: Towards a mature aerosol climate data record

    Science.gov (United States)

    Levy, Robert C.

    2013-05-01

    Aerosols are major players within the Earth's climate system, affecting the radiation budget, clouds and the hydrological cycle. In high concentrations near the surface, aerosols (or particulate matter, PM) affect visibility, impact air quality, and can contribute to poor health. Among others, Yoram Kaufman recognized the importance of aerosols to climate, and helped to design new instrumentation and algorithms to retrieve and quantify global aerosol properties. One instrument, known as the Moderate Imaging Resolution Spectro-radiometer (MODIS), was deployed on the AM-1 satellite (later known as Terra), part of NASA's Earth Observing System (EOS). In 1998, armed with an M.S. and job experience in neither aerosols nor satellites, I was looking for a new job. I somehow found my way to the MODIS Aerosol team. It was only a year before Terra launch, and most major decisions about the MODIS aerosol retrieval algorithms had been finalized. Since then, we worked through launch, initial evaluation of the product with AERONET and field deployments, and continued efforts to understand the product and refine retrieval algorithms. I have had opportunities to participate in field experiments, write papers, and earn my PhD. The "second generation" algorithm for aerosol retrieval over land has been hugely successful. We have collected nearly a half-million collocations with AERONET and other dataseis, made new discoveries, and have contributed to research and operational projects globally. Due to the dedication of the entire team, the MODIS aerosol product now is one of the highlights of NASA's EOS program. It is used for climate research and air quality forecasting, as well for applications not even considered before the MODIS era. More recently, a focus is on stitching the MODIS aerosol product into the "climate data record" (CDR) for global aerosol, determining whether the product has sufficient length, consistency and continuity to determine climate variability and change

  5. Inter-annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images

    Science.gov (United States)

    Shimada, Rigen; Takeuchi, Nozomu; Aoki, Teruo

    2016-04-01

    Areas of dark ice have appeared on the Greenland ice sheet every summer in recent years. These are likely to have a great impact on the mass balance of the ice sheet because of their low albedo. We report annual and geographical variations in the bare ice and dark ice areas that appeared on the Greenland Ice Sheet from 2000 to 2014 by using MODIS satellite images. The July monthly mean of the extent of bare ice showed a positive trend over these 15 years, and large annual variability ranging from 89,975 km2 to 279,075 km2, 5% and 16% of the entire ice sheet, respectively. The extent of dark ice also showed a positive trend and varied annually, ranging from 3,575 km2 to 26,975 km2, 4% and 10% of the bare ice extent. These areas are geographically varied, and their expansion is the greatest on the western side, particularly the southwestern side of the ice sheet. The bare ice extent correlates strongly with the monthly mean air temperature in July, suggesting that the extent was determined by snow melt. The dark ice extent also correlates with the air temperature; however, the correlation is weaker. The dark ice extent further correlates negatively with solar radiation. This suggests that the extent of dark ice is not only controlled by snow melt on the ice, but also by changes in the surface structures of the bare ice surface, such as cryoconite holes, which are associated with impurities appearing on the ice surface.

  6. Mossin, Mody

    DEFF Research Database (Denmark)

    2005-01-01

    Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning.......Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning....

  7. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  8. Interannual Variability in Dry Mixed-Grass Prairie Yield: A Comparison of MODIS, SPOT, and Field Measurements

    Directory of Open Access Journals (Sweden)

    Donald C. Wehlage

    2016-10-01

    Full Text Available Remote sensing is often used to assess rangeland condition and biophysical parameters across large areas. In particular, the relationship between the Normalized Difference Vegetation Index (NDVI and above-ground biomass can be used to assess rangeland primary productivity (seasonal carbon gain or above-ground biomass “yield”. We evaluated the NDVI–yield relationship for a southern Alberta prairie rangeland, using seasonal trends in NDVI and biomass during the 2009 and 2010 growing seasons, two years with contrasting rainfall regimes. The study compared harvested biomass and NDVI from field spectrometry to NDVI from three satellite platforms: the Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS and Système Pour l’Observation de la Terre (SPOT 4 and 5. Correlations between ground spectrometry and harvested biomass were also examined for each growing season. The contrasting precipitation patterns were easily captured with satellite NDVI, field NDVI and green biomass measurements. NDVI provided a proxy measure for green plant biomass, and was linearly related to the log of standing green biomass. NDVI phenology clearly detected the green biomass increase at the beginning of each growing season and the subsequent decrease in green biomass at the end of each growing season due to senescence. NDVI–biomass regressions evolved over each growing season due to end-of-season senescence and carryover of dead biomass to the following year. Consequently, mid-summer measurements yielded the strongest correlation (R2 = 0.97 between NDVI and green biomass, particularly when the data were spatially aggregated to better match the satellite sampling scale. Of the three satellite platforms (MODIS Aqua, MODIS Terra, and SPOT, Terra yielded the best agreement with ground-measured NDVI, and SPOT yielded the weakest relationship. When used properly, NDVI from satellite remote sensing can accurately estimate peak-season productivity and

  9. Aqua Logistics Opens Office in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Aqua Logistics forays into the region with its subsidiary Aqua Logistics China Ltd. Aqua Logistics Ltd.,India-based full scope multi-national service provider,opened its subsidiary-Aqua Logistics China Ltd.(ALCL) in Beijing on October 23.

  10. MODIS solar reflective calibration traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  11. MODIS Solar Reflective Calibration Traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  12. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    Science.gov (United States)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and

  13. Intercomparison and assessment of long-term (2004-2013) multiple satellite aerosol products over two contrasting sites in South Africa

    Science.gov (United States)

    Adesina, A. Joseph; Kumar, K. Raghavendra; Sivakumar, V.; Piketh, Stuart J.

    2016-10-01

    To build a long-term database and improve the accuracy of the satellite products used for aerosol studies, there is a need to carry out intercomparison and validation of these satellite observations with ground-based measurements. With this objective, we estimated the long-term inter-annual variations and percentage change in trends of aerosol optical depth (AOD) retrieved from MODerate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectro-Radiometer (MISR) sensors for a 10-year period during 2004-2013 over two distinct sites namely, Skukuza (SKZ; 24.99°S, 31.58°E) and Richards Bay (RBAY; 28.8°S, 21.1°E) in South Africa. The validation performed over SKZ site shows that MISR was better correlated with AErosol RObotic NETwork (AERONET) when compared to Terra and Aqua satellites of MODIS. Later both the MODIS products (Terra and Aqua) were compared on the annual and seasonal basis to derive the relationship between them through scattering plot. The long-term regression analysis performed at these sites shows that the annual trends were decreasing, with the MODIS products underestimating MISR. This is due to difficulties of the MODIS algorithm when dealing with highly complex surface reflectance conditions and aerosol model assumptions. Also, the temporal variations of AOD derived from the two sensors noticed maximum in spring (September/October) and minimum in winter (June). Further, the Ultra-Violet Aerosol Index (UVAI) retrieved from the Ozone Monitoring Instrument (OMI) at the two locations for 9 years (2005-2013) showed a significant increasing trend with a high value of +0.009 yr-1 at SKZ than +0.006 yr-1 at RBAY during the study period, which is due to the transport of dust and smoke particles.

  14. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua carries six state-of-the-art instruments to observe the Earth's oceans, atmosphere, land, ice and snow covers, and vegetation, providing high measurement...

  15. Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments

    Science.gov (United States)

    Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher; Roy, David; Ju, Junchang; Schaaf, Crystal; Liu, Jicheng; Privette, Jeffrey; Pincheiro, Ana

    2007-01-01

    The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at

  16. MODIS/TERRA MOD11C3 Land Surface Temperature and Emissivity Monthly L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  17. MODIS/TERRA MYD11B2 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  18. MODIS/TERRA MOD11C2 Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  19. MODIS/TERRA MOD11B3 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  20. MODIS/TERRA MYD11B3 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  1. MODIS/TERRA MOD11B1 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  2. MODIS/TERRA MOD11B2 Land Surface Temperature and Emissivity Daily L3 Global 5 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  3. MODIS/COMBINED MOD11A1 Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  4. MODIS/TERRA MOD11_L2 Land Surface Temperature and Emissivity 5-Minute L2 Swath 1 km Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  5. MODIS/TERRA MOD11C1 Land Surface Temperature and Emissivity Daily L3 Global 0.05Deg CMG Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity values in a sequence of swath-based global...

  6. MODIS imagery as a tool for synoptic water quality assessments in the southern California coastal ocean

    Science.gov (United States)

    Nezlin, N.P.; DiGiacomo, P.M.; Jones, B.H.; Reifel, K.M.; Warrick, J.A.; Johnson, S.C.; Mengel, M.J.

    2007-01-01

    The dynamics of rainstorm plumes in the coastal waters of southern California was studied during the Bight'03 Regional Water Quality Program surveys. Measurements of surface salinity and bacterial counts collected from research vessels were compared to MODIS-Aqua satellite imagery. The spectra of normalized water-leaving radiation (nLw) were different in plumes and ambient ocean waters, enabling plumes discrimination and plume area size assessments from remotely-sensed data. The plume/ocean nLw differences (i.e., plume optical signatures) were most evident during first days after the rainstorm over the San Pedro shelf and in the San Diego region and less evident in Santa Monica Bay, where suspended sediments concentration in discharged water was lower than in other regions. In the Ventura area, plumes contained more suspended sediments than in other regions, but the grid of ship-based stations covered only a small part of the freshwater plume and was insufficient to reveal the differences between the plume and ocean optical signatures. The accuracy of plume area assessments from satellite imagery was not high (77% on average), seemingly because of inexactitude in satellite data processing. Nevertheless, satellite imagery is a useful tool for the estimation of the extent of polluted plumes, which is hardly achievable by contact methods.

  7. NASA GES DISC DAAC Satellite Data for GIS

    Science.gov (United States)

    Nickless, Darryl; Leptoukh, Gregory; Morahan, Michael; Pollack, Nathan; Savtchenko, Andrey; Teng, William

    2005-01-01

    NASA's Goddard Earth Science (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC) makes available a large and continually growing collection of spatially continuous global satellite observations of environmental parameters. These products include those from the MODIS (Moderate Resolution Imaging Spectroradiometer) on both Terra and Aqua platforms, and the Tropical Rainfall Measuring Mission (TRMM). These data products are well suited for use within Geographic Information Systems (GIS), as both backdrops to cartographic products as well as spatial analysis. However, data format, file size, and other issues have limited their widespread use by traditional GIS users. To address these data usability issues, the GES DISC DAAC recently updated tools and improved documentation of conversion procedures. In addition, the GES DISC DAAC has also been working with a major GIS software vendor to incorporate the ability to read the native Hierarchial Data Format (HDF), the format in which most of the NASA data is stored. The result is the enabling of GIS users to realize the benefit of GES DISC DAAC data without a substantial expenditure in resources to incorporate these data into their GIS. Several documents regarding the potential uses of GES DISC DAAC satellite data in GIS have recently been created. These show the combinations of concurrent data from different satellite products with traditional GIS vector products for given geographic areas. These map products include satellite imagery of Hurricane Isabel and the California wildfires, and can be viewed at http://daac.gsfc.nasa.gov/MODIS/GIS/.

  8. Characterization of MODIS solar diffuser on-orbit degradation

    Science.gov (United States)

    Xiong, X.; Xie, X.; Angal, A.; Choi, J.; Sun, J.; Barnes, W. L.

    2007-09-01

    MODIS has 20 reflective solar bands (RSB) that are calibrated on-orbit using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). The MODIS SD bi-directional reflectance factor (BRF) was characterized pre-launch. Its on-orbit degradation is regularly monitored by the SDSM at wavelengths ranging from 0.41 to 0.94μm. During each SD/SDSM calibration event, the SDSM views alternately the sunlight directly through a fixed attenuation screen and the sunlight diffusely reflected from the SD panel. The time series of SDSM measurements (ratios of the SD view response to the Sun view response) is used to determine the SD BRF degradation at SDSM wavelengths. Since launch Terra MODIS has operated for more than seven years and Aqua for over five years. The SD panel on each MODIS instrument has experienced noticeable degradation with the largest changes observed in the VIS spectral region. This paper provides a brief description of MODIS RSB calibration methodology and SD/SDSM operational activities, and illustrates the SD on-orbit degradation results for both Terra and Aqua MODIS. It also discusses the impact on the SD degradation due to sensor operational activities and SD solar exposure time. Aqua MODIS has been operated under nearly the same condition for more than five years. Its SD annual degradation rate is estimated to be 2.7% at 0.41μm, 1.7% at 0.47μm, and less than 1.0% at wavelengths above 0.53μm. Terra MODIS, on the other hand, has experienced two different SD solar exposure conditions due to an SD door (SDD) operation related anomaly that occurred in May 2003 that had led to a decision to keep the SDD permanently at its "open" position. Prior to this event, Terra MODIS SD degradation rates were very similar to Aqua MODIS. Since then its SD has experienced much faster degradation rates due to more frequent solar exposure.

  9. Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2016-02-01

    Full Text Available The 3 km Dark Target (DT aerosol optical depth (AOD products, 10 km DT and Deep Blue (DB AOD products from the Collection 6 (C6 product data of Moderate Resolution Imaging Spectroradiometer (MODIS are compared with Sun-sky Radiometer Network (SONET measurements at Song Mountain in central China, where ground-based remote sensing measurements of aerosol properties are still very limited. The seasonal variations of AODs are significant in the Song Mountain region, with higher AODs in spring and summer and lower AODs in autumn and winter. Annual mean AODs (0.55 µm vary in the range of 0.5–0.7, which indicates particle matter (PM pollutions in this mountain region. Validation against one-year ground-based measurements shows that AOD retrievals from the MODIS onboard Aqua satellite are better than those from the Terra satellite in Song Mountain. The 3 km and 10 km AODs from DT algorithms are comparable over this region, while the AOD accuracy of DB algorithm is relatively lower. However, the spatial coverage of DB products is higher than that of 10 km DT products. Moreover, the optical and microphysical characteristics of aerosols at Song Mountain are analyzed on the basis of SONET observations. It suggests that coarse-mode aerosol particles dominate in spring, and fine-mode particles dominate in summer. The aerosol property models are also established and compared to aerosol types used by MODIS algorithm.

  10. Remote sensing measurements of biomass burning aerosol optical properties during the 2015 Indonesian burning season from AERONET and MODIS satellite data

    Science.gov (United States)

    2016-04-01

    The strong El Nino event in 2015 resulted in below normal rainfall leading to very dry conditions throughout Indonesia from August though October 2015. These conditions in turn allowed for exceptionally large numbers of biomass burning fires with very high emissions of aerosols. Over the island of Borneo, three AERONET sites (Palangkaraya, Pontianak, and Kuching) measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in September and October ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain any significant signal in the mid-visible wavelengths, therefore a previously developed new algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the red and near-infrared wavelengths (675, 870, 1020, and 1640 nm) as possible to analyze the AOD in those wavelengths. These AOD at longer wavelengths are then utilized to provide some estimate the AOD in the mid-visible. Additionally, satellite retrievals of AOD at 550 nm from MODIS sensor data and the Dark Target, Beep Blue, and MAIAC algorithms were also analyzed and compared to AERONET measured AOD. Not surprisingly, the AOD was often too high for the satellite algorithms to also measure accurate AOD on many days in the densest smoke regions. The AERONET sky radiance inversion algorithm was utilized to analyze retrievals of the aerosol optical properties of complex refractive indices and size distributions. Since the AOD was often extremely high there was sometimes insufficient direct sun signal for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, the new hybrid sky radiance scan can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for many more retrievals and also at higher AOD levels during this event. Due to extreme

  11. Evaluation and Intercomparison of MODIS and GEOV1 Global Leaf Area Index Products over Four Sites in North China

    OpenAIRE

    Zhenwang Li; Huan Tang; Baohui Zhang; Guixia Yang; Xiaoping Xin

    2015-01-01

    This study investigated the performances of the Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOLAND2 Version 1 (GEOV1) Leaf Area Index (LAI) products using ground measurements and LAI reference maps over four sites in North China for 2011–2013. The Terra + Aqua MODIS and Terra MODIS LAI retrieved by the main algorithm and GEOV1 LAI within the valid range were evaluated and intercompared using LAI reference maps to assess their uncertainty and seasonal variability The results sho...

  12. Discharge forecasting using MODIS and radar altimetry: potential application for transboundary flood risk management in Niger-Benue River basin

    Science.gov (United States)

    Tarpanelli, Angelica; Amarnath, Giriraj; Brocca, Luca; Moramarco, Tommaso

    2016-04-01

    Flooding is one of most widespread natural disasters in the world. Its impact is particularly severe and destructive in Asia and Africa, because the living conditions of some settlements are inadequate to cope with this type of natural hazard. In this context, the estimation of discharge is extremely important to address water management and flood risk assessment. However, the inadequate monitoring network hampers any control and prediction activity that could improve these disastrous situations. In the last few years, remote sensing sensors have demonstrated their effectiveness in retrieving river discharge, especially in supporting discharge nowcasting and forecasting activities. Recently, the potential of radar altimetry was apparent when used for estimating water levels in an ungauged river site with good accuracy. It has also become a very useful tool for estimation and prediction of river discharge. However, the low temporal resolution of radar altimeter observations (10 or 35 days, depending on the satellite mission) may be not suitable for day-by-day hydrological forecasting. Differently, MODerate resolution Imaging Spectroradiometer (MODIS), considering its proven potential for quantifying the variations in discharge of the rivers at daily time resolution may be more suited to this end. For these reasons, MODIS and radar altimetry data were used in this study to predicting and forecasting the river discharge along the Niger-Benue River, where severe flooding with extensive damage to property and loss of lives occurred. Therefore, an effective method to forecast flooding can support efforts towards creating an early warning system. In order to estimate river discharge, four MODIS products (daily, 8-day, and from AQUA and TERRA satellites) connected at three sites (two gauged and one ungauged) were used. The capability of remote sensing sensors to forecast discharge a few days in advance at a downstream section using MODIS and ENVISAT radar altimetry data

  13. Simple Air Temperature Estimation Method from MODIS Satellite Images on a Regional Scale Método Simple de Estimación de Temperatura del Aire a Escala Regional, a Partir de Imágenes Satelitales MODIS

    Directory of Open Access Journals (Sweden)

    Fabiola Flores P

    2010-09-01

    Full Text Available Agricultural studies on a regional scale about water balance and evapotranspiration estimation, among others, require estimating air temperature (Ta spatial variation since the generally low density of weather stations does not allow obtaining such data for a specific area. The aim of this study was to estimate air temperature through atmospheric profiles provided by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor on a regional level. One of the present-day methodologies estimates Ta through vertical temperature profiles, which is why modifications to this methodology were proposed for zoning, surface elevation, and pressure/altitude ratios. By applying this new methodology, better Ta estimates were obtained by replacing the MODIS sensor surface elevation with those of the Shuttle Radar Topography Mission (SRTM. Finally, it was possible to estimate Ta spatial variation only from remotely sensed data in various geomorphological areas.Para estudios relacionados con la agricultura a escala regional, como balance hídrico y estimación de evapotranspiración entre otros, es importante estimar la variación espacial de la temperatura del aire (Ta, ya que la baja densidad de estaciones meteorológicas no permite obtener dichos datos para una zona determinada. El objetivo de este trabajo fue estimar Ta a partir de perfiles atmosféricos proporcionados por el sensor de imágenes espectroradiométricas de resolución moderada (MODIS a nivel regional. Una de las metodologías actuales estima la Ta a partir de perfiles verticales de temperatura, por lo que se plantearon modificaciones a dicha metodología en la zonificación, superficie de elevación y relación presión-altitud. Al aplicar esta nueva metodología, las mejores estimaciones de Ta se consiguieron al reemplazar la superficie de elevación del sensor MODIS por la misión topográfica de plataforma radar (SRTM. Finalmente, fue posible estimar la variación espacial de Ta

  14. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  15. MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    2002-01-01

    The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.

  16. Air Temperature Estimation over the Third Pole Using MODIS LST

    Science.gov (United States)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  17. Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa

    Directory of Open Access Journals (Sweden)

    Philemon Tsela

    2014-02-01

    Full Text Available The 500-m Moderate Resolution Imaging Spectroradiometer (MODIS burned area products, MCD45A1, MCD64A1, and a merged product were validated across six study sites in South Africa using independently-derived Landsat burned-area reference data during the fire season of 2007. The objectives of this study were to: (i investigate the likelihood of the improved detection of small burns through an empirically-derived merged product; (ii quantify the probability of detection by each product using sub-pixel burned area measures; and, (iii compare the mean percent concurrence of burned pixels between the standard products over a ten-year time series in each site. Results show that MCD45A1 presented higher detection probabilities (i.e., 3.0%–37.9% for small fractions ≤50%, whereas MCD64A1 appeared more reliable (i.e., 12.0%–89.2% in detecting large fractions >50% of a burned MODIS pixel, respectively. Overall, the merged product demonstrated improved detection of the burned area in all fractions. This paper also demonstrates that, on average, >50% of MODIS burned pixels temporally concur between the MCD45A1 and MCD64A1 products in each site. These findings have significant implications for fire monitoring in southern Africa and contribute toward the understanding of the range and of the sources of errors present in the MODIS burned area products.

  18. Comparison of MODIS and VIIRS solar diffuser stability monitor performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Sun, Junqiang; Wang, Zhipeng

    2012-11-01

    Launched in December 1999 and May 2002, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. MODIS reflective solar bands (RSB) are calibrated on-orbit by a solar diffuser (SD). Its on-orbit degradation, or the change in its bi-directional reflectance factor (BRF), is tracked by a solar diffuser stability monitor (SDSM). The MODIS SDSM makes alternate observations of direct sunlight through an attenuation screen (Sun view) and of sunlight reflected diffusely off the SD (SD view) during each SDSM calibration event. The MODIS SDSM has 9 detectors, covering wavelengths from 0.41 to 0.94 μm. Due to a design error in MODIS SDSM sub-system (identified post-launch), relatively large ripples were noticed in its Sun view responses. As a result, an alternative approach was developed by the MODIS calibration team to minimize the uncertainty in determining the SD on-orbit degradation. The first VIIRS, on-board the Suomi NPP spacecraft, was successfully launched in October 2011. It carries a MODIS-like SD and SDSM system for its RSB on-orbit calibration. Its design was improved based on lessons learned from MODIS. Operationally, the VIIRS SDSM is used more frequently than MODIS. VIIRS SDSM collects data using 8 individual detectors, covering a similar wavelength range as MODIS. This paper provides an overview of MODIS and VIIRS SDSM design features, their on-orbit operations, and calibration strategies. It illustrates their on-orbit performance in terms of on-orbit changes in SDSM detector on-orbit responses and on-orbit degradations of their SD. Results show that on-orbit changes of both MODIS and VIIRS SD BRF and SDSM response have similar wavelength dependency: the SD degradation is faster at shorter visible wavelengths while the decrease of SDSM detector responses (gains) is greater at longer near-infrared wavelengths.

  19. The Plane-parallel Albedo Bias of Liquid Clouds from MODIS Observations

    Science.gov (United States)

    Oreopoulos, Lazaros; Cahalan, Robert F.; Platnick, Steven

    2007-01-01

    In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.

  20. A Method for Deriving the Boundary Layer Mixing Height from MODIS Atmospheric Profile Data

    Directory of Open Access Journals (Sweden)

    Xueliang Feng

    2015-09-01

    Full Text Available The planetary boundary layer is the medium of energy, moisture, momentum and pollutant exchange between the surface and the atmosphere. In this paper, a method to derive the boundary layer mixing height (MH was introduced and applied over the Heihe river basin. Atmospheric profiles from the MODerate Resolution Imaging Sepctroradiometer (MODIS instrument onboard the NASA-Aqua satellite were used for the high spatial resolution of this method. A gap-filling method was used to replace missing MODIS data. In situ MH data were also calculated from HIWATER (Heihe Watershed Allied Telemetry Experimental Research and WATER (Watershed Allied Telemetry Experimental Research observational radiosonde sounding data from 2008 and 2012 using the Richardson number method combined with a subjective method. The MH occurs where there is an abrupt decrease in the MR (water vapor mixing ratio. The minimum vertical gradient of the MR is used to determine the MH. The method has an average RMSE of 370 m under clear skies and convective conditions. The seasonal variation in the MH at the Gaoya radiosonde station is also presented. The study demonstrates that remote sensing methodologies can successfully estimate the MH without the help of field measurements.

  1. MODIS aerosol product at 3 km spatial resolution for urban and air quality studies

    Science.gov (United States)

    Mattoo, S.; Remer, L. A.; Levy, R. C.; Holben, B. N.; Smirnov, A.

    2008-12-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites has been producing an aerosol product since early 2000. The original product reports aerosol optical depth and a variety of other aerosol parameters at a spatial resolution of 10 km over both land and ocean. The 10 km product is actually constructed from 500 m pixels, which permits a strict selection process to choose the "best" or "cleanest" pixels in each 10 km square for use in the aerosol retrieval. Thus, the original 10 km product provides a useful product, accurate in many applications. However, the 10 km product can miss narrow aerosol plumes and the spatial variability associated with urban air pollution. The MODIS aerosol team will be introducing a finer resolution aerosol product over land regions in the next release of the product (Collection 6). The new product will be produced at 3 km resolution. It is based on the same procedures as the original product and benefits from the same spatial variability criteria for finding and masking cloudy pixels. The 3 km product does capture the higher spatial variability associated with individual aerosol plumes. However, it is noisier than the 10 km product. Both products will be available operationally in Collection 6. The new 3km product offers new synergistic possibilities with PM2.5 monitoring networks, AERONET and various air quality models such as CMAQ.

  2. Validation of MODIS Aerosol Optical Depth Retrievals over a Tropical Urban Site, Pune, India

    Science.gov (United States)

    More, Sanjay; Kuman, P. Pradeep; Gupta, Pawan; Devara, P. C. S.; Aher, G. R.

    2011-01-01

    In the present paper, MODIS (Terra and Aqua; level 2, collection 5) derived aerosoloptical depths (AODs) are compared with the ground-based measurements obtained from AERONET (level 2.0) and Microtops - II sun-photometer over a tropical urban station, Pune (18 deg 32'N; 73 deg 49'E, 559 m amsl). This is the first ever systematic validation of the MODIS aerosol products over Pune. Analysis of the data indicates that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the AERONET and Microtops - II sun-photometer AOD measurements. During winter the linear regression correlation coefficients for MODIS products against AERONET measurements are 0.79 for Terra and 0.62 for Aqua; however for premonsoon, the corresponding coefficients are 0.78 and 0.74. Similarly, the linear regression correlation coefficients for Microtops measurements against MODIS products are 0.72 and 0.93 for Terra and Aqua data respectively during winter and are 0.78 and 0.75 during pre-monsoon. On yearly basis in 2008-2009, correlation coefficients for MODIS products against AERONET measurements are 0.80 and 0.78 for Terra and Aqua respectively while the corresponding coefficients are 0.70 and 0.73 during 2009-2010. The regressed intercepts with MODIS vs. AERONET are 0.09 for Terra and 0.05 for Aqua during winter whereas their values are 0.04 and 0.07 during pre-monsoon. However, MODIS AODs are found to underestimate during winter and overestimate during pre-monsoon with respect to AERONET and Microtops measurements having slopes 0.63 (Terra) and 0.74 (Aqua) during winter and 0.97 (Terra) and 0.94 (Aqua) during pre-monsoon. Wavelength dependency of Single Scattering Albedo (SSA) shows presence of absorbing and scattering aerosol particles. For winter, SSA decreases with wavelength with the values 0.86 +/- 0.03 at 440 nm and 0.82 +/- 0.04 at 1020nm. In pre-monsoon, it increases with wavelength (SSA is 0.87 +/- 0.02 at 440nm; and 0.88 +/-0.04 at 1020 nm).

  3. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2012-07-01

    Full Text Available Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps. The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009 of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally

  4. Detecting Forest Disturbance in the Pacific Northwest From MODIS Time Series Using Temporal Segmentation

    Science.gov (United States)

    Sulla-Menashe, D. J.; Yang, Z.; Braaten, J.; Krankina, O. N.; Kennedy, R. E.; Friedl, M. A.

    2011-12-01

    Changes to the land surface of the Earth are occurring at unprecedented rates with significant implications for surface energy balance and regional to global scale cycles of carbon and water. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra satellite platforms provide over 11 years of consistent, synoptic observations of the biosphere. New methods have recently emerged to analyze time series of remote sensing images, thereby providing ecologically important information about disturbance and succession over large regions. In particular, the Landtrendr algorithm was developed to characterize long-term trends, including punctual and gradual disturbance events and subsequent vegetation regrowth, in dense time series of Landsat imagery. While this approach has shown to be useful and robust in a wide range of ecosystems, its application is limited to areas with sufficient Landsat archive depth and relatively cloud-free periods. Additionally, the approach requires significant effort in atmospheric correction and normalization steps, increasing the cost for large-area application. Here we present an adaptation of the Landtrendr algorithm to an 11-year time series of MODIS Normalized BRDF-Adjusted Reflectance (NBAR) data to detect forest disturbance in the Northwest Forest Plan (NWFP) area of Washington, Oregon, and California. The NWFP area represents a dynamic zone of forest management with an active disturbance regime that includes insect defoliation, wildfires, and logging. This work aims to explore how the size and severity of disturbance events influence detection and characterization of such events using MODIS data. We sampled disturbance events across gradients of size and severity that occurred during the MODIS era (2000-present) using a high-quality database of forest disturbance information derived from Landsat. One-third of these disturbance records were used to calibrate the model using MODIS NBAR time series, and

  5. Modular district heating system MODiS

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Ranne, A.; Koljonen, T. [VTT Energy, Espoo (Finland). Energy Systems

    2000-12-01

    MODiS (Modular District Heating System) products were developed for either building an entirely new district heating (DH) system or for renovating and extending an existing system. MODiS products comprise highly integrated prefabricated and pre- tested modules, where the modules themselves may be boilers, pumping stations, substations, metering devices, automation equipment, planning tools, information and management systems. The MODiS Concept tool was developed by VTT Energy for the rough planning of a MODiS district heating system. As a result, the MODiS Concept model can give the budget for a DH-system divided into the boiler plant, the district heating pipelines and the consumer substations. The annual investment and running cost of the system are evaluated. A dynamic simulation model for MODiS was also created with a real time simulation tool called APROS. The simulator can be used for studying normal operation, behaviour under emergency conditions, and process failures. The APROS simulation program has also been used to investigate an ejector connection in an apartment building and for analysing the operation of the ejector in relation to the entire heating system. A DH system in a Russian district heating zone was modelled with the programs. A knowledge-based tool, PIPECOR, has been developed and it estimates the remaining service life of the pipelines under the defined conditions, and the current corrosion rate. Renovation principles for the East European district heating systems have been developed during the project. (orig.)

  6. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  7. Satellite Remote Sensing Detection of Wastewater Plumes in Southern California

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Pan, B. J.; Rains, C.; Gierach, M. M.

    2014-12-01

    Wastewater discharged through ocean outfalls can surface near coastlines and beaches, posing a threat to the marine environment and human health. Coastal waters of the Southern California Bight (SCB) are an ecologically important marine habitat and a valuable resource in terms of commercial fishing and recreation. Two of the largest wastewater treatment plants along the U.S. West Coast discharge into the SCB, including the Hyperion Wastewater Treatment Plant (HWTP) and the Orange County Sanitation District (OCSD). In 2006, HWTP conducted an internal inspection of its primary 8 km outfall pipe (60 m depth), diverting treated effluent to a shorter 1.2 km pipe (18 m depth) from Nov. 28 to Nov. 30. From Sep. 11 - Oct. 4, 2012, OCSD conducted a similar diversion, diverting effluent from their 7 km outfall pipe to a shallower 2.2 km pipe, both with similar depths to HWTP. Prevailing oceanographic conditions in the SCB, such as temporally reduced stratification and surface circulation patterns, increased the risk of effluent being discharged from these shorter and shallower pipes surfacing and moving onshore. The aim of this study was to evaluate the capabilities of satellite remote sensing data (i.e., sea surface roughness from SAR, sea surface temperature from MODIS-Aqua and ASTER-Terra, chlorophyll-a and water leaving radiance from MODIS-Aqua) in the identification and tracking of wastewater plumes during the 2006 HWTP and 2012 OCSD diversion events. Satellite observations were combined with in situ, wind, and current data taken during the diversion events, to validate remote sensing techniques and gain surface to subsurface context of the nearshore diversion events. Overall, it was found that satellite remote sensing data were able to detect surfaced wastewater plumes along the coast, providing key spatial information that could inform in situ field sampling during future diversion events, such as the planned 2015 HWTP diversion, and thereby constrain costs.

  8. Using CloudSat and MODIS for exploring a hurricane intensity estimation technique

    Science.gov (United States)

    Alexander, R. J.

    2012-12-01

    Observing Tropical Cyclones (TC) using satellites is a common and successful endeavor. However, using satellites to accurately measure storm intensity is a more difficult and involved task. Our research aim to accurately measure hurricane intensity using only satellite obtained data. Modeling a hurricane as a balanced convectively neutral vortex, along with assumptions on the contributing factors to moist static energy, we explore techniques for estimating hurricane intensity. We used maximum sustained wind to characterize hurricane intensity. We calculated maximum sustained wind using the Wong and Emanuel expression for peak wind speed in a storm. CloudSat cloud profiling radar was used for obtaining cloud-top height and cloud composition information, and the MODIS instrument on-board Aqua was used to obtain cloud-top temperature. This technique requires eye or near eye overpass and simultaneous data collection and as a result have a limited sample size. We compare our results to the best track database and analyze the validity of our estimations.

  9. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; Hudspeth, W.; Krapfl, H.; Toth, B.; Zelicoff, A. P.; Myers, O. B.; Bunderson, L.; Ponce-Campos, G.; Crimmins, T. M.; Menache, M.; Vujadinovic, M.

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention s National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  10. Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa

    OpenAIRE

    Philemon Tsela; Konrad Wessels; Joel Botai; Sally Archibald; Derick Swanepoel; Karen Steenkamp; Philip Frost

    2014-01-01

    The 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) burned area products, MCD45A1, MCD64A1, and a merged product were validated across six study sites in South Africa using independently-derived Landsat burned-area reference data during the fire season of 2007. The objectives of this study were to: (i) investigate the likelihood of the improved detection of small burns through an empirically-derived merged product; (ii) quantify the probability of detection by each product using ...

  11. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    Science.gov (United States)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  12. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain

    Directory of Open Access Journals (Sweden)

    S. Hachem

    2011-05-01

    Full Text Available In Arctic and sub-Arctic regions, meteorological stations are scattered and poorly distributed geographically; they are mostly located along coastal areas and are often unreachable by road. Given that high-latitude regions are the ones most significantly affected by recent climate warming, there is a need to supplement existing meteorological station networks with spatially continuous measurements such as those obtained by spaceborne platforms. In particular, land surface (skin temperature (LST retrieved from satellite sensors offer the opportunity to utilize remote sensing technology to obtain a consistent coverage of a key parameter for climate, permafrost, and hydrological research. The Moderate Resolution Imaging Spectroradiometer (MODIS sensor aboard the Terra and Aqua satellite platforms offers the potential to provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS were compared to ground-based near-surface air and soil temperature measurements obtained at herbaceous and shrub tundra sites located in the continuous permafrost zone of northern Québec, Canada, and the North Slope of Alaska, USA. LST values were found to be better correlated with near-surface air temperature (1–2 m above the ground than with soil temperature (3–5 cm below the ground measurements. A comparison between mean daily air temperature from ground-based station measurements and mean daily MODIS LST, calculated from daytime and nighttime temperature values of both Terra and Aqua acquisitions, for all sites and all seasons pooled together reveals a high correlation between the two sets of measurements (R>0.93 and mean difference of −1.86 °C. Mean differences ranged between −0.51 °C and −5.13 °C due to the influence of surface heterogeneity within the MODIS 1 km2 grid cells at some sites. Overall, it is concluded that MODIS offers a great potential for monitoring surface temperature changes in

  13. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain

    Science.gov (United States)

    Hachem, S.; Duguay, C. R.; Allard, M.

    2011-05-01

    In Arctic and sub-Arctic regions, meteorological stations are scattered and poorly distributed geographically; they are mostly located along coastal areas and are often unreachable by road. Given that high-latitude regions are the ones most significantly affected by recent climate warming, there is a need to supplement existing meteorological station networks with spatially continuous measurements such as those obtained by spaceborne platforms. In particular, land surface (skin) temperature (LST) retrieved from satellite sensors offer the opportunity to utilize remote sensing technology to obtain a consistent coverage of a key parameter for climate, permafrost, and hydrological research. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms offers the potential to provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS were compared to ground-based near-surface air and soil temperature measurements obtained at herbaceous and shrub tundra sites located in the continuous permafrost zone of northern Québec, Canada, and the North Slope of Alaska, USA. LST values were found to be better correlated with near-surface air temperature (1-2 m above the ground) than with soil temperature (3-5 cm below the ground) measurements. A comparison between mean daily air temperature from ground-based station measurements and mean daily MODIS LST, calculated from daytime and nighttime temperature values of both Terra and Aqua acquisitions, for all sites and all seasons pooled together reveals a high correlation between the two sets of measurements (R>0.93 and mean difference of -1.86 °C). Mean differences ranged between -0.51 °C and -5.13 °C due to the influence of surface heterogeneity within the MODIS 1 km2 grid cells at some sites. Overall, it is concluded that MODIS offers a great potential for monitoring surface temperature changes in high-latitude tundra regions and provides a

  14. USING MODIS SATELLITE DATA TO ANALYSE THE RELATIONSHIOP BETWEEN CHLOROPHYLL A AND AEROSOL OPTICAL DEPTH IN THE GREENLAND SEA%用MODIS卫星数据来分析格陵兰海叶绿素和气溶胶光学厚度之间的关系

    Institute of Scientific and Technical Information of China (English)

    瞿波; 路海浪; Albert Gabric; 林道荣; 钱峰; 赵为华

    2011-01-01

    Arctic ecosystems and global climate are closely related. This paper studies the distributions and the coupling relationship between Chlorophyll a (Chl a) and aerosol optical thickness (AOD) in Greenland Sea (10°W—10°E, 70°N—85°N) during 2003—2009 using satellite ocean colour data from MODIS Aqua. The regression analysis of EViews shows that Chl a and AOD are correlated with a time lag. Based on the lag of Chl a and AOD, co-integration inquiry finds that there is co-integration between them, which means that they will have a long-term equilibrium relationship. In general, Chl a starts from March, and gradually increases to a peak in July. The peak of AOD is usually in May, 11 weeks before Chl a. After shifting the time lag, the correlation between Chl a and AOD is 0.98 in the spring in 80°N—85°N. Apart from the year of 2005, when Chl a and AOD had no time lag, the other years’ intervals increased about 6 weeks within the 7 years. The peaks of AOD shifted one and half months ahead, while Chl a also shifted about two months ahead. In northern part (75°N—85°N), Chl a and AOD were much higher in the summer and autumn of 2009 than those in other years. The reason could be the much larger ice melting and higher AOD. The results indicate that the global warming has significant impact on the ecosystem in the Arctic Ocean.%主要利用卫星数据MODIS Aqua研究在北极格陵兰海(10°W-10°E,70°N-85°N)2003-2009年间叶绿素a(Chl a)与气溶胶厚度(AOD)的分布以及它们之间的耦合关系.研究发现,Chl a和AOD在一定的区域里有着带有滞后期的耦合关系.同时通过统计软件EVieWS的滞后回归分析发现,Chl a滞后AOD三个月,Chl a和AOD之间存在着协整关系,也就是说,他们两者之间有长期的均衡关系.总体来看,Chl a从3月份开始,逐渐升高,到7月达到顶峰.AOD春天高,夏天低.Chl a和AOD在春天有较好的耦合性,相关系数达到0.98.在80°N-85°N段,除了2005年Chl a和AOD

  15. Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP

    Science.gov (United States)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-05-01

    aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm-2AOD-1 to 65.1Wm-2AOD-1 when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  16. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    Science.gov (United States)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  17. Monitoring ice break-up on the Mackenzie River using MODIS data

    Directory of Open Access Journals (Sweden)

    P. Muhammad

    2015-05-01

    Full Text Available This study involves the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS Level 3 500 m snow products (MOD/MYD10A1, complemented with 250 m Level 1B data (MOD/MYD02QKM, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013 show that first day ice-off dates are observed between days of year (DOY 115–125 and end DOY 145–155, resulting in average melt durations of about 30–40 days. Floating ice transported northbound could therefore generate multiple periods of ice-on and ice-off observations at the same geographic location. During the ice break-up period, ice melt was initiated by in situ (thermodynamic melt over the drainage basin especially between 61–61.8° N (75–300 km. However, ice break-up process north of 61.8° N was more dynamically driven. Furthermore, years with earlier initiation of the ice break-up period correlated with above normal air temperatures and precipitation, whereas later ice break-up period was correlated with below normal precipitation and air temperatures. MODIS observations revealed that ice runs were largely influenced by channel morphology (islands and bars, confluences and channel constriction. It is concluded that the numerous MODIS daily overpasses possible with the Terra and Aqua polar orbiting satellites, provide a powerful means for monitoring ice break-up processes at multiple geographical locations simultaneously along the Mackenzie River.

  18. MODIS and VIIRS Lunar Observations and Applications

    Science.gov (United States)

    Xiong, Xiaoxiong; Wang, Zhipeng; Sun, Junqiang; Angal, Amit Avinash; Fulbright, Jon; Butler, James

    2013-01-01

    Terra and Aqua MODIS have successfully operated for more than 13 and 11 years since their launch in 1999 and 2002, respectively. The VIIRS instrument on-board the S-NPP launched in 2011 has also operated for nearly 2 years. Both MODIS and VIIRS make observations in the reflective solar and thermal emissive regions and their on-orbit calibration and characterization are provided by a set of on-board calibrators (OBC). In addition, lunar observations have been made on a regular basis to support sensor on-orbit calibration. This paper provides a brief overview of MODIS and VIIRS instrument on-orbit calibration and characterization activities. It describes the approaches and strategies developed to schedule and perform on-orbit lunar observations. Specific applications of MODIS and VIIRS lunar observations discussed in this paper include radiometric calibration stability monitoring and performance assessment of sensor spatial characterization. Results derived from lunar observations, such as sensor response (or gain) trending and band-to-band registration, are compared with that derived from sensor OBC. The methodologies and applications presented in this paper can also be applied to other earth observing sensors.

  19. A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado

    2015-01-01

    Full Text Available We present a novel method to retrieve daytime atmospheric dust and ash plume heights using a synergy of infrared hyper-spectral radiances and retrieved visible optical depths. The method is developed using data from the Atmospheric Infrared Sounder (AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS, both of which are on NASA's Aqua platform, and lends itself to also a χ2 height derivation based on the smallest bias between observations and calculations in the thermal infrared window. The retrieval methodology is validated against almost 30 months of dust centroid heights obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP data, and against ash plume heights obtained from the Advanced Along-Track Scanning Radiometer (AATSR after the Puyehue Cordon Caulle volcanic eruption of June 2011. Comparisons are also made against Goddard Chemistry Aerosol Radiation and Transport (GOCART climatological aerosol heights. In general there is good agreement between the heights from the CALIPSO data and the AIRS/MODIS retrieval, especially over the Atlantic and Mediterranean regions; over land one there are more noticeable differences. The AIRS/MODIS derived heights are within typically 25% of the CALIOP centroid heights.

  20. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  1. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  2. Preliminary Study on Phytoplankton Distribution Changes Monitoring for the Intensive Study Area of the Ariake Sea, Japan Based on Remote Sensing Satellite Data

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2014-02-01

    Full Text Available Phytoplankton distribution changes in the Ariake Sea areas, Japan based on remote sensing satellite data is studied. Through experiments with Terra and AQUA MODIS data derived chlorophyll-a concentration and suspended solid as well as truth data of chlorophyll-a concentration together with meteorological data and tidal data which are acquired 7 months from October 2012 to April 2013, it is found that strong correlation between the truth data of chlorophyll-a and MODIS derived chlorophyll-a concentrations with R square value ranges from 0.677 to 0.791. Also it is found that the relations between ocean wind speed and chlorophyll-a concentration as well as between tidal effects and chlorophyll-a concentration. Meanwhile, there is a relatively high correlation between sunshine duration a day and chlorophyll-a concentration.

  3. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

    DEFF Research Database (Denmark)

    Bergamino, N; Horion, Stéphanie; Stenuite, S;

    2010-01-01

    dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions...... of the chlorophyll-a dataset (July 2002–November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each...... region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake...

  4. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    Science.gov (United States)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m

  5. A snow cover climatology for the Pyrenees from MODIS snow products

    Science.gov (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  6. Cloud-type dependencies of MODIS and AMSR-E liquid water path differences

    OpenAIRE

    Torre Juárez, M.; B. H. Kahn; E. J. Fetzer

    2009-01-01

    Comparisons of cloud liquid water path (LWP) retrievals are presented from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer (AMSR-E) located aboard the Aqua spacecraft. LWP differences as a function of cloud top height, cloud fraction, cloud top temperature, LWP, cloud effective radius and cloud optical thickness are quantified in most geophysical conditions. The assumption of vertica...

  7. Monitoring ice break-up on the Mackenzie River using MODIS data

    Science.gov (United States)

    Muhammad, P.; Duguay, C.; Kang, K.-K.

    2016-03-01

    The aim of this study was to develop an approach for estimating ice break-up dates on the Mackenzie River (MR) using more than a decade of MODIS Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B radiance products (MOD/MYD02QKM) from the Terra and Aqua satellite platforms. The analysis showed break-up began on average between days of year (DOYs) 115 and 125 and ended between DOYs 145 and 155 over 13 ice seasons (2001-2013), resulting in an average melt duration of ca. 30-40 days. Thermal processes were more important in driving ice break-up south of the MR confluence with the Liard River, while dynamically driven break-up was more important north of the Liard. A comparison of the timing of ice disappearance with snow disappearance from surrounding land areas of the MR with MODIS Level 3 snow products showed varying relationships along the river. Ice-off and snow-off timing were in sync north of the MR-Liard River confluence and over sections of the MR before it enters the Mackenzie Delta, but ice disappeared much later than snow on land in regions where thermal ice break-up processes dominated. MODIS observations revealed that channel morphology is a more important control of ice break-up patterns than previously believed with ice runs on the MR strongly influenced by channel morphology (islands and bars, confluences and channel constriction). Ice velocity estimates from feature tracking were able to be made in 2008 and 2010 and yielded 3-4-day average ice velocities of 1.21 and 1.84 m s-1 respectively, which is in agreement with estimates from previous studies. These preliminary results confirm the utility of daily MODIS data for monitoring ice break-up processes along the Mackenzie River. The addition of optical and synthetic aperture radar data from recent and upcoming satellite missions (e.g. Sentinel-1/2/3 and RADARSAT Constellation) would improve the monitoring of ice break-up in narrower sections of the MR.

  8. NLCD - MODIS albedo data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  9. Snow cover and land surface temperature assessment of Gangotri basin in the Indian Himalayan Region (IHR) using MODIS satellite data for climate change inferences

    Science.gov (United States)

    Krishna, Akhouri P.; Sharma, Anurag

    2013-10-01

    Climate change has become a cause of concern as well as the challenge of this century. Himalayan mountain ranges with high snow fields and numerous valley glaciers may bear the brunt of such changes already being reported including Intergovernmental Panel on Climate Change (IPCC). Gangotri is one of the most prominent snow-fed catchments of Indian Himalayan Region (IHR) due to origin of river Ganga situated within it. Spatio-temporal changes in snow covered area of this basin were examined for melting seasons of the years 2006 to 2010 and a latest reference year of 2012 as a special test case. Standard snow data products (MOD10A2) of Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra sensor with spatial resolution of 500 m were used. For all the years of reference, snow covered area percentage was derived for respective months representing usual ablation or melting periods. Snow depletion curves (SDCs) were generated for such periods of the respective years. CARTOSAT digital elevation model (DEM) was used for topographic information of terrain. Relationship of SDCs with the land surface temperatures (LST) of the basin was worked upon using MODIS-Terra LST (MOD11A2) product (version 5) with 1 km resolution at 8-day interval for the day time temperature for respective months of above reference years. Thereafter, interpolation and simulation of snow covered areas was carried out on the basis of LST data. The study thus produced snow cover maps for the years of reference as well as their relationship with LST for climate change inferences.

  10. Development of a Frost Risk Assessment Tool in Agriculture for a Mediterranean ecosystem Utilizing MODIS satellite observations Geomatics and Surface Data

    Science.gov (United States)

    Louka, Panagiota; Papanikolaou, Ioannis; Petropoulos, George; Migiros, George; Tsiros, Ioannis

    2014-05-01

    Frost risk in Mediterranean countries is a critical factor in agricultural planning and management. Nowadays, the rapid technological developments in Earth Observation (EO) technology have improved dramatically our ability to map the spatiotemporal distribution of frost conditions over a given area and evaluate its impacts on the environment and society. In this study, a frost risk model for agricultural crops cultivated in a Mediterranean environment has been developed, based primarily on Earth Observation (EO) data from MODIS sensor and ancillary spatial and point data. The ability of the model to predict frost conditions has been validated for selected days on which frost conditions had been observed for a region in Northwestern Greece according to ground observations obtained by the Agricultural Insurance Organization (ELGA). An extensive evaluation of the frost risk model predictions has been performed herein to evaluate objectively its ability to predict the spatio-temporal distribution of frost risk in the studied region, including comparisons against physiographical factors of the study area. The topographical characteristics that were taken under consideration were latitude, altitude, slope steepness, topographic convergence and the extend of the areas influenced by water bodies (such as lake and sea) existing in the study area. Additional data were also used concerning land use data and vegetation classification (type and density). Our results showed that the model was able to produce reasonably the spatio-temporal distribution of the frost conditions in our study area, following largely explainable patterns in respect to the study site and local weather conditions characteristics. All in all, the methodology implemented herein proved capable in obtaining rapidly and cost-effectively cartography of the frost risk in a Mediterranean environment, making it potentially a very useful tool for agricultural management and planning. The model presented here has

  11. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  12. Comparison of the Calibration Algorithms and SI Traceability of MODIS, VIIRS, GOES, and GOES-R ABI Sensors

    Directory of Open Access Journals (Sweden)

    Raju Datla

    2016-02-01

    Full Text Available The radiometric calibration equations for the thermal emissive bands (TEB and the reflective solar bands (RSB measurements of the earth scenes by the polar satellite sensors, (Terra and Aqua MODIS and Suomi NPP (VIIRS, and geostationary sensors, GOES Imager and the GOES-R Advanced Baseline Imager (ABI are analyzed towards calibration algorithm harmonization on the basis of SI traceability which is one of the goals of the NOAA National Calibration Center (NCC. One of the overarching goals of NCC is to provide knowledge base on the NOAA operational satellite sensors and recommend best practices for achieving SI traceability for the radiance measurements on-orbit. As such, the calibration methodologies of these satellite optical sensors are reviewed in light of the recommended practice for radiometric calibration at the National Institute of Standards and Technology (NIST. The equivalence of some of the spectral bands in these sensors for their end products is presented. The operational and calibration features of the sensors for on-orbit observation of radiance are also compared in tabular form. This review is also to serve as a quick cross reference to researchers and analysts on how the observed signals from these sensors in space are converted to radiances.

  13. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    Science.gov (United States)

    Gregg, Watson

    2011-01-01

    The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected

  14. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  15. Science impact of MODIS C5 calibration degradation and C6+ improvements

    Directory of Open Access Journals (Sweden)

    A. Lyapustin

    2014-07-01

    Full Text Available The Collection 6 (C6 MODIS land and atmosphere datasets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m bands of the Collection 5 (C5 MODIS Terra, and to lesser extent, in MODIS Aqua geophysical datasets. Sensor degradation is largest in the Blue band (B3 of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström Exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI and enhanced vegetation index (EVI. As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B data. This paper also introduces an enhanced C6+ calibration of the MODIS dataset which includes an additional polarization correction (PC to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as de-trending and Terra–Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG, removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR records along with spectral distortions of SR. Using the Multi-Angle Implementation of Atmospheric Correction (MAIAC algorithm over deserts, we have also developed a de-trending and cross-calibration method which removes residual decadal trends on the order of several tenths of one

  16. Diagnosis of oil spills in Shanghai coastal area based on multi-source satellite MODIS and HJ-1%基于MODIS与HJ-1多源卫星的上海海域溢油事故诊断

    Institute of Scientific and Technical Information of China (English)

    杨红; 杭君

    2014-01-01

    With the rapid development of shipping and oil industry chain of Shanghai Port, the risk of marine oil spills is increasing. In this paper, the information of the two major oil spill accidents, occurred near Wusong and Jiuduansha of Shanghai sea area in 2012, was analyzed by using the multi-satellite data based on the medium resolution MODIS of ESA and HJ-1 domestic environment satellite. By applying ratio operation between oil-water sensitive channel bands, the difference between spectral reflectance of film and background water was emphasized. Then, threshold determination method based on image segmentation was used, combined with the spectrum characteristic of heavy diesel oil, and the oil spills information was effectively extracted from the suspected oil films area. Taken together, the oil spills location, area and quantity were diagnosed to provide the fundamental analysis data for emergency response work.%随着上海港海上运输业和石油产业链的日趋发达,海上溢油事故风险也随之加剧。本文就2012年发生在上海海域吴淞口和九段沙附近的2起重大溢油事故,基于美国 NASA (National Aeronautics and Space Administration)中等分辨率MODIS (Moderate-resolution Imaging Spectroradiometer)与国产“环境一号”卫星HJ-1的多源卫星数据,对溢油信息进行对比,通过对油水敏感通道进行波段比值运算,突出油膜与背景海水的光谱反射率差异,再结合重柴油光谱特征,利用图像分割的阈值确定法,从疑似溢油区域中有效提取溢油信息,实现溢油区域定位、溢油面积和溢油量的诊断,为事发后海域应急响应工作提供基础性分析依据。

  17. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  18. An improved cirrus detection algorithm MeCiDA2 for SEVIRI and its validation with MODIS

    Directory of Open Access Journals (Sweden)

    F. Ewald

    2012-08-01

    Full Text Available The influence of cirrus clouds on the radiation budget of the Earth depends on their optical properties and their global coverage. The monitoring of cirrus coverage with instruments aboard geostationary satellites enables the investigation of cirrus clouds at the global scale as well as the identification of their diurnal variation. For instance, the Spinning Enhanced Visible and Infrared Imager (SEVIRI aboard the Meteosat Second Generation (MSG satellites provides data with high temporal resolution of 15 min and a spatial resolution of 3 km × 3 km at the sub-satellite point. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the sun-synchronous platforms Terra and Aqua delivers at least one observation per day with a high spatial resolutions ranging from 250 m × 250 m to 1 km × 1 km. Since the infrared channels of the SEVIRI instrument are suitable for an observation which is independent from day-light, Krebs et al. (2007 developed a cirrus detection algorithm for SEVIRI (called MeCiDA, based solely on its thermal channels. Since MeCiDA was optimised for the area of Europe only, we present an improved version of the algorithm which allows application to the full Meteosat disc. Required changes include the consideration of the viewing angle dependency and of the sensitivity of the 9.7 μm channel to the ozone column. To this end, a correction is implemented that minimises the influence of the variability of the stratospheric ozone. The validation of the proposed improvements is carried out by using MeCiDA applied to MODIS data to address viewing angle-dependent cirrus detection and by additionally comparing it to the Cloud Optical Properties MOD06 cirrus product. The new MeCiDA version detects less cirrus than the original one for latitudes larger than 40° but almost the same amount elsewhere. MeCiDA's version for MODIS is more sensitive than that for SEVIRI with cirrus occurrences higher by 10%, and the new Me

  19. An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation

    OpenAIRE

    Shi, Y; Zhang, J.; Reid, J. S.; B. Holben; Hyer, E. J.; C. Curtis

    2011-01-01

    As an update to our previous use of the collection 4 Moderate Resolution Imaging Spectroradiometer (MODIS) over-ocean aerosol optical depth (AOD) data, we examined ten years of Terra and eight years of Aqua collection 5 data for its potential usage in aerosol assimilation. Uncertainties in the over-ocean MODIS AOD were studied as functions of observing conditions, such as surface characteristics, aerosol optical properties, and cloud artifacts. Empirical corrections and quality assurance proc...

  20. An analysis of the Collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation

    OpenAIRE

    Shi, Y; J. Zhang; Reid, J. S.; B. Holben; Hyer, E. J.; C. Curtis

    2010-01-01

    As an update to our previous use of the Collection 4 Moderate Resolution Imaging Spectroradiometer (MODIS) over-water aerosol optical depth (AOD, symbol as τ data, we examined ten years of Terra and eight years of Aqua data Collection 5 data for its potential usage in aerosol data assimilation. Uncertainties in the over-water MODIS AOD were studied as functions of observing conditions, such as surface characteristics, aerosol optical properties, and cloud artifacts. Empirical corrections and ...

  1. Identification and mapping of soil erosion areas in the Blue Nile-Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model

    Science.gov (United States)

    El Haj Tahir, M.; Kääb, A.; Xu, C.-Y.

    2010-01-01

    This paper is part of a set of studies to evaluate the spatial and temporal variability of soil water in terms of natural as well as land-use changes as fundamental factors for vegetation regeneration in arid ecosystems in the Blue Nile-Sudan. The specific aim is to indicate the spatial distribution of soil erosion caused by the rains of 2006. The current study is conducted to determine whether automatic classification of multispectral Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) imagery could accurately discriminate erosion gullies. Shuttle Radar Topography Mission (SRTM) is used to orthoproject ASTER data. A maximum likelihood classifier is trained with four classes, Gullies, Flat_Land, Mountains and Water and applied to images from March and December 2006. Validation is done with field data from December and January 2006/2007, and using drainage network analysis of SRTM digital elevation model. The results allow the identification of erosion gullies and subsequent estimation of eroded area. Consequently the results were up-scaled using Moderate Resolution Imaging Spectroradiometer (MODIS) images of the same dates. Because the selected study site is representative of the wider Blue Nile province, it is expected that the approach presented could be applied to larger areas.

  2. Identification and mapping of soil erosion areas in the Blue Nile-Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model

    Directory of Open Access Journals (Sweden)

    M. El Haj Tahir

    2010-01-01

    Full Text Available This paper is part of a set of studies to evaluate the spatial and temporal variability of soil water in terms of natural as well as land-use changes as fundamental factors for vegetation regeneration in arid ecosystems in the Blue Nile-Sudan. The specific aim is to indicate the spatial distribution of soil erosion caused by the rains of 2006. The current study is conducted to determine whether automatic classification of multispectral Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER imagery could accurately discriminate erosion gullies. Shuttle Radar Topography Mission (SRTM is used to orthoproject ASTER data. A maximum likelihood classifier is trained with four classes, Gullies, Flat_Land, Mountains and Water and applied to images from March and December 2006. Validation is done with field data from December and January 2006/2007, and using drainage network analysis of SRTM digital elevation model. The results allow the identification of erosion gullies and subsequent estimation of eroded area. Consequently the results were up-scaled using Moderate Resolution Imaging Spectroradiometer (MODIS images of the same dates. Because the selected study site is representative of the wider Blue Nile province, it is expected that the approach presented could be applied to larger areas.

  3. Irrigation modeling with AquaCrop

    Science.gov (United States)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  4. Fusion of Modis and Palsar Principal Component Images Through Curvelet Transform for Land Cover Classification

    Science.gov (United States)

    Singh, Dharmendra; Kumar, Harish

    that multisensor image fusion is a tradeoff between the spectral information from a low resolution multi-spectral images and the spatial information from a high resolution multi-spectral images. With the wavelet transform based fusion method, it is easy to control this tradeoff. A new transform, the curvelet transform was used in recent years by Starck. A ridgelet transform is applied to square blocks of detail frames of undecimated wavelet decomposition, consequently the curvelet transform is obtained. Since the ridgelet transform possesses basis functions matching directional straight lines therefore, the curvelet transform is capable of representing piecewise linear contours on multiple scales through few significant coefficients. This property leads to a better separation between geometric details and background noise, which may be easily reduced by thresholding curvelet coefficients before they are used for fusion. The Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 m to 14.4 m and also it is freely available. Two bands are imaged at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. In this paper, the band 1 of spatial resolution 250 m and bandwidth 620-670 nm, and band 2, of spatial resolution of 250m and bandwidth 842-876 nm is considered as these bands has special features to identify the agriculture and other land covers. In January 2006, the Advanced Land Observing Satellite (ALOS) was successfully launched by the Japan Aerospace Exploration Agency (JAXA). The Phased Arraytype L-band SAR (PALSAR) sensor onboard the satellite acquires SAR imagery at a wavelength of 23.5 cm (frequency 1.27 GHz) with capabilities of multimode and multipolarization observation. PALSAR can operate in several modes: the fine-beam single (FBS) polarization mode (HH), fine-beam dual (FBD) polariza

  5. An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2011-01-01

    Full Text Available As an update to our previous use of the collection 4 Moderate Resolution Imaging Spectroradiometer (MODIS over-ocean aerosol optical depth (AOD data, we examined ten years of Terra and eight years of Aqua collection 5 data for its potential usage in aerosol assimilation. Uncertainties in the over-ocean MODIS AOD were studied as functions of observing conditions, such as surface characteristics, aerosol optical properties, and cloud artifacts. Empirical corrections and quality assurance procedures were developed and compared to collection 4 data. After applying these procedures, the Root-Mean-Square-Error (RMSE in the MODIS Terra and Aqua AOD are reduced by 30% and 10–20%, respectively, with respect to AERONET data. Ten years of Terra and eight years of Aqua quality-assured level 3 MODIS over-ocean aerosol products were produced. The newly developed MODIS over-ocean aerosol products will be used in operational aerosol assimilation and aerosol climatology studies, as well as other research based on MODIS products.

  6. Regional trends of aerosol optical depth and their impact on cloud properties over Southern India using MODIS data

    Science.gov (United States)

    Gopal, K. Rama; Obul Reddy, K. Raja; Balakrishnaiah, G.; Arafath, S. MD.; Kumar Reddy, N. Siva; Rao, T. Chakradhar; Reddy, T. Lokeswara; Reddy, R. Ramakrishna

    2016-08-01

    Remote sensing of global aerosols has constituted a great scientific interest in a variety of applications related to global warming and climatic change. In the present study we investigate the spatial and temporal variations of aerosol optical properties and its impact on various properties of clouds over Southern India for the last ten years (2005-2014) by using Moderate Resolution Imaging Spectroradiometer (MODIS) data retrieved from the onboard Terra and Aqua satellites. The spatial distributions of annual mean lowest Aerosol Optical Depth (AOD) value is observed in Bangalore (BLR) (0.22±0.04) and the highest AOD value is noted in Visakhapatnam (VSK) (0.39±0.05). Similarly high Fine Mode Fraction (FMF) is noticed over VSK and Thiruvananthapuram (TVM), while lower values are observed in Anantapur (ATP), Hyderabad (HYD), Pune (PUNE) and BLR. From the results, a negative correlation was found between AOD and Cloud Top Temperature (CTT), Cloud Top Pressure (CTP) where as, a positive correlation was observed between AOD and Cloud Fraction (CF), Water Vapor (WV) over the selected regions. Monthly average AOD and FMF are plotted for analysis of the trends of aerosol loading in a long-term scale and both values showed statistically significant enhancing trend over all regions as derived from the MODIS measurements. Further, the annual variation of spatial correlation between MODIS and MISR (Multi - Angle Imaging Spectro Radiometer) AOD has been analyzed and the correlation coefficients are found to be higher in two of the regions VSK and PUNE (>0.8), and considerably lower for TVM (<0.7).

  7. MONTHLY VARIABILITY OF TOTAL SUSPENDED MATTER (TSM MAPPING USING MODIS 250M TO SUPPORT MARINE CULTURE AT MOROTAI ISLAND, NORTH MALUKU

    Directory of Open Access Journals (Sweden)

    KOMANG IWAN SUNIADA

    2015-05-01

    Full Text Available This study was conducted to provide an information of Total Suspended Matter concentration and its monthly variability using dialy data of Terra/ Aqua MOD IS level 1 b with spatial resolution 250m imagery at Morotai Island, Northern Maluku. TSM is one of the water quality key parameter to support finding suitable area which is an important step for marine culture activity. Dialy Aqua/Terra MODIS level lb, 250m dataset was downloaded freely from Goddard Space Flight Center, LAADS Web (http ://ladsweb.nascom.nasa.gov/ and its contains information of calibrated radiance dan reflectance. TSM concentration derived using algorithm proposed by Trisakti et al, TSM (mg/I = 72743 (bl+b22 ·3551, where bl is remote sensing reflectance band 1 and b2 is remote sensing reflectance band 2. Further process is daily TSM data composited to produce monthly data to define the variability. GIS application technique based on apropriate environment condition for fish comodity are used to mapping suitable area concerning of TSM parameter. Suspended sediment concentrations derived from satellite data showed that the average range of 40-90 mg/I, with the highest suspended sediment concentration occurred in January and lowest in June

  8. Spatial and Temporal Variability in the Onset of the Growing Season on Svalbard, Arctic Norway — Measured by MODIS-NDVI Satellite Data

    Directory of Open Access Journals (Sweden)

    Stein Rune Karlsen

    2014-08-01

    Full Text Available The Arctic is among the regions with the most rapid changes in climate and has the expected highest increase in temperature. Changes in the timing of phenological phases, such as onset of the growing season observed from remote sensing, are among the most sensitive bio-indicators of climate change. The study area here is the High Arctic archipelago of Svalbard, located between 76°30ʹ and 80°50ʹN. The goal of this study was to use MODIS Terra data (the MOD09Q1 and MOD09A1 surface reflectance products, both with 8-day temporal composites to map the onset of the growing season on Svalbard for the 2000–2013 period interpreted from field observations. Due to a short and intense period with greening-up and frequent cloud cover, all the cloud free data is needed, which requires reliable cloud masks. We used a combination of three cloud removing methods (State QA values, own algorithms, and manual removal. This worked well, but is time-consuming as it requires manual interpretation of cloud cover. The onset of the growing season was then mapped by a NDVI threshold method, which showed high correlation (r2 = 0.60, n = 25, p < 0.001 with field observations of flowering of Salix polaris (polar willow. However, large bias was found between NDVI-based mapped onset and field observations in bryophyte-dominated areas, which indicates that the results in these parts must be interpreted with care. On average for the 14-year period, the onset of the growing season occurs after July 1st in 68.4% of the vegetated areas of Svalbard. The mapping revealed large variability between years. The years 2000 and 2008 were extreme in terms of late onset of the growing season, and 2002 and 2013 had early onset. Overall, no clear trend in onset of the growing season for the 2000–2013 period was found.

  9. Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States.

    Science.gov (United States)

    Lee, Hyung Joo; Chatfield, Robert B; Strawa, Anthony W

    2016-06-21

    We estimated daily ground-level PM2.5 concentrations combining Collection 6 deep blue (DB) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data (10 km resolution) with land use regression in California, United States, for the period 2006-2012. The Collection 6 DB method for AOD provided more reliable data retrievals over California's bright surface areas than previous data sets. Our DB AOD and PM2.5 data suggested that the PM2.5 predictability could be enhanced by temporally varying PM2.5 and AOD relations at least at a seasonal scale. In this study, we used a mixed effects model that allowed daily variations in DB AOD-PM2.5 relations. Because DB AOD might less effectively represent local source emissions compared to regional ones, we added geographic information system (GIS) predictors into the mixed effects model to further explain PM2.5 concentrations influenced by local sources. A cross validation (CV) mixed effects model revealed reasonably high predictive power for PM2.5 concentrations with R(2) = 0.66. The relations between DB AOD and PM2.5 considerably varied by day, and seasonally varying effects of GIS predictors on PM2.5 suggest season-specific source emissions and atmospheric conditions. This study indicates that DB AOD in combination with land use regression can be particularly useful to generate spatially resolved PM2.5 estimates. This may reduce exposure errors for health effect studies in California. We expect that more detailed PM2.5 concentration patterns can help air quality management plan to meet air quality standards more effectively.

  10. Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States.

    Science.gov (United States)

    Lee, Hyung Joo; Chatfield, Robert B; Strawa, Anthony W

    2016-06-21

    We estimated daily ground-level PM2.5 concentrations combining Collection 6 deep blue (DB) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data (10 km resolution) with land use regression in California, United States, for the period 2006-2012. The Collection 6 DB method for AOD provided more reliable data retrievals over California's bright surface areas than previous data sets. Our DB AOD and PM2.5 data suggested that the PM2.5 predictability could be enhanced by temporally varying PM2.5 and AOD relations at least at a seasonal scale. In this study, we used a mixed effects model that allowed daily variations in DB AOD-PM2.5 relations. Because DB AOD might less effectively represent local source emissions compared to regional ones, we added geographic information system (GIS) predictors into the mixed effects model to further explain PM2.5 concentrations influenced by local sources. A cross validation (CV) mixed effects model revealed reasonably high predictive power for PM2.5 concentrations with R(2) = 0.66. The relations between DB AOD and PM2.5 considerably varied by day, and seasonally varying effects of GIS predictors on PM2.5 suggest season-specific source emissions and atmospheric conditions. This study indicates that DB AOD in combination with land use regression can be particularly useful to generate spatially resolved PM2.5 estimates. This may reduce exposure errors for health effect studies in California. We expect that more detailed PM2.5 concentration patterns can help air quality management plan to meet air quality standards more effectively. PMID:27218887

  11. Development of an Algorithm for MODIS and VIIRS Cloud Optical Property Data Record Continuity

    Science.gov (United States)

    Meyer, K.; Platnick, S. E.; Ackerman, S. A.; Heidinger, A. K.; Holz, R.; Wind, G.; Amarasinghe, N.; Marchant, B.

    2015-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, the VIIRS imager provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used by the MODIS cloud algorithms for high cloud detection and cloud-top property retrievals. In addition, there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used by MODIS for cloud optical/microphysical retrievals. Given the instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our adopted method for merging the 15+ year MODIS observational record with VIIRS in order to generate cloud optical property data record continuity across the observing systems. The optical property retrieval code uses heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06). As explained in other presentations submitted to this session, the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm to account for the different channel sets of the two imagers. Data granule and aggregated examples for the current version of the algorithm will be shown.

  12. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  13. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans

    Science.gov (United States)

    Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.

    2015-01-01

    Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.

  14. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  15. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

    Science.gov (United States)

    Platnick, Steven E.

    2011-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

  16. A comparison of the Pac-X trans-Pacific Wave Glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS).

    Science.gov (United States)

    Villareal, Tracy A; Wilson, Cara

    2014-01-01

    Four wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean's major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is

  17. A comparison of the Pac-X trans-Pacific Wave Glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS.

    Directory of Open Access Journals (Sweden)

    Tracy A Villareal

    Full Text Available Four wave-propelled autonomous vehicles (Wave Gliders instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean's major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads

  18. Application and Analysis of MODIS Satellite NDVI Time Series Change in Winter Wheat Area Estimate%MODIS卫星NDVI时间序列变化在冬小麦面积估算中的应用分析

    Institute of Scientific and Technical Information of China (English)

    李红梅; 张树誉; 王钊

    2011-01-01

    The study area of this paper is Guanzhong in Shanxi province,which is a major wheat-growing region.Based on EOS/MODIS satellite data,the survey data of winter wheat and the classification of land cover based on Landsat/TM image,we can get a vegetation index time series curve of different land cover.According to the NDVI variety of winter wheat during its growth and development period,we eliminate the non-wheat area information.Different thresholds will be set though compared the wheat's NDVI which in different critical growth period.The distribution and area of winter wheat will be analyzed and estimated with the help of spatial analysis module of GIS.The result shows that the accuracy rate of area by using this method is high.This approach may be an important tool for estimating area of regional crop over large area,and application potential of MODIS data in agriculture is proved better.%以陕西小麦主产区关中地区为研究地点,EOS/MODIS卫星数据为主要数据源,借助冬小麦地面定位调查数据和土地覆盖类型图作为辅助信息,计算得到不同覆盖类型的植被指数时序曲线图,找出冬小麦发育期植被指数变化规律,剔除小麦生长季节的非麦区信息,用几个关键期的植被指数变化差值图设定不同阈值,利用GIS空间分析功能得到麦区分布图和麦区面积。结果表明,应用遥感估算麦区面积与实际调查统计结果较为一致。从实际应用来看,该方法为大区域作物面积估算提供了一种更为快捷、经济的途径,也进一步说明MODIS数据在农业领域中的应用潜力。

  19. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  20. Analysis of Land Surface Temperature Retrieved from High Resolution Satellites in Seoul, South Korea

    Science.gov (United States)

    Jee, Joon-Bum; Choi, Young-Jean

    2015-04-01

    In order to analyze the land surface properties in Seoul and its surrounding metropolitan area in the South Korea, several indices and LST were calculated by the Landsat 8 and TERRA and AQUA MODIS satellites. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the LST of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new cities around Seoul. According to NDVI, NDBI and LST, urban expansion is displayed in the surrounding area of Seoul. The LST and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the LST and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. In addition, in order to investigate the thermal properties in metropolitan, Landsat and MODIS land surface temperature, AWS (Automatic Weather Station) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error (RMSE) and linear regression function etc. As a result, statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and RMSE of 4.61K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28K and 2.25K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the

  1. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    Science.gov (United States)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-05-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  2. MONTHLY VARIABILITY OF TOTAL SUSPENDED MATTER (TSM) MAPPING USING MODIS 250M TO SUPPORT MARINE CULTURE AT MOROTAI ISLAND, NORTH MALUKU

    OpenAIRE

    KOMANG IWAN SUNIADA

    2015-01-01

    This study was conducted to provide an information of Total Suspended Matter concentration and its monthly variability using dialy data of Terra/ Aqua MOD IS level 1 b with spatial resolution 250m imagery at Morotai Island, Northern Maluku. TSM is one of the water quality key parameter to support finding suitable area which is an important step for marine culture activity. Dialy Aqua/Terra MODIS level lb, 250m dataset was downloaded freely from Goddard Space Flight Center, LAADS Web (http ://...

  3. MODIS/COMBINED MCD12C1 Land Cover Type Yearly L3 Global 0.05Deg CMG

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG The Land Cover Type Yearly Climate Modeling Grid (CMG) is a lower spatial resolution (0.05?) product,...

  4. MODIS/COMBINED MCD12Q2 Land Cover Dynamics Yearly L3 Global 500 m SIN Grid

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG The Land Cover Type Yearly Climate Modeling Grid (CMG) is a lower spatial resolution (0.05?) product,...

  5. MODIS/COMBINED MCD12Q1 Land Cover Type Yearly L3 Global 500 m SIN Grid

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG The Land Cover Type Yearly Climate Modeling Grid (CMG) is a lower spatial resolution (0.05?) product,...

  6. On-orbit performance of MODIS solar diffuser stability monitor

    Science.gov (United States)

    Xiong, Xiaoxiong (Jack); Angal, Amit; Choi, Taeyoung; Sun, Junqiang; Johnson, Eric

    2012-09-01

    MODIS reflective solar bands (RSB) calibration is provided by an on-board solar diffuser (SD). On-orbit changes in the SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM). The SDSM consists of a solar integration sphere (SIS) with nine detectors covering wavelengths from 0.41 to 0.94 μm. It functions as a ratioing radiometer, making alternate observations of the sunlight through a fixed attenuation screen and the sunlight diffusely reflected from the SD during each scheduled SD/SDSM calibration event. Since launch, Terra and Aqua MODIS SD/SDSM systems have been operated regularly to support the RSB on-orbit calibration. This paper provides an overview of MODIS SDSM design functions, its operation and calibration strategies, and on-orbit performance. Changes in SDSM detector responses over time and their potential impact on tracking SD on-orbit degradation are examined. Also presented in this paper are lessons learned from MODIS SD/SDSM calibration system and improvements made to the VIIRS SD/SDSM system, including preliminary comparisons of MODIS and VIIRS SDSM on-orbit performance.

  7. Estimates of aerosol absorption over India using multi-satellite retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, D.; Satheesh, S.K. [Indian Institute of Science, Bangalore (India). Centre for Atmospheric and Oceanic Sciences

    2013-11-01

    Aerosol absorption is poorly quantified because of the lack of adequate measurements. It has been shown that the Ozone Monitoring Instrument (OMI) aboard EOSAura and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard EOS-Aqua, which fly in formation as part of the A-train, provide an excellent opportunity to improve the accuracy of aerosol retrievals. Here, we follow a multi-satellite approach to estimate the regional distribution of aerosol absorption over continental India for the first time. Annually and regionally averaged aerosol singlescattering albedo over the Indian landmass is estimated as 0.94{+-}0.03. Our study demonstrates the potential of multisatellite data analysis to improve the accuracy of retrieval of aerosol absorption over land.

  8. Contrail microphysical properties and radiative forcing over the Northern Hemisphere derived using MODIS infrared observations

    Science.gov (United States)

    Bedka, S. T.; Minnis, P.; Duda, D. P.; Spangenberg, D.; Chee, T.; Khlopenkov, K. V.

    2015-12-01

    One of the primary ways that air traffic affects the Earth's radiation budget is through the formation of contrails. In order to quantify the radiative impact of contrails, one must assess their macro and microphysical properties (e.g. contrail temperature, optical depth and effective particle size) as well as the characteristics of the environment in which they occur (e.g. background radiation field and cloud properties). In-situ measurements of contrail microphysical properties are limited, and hence the retrieval of such properties from remotely sensed satellite data is useful. This paper details the ongoing progress being made to retrieve contrail properties and calculate the contrail radiative forcing from 2 years of MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra data. Contrail microphysical properties from the seasonal months (January, April, July, October) of 2006 and 2012 are derived using an infrared-only heritage algorithm developed at NASA Langley for the Clouds and the Earth's Radiant Energy System (CERES) program. Results are subset by day/night, although the same retrieval algorithm will be used for all granules. Contrail properties and background cloud properties are then used as input into the Fu-Liou radiative transfer model to compute the overall contrail radiative forcing.

  9. The effect of precipitation and temperature anomalies for the Central-European forests based on Collection 6 MODIS data

    Science.gov (United States)

    Kern, Anikó; Marjanović, Hrvoje; Dobor, Laura; Barcza, Zoltán

    2016-04-01

    Forest phenology and productivity is intimately linked with the actual weather conditions, and in the long term with the local climate. Our current understanding on the environmental control on spring leaf-out and autumn senescence is incomplete. Causes of the interannual variability of tree growth and forest carbon balance are not well understood as well. Satellite remote sensing provides a feasible way to monitor and study the changes of forest functioning in general and to understand its relationship with the climate fluctuations. In the presented study the latest version (Collection 6) of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) products calculated from measurements of the MODIS sensor onboard the NASA Terra and Aqua satellites are used to characterize forest activity and its interannual variability in Central Europe (Hungary and Croatia). The applied EVI and NDVI dataset is part of the MOD13 product of NASA and covers the 2000-2015 time period. The newest, Collection 6 dataset is free from the sensor degradation effect (that was present in previous versions) which can contribute to the better characterization of the changes in forest phenology. Using the FORESEE climatological database the effects of drought is studied on the NDVI and EVI variations. Possible lagged effect of severe drought on NDVI variability during the consecutive years is studied at the selected sites. Drivers of forest phenology are studied in terms of linear relationships between temperature and onset/offset of the growing season.

  10. Latitudinal and longitudinal variation in aerosol characteristics from Sun photometer and MODIS over the Bay of Bengal and Arabian Sea during ICARB

    Indian Academy of Sciences (India)

    Sumita Kedia; S Ramachandran

    2008-07-01

    Spatial variations in aerosol optical properties as function of latitude and longitude are analysed over the Bay of Bengal and Arabian Sea during ICARB cruise period of March–May 2006 from in situ sun photometer and MODIS (Terra, Aqua) satellite measurements. Monthly mean 550 nm aerosol optical depths (AODs) over the Bay of Bengal and Arabian Sea show an increase from March to May both in spatial extent and magnitude. AODs are found to increase with latitude from 4°N to 20°N over the Bay of Bengal while over Arabian Sea, variations are not significant. Sun photometer and MODIS AODs agree well within ± 1 variation. Bay of Bengal AOD (0.28) is higher than the Arabian Sea (0.24) latitudinally. Aerosol fine mode fraction (FMF) is higher than 0.6 over Bay of Bengal, while FMF in the Arabian Sea is about 0.5. Bay of Bengal (∼1) is higher than the Arabian Sea value of 0.7, suggesting the dominance of fine mode aerosols over Bay of Bengal which is corroborated by higher FMF values over Bay of Bengal. Air back trajectory analyses suggest that aerosols from different source regions contribute differently to the optical characteristics over the Bay of Bengal and Arabian Sea.

  11. Satellite Observed Environmental Changes over the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Kuo-Hsin Tseng

    2011-01-01

    Full Text Available We use satellite observed and model atmospheric variables, including land surface temperature, snowfall, snow extent, precipitation, and water vapor contents to study the feasibility of quantifying anthropogenic climate change over high elevation areas such as the Qinghai-Tibetan Plateau. Five types of satellite data and outputs from Atmospheric General Circulation Model (AGCMs are used to study these climate change indicators: (1 AIRS/AMSU/HSB atmospheric sounding system onboard the Aqua platform, 2003 ~ 2009, (2 Moderate Resolution Imaging Spectroradiometer (MODIS onboard Terra, 2001 ~ 2009, (3 The Tropical Rainfall Measuring Mission (TRMM precipitation measurements, 1999 ~ 2009, (4 the ERA-interim (ECMWF Interim Reanalysis, 1989 ~ 2009, and (5 the Japanese 25-year Reanalysis Project (JRA-25 AGCM data, 1979 ~ 2009. We find that biases exist between temperature observations and model data 0.29 ~ _ AIRS and JRA-25, respectively. The trends for each of the atmospheric variables at best have a qualitative agreement, presumably because the data spans of satellite observations are too short (7 ~ 10 years. The temperature trends for 4000 ~ 5000 m over the Plateau are estimated to be 0.01 ~ _ yr-1, qualitatively agreeing with the published rate of _ decade-1 over the last three decades using in situ data.

  12. Possibility of continuous monitoring of environment around the nuclear plant using satellite remote sensing

    International Nuclear Information System (INIS)

    Interest in nuclear power generation is increasing by rising of power demand and environmental concern. It is important more and more to confirm and show the safety operation of nuclear plants, which is useful to remove anxiety of residents. Satellite remote sensing is one of the way of it. Large observation width and long and continuous observation period are advantage of satellite remote sensing. In addition, it is very important to be able to monitor without visitation on the site. We have continued local area environmental analysis using various satellites. MODIS on Terra and Aqua which are NASA satellites received by Hachinohe Institute of Technology is mainly used. According to these results, we have shown that combined analysis of various information parameters such as land surface temperature, geographical changes, vegetation, etc. is very effective to monitor environmental changes. In these analyses, error detection is very important. Therefore, enough storage data with continuously monitoring in usual state is necessary. Moreover, it is thought that the confirmation of stable operation of plants by means of continuous monitoring can contribute to reduce residents' anxiety of nuclear power plant. Additionally, in the case that the change of influence on surroundings is detected, it is possible to grasp the situation and take measure in early stage by error detection. In this paper, as an possible example of continuous monitoring using satellite remote sensing, we introduce the result of analysis and investigation of which changes of sea surface temperature and chlorophyll concentration on the sea around power plant. (author)

  13. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    Directory of Open Access Journals (Sweden)

    G. Zibordi

    2014-12-01

    Full Text Available The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A and the Visible/Infrared Imager/Radiometer Suite (VIIRS, is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC. The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent. Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm and red (i.e., 667 nm, or equivalent center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  14. Validation of MODIS and SEVIRI Active Fire Monitoring products over Western Romania. Case study: Arad County

    Science.gov (United States)

    Oanea, Lavinia; Alina Ristea, Mihaela

    2014-05-01

    At the national level, the issue of wildfire monitoring represents a long debated topic. However, in the present situation, fire management requires various improvements in terms of detection, monitoring and post-fire analysis. The objectives of this study are to validate the data provided by MODIS (Terra and Aqua) Active Fire Monitoring and SEVIRI (MSG) FIR (Active Fire Monitoring) satellite products, with wildfires field data from The Romanian General Inspectorate for Emergency Situations (IGSU) (1), to chart the efficiency of satellite products in locating fires and study their strengths and weaknesses using a SWOT analysis (2). This is the initial step of a larger project that aims to implement an online Geographic Information System for fire management that will ease wildfire data manipulation and facilitate the decision making process. In order to do so, the current study objectives must be achieved. Our general strategy is to determine the consistency of direct (field measurements) and indirect (satellite data) observations. Depending on the amount of field information, the fire characteristics (location, frequency, extension area, moment of occurrence, type of fire, and others) will be studied through a statistical analysis. The products show some peculiar restrictiveness like spatial and temporal resolution. Specifically, we will process and interpret satellite products to identify wildfires according to the data from IGSU using specialized software. The case study for the application of these procedures is a set of fire events from Arad county - Romania, that occurred between 2007 and 2013. In order to do so, it is important to compare results from different sensors with field information through various methods and to use only consistent results. The results will play an important role in achieving the above mentioned informational system, which will integrate field information, satellite data and values of parameters that influence the evolution of

  15. Analysis of volcanic activity patterns using MODIS thermal alerts

    OpenAIRE

    Rothery, Dave A.; Coppola, Diego; Saunders, Charlotte

    2005-01-01

    We investigate eruptive activity by analysis of thermal-alert data from the MODIS (Moderate Resolution Imaging Spectrometer) thermal infrared satellite instrument, detected by the MODVOLC (MODIS Volcano alert) algorithm. These data are openly available on a website, and easy to use. We show how such data can plug major gaps in the conventional monitoring record of volcanoes in an otherwise generally poorly-documented region (Melanesia), including: characterising the mechanism of lava effusion...

  16. Determining the accuracies of sea-surface temperatures derived from measurements of MODIS and VIIRS

    Science.gov (United States)

    Minnett, P. J.; Kilpatrick, K. A.; Podesta, G. P.; Izaguirre, M.; Williams, E.; Walsh, S.

    2015-12-01

    The appropriate application of sea-surface temperatures (SSTs) derived from MODIS and VIIRS requires knowledge of the errors and uncertainties of the SST fields. The accuracies of the SSTs are determined by comparison with independent measurements, usually derived from drifting and moored buoys, and ship-board radiometers. By using similar cloud detection and clear-sky atmospheric correction algorithms to derived SST from both MODIS's on Terra and Aqua, and the VIIRS on S-NPP a consistent time series of SSTs can be derived from the first useful Terra MODIS data in 2000 to the present, and by using the same approach to assess their accuracies, a consistent set of errors and uncertainties can also be derived. The presentation will provide a summary of recently modified algorithms used to derive SSTs from the MODIS's and VIIRS, and discuss the accuracies of the derived fields, including recent improvements to the VIIRS atmospheric correction algorithm to reduce the effects of instrumental artifacts.

  17. Geomorphology of MODIS-Visible Dust Plumes in the Chihuahuan Desert - Preliminary Results

    Science.gov (United States)

    Gill, T. E.; Mbuh, M. J.; Dominguez, M. A.; Lee, J. A.; Baddock, M. C.; Lee, C. E.; Whitehead, S. C.; Rivera Rivera, N. I.; Peinado, P.

    2009-12-01

    We identified 28 days since 2001 when blowing dust impacted El Paso, Texas and dust plumes were visible on NASA MODIS Terra/Aqua satellite images in the surrounding Chihuahuan Desert. Initiation points of >270 individual plumes were located on the MODIS images. Land use/land cover for each point was determined by field work, aerial photography, and/or soil/geological maps, and points were assigned to the geomorphic classes proposed by Bullard et al. (this session). Although dust plume identification is subjective (weak plumes, plumes obscured by clouds, and plumes occurring when the satellites are not overhead will be missed), these data provide preliminary information on the relationship between geomorphology and the initiation of major dust storms in the Chihuahuan Desert. Ephemeral lakes and alluvial low-relief non-incised lands are roughly equal producers of satellite-visible dust plumes in the Chihuahuan Desert. Anthropogenic modification of alluvial floodplains for cropping (primarily in the Casas Grandes and Del Carmen river basins) impacts dust generation, since about 2/3 of alluvial low-relief sites show evidence of agriculture. These agricultural fields are generally fallow during the November- April windy season. Not including agricultural lands, playas represent ~2x the number of sources as low-relief alluvial deposits. Aeolian sand deposits (predominantly coppice dunes and sand sheets overlaying alluvial or lacustrine sediments) account for about 1/7 of the points. These sands may act as erosional agents, providing saltating particles for sandblasting and bombardment of other sediments exposed nearby. Edges of ephemeral lakes are proportionally important sources (~10% of the points), likely due to the convergence of saltating sand, fine lacustrine sediments, and low roughness lengths of playa surfaces. Alluvial fans and alluvial uplands are minor dust sources compared to their overall prevalence in the region. Gobi/gibber/stony deposits are known dust

  18. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2016-03-01

    We update previously published Moderate Resolution Imaging Spectroradiometer (MODIS) global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 data set. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux data sets. Our results clearly show that the CRs are radiatively distinct in terms of shortwave, longwave, and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles, to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance data sets suffering from imperfect spatiotemporal matching depend on CR and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  19. Monitoring volcanic systems through cross-correlation of coincident A-Train satellite data.

    Science.gov (United States)

    Flower, V. J. B.; Carn, S. A.; Wright, R.

    2014-12-01

    The remote location and inaccessibility of many active volcanic systems around the world hinders detailed investigation of their eruptive dynamics. One methodology for monitoring such locations is through the utilisation of multiple satellite datasets to elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation, including the Ozone Monitoring Instrument (OMI) on Aura and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. OMI measures volcanic emissions (e.g. sulphur dioxide, ash) whilst MODIS enables monitoring of thermal anomalies (e.g. lava flows, lava lakes, pyroclastic deposits), allowing analysis of a more diverse range of volcanic unrest than is possible using a single measurement technique alone, and permitting cross-correlation between datasets for specific locations to assess cyclic activity. A Multi-taper (MTM) Fast Fourier Transform (FFT) analysis was implemented at an initial sample site (Soufriere Hills volcano [SHV], Montserrat) facilitating cycle identification and subsequent comparison with existing ground-based data. Corresponding cycles at intervals of 8, 12 and ~50 days were identified in both the satellite-based SO2 and thermal infrared signals and ground-based SO2 measurements (Nicholson et al. 2013), validating the methodology. Our analysis confirms the potential for identification of cyclical volcanic activity through synergistic analysis of satellite data, which would be of particular value at poorly monitored volcanic systems. Following our initial test at SHV, further sample sites have been selected in locations with varied eruption dynamics and monitoring capabilities including Ambrym (Vanuatu), Kilauea (Hawaii), Nyiragongo (DR Congo) and Etna (Italy) with the intention of identifying not only cyclic signals that can be attributed to volcanic systems but also those which are

  20. MODIS and SeaWIFS on-orbit lunar calibration

    Science.gov (United States)

    Sun, Jielun; Eplee, R.E., Jr.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric

  1. A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    Science.gov (United States)

    Case, Jonathan L.; Santos, Pablo; Lazarus, Steven M.; Splitt, Michael E.; Haines, Stephanie L.; Dembek, Scott R.; Lapenta, William M.

    2008-01-01

    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine

  2. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    Merritt Tuel

    2008-07-01

    Full Text Available The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490 and chlorophyll (chlor_a from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies identified on the basis of sea surface height anomaly (SSHA. Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels

  3. Satellite Monitoring of Disturbances in Arctic Ecosystems

    Science.gov (United States)

    Prieto-Blanco, A.; Disney, M.; Lewis, P.

    2008-12-01

    We explored the capability of satellite remote sensing to detect temporal changes in northern Fennoscandian regions through the application of a temporal model of surface bidirectional reflectance. Remote sensing offers the potential to monitor changes over large areas and at hard to access locations. Specifically in remote Arctic locations, where ground surveys and aircraft observations are constrained by weather conditions and logistics, remote sensing provides a unique capability for repetitive and frequent sampling. A major disturbance in mountain birch forests typical of northern Sweden and Finland is caused by outbreaks of defoliating insects such as the autumn moth (Epirrita autumnata) and the winter moth (Operophtera brumata). These outbreaks occur more or less cyclically every 9-10 years and attack mainly birch (Betula spp.) leaving a mosaic of open woodland within the forest. It is expected that global warming will affect the incidence and the intensity of this outbreaks. The ecological and economical consequences can be severe hence the importance of close monitoring of shifts in the distribution of events. Defoliated areas of up to 6000 to 7000 ha of birch forest have been reported. Severely affected areas could potentially be detected by satellite providing valuable data to understand the behavior, estimate the damage and predict the development of forest pests. Quantification of the impact of such outbreaks will also permit far more accurate estimation of the terrestrial carbon budget of such regions. Here we applied a generic algorithm to detect sudden changes on land surface cover to daily 500m MODIS surface reflectance data over the Fennoscandian area. Moderate Resolution Imaging Spectraradiometer (MODIS) sensors on board the polar orbiting satellites Terra and Aqua provide an overpass at least once a day over the area of interest. Unfortunately, frequent cloud cover limits the acquisition of satellite imagery and persistent cloud cover may

  4. Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects

    OpenAIRE

    Yasushi Yamaguchi; Yuanbo Liu; Yousuke Noumi

    2009-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists of mountainous areas, variations in elevation, terrain slope and aspect angles can cause biases in th...

  5. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    OpenAIRE

    Keunchang Jang; Sinkyu Kang; John S. Kimball; Suk Young Hong

    2014-01-01

    Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb) retrievals from the Advanced Microw...

  6. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    Science.gov (United States)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  7. MODIS Cloud Microphysics Product (MOD_PR06OD) Data Collection 6 Updates

    Science.gov (United States)

    Wind, Gala; Platnick, Steven; King, Michael D.

    2014-01-01

    The MODIS Cloud Optical and Microphysical Product (MOD_PR060D) for Data Collection 6 has entered full scale production. Aqua reprocessing is almost completed and Terra reprocessing will begin shortly. Unlike previous collections, the CHIMAERA code base allows for simultaneous processing for multiple sensors and the operational CHIMAERA 6.0.76 stream is also available for VIIRS and SEVIRI sensors and for our E-MAS airborne platform.

  8. Detection properties of dust and sandstorms by using AVI of MODIS data

    Science.gov (United States)

    Kato, Yoshinobu

    2010-10-01

    The detection properties of dust and sandstorms (DSS) by using AVI are examined. The aerosol vapor index (AVI) is defined as AVI=T12-T11, where T12 and T11 are the brightness temperatures respectively at 12μm and 11μm wave lengths. MODIS data of Terra/Aqua satellites from China to Japan in April 2006 are used. The AVI vs. T11 scatter charts in narrow regions are made. The narrow region means the region which is smaller than about 100km × 100km. Gu et al. (2003) gave a BTD vs. T11 chart which was based on the radiative transfer calculation in the case of the existence of DSS layer between the ground and the satellite, where BTD=-AVI. The AVI vs. T11 scatter charts are compared with the true-color images, the T11 images, the AVI images and the result by Gu et al. The results are as follows: (1) The larger the AVI value is, the larger the optical thickness of DSS is, in the case of narrow region on land and sea with DSS that does not include cloud. The AVI value decreases, in the case of narrow region with DSS that includes cloud. (2) When the DSS is consecutive on land and sea, the AVI value on the land near the boundary of land and sea is about 0.2-2.3K higher than that on the sea, because of the radiative characteristics of land and sea. The AVI value of a pixel (1km2) on the boundary of land and sea is changed by the ratio of land area and sea area.

  9. AQUA-USERS: AQUAculture USEr Driven Operational Remote Sensing Information Services

    Science.gov (United States)

    Laanen, Marnix; Poser, Kathrin; Peters, Steef; de Reus, Nils; Ghebrehiwot, Semhar; Eleveld, Marieke; Miller, Peter; Groom, Steve; Clements, Oliver; Kurekin, Andrey; Martinez Vicente, Victor; Brotas, Vanda; Sa, Carolina; Couto, Andre; Brito, Ana; Amorim, Ana; Dale, Trine; Sorensen, Kai; Boye Hansen, Lars; Huber, Silvia; Kaas, Hanne; Andersson, Henrik; Icely, John; Fragoso, Bruno

    2015-12-01

    The FP7 project AQUA-USERS provides the aquaculture industry with user-relevant and timely information based on the most up-to-date satellite data and innovative optical in-situ measurements. Its key purpose is to develop an application that brings together satellite information on water quality and temperature with in-situ observations as well as relevant weather prediction and met-ocean data. The application and its underlying database are linked to a decision support system that includes a set of (user-determined) management options. Specific focus is on the development of indicators for aquaculture management including indicators for harmful algae bloom (HAB) events. The methods and services developed within AQUA-USERS are tested by the members of the user board, who represent different geographic areas and aquaculture production systems.

  10. Investigating the impact of haze on MODIS cloud detection

    Science.gov (United States)

    Mao, Feiyue; Duan, Miaomiao; Min, Qilong; Gong, Wei; Pan, Zengxin; Liu, Guangyi

    2015-12-01

    The cloud detection algorithm for passive sensors is usually based on a fuzzy logic system with thresholds determined from previous observations. In recent years, haze and high aerosol concentrations with high aerosol optical depth (AOD) occur frequently in China and may critically impact the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection. Thus, we comprehensively explore this impact by comparing the results from MODIS/Aqua (passive sensor), Cloud-Aerosol Lidar with Orthogonal Polarization/CALIPSO (lidar sensor), and Cloud Profiling Radar/CloudSat (microwave sensor) of the A-Train suite of instruments using an averaged AOD as an index for an aerosol concentration value. Case studies concerning the comparison of the three sensors indicate that MODIS cloud detection is reduced during haze events. In addition, statistical studies show that an increase in AOD creates an increase in the percentage of uncertain flags and a decrease in hit rate, a consistency index between consecutive sets of cloud retrievals. On average, AOD values lower than 0.1 give hit rate values up to 80.0% and uncertainty values lower than 16.8%, while AOD values greater than 1.0 reduce the hit rate below to 66.6% and increase the percentage of uncertain flags up to 46.6%. Therefore, we can conclude that the ability of MODIS cloud detection is weakened by large concentrations of aerosols. This suggests that use of the MODIS cloud mask, and derived higher-level products, in situations with haze requires caution. Further improvement of this retrieval algorithm is desired as haze studies based on MODIS products are of great interest in a number of related fields.

  11. Recent Shift of Deforestation to High Elevation Areas from 2001 to 2013 in Borneo Detected by MODIS Data

    Science.gov (United States)

    Nagai, S.; Suzuki, R.

    2015-12-01

    The biomass of tropical forests sequestrates tons of carbon and plays an important role in the global carbon cycle regulating the climate. Also its high biodiversity ecosystems bring us many valuable resources and cultural and educational ecosystem services. However, large areas of the tropical forest are deforested and converted to oil palm or acacia plantation for the economic benefit of the local society mainly in Southeast Asia. Monitoring of the tropical forest from satellites provides us the information about the deforestation for decadal time period over extensive areas and enables us to discuss it from a scientific point of view. The purpose of this study is to reveal the interannual change and recent trend of deforestation in relation to the land elevation for decadal time period over Borneo by using data from Moderate Resolution Imaging Spectroradiometer (MODIS). We acquired the atmospherically corrected and cloud free Terra-MODIS and Aqua-MODIS daily data products (MOD09GA and MYD09GA; collection 5) from 2001 to 2013 for Borneo. We extracted the pixel values in the 500m surface reflectance bands 1 (red) and 4 (green) products and calculated the green-red vegetation index (GRVI), (band 4 - band 1) / (band 4 + band 1), at a daily time step. GRVI shows a positive value for the land prevailed by green vegetation, while it shows a negative value for the land prevailed by no-green components such as bare land. As for the elevation data, ASTER Global Digital Elevation Model (GDEM) which has 33.3m spatial resolution was employed. The original resolution was resampled to the grid system of MODIS data (i.e. 500m resolution). Pixels which had a negative GRVI ratio more than 80 % (termed as "no green pixel") in each year were regarded as the land characterized by no vegetation, and mapped the distribution for each year. Throughout the 13 years, no green pixels mainly found over the coastal low land below 20m of the elevation and the area was almost constant (around

  12. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    International Nuclear Information System (INIS)

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R2 is 0.844 and a regression equation of τM = 0.91·τA + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R2 is 0.764 and τM = 0.95·τA + 0.03) and the Deep Blue algorithm (correlation coefficient R2 is 0.652 and τM = 0.81·τA + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  13. Analysis of the most important river plumes on the Atlantic and Mediterranean Iberian coast by means of satellite imagery

    Directory of Open Access Journals (Sweden)

    Diego Fernandez Novoa

    2014-06-01

    Full Text Available Rivers discharges cause the formation of buoyant plumes in the adjacent coastal area at their mouths, which are characterized by low-salinity water and controlled by outflow inertia, rotation (Coriolis effects, buoyancy, wind, and tide forcing. The turbid plumes influence the adjacent coastal area, since they control the patterns of nutrients, sediments and/or pollutants of fluvial origin on the coastal ocean and can promote strong physical and chemical changes on seawater. These changes affect the biological characteristics of the area, such as primary production, species composition, abundance and distribution of existing microorganism, which demonstrates its high ecological importance. The characterization of the most important river plumes along the Atlantic Iberian coast and the influence of the main forcing drivers (river discharge, wind and tide on them, was carried out through the analysis of plume mean-state images calculated using water leaving radiance data (nLw555 obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer sensor onboard the Aqua satellite during 2003-2013. Satellite data are downloaded from Ocean Color web site (http://oceancolor.gsfc.nasa.gov. Daily high-resolution L1 files from MODIS-Aqua were processed through SeaDAS software. Composite images, interpolated to a regular pixel grid with an approximate resolution of 500m, were built for different synoptic conditions of river discharge, wind regimes and tide, in order to obtain a representative average plume image of each situation and river for the posterior analysis. Results showed that the river discharge is the main forcing factor in the river plume extension. Wind effect is noticeable under high river discharge and tide is important for the estuarine outflow regimes although with some remarkable similarities and differences between the Atlantic rivers due to their intrinsic characteristics.

  14. Near Real Time Processing Chain for Suomi NPP Satellite Data

    Science.gov (United States)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  15. The Tropical Water Vapor Feedback Implied by Aqua Observations

    Science.gov (United States)

    Minschwaner, K.; Dessler, A. E.; Sawaengphokhai, P. C.; Laight, P. A.

    2006-12-01

    We investigate the climate feedback by water vapor in the middle and upper troposphere of the tropics using data from Earth Observing System instruments on the Aqua satellite. The measured water vapor and sea surface temperatures are obtained from AIRS (Atmospheric Infrared Sounder), and outgoing longwave fluxes from CERES (Clouds and Earth's Radiant Energy System). These data are used to quantify any response in tropical mean water vapor to changes in sea surface temperatures. We focus on the effect of variations in both tropical mean sea surface temperature and on variability confined to regions of active convection. Results are compared to feedback estimates based on previous measurements from UARS MLS, as well as the water vapor feedback predicted by global climate model simulations as part of the IPCC AR4 analysis.

  16. VIIRS Atmospheric Products in the Community Satellite Processing Package (CSPP)

    Science.gov (United States)

    Cureton, G. P.; Gumley, L.; Mindock, S.; Martin, G.; Garcia, R. K.; Strabala, K.

    2012-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has a long history of supporting the Direct Broadcast (DB) community for various sensors, recently with the International MODIS/AIRS Processing Package (IMAPP) for the NASA EOS polar orbiters Terra and Aqua. CIMSS has continued this effort into the NPP/JPSS (previously NPOESS) era with the development of the Community Satellite Processing Package (CSPP), supporting the VIIRS, CrIS and ATMS sensors on the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft. In time it is intended that CSPP will support GOES-R, JPSS and other geostationary and polar orbiting platforms. Here we focus on the implementation and usage of the Visible Infrared Imaging Radiometer Suite (VIIRS) atmospheric product sub-packages within CSPP, which are based on the Interface Data Processing Segment (IDPS) code as implemented by Raytheon in the Algorithm Development Library (ADL). The VIIRS atmospheric algorithms available in CSPP include the Cloud Mask, Active Fires, Cloud Optical Properties, Cloud Top Parameters, and the Aerosol Optical Thickness algorithms. Each ADL sub-package consists of a binary executable and a series of configuration XML files. A series of python scripts handle ancillary data retrieval and preparation for ingest into ADL, manage algorithm execution, and provide a variety of execution options which are of utility in operational and algorithm development settings. Examples of these options, applied to operational and direct-broadcast VIIRS SDR data, are described.

  17. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  18. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land

    Directory of Open Access Journals (Sweden)

    R. C. Levy

    2010-06-01

    Full Text Available NASA's MODIS sensors have been observing the Earth from polar orbit, from Terra since early 2000 and from Aqua since mid 2002. We have applied a consistent retrieval and processing algorithm to both sensors to derive the Collection 5 (C005 dark-target aerosol products over land. Here, we co-locate the MODIS field of view aerosol retrievals with Level 2 AERONET sunphotometer measurements at over 300 sites, and find 85 000 matched pairs that represent mutually cloud-free conditions. From these collocations, we validate the total aerosol optical depth (AOD or τ product, and define the expected error (EE as ±(0.05+0.15τ. Since we find that >66% (one standard deviation of MODIS AOD values compare to AERONET within EE, we can consider global AOD to be validated. However, MODIS does not compare as well to AERONET at particular sites and seasons. There are residual biases that are correlated with Ångstrom exponent, scattering angles, and scene reflectance conditions, resulting from assumptions about the aerosol optical properties and surface conditions that are not accurate everywhere. Although we conclude that the AOD over land is globally quantitative, MODIS-derived parameters of aerosol size over land (Ångström exponent, fine AOD are not. When separating data into those derived from Terra versus those from Aqua, scatterplots to AERONET are nearly indistinguishable. However, while Aqua is stable, Terra shows a slight trend in its bias with respect to AERONET; overestimating (by ~0.005 before 2004, and underestimating by similar magnitude after. This suggests small, but significant calibration uncertainties of <2%, which could lead to spurious long-term aerosol trends.

  19. MODIS land data at the EROS data center DAAC

    Science.gov (United States)

    Jenkerson, C.B.; Reed, B.C.

    2001-01-01

    The US Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in Sioux Falls, SD, USA, is the primary national archive for land processes data and one of the National Aeronautics and Space Administration's (NASA) Distributed Active Archive Centers (DAAC) for the Earth Observing System (EOS). One of EDC's functions as a DAAC is the archival and distribution of Moderate Resolution Spectroradiometer (MODIS) Land Data collected from the Earth Observing System (EOS) satellite Terra. More than 500,000 publicly available MODIS land data granules totaling 25 Terabytes (Tb) are currently stored in the EDC archive. This collection is managed, archived, and distributed by EOS Data and Information System (EOSDIS) Core System (ECS) at EDC. EDC User Services support the use of MODIS Land data, which include land surface reflectance/albedo, temperature/emissivity, vegetation characteristics, and land cover, by responding to user inquiries, constructing user information sites on the EDC web page, and presenting MODIS materials worldwide.

  20. Atmospheric correction of CBERS CCD images with MODIS data

    Institute of Scientific and Technical Information of China (English)

    LI Junsheng; ZHANG Bing; CHEN Zhengchao; SHEN Qian

    2006-01-01

    China Brazil Earth Resource Satellite (CBERS) CCD images have much potential for inland water environmental monitoring. However, their atmospheric accuracy correction can affect their quantitative applications. This paper contains an atmospheric correction algorithm for CBERS CCD images with MODIS data from the same day, the use of which improves the atmospheric correction algorithm of ocean color remote sensing developed by Gordon (1993, 1994) and makes it applicable to inland waters. The improved algorithm retrieves atmospheric parameters from MODIS data and uses them to perform the atmospheric correction of CBERS CCD images. Experimental results show that the atmospheric correction algorithm of CBERS CCD images assisted by MODIS data is reliable. Furthermore, MODIS data can be freely obtained on a daily basis, making the algorithm developed in this paper useful for environmental monitoring of inland waters.

  1. Towards identification of relevant variables in the observed aerosol optical depth bias between MODIS and AERONET observations

    Science.gov (United States)

    Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.

    2013-08-01

    Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.

  2. Assessment of the Proximity of MODIS Active Fire Detections to Roads and Navigable Rivers in the Brazilian Tropical Moist Forest Biome

    Science.gov (United States)

    Kumar, S.; Roy, D. P.; Souza, C., Jr.; Cochrane, M. A.; Boschetti, L.

    2011-12-01

    The Brazilian tropical moist forest biome supports the world's largest contiguous area of tropical forests and is experiencing high rates of deforestation. Fires are proxy indicators of human pressure and deforestation. Previous studies using satellite active fire detections and the official Brazilian road vector data (IBGE- Brazilian Institute of Geography and Statistics), including state, federal and some private roads, indicate that the majority of fires occur close to roads. In this quantitative study a new data set that also includes unofficial roads and navigable rivers acquired from Imazon (a non-profit research institution with a mission to promote sustainable development in the Amazon) are used to quantify annual distance distributions of MODIS Aqua and Terra satellite active fire detections for 2003 to 2009. The majority (> 93%) of active fire detections are within 10 km of a road or a navigable river bank. Inter-state and inter-annual differences in the distance distributions, that may capture inter-annual rates of road expansion and fire variability, are also presented. These results may be useful for improvement of regional fire prediction models.

  3. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    Science.gov (United States)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  4. Performance of LAI-MODIS and the influence on drought simulation in a Mediterranean forest

    OpenAIRE

    H. Chakroun; Mouillot, Florent; Nasr, Z; Nouri, M.; Ennajah, A.; Ourcival, J. M.

    2014-01-01

    This study investigates the benefits and methodological issues to integrate weekly 1 km Leaf Area Index (LAI) Moderate Resolution Imaging Spectroradiometer (LAI-MODIS) (MOD15A2) satellite product in a distributed water budget model over a Mediterranean forested ecosystem of about 2553 km2 for drought assessment at regional scale. The high overestimation of LAI-MODIS compared to field measurements was corrected based on the calibration of high-resolution Satellites Pour l'Observati...

  5. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; Chu, Churngwei; Heckert, Elizabeth; Gibson, Sharon; Heck, Patrick W.

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  6. Possible shift of spectral response function of the MODIS 6.8 μm water vapor channel causing a cold bias of 2–3 K

    OpenAIRE

    Sohn, B. J.; Kim, B.-R.; Lee, S. -S.

    2010-01-01

    The calibration of the Moderate-resolution Imaging Spectroradiometer (MODIS) 6.8 μm water vapor (WV) channel was assessed by comparing Terra/MODIS measurements with the WV channel brightness temperatures equivalent to Infrared Atmospheric Sounding Interferometer (IASI) measurements for June 2007 and December 2007. IASI spectral information was transferred to the Japanese Multifunctional Transport Satellite (MTSAT)-1R WV channel and then to the MODIS WV channel. Results indicate that the MODIS...

  7. Locality of Chlorophyll-A Distribution in the Intensive Study Area of the Ariake Sea, Japan in Winter Seasons based on Remote Sensing Satellite Data

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2015-08-01

    Full Text Available Mechanism of chlorophyll-a appearance and its locality in the intensive study area of the Ariake Sea, Japan in winter seasons is clarified by using remote sensing satellite data. Through experiments with Terra and AQUA MODIS data derived chlorophyll-a concentration and truth data of chlorophyll-a concentration together with meteorological data and tidal data which are acquired for 6 years (winter 2010 to winter 2015, it is found that strong correlation between the chlorophyll-a concentration and tidal height changes. Also it is found that the relations between ocean wind speed and chlorophyll-a concentration. Meanwhile, there is a relatively high correlation between sunshine duration a day and chlorophyll-a concentration. Furthermore, it is found that there are different sources of chlorophyll-a in the three different sea areas of Ariake Sea area in the back, Isahaya bay area, and Kumamoto offshore area.

  8. Progress on Assessing the Impact of Ocean Acidification on Marine Planktonic Calcification using Satellite Analysis, Field Data and Earth System Modeling

    Science.gov (United States)

    Glover, D. M.; Doney, S. C.; Lindsay, K. T.; Lima, I.

    2012-12-01

    Marine planktonic calcifiers such as coccolithophores, foraminifera, and pteropods play a fundamental role in the ocean carbon system, a role that may be modified substantially by rising atmospheric CO2 and climate change. Earlier results have shown ample opportunity for improvement between the new Community Earth System Model, version 1 (CESM, v.1) a variant of the widely used Community Climate System Model (CCSM), and MODIS-Aqua particulate inorganic carbon (PIC) estimates globally. We will present progress towards characterization of the biogeographic niche for marine calcifiers; i.e., the temperature, circulation and seawater chemistry "phase-space" for calcifiers through analysis of coccolithophore field data (MAREDAT). To better constrain the magnitude of ocean acidification and climate change impacts on marine inorganic carbon dynamics we will present a CESM biogeochemical submodel variant with explicit calcifiers (i.e., coccolithophores) developed to better match both satellite and field-based data vis-a-vis particulate CaCO3 distribution.

  9. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability

    Science.gov (United States)

    Saldías, Gonzalo S.; Largier, John L.; Mendes, Renato; Pérez-Santos, Iván; Vargas, Cristian A.; Sobarzo, Marcus

    2016-08-01

    Ocean color imagery from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the Aqua platform is used to characterize the interannual variability of turbid river plumes off central-southern Chile. Emphasis is placed on the influence of climate fluctuations, namely El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Antarctic Oscillation (AAO). Additional satellite data on wind, boat-based hydrographic profiles, and regional climate indices are used to identify the influence of climate variability on the generation of anomalous turbid river plumes. The evolution of salinity at a coastal station on the 90 m isobath between the Itata and Biobío Rivers shows a freshwater surface layer with salinity importance of long-term and high-resolution ocean color observations for studying the temporal evolution of river plumes.

  10. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability

    Science.gov (United States)

    Saldías, Gonzalo S.; Largier, John L.; Mendes, Renato; Pérez-Santos, Iván; Vargas, Cristian A.; Sobarzo, Marcus

    2016-08-01

    Ocean color imagery from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the Aqua platform is used to characterize the interannual variability of turbid river plumes off central-southern Chile. Emphasis is placed on the influence of climate fluctuations, namely El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Antarctic Oscillation (AAO). Additional satellite data on wind, boat-based hydrographic profiles, and regional climate indices are used to identify the influence of climate variability on the generation of anomalous turbid river plumes. The evolution of salinity at a coastal station on the 90 m isobath between the Itata and Biobío Rivers shows a freshwater surface layer with salinity implications of plume events and the importance of long-term and high-resolution ocean color observations for studying the temporal evolution of river plumes.

  11. Validation and empirical correction of MODIS AOT and AE over ocean

    Directory of Open Access Journals (Sweden)

    N. A. J. Schutgens

    2013-09-01

    Full Text Available We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness and AE (Ångström exponent over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against Maritime Aerosol Network (MAN data, suggesting that the spatial coverage of our datasets does not preclude global conclusions. Thus, we develop empirical correction formulae for MODIS AOT and AE that significantly improve agreement of MODIS and AERONET observations. We show these correction formulae to be robust. Finally, we study random errors in the corrected MODIS AOT and AE and show that they mainly depend on AOT itself, although small contributions are present due to wind speed and cloud fraction in AOT random errors and due to AE and cloud fraction in AE random errors. Our analysis yields significantly higher random AOT errors than the official MODIS error estimate (0.03 + 0.05 τ, while random AE errors are smaller than might be expected. This new dataset of bias-corrected MODIS AOT and AE over ocean is intended for aerosol model validation and assimilation studies, but also has consequences as a stand-alone observational product. For instance, the corrected dataset suggests that much less fine mode aerosol is transported across the Pacific and Atlantic oceans.

  12. Evaluation of Ice cloud retrievals using CloudSat/CALIPSO/MODIS/AIRS and EarthCARE

    Science.gov (United States)

    Okamoto, H.; Sato, K.; Hagihara, Y.; Tanaka, K.; Ishimoto, H.; Makino, T.; Nishizawa, T.; Sugimoto, N.

    2014-12-01

    We analyzed characterization of ice water content and ice water path and discussed the uncertainties of these quantities. We developed the retrieval algorithms that use CloudSat and CALIOP on CALIPSO and also the one for CloudSat, CALIOP and MODIS on Aqua. There are several possible sources of uncertainties in the retrieved values. The backscattering properties of ice particles have not been yet fully understood in lidar wavelengths. There are also uncertainties in the retrieval results in radar- or lidar-only detected cloud regions where only one of the two sensors detected clouds. Multiple scattering contribution in space-borne lidar observations has not been fully evaluated too. In order to assess and reduce these uncertainties, we introduced two approaches. Analyses of independent physical quantities based on the same physical ice particle models used in the retrievals of microphysics might be useful in order to test consistency in the ice particle model and its scattering properties. Second approach is to develop a new type of ground-based active sensor system. Concerning the first approach, backscattering color ratio of ice particles was derived from the backscattering coefficient at 532nm and 1064nm for periods before and after the change of the laser tilt angle from 0.3 degrees off nadir to 3 degrees off nadir. Then we examined relationships between the retrieved color ratio and the retrieved microphysics and found the relations agreed with the theoretically estimated ones.For the second approach, Multi-Field of view Multiple Scattering Polarization Lidar has been developed to resolve the angular dependence of backscattering and depolarization ratio and has been employed to evaluate the uncertainties in the retrievals. We performed global evaluation of ice microphysical properties and examined relationships between ice microphysics and ice super saturation information from AIRS on Aqua. Finally we introduced the JAXA-ESA satellite mission EarthCARE that

  13. Analysis of the role of urban vegetation in local climate of Budapest using satellite measurements

    Science.gov (United States)

    Pongracz, Rita; Bartholy, Judit; Dezso, Zsuzsanna; Fricke, Cathy

    2016-08-01

    Urban areas significantly modify the natural environment due to the concentrated presence of humans and the associated anthropogenic activities. In order to assess this effect, it is essential to evaluate the relationship between urban and vegetated surface covers. In our study we focused on the Hungarian capital, Budapest, in which about 1.7 million inhabitants are living nowadays. The entire city is divided by the river Danube into the hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Most of the extended urban vegetation, i.e., forests are located in the western Buda side. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. For this purpose, data available from sensor MODIS (Moderate Resolution Imaging Spectroradiometer) of NASA satellites (i.e., Terra and Aqua) are used. First, the climatological effects of forests on the urban heat island intensity are evaluated. Then, we also aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on vegetation-related sections of the city where the vegetation cover either increased or decreased remarkably.

  14. Calibration improvements for MODIS and VIIRS SWIR spectral bands

    Science.gov (United States)

    Xiong, Xiaoxiong; Angal, Amit; Fulbright, Jon; Lei, Ning; Mu, Qiaozhen; Wang, Zhipeng; Wu, Aisheng

    2015-09-01

    Both MODIS and VIIRS use a solar diffuser (SD) to calibrate their reflective solar bands (RSB), covering wavelengths from 0.41 to 2.3 μm. On-orbit changes of the SD bi-directional reflectance factor (BRF) are tracked by an on-board solar diffuser stability monitor (SDSM). The current SDSM design only covers the spectral range from 0.41 to 0.93 μm. In general, the SD degradation is strongly wavelength-dependent with larger degradation occurring at shorter wavelengths, and the degradation in the SWIR region is expected to be extremely small. As each mission continues, however, the impact due to SD degradation at SWIR needs to be carefully examined and the correction if necessary should be applied in order to maintain the calibration quality. For Terra MODIS, alternative approaches have been developed and used to estimate the SD degradation for its band 5 at 1.24 μm and a time-dependent correction has already been applied to the current level 1B (L1B) collection 6 (C6). In this paper, we present different methodologies that can be used to examine the SD degradation and their applications for both Terra and Aqua MODIS and S-NPP VIIRS SWIR calibration. These methodologies include but not limited to the use of lunar observations, Pseudo Invariant Calibration Sites (PICS), and deep convective clouds (DCC). A brief description of relative approaches and their use is also provided in this paper.

  15. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  16. Dust aerosol optical depth above Sahara and Arabian Peninsula from CALIOP: comparison with MODIS Deep Blue and MISR

    Science.gov (United States)

    Tsamalis, Christoforos; Chédin, Alain

    2013-04-01

    Sahara is the biggest desert of the Earth contributing about half the global dust emissions. Dust aerosols emitted from Sahara are transported to Atlantic Ocean, Mediterranean Sea and Middle East, while they can reach Americas and Europe. The Arabian Peninsula is also an important dust source region. In situ systematic measurements of the aerosol optical depth AOD above desert areas are very sparse due to extreme meteorological conditions. At the same time, retrieving the AOD from space-borne instruments above deserts is less straightforward than over sea or land. As an active instrument, the space-borne two-wavelength lidar CALIOP has the advantage to be far less affected by the desert high albedo in comparison to passive instruments measuring in the visible, while it is able to take measurements during nighttime. CALIOP was launched on board CALIPSO in April 2006 with principal aim to characterize aerosols and clouds vertical distribution on a global scale. Thanks to depolarisation at 532 nm, CALIOP is able to discriminate between dust and other types of aerosols, which generally do not depolarize light. However, being an elastic lidar in its retrieval of the AOD, a crucial assumption about the lidar ratio has to be done. In order to assess the quality of the CALIOP-retrieved AOD (532 nm) above Sahara and Arabian Peninsula we compare it with retrievals from MODIS (Aqua) Deep Blue (550 nm) and MISR (555 nm). For this purpose, the L2 5 km aerosol layer product (version 3.01) is used for the 5-year period June 2006 - May 2011. Only nighttime data are taken into consideration due to better signal to noise ratio and only the aerosols layers with the best quality of discrimination from clouds. The aerosols classes "dust" and "polluted dust" from the L2 product are used and seasonal maps with 1 degree horizontal resolution are established. The choice of seasonal maps permits to overcome the difficulty of CALIOP's low daily spatial coverage (beam diameter of 70 m at the

  17. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  18. Real time retrieval of volcanic cloud particles and SO2 by satellite using an improved simplified approach

    Science.gov (United States)

    Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca

    2016-07-01

    Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.

  19. Aerosol shortwave direct radiative effect and forcing based on MODIS Level 2 data in the Eastern Mediterranean (Crete

    Directory of Open Access Journals (Sweden)

    N. Benas

    2011-12-01

    Full Text Available The shortwave (SW radiation budget was computed on a 10 km × 10 km resolution above FORTH-CRETE AERONET station in Crete, Greece, for the 11-year period from 2000 to 2010. The area is representative of the Eastern Mediterranean region, where air pollution and diminishing water resources are exacerbated by high aerosol loads and climate change. The present study aims to quantify the aerosol direct effect and forcing on the local surface and atmospheric energy budget. A radiative transfer model was used, with climatological data from the Moderate Resolution Imaging Spectroradiometer (MODIS, on board NASA's Terra and Aqua satellites. The instantaneous radiative fluxes were computed for satellite overpass times at the surface, within the atmosphere and at the top of atmosphere (TOA. Downward surface fluxes and aerosol input data were validated against ground measurements. Output fluxes reveal the direct radiative effects of dust events, with instantaneous values reaching up to −215, 139 and −46 Wm−2 at the surface (cooling, within the atmosphere (warming and at TOA (cooling, respectively. Mean monthly values show a decreasing trend of the aerosol direct radiative effect, in agreement with a similar trend in AOT. The analysis of the contribution of anthropogenic and natural aerosol show major peaks of natural aerosol direct effect occurring mainly in spring, while a summer maximum is attributed to anthropogenic aerosol. During their peaks, anthropogenic aerosol forcing can reach values of −24 Wm−2 at the surface, 19 Wm−2 in the atmosphere and over −4 Wm−2 at TOA (monthly mean instantaneous values. The corresponding monthly peak values for natural aerosol are over −20 Wm−2, 12 Wm−2 and −9 Wm−2.

  20. Optimization of MAS and MODIS Polar ocean cloud mask

    OpenAIRE

    Memmen, Sean P.

    2000-01-01

    With the reduction of funding for sea ice reconnaissance flights, the National/Naval Ice Center needs to capitalize on the improvements in satellite technology. Imaging sensors such as AVHRR, DMSP/OLS, SSM/I and RADARSAT have been used to detect the presence of sea ice, but with the exception of SSM/I and RADARSAT, clouds are a major obstacle to viewing the surface. With NASA's development of the Moderate-resolution Imaging Spectroradiometer (MODIS) and MODIS Airborne Simulator (MAS), there i...

  1. A robust method for removal of glint effects from satellite ocean colour imagery

    Directory of Open Access Journals (Sweden)

    R. K. Singh

    2014-12-01

    Full Text Available Removal of the glint effects from satellite imagery for accurate retrieval of water-leaving radiances is a complicated problem since its contribution in the measured signal is dependent on many factors such as viewing geometry, sun elevation and azimuth, illumination conditions, wind speed and direction, and the water refractive index. To simplify the situation, existing glint correction models describe the extent of the glint-contaminated region and its contribution to the radiance essentially as a function of the wind speed and sea surface slope that often lead to a tremendous loss of information with a considerable scientific and financial impact. Even with the glint-tilting capability of modern sensors, glint contamination is severe on the satellite-derived ocean colour products in the equatorial and sub-tropical regions. To rescue a significant portion of data presently discarded as "glint contaminated" and improving the accuracy of water-leaving radiances in the glint contaminated regions, we developed a glint correction algorithm which is dependent only on the satellite derived Rayleigh Corrected Radiance and absorption by clear waters. The new algorithm is capable of achieving meaningful retrievals of ocean radiances from the glint-contaminated pixels unless saturated by strong glint in any of the wavebands. It takes into consideration the combination of the background absorption of radiance by water and the spectral glint function, to accurately minimize the glint contamination effects and produce robust ocean colour products. The new algorithm is implemented along with an aerosol correction method and its performance is demonstrated for many MODIS-Aqua images over the Arabian Sea, one of the regions that are heavily affected by sunglint due to their geographical location. The results with and without sunglint correction are compared indicating major improvements in the derived products with sunglint correction. When compared to the

  2. What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train

    Directory of Open Access Journals (Sweden)

    A. P. Vasilkov

    2010-01-01

    Full Text Available In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS cloud top pressure, we can distinguish between shielding and non-shielding clouds.

    To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR, we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds. The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other.

    The current Total Ozone Mapping Spectrometer (TOMS total column ozone algorithm (that has also been applied to the OMI assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial

  3. Neural Network Technique For: (a) Gap-Filling Of Satellite Ocean Color Observations, And (b) Bridging Multiple Satellite Ocean Color Missions

    Science.gov (United States)

    Nadiga, S.; Krasnopolsky, V.; Bayler, E. J.; Mehra, A.; Kim, H. C.; Behringer, D.

    2015-12-01

    A Neural Network (NN) technique is used for gap-filling of satellite-derived ocean color fields and for bridging multiple satellite ocean color missions by linking ocean color variability, primarily driven by biological processes, with the physical processes of the upper ocean. Satellite-derived surface variable fields, sea-surface temperature (SST), sea-surface height (SSH) and sea-surface salinity (SSS), along with gridded vertical profiles of temperature (T) and salinity (S) from ARGO, are used as signatures of upper-ocean dynamics. The NN technique employs adaptive weights that are tuned using statistical learning (training) algorithms applied to past data sets, providing robustness with respect to random noise, accuracy, fast emulations, and fault-tolerance. This study uses Visible Imaging Infrared Radiometer Suite (VIIRS) ocean color fields, satellite SSS/SSH/SST fields, and gridded vertical profiles of temperature (T) and salinity (S) from ARGO. All data sets were interpolated to the same spatial (one-degree latitude-longitude) grid and temporal resolution (daily) for 2012-2014. The NN technique is trained for two years and tested on the remaining year; however, by rotating the time series, we are able to cover all three years. The NN output are assessed for bias, root-mean-square error (RMSE), and cross-correlations; and a Jacobian is evaluated to estimate the impact of each input (SSH, SSS, SST, T and S) on the NN ocean color estimates. The differences between results from an ensemble of NNs versus a single NN are examined. After training the NN for the VIIRS period, the NN is retrospectively applied to 2005-2012 data, a period covered by other satellite ocean color missions — the Moderate Resolution Imaging Spectroradiometer (MODIS AQUA) and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS).

  4. Trend Analysis of Relatively Large Diatoms Which Appear in the Intensive Study Area of the Ariake Sea, Japan in Winter (2011-2015 based on Remote Sensing Satellite Data

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2015-07-01

    Full Text Available Behavior of relatively large size of diatoms which appear in the Ariake Sea areas, Japan in winter based on remote sensing satellite data is clarified. Through experiments with Terra and AQUA MODIS data derived chlorophyll-a concentration and truth data of chlorophyll-a concentration together with meteorological data and tidal data which are acquired for 5 years (winter 2011 to winter 2015, it is found that strong correlation between the chlorophyll-a concentration and tidal height changes. Also it is found that the relations between ocean wind speed and chlorophyll-a concentration. Meanwhile, there is a relatively high correlation between sunshine duration a day and chlorophyll-a concentration.

  5. Frost Damage Detection in Sugarcane Crop Using Modis Images and Srtm Data

    Science.gov (United States)

    Rudorff, B.; Alves de Aguiar, D.; Adami, M.

    2011-12-01

    potential to detect the impact of climatic effects, such as frost, on crop growth, which is relevant information to evaluate the negative impact on sugarcane production. Thus, the objective of the present study is to detect the impact of the frost occurred on 28 June 2011 in the sugarcane production region of São Paulo state, using MODIS images acquired on board of Terra and Aqua satellites before and after the frost event. Also, Landsat type images were used to map the harvested sugarcane fields up to the frost event based on a sugarcane crop map for year 2011. The remaining sugarcane fields available for harvest in 2011 were monitored with the MODIS images acquired on 17, 19, 27, 28 June and 8 and 9 July, to detect frost damage. Field work was conducted shortly after frost occurrence to identify sugarcane fields with frost damage for training and validation purposes. MODIS images transformed to vegetation indices and morphometric variables extracted from SRTM (Shuttle Radar Topography Mission) data are being analyzed to detect and quantify the damage of the frost from 28 July 2011 on sugarcane crop.

  6. An Overview of the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) Data Products and Availability for Environmental Applications and Global Change Studies

    Science.gov (United States)

    Salomonson, V. V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAACs) or through Direct Broadcast (DB) stations. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.

  7. An Overview of the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) Data Products Status and Availability for Environmental Applications and Global Change Studies

    Science.gov (United States)

    Salomonson, Vincent V.; Houser, Paul (Technical Monitor)

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002. The Aqua spacecraft will operate in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.

  8. MODIS Hotspot Validation over Thailand

    OpenAIRE

    Veerachai Tanpipat; Prayoonyong Nuchaiya; Kiyoshi Honda

    2009-01-01

    To ensure remote sensing MODIS hotspot (also known as active fire products or hotspots) quality and precision in forest fire control and management in Thailand, an increased level of confidence is needed. Accuracy assessment of MODIS hotspots utilizing field survey data validation is described. A quantitative evaluation of MODIS hotspot products has been carried out since the 2007 forest fire season. The carefully chosen hotspots were scattered throughout the country and within the protected ...

  9. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    Science.gov (United States)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far

  10. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    Science.gov (United States)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  11. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    Science.gov (United States)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  12. Primary validation of Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature in the Taiwan Strait%台湾海峡MODIS遥感SST的初步验证

    Institute of Scientific and Technical Information of China (English)

    李雪丁

    2011-01-01

    海表层温度(SST)是一个决定海气相互作用以及生物栖息条件适宜性的海洋环境关键参数,可以通过卫星遥感手段获取,对检验锋面多发、水文条件复杂的近岸区域卫星遥感SST产品的真实性,具有重要意义.本文采用大型海洋环境多层监测浮标获取的SST数据对台湾海峡MODIS遥感SST产品进行检验.结果表明,MODIS遥感与实测SST数据具有很好的一致性,两者的均方根误差为0.51℃,平均偏差为-0.02℃,平均绝对偏差为0.42℃,相关系数为0.988;MODIS遥感与实测SST数据之间可能存在季节性差异,均方根误差以夏季最大.%Sea-surface temperature ( SST) derived from satellite remote sensing is important for the validation of remote sensing SST product in coastal areas, where capricious fronts and complicated hydrology conditions are present. A package of large oceanographic environmental multi-layer observing buoys that record water temperature data were collected to evaluate the accuracy of the Moderate Resolution Imaging Spectroradiometer ( MODIS) SST prod-uct in the Taiwan Strait. The in situ data and the MODIS day-to-day SST data from 2005 to 2007 were downloaded from the United States National Aeronautics and Space Administration (NASA) ocean color website, which is acquired from the Aqua remote sensing satellite; with a spatial resolution of 1 km. The time window of the validation matching was adopted as 1 h. The verification result shows that MODIS SST data and the in situ data fits well with a correlation coefficient of 0. 988, the root mean square (RMS) is 0. 5 1℃, and the mean variation ( AAD) was - 0.02℃, suggesting that the MODIS SST product is adequate for application in studies of the Taiwan Strait. There may be seasonal differences between MODIS SST data and the in situ data, and the RMS was largest in summer. The precision of the MODIS retrieved SST data was higher in the central Taiwan Strait than in the offshore area, and was

  13. MODIS snow cover mapping accuracy in small mountain catchment – comparison between open and forest sites

    Directory of Open Access Journals (Sweden)

    J. Parajka

    2012-03-01

    Full Text Available Numerous global and regional validation studies examined MODIS snow mapping accuracy by using measurements at climate stations, which are mainly at grassy sites. MODIS accuracy in alpine and forested regions is, however, still not well understood. The main objective of this study is to evaluate MODIS (MOD10A1 and MYD10A1 snow cover products in a small experimental catchment by using extensive snow course measurements at open and forest sites. The MODIS accuracy is tested in the Jalovecky creek catchment (Northern Slovakia in the period 2000–2011. The results show that the combined Terra and Aqua images enables snow mapping to an overall accuracy of 91.5%. The accuracy at forested, open and mixed land uses at the Červenec sites is 92.7%, 98.3% and 81.8%, respectively. The use of a 2-day temporal filter enables a significant reduction in the number of days with cloud coverage and an increase in overall snow mapping accuracy. In total, the 2-day temporal filter decreases the number of cloudy days from 61% to 26% and increases the snow mapping accuracy to 94%. The results indicate three possible factors leading to misclassification of snow as land: patchy snow cover, limited MODIS geolocation accuracy and mapping algorithm errors. Out of a total of 27 misclassification cases, patchy snow cover, geolocation issues and mapping errors occur in 12, 12 and 3 cases, respectively.

  14. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Science.gov (United States)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  15. Recent progress of MODIS solar diffuser on-orbit degradation characterization

    Science.gov (United States)

    Chen, H.; Wang, Z.; Sun, J.; Angal, A.; Xiong, X.

    2012-09-01

    An on-board Solar Diffuser (SD) is used for the MODIS reflective solar bands (RSB) calibration. Its on-orbit bidirectional reflectance factor (BRF) degradation is tracked using an on-board Solar Diffuser Stability Monitor (SDSM). The SDSM is a ratioing radiometer with nine detectors, covering wavelengths from 412 nm to 936 nm. During each scheduled SD calibration event, the SDSM makes alternate observations of the Sun and the sunlight reflected by the SD. To best match the SDSM detector signals from its Sun view and SD view, a fix attenuation screen is placed in its Sun view path. This paper provides a brief description of MODIS RSB on-orbit calibration and the use of its on-board SD and SDSM subsystem, including different approaches developed and used to track MODIS SD on-orbit degradation. It reports recent progress made to better characterize MODIS SD on-orbit degradation and to support MODIS Level 1B (L1B) calibration look-up table (LUT) updates for the upcoming collection 6 (C6) reprocessing. Results of both Terra and Aqua SD on-orbit degradation derived from newly improved SDSM Sun view screen vignetting function and response fitting strategy, and their impact on RSB calibration uncertainties are also presented.

  16. Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications

    Science.gov (United States)

    Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia

    2010-01-01

    The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.

  17. Compositing MODIS Terra and Aqua 250m daily surface reflectance data sets for vegetation monitoring

    Science.gov (United States)

    Remote sensing based vegetation Indices have been proven valuable in providing a spatially complete view of crop’s vegetation condition, which also manifests the impact of the disastrous events such as massive flood and drought. VegScape, a web GIS application for crop vegetation condition monitorin...

  18. On the potential of an RST-based analysis of the MODIS-derived chl-a product over Condor seamount and surrounding areas (Azores, NE Atlantic)

    Science.gov (United States)

    Ciancia, Emanuele; Magalhães Loureiro, Clara; Mendonça, Ana; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio; Martins, Ana

    2016-09-01

    Oceanographic cruises have been conducted on the Condor seamount (SW Faial Island, Azores archipelago, NE Atlantic) since 2009 to collect in situ data and understand potential seamount effects on local biodiversity. Satellite data have been concurrently collected to infer the space-time upper-ocean optical property variability and the associated physical processes. The main limitation of this analysis is the persistent and significant cloud coverage above the region that, especially in some seasons, can significantly hinder satellite data availability. This study was meant to test the robust satellite technique (RST) over the Condor seamount, assess its capability to estimate multiyear trends and identify space-time anomalies. To this aim, 11-year MODIS/AQUA level 2-derived chlorophyll-a (chl-a) data were used. Results achieved for October 2010 show, within a large-scale analysis, the presence of well-defined areas of near-surface chl-a anomalies, highlighting the occurrence of a trapping effect due to flow-topography interaction processes. Regarding the Condor area, the chl-a anomalies detected along the eastern side of the seamount were linked to a strong vertical mixing that provided sufficient inorganic nutrients requested for productivity. The achieved results, whose accuracy was also tested through a comparison with in situ data, are consistent with those independently obtained by other authors who described the phytoplankton variability around the Condor seamount. This study shows the high potential of the RST approach to assess the chl-a variability in the space-time domain in oligotrophic regions such as the Azores, allowing the identification of the most important areas to be preserved and/or managed.

  19. On the potential of an RST-based analysis of the MODIS-derived chl-a product over Condor seamount and surrounding areas (Azores, NE Atlantic)

    Science.gov (United States)

    Ciancia, Emanuele; Magalhães Loureiro, Clara; Mendonça, Ana; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio; Martins, Ana

    2016-07-01

    Oceanographic cruises have been conducted on the Condor seamount (SW Faial Island, Azores archipelago, NE Atlantic) since 2009 to collect in situ data and understand potential seamount effects on local biodiversity. Satellite data have been concurrently collected to infer the space-time upper-ocean optical property variability and the associated physical processes. The main limitation of this analysis is the persistent and significant cloud coverage above the region that, especially in some seasons, can significantly hinder satellite data availability. This study was meant to test the robust satellite technique (RST) over the Condor seamount, assess its capability to estimate multiyear trends and identify space-time anomalies. To this aim, 11-year MODIS/AQUA level 2-derived chlorophyll-a (chl-a) data were used. Results achieved for October 2010 show, within a large-scale analysis, the presence of well-defined areas of near-surface chl-a anomalies, highlighting the occurrence of a trapping effect due to flow-topography interaction processes. Regarding the Condor area, the chl-a anomalies detected along the eastern side of the seamount were linked to a strong vertical mixing that provided sufficient inorganic nutrients requested for productivity. The achieved results, whose accuracy was also tested through a comparison with in situ data, are consistent with those independently obtained by other authors who described the phytoplankton variability around the Condor seamount. This study shows the high potential of the RST approach to assess the chl-a variability in the space-time domain in oligotrophic regions such as the Azores, allowing the identification of the most important areas to be preserved and/or managed.

  20. QUANTITATIVE MODELING OF SUSPENDED SEDIMENT IN MIDDLE CHANGJIANG RIVER FROM MODIS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Remote sensing techniques have been widely used to observe bodies of water. Among satellite sensors commonly used for water quality studies, the Moderate-resolution Imaging Spectroradiometer (MODIS) has potential in water quality monitoring, because of its moderate spatial resolution and high temporal resolution. In this paper, the utility of MODIS data for suspended sediment monitoring in the middle Changjiang (Yangtze) River is studied. It is concluded that suspended sediment concentration correlates well with reflectance values (R1-R2)/(Ri+R2) retrieved from MODIS 250m image data (R2=0.72, n=41). Based on this correlation, we obtain the empirical model of suspended sediment concentration in the middle Changjiang River from MODIS. It is shown that it is useful for MODIS data to monitor this parameter of water quality.