WorldWideScience

Sample records for aqua modis reflectance

  1. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  2. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  3. Combining vegetation index and model inversion methods for theextraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Bøgh, Eva

    2007-01-01

    for the inversion of a canopy reflectance model using Terra and Aqua MODIS multi-spectral, multi-temporal, and multi-angle reflectance observations to aid the determination of vegetation-specific physiological and structural canopy parameters. Land cover and site-specific inversion modeling was applied...

  4. MODIS/Aqua Atmosphere Aeronet Subsetting Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Atmosphere Aeronet Subsetting Product (MYDARNSS) consists of MODIS Atmosphere and Ancillary Products subsets that are generated over a number of...

  5. NAMMA MODIS/AQUA AND MODIS/TERRA DEEP BLUE PRODUCTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA MODIS/AQUA and MODIS/TERRA Deep Blue Products dataset is a collection of images depicting the aerosol optical depth derived from the MODIS deep blue...

  6. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index Land Reflectance Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  7. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    Science.gov (United States)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  8. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    Science.gov (United States)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is MODIS 859 nm and VIIRS 862 nm) indicate relatively large differences (UPD = 21.84%). (2) The satellite-derived SPM products obtained using MODIS/Aqua and VIIRS/NPP have a satisfactory

  9. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    Science.gov (United States)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  10. SST, Aqua MODIS, NPP, 0.0125 degrees, Indonesia, Daytime

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  11. MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG (MYD08_D3). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator...

  12. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km (MYD07_L2). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing...

  13. SST, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, Daytime

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  14. MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG (MYD08_E3). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator...

  15. MODIS/Aqua Aerosol 5-Min L2 Swath 10km V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  16. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  17. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath (MYD01) product contains reformatted and packaged raw instrument data. MODIS instrument data, in packetized...

  18. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Chlorophyll (CHL) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  19. SST, Aqua MODIS, NPP, 0.05 degrees, Global, Daytime, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  20. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    Science.gov (United States)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  1. Use of LST images from MODIS/AQUA sensor as an indication of frost occurrence in RS

    Directory of Open Access Journals (Sweden)

    Débora de S. Simões

    2015-10-01

    Full Text Available ABSTRACTAlthough frost occurrence causes severe losses in agriculture, especially in the south of Brazil, the data of minimum air temperature (Tmin currently available for monitoring and predicting frosts show insufficient spatial distribution. This study aimed to evaluate the MDY11A1 (LST – Land Surface Temperature product, from the MODIS sensor on board the AQUA satellite as an estimator of frost occurrence in the southeast of the state of Rio Grande do Sul, Brazil. LST images from the nighttime overpass of the MODIS/AQUA sensor for the months of June, July and August from 2006 to 2012, and data from three conventional weather stations of the National Institute of Meteorology (INMET were used. Consistency was observed between Tmin data measured in weather stations and LST data obtained from the MODIS sensor. According to the results, LSTs below 3 ºC recorded by the MODIS/AQUA sensor are an indication of a favorable scenario to frost occurrence.

  2. SST, Aqua MODIS, NPP, 0.0125 degrees, East US, Day and Night

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  3. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Science.gov (United States)

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  4. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9

  5. MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  6. Global NOAA CoastWatch Chlorophyll Frontal Product from MODIS/Aqua (NCEI Accession 0110333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS/Aqua chlorophyll frontal products: the NOAA Okeanos operational production system produces near real-time chlorophyll frontal products (magnitude and...

  7. SST, Aqua MODIS, NPP, 0.05 degrees, Global, Nighttime (4 microns), Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  8. SST, Aqua MODIS, NPP, 0.0125 degrees, West US, Day time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  9. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day and Night

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  10. Photosynthetic Efficiency of Northern Forest Ecosystems Using a MODIS-Derived Photochemical Reflectance Index (PRI)

    Science.gov (United States)

    Middleton, E. M.; Huemmrich, K. F.; Landis, D. R.; Black, T. A.; Barr, A. G.; McCaughey, J. H.

    2016-01-01

    This study evaluates a direct remote sensing approach from space for the determination of ecosystem photosynthetic light use efficiency (LUE), through measurement of vegetation reflectance changes expressed with the Photochemical Reflectance Index (PRI). The PRI is a normalized difference index based on spectral changes at a physiologically active wavelength (approximately 531 nanometers) as compared to a reference waveband, and is only available from a very few satellites. These include the two Moderate-Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites each of which have a narrow (10-nanometer) ocean band centered at 531 nanometers. We examined several PRI variations computed with candidate reference bands, since MODIS lacks the traditional 570-nanometer reference band. The PRI computed using MODIS land band 1 (620-670 nanometers) gave the best performance for daily LUE estimation. Through rigorous statistical analyses over a large image collection (n equals 420), the success of relating in situ daily tower-derived LUE to MODIS observations for northern forests was strongly influenced by satellite viewing geometry. LUE was calculated from CO2 fluxes (moles per moles of carbon absorbed quanta) measured at instrumented Canadian Carbon Program flux towers in four Canadian forests: a mature fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed deciduous/coniferous forest site in Ontario. All aspects of the viewing geometry had significant effects on the MODIS-PRI, including the view zenith angle (VZA), the view azimuth angle, and the displacement of the view azimuth relative to the solar principal plane, in addition to illumination related variables.Nevertheless, we show that forward scatter sector views (VZA, 16 degrees-45 degrees) provided the strongest relationships to daily LUE, especially those collected in the early afternoon by Aqua (r squared = 0.83, RMSE (root mean square error) equals 0

  11. MODIS/Aqua Aerosol 5-Min L2 Swath 10km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Aerosol 5-Min L2 Swath 10km (MYD04_L2) product continues to provide full global coverage of aerosol properties from the Dark Target (DT) and Deep Blue...

  12. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilstone, G.H.; Lotliker, A.A; Miller, P.I.; Ashraf, P.M.; SrinivasaKumar, T.; Suresh, T.; Ragavan, B.R.; Menon, H.B.

    applied to Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) data against in situ measurements. Ocean Colour 3 band ratio (OC3M), Garver-Siegel-Maritorena Model (GSM) and Generalized Inherent Optical Property (GIOP) Chl-a algorithms were...

  13. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  14. MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  15. MODIS/Aqua Aerosol Cloud Water Vapor Ozone Monthly L3 Global 1Deg CMG V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  16. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  17. Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets

    Science.gov (United States)

    Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.

    2004-12-01

    MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.

  18. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Night time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  19. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  20. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Night time (4 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  1. Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa

    DEFF Research Database (Denmark)

    Horion, Stéphanie; Bergamino, N; Stenuite, S

    2010-01-01

    the MODIS-Aqua sensor. Standard MODIS Aqua Ocean Color products were found to not provide a suitable calibration for high altitude lakes such as the Lake Tanganyika. An optimization of the extraction process and the validation of the dataset were performed with independent sets of in situ measurements. Our......Lake Tanganyika is one of the world's great freshwater ecosystems. In recent decades its hydrodynamic characteristics have undergone important changes that have had consequences on the lake's primary productivity. The establishment of a long-term Ocean Color dataset for Lake Tanganyika...

  2. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Directory of Open Access Journals (Sweden)

    J. F. Burkhart

    2017-07-01

    Full Text Available Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS bidirectional reflectance distribution function (BRDF/albedo (MCD43 algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS. The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  3. Calibration of the DSCOVR EPIC Visible and NIR Channels using MODIS Terra and Aqua Data and EPIC Lunar Observations

    Science.gov (United States)

    Geogdzhayev, Igor V.; Marshak, Alexander

    2018-01-01

    The unique position of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) at the Lagrange 1 point makes an important addition to the data from currently operating low Earth orbit observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar-orbiting radiometers. Moderate Resolution Imaging Spectroradiometer (MODIS) is a natural choice for such comparison due to its well-established calibration record and wide use in remote sensing. We use MODIS Aqua and Terra L1B 1km reflectances to infer calibration coefficients for four EPIC visible and NIR channels: 443, 551, 680 and 780 nm. MODIS and EPIC measurements made between June 2015 and 2016 are employed for comparison. We first identify favorable MODIS pixels with scattering angle matching temporarily collocated EPIC observations. Each EPIC pixel is then spatially collocated to a subset of the favorable MODIS pixels within 25 km radius. Standard deviation of the selected MODIS pixels as well as of the adjacent EPIC pixels is used to find the most homogeneous scenes. These scenes are then used to determine calibration coefficients using a linear regression between EPIC counts/sec and reflectances in the close MODIS spectral channels. We present thus inferred EPIC calibration coefficients and discuss sources of uncertainties. The lunar EPIC observations are used to calibrate EPIC O2 absorbing channels (688 and 764 nm), assuming that there is a small difference between moon reflectances separated by approx.10 nm in wavelength provided the calibration factors of the red (680 nm) and near-IR (780 nm) are known from comparison between EPIC and MODIS.

  4. Validation of JAXA/MODIS Sea Surface Temperature in Water around Taiwan Using the Terra and Aqua Satellites

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2010-01-01

    Full Text Available The research vessel-based Conductivity Temperature Depth profiler (CTD provides underwater measurements of the bulk sea surface temperature (SST at the depths of shallower than 5 m. The CTD observations of the seas around Taiwan provide useful data for comparison with SST of MODIS (Moderate Resolution Imaging Spectroradiometers aboard Aqua and Terra satellites archived by JAXA (Japan Aerospace Exploration Agency. We produce a high-resolution (1 km MODIS SST by using Multi-Channel SST (MCSST algorithm. There were 1516 cloud-free match-up data pairs of MODIS SST and in situ measurements during the period from 2003 - 2005. The difference of the root mean square error (RMSE of satellite observations from each platform during the day and at night was: 0.88°C in Aqua daytime, 0.71°C in Aqua nighttime, 0.71°C in Terra daytime, and 0.60°C in Terra nighttime. The total analysis of MODIS-derived SST shows good agreement with a bias of 0.03°C and RMSE of 0.75°C. The analyses indicate that the bias of Aqua daytime was always positive throughout the year and the large RMSE should be attributed to the large positive bias (0.45°C under diurnal warming. It was also found that the bias of Terra daytime was usually negative with a mean bias of -0.41°C; its large RMSE should be treated with care because of low solar radiation in the morning.

  5. Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations

    Directory of Open Access Journals (Sweden)

    I. V. Geogdzhayev

    2018-01-01

    Full Text Available The unique position of the Deep Space Climate Observatory (DSCOVR Earth Polychromatic Imaging Camera (EPIC at the Lagrange 1 point makes an important addition to the data from currently operating low Earth orbit observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar-orbiting radiometers. Moderate Resolution Imaging Spectroradiometer (MODIS is a natural choice for such comparison due to its well-established calibration record and wide use in remote sensing. We use MODIS Aqua and Terra L1B 1 km reflectances to infer calibration coefficients for four EPIC visible and NIR channels: 443, 551, 680 and 780 nm. MODIS and EPIC measurements made between June 2015 and 2016 are employed for comparison. We first identify favorable MODIS pixels with scattering angle matching temporarily collocated EPIC observations. Each EPIC pixel is then spatially collocated to a subset of the favorable MODIS pixels within 25 km radius. Standard deviation of the selected MODIS pixels as well as of the adjacent EPIC pixels is used to find the most homogeneous scenes. These scenes are then used to determine calibration coefficients using a linear regression between EPIC counts s−1 and reflectances in the close MODIS spectral channels. We present thus inferred EPIC calibration coefficients and discuss sources of uncertainties. The lunar EPIC observations are used to calibrate EPIC O2 absorbing channels (688 and 764 nm, assuming that there is a small difference between moon reflectances separated by  ∼  10 nm in wavelength and provided the calibration factors of the red (680 nm and NIR (780 nm are known from comparison between EPIC and MODIS.

  6. MODIS-Aqua Reveals Evolving Phytoplankton Community Structure During the Arabian Sea Northeast Monsoon

    Science.gov (United States)

    Werdell, P. Jeremy; Roesler, Collin S.; Goes, Joaquim I.

    2016-01-01

    Applying a bio-optical model designed to identify the mixotrophic dinoflagellate Noctiluca miliaris to MODIS-Aqua revealed (1) patterns in its spatial distribution not previously seen (including its appearance in places not previously sampled), and (2) the surprising disassociation of total chlorophyll biomass with the presence of N. miliaris.

  7. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  8. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  9. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  10. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  11. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  12. MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km (MYD06_L2) product consists of cloud optical and physical parameters. These parameters are derived using remotely...

  13. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  14. U.S. West Coast MODIS Aqua High Resolution CHLA Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  15. U.S. West Coast MODIS Aqua High Resolution SST Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  16. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  17. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  18. Remote Sensing Reflectance at 667 nm , Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures the remote sensing reflectance (Rrs) at 667nm. This can be used to view very high concentrations of phytoplankton in the very surface of the water.

  19. Remote Sensing Reflectance at 667 nm, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures the remote sensing reflectance (Rrs) at 667nm. This can be used to view very high concentrations of phytoplankton in the very surface of the water.

  20. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  1. MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V041

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11C2.041 dataset was decommissioned as of March 1, 2018. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily L3...

  2. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  3. MODIS/Aqua Clear Radiance Statistics Indexed to Global Grid 5-Min L2 Swath 10km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Clear Radiance Statistics Indexed to Global Grid 5-Min L2 Swath 10km (MYDCSR_G) provides a variety of statistical measures that characterize observed...

  4. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition1B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  5. Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique

    Science.gov (United States)

    Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra

    2016-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.

  6. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Ed2A-NoSW)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  7. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  8. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    Science.gov (United States)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  9. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua

    Science.gov (United States)

    Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; Yang, Ping; Ridgway, William L.; Riedi, Jérôme

    2018-01-01

    The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases–daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel’s retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant. PMID:29657349

  10. Evaluation of monthwise and overall trends of AOD over Indian cities using MODIS Aqua and Terra retrievals

    Science.gov (United States)

    Banerjee, Subhasis; Ghosh, Sanjay

    2016-07-01

    Atmospheric aerosols have been shown to have profound impact on climate system and human health. Regular and systematic monitoring of ambient air is thus necessary in order to asses its impact. There are several ground based stations worldwide employed in this service but still their numbers are inadequate and it is even almost impossible to have such stations at difficult geographical terrains and take measurement throughout the year. Aerosol optical depth or AOD, which is a measure of extinction of incoming solar radiation, serves as proxy to atmospheric aerosol loading. Various sensors onboard different satellites take routine measurement of AOD throughout the year. Satellite based AOD is used in many studies due to their wide coverage and availability for a longer time period. Satellite measures reflected solar radiation at the top of the atmosphere. Column integrated value of aerosol are routinely estimated from those measurements using suitable inversion algorithms. MODIS instrument onboard Aqua and Terra satellites of Earth Observing System takes routine measurement in wide spectral range. We used those data to evaluate trend of AOD over almost fifty Indian cities having population more than a million. The cities we have chosen spread over almost entire length and breadth of the country. Few such studies have already been conducted using MODIS data. They typically used level 3 data. Since Level 3 data comes in 1x 1 degree gridded form they provide average value over a vast geographical region. We used level 2 dataset to enable us taking smaller region(1/2 x 1/2 degree here) centering the region of our interest . We used seasonal Mann-Kendall (M-K) statistics coupled with Sen's non-parametric slope estimation procedure to estimate monthwise and overall(i.e., yearly trend taking seasonality into account) AOD trend. We used median AOD for each month of every year to discard very high AOD's which we often get due to cloud contamination. Seasonal M-K test takes

  11. Impact of Sensor Degradation on the MODIS NDVI Time Series

    Science.gov (United States)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  12. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    Science.gov (United States)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  13. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery

    International Nuclear Information System (INIS)

    Duan, Hongtao; Ma, Ronghua; Zhang, Yuchao; Feng, Lian; Arthur Loiselle, Steven

    2014-01-01

    Surface concentrations of particulate organic carbon (POC) in shallow inland lakes were estimated using MODIS Aqua data. A power regression model of the direct empirical relationship between POC and the atmospherically Rayleigh-corrected MODIS product (R rc,645 -R rc,1240 )/(R rc,859 -R rc,1240 ) was developed (R 2  = 0.72, RMSE = 35.86 μgL −1 , p < 0.0001, N = 47) and validated (RMSE = 44.46 μgL −1 , N = 16) with field data from 56 lakes in the Middle and Lower reaches of the Yangtze River, China. This algorithm was applied to an 11 year series of MODIS data to determine the spatial and temporal distribution of POC in a wide range of lakes with different trophic and optical properties. The results indicate that there is a general increase in minimum POC concentrations in lakes from middle to lower reaches of the Yangtze River. The temporal dynamics of springtime POC in smaller lakes were found to be influenced by local meteorological conditions, in particular precipitation and wind speed, while larger lakes were found to be more sensitive to air temperature. (letter)

  14. The MODIS Cloud Optical and Microphysical Products: Collection 6 Up-dates and Examples From Terra and Aqua

    Science.gov (United States)

    Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin G.; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; hide

    2016-01-01

    The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties(optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations.The C6 algorithm changes collectively can result in significant changes relative to C5,though the magnitude depends on the dataset and the pixels retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud opticalproperty datasets, other MODIS cloud datasets are discussed when relevant.

  15. Radiometric Evaluation of SNPP VIIRS Band M11 via Sub-Kilometer Intercomparison with Aqua MODIS Band 7 over Snowy Scenes

    Directory of Open Access Journals (Sweden)

    Mike Chu

    2018-03-01

    Full Text Available A refined intersensor comparison study is carried out to evaluate the radiometric stability of the 2257 nm channel (M11 of the first Visible Infrared Imaging Radiometer Suite (VIIRS aboard the Suomi National Polar-orbiting Partnership (SNPP satellite. This study is initiated as part of the examination into the performance of key shortwave infrared (SWIR bands for SNPP VIIRS ocean color data processing and applications, with Band M11 playing key role over turbid and inland waters. The evaluation utilizes simultaneous nadir overpasses (SNOs to compare SNPP VIIRS Band M11 against Band 7 of the MODerate-resolution Imaging Spectroradiometer (MODIS in the Aqua satellite over concurrently observed scenes. The standard result of the radiance comparison is a seemingly uncontrolled and inconsistent time series unsuitable for further analyses, in great contrast to other matching band-pairs whose radiometric comparisons are typically stable around 1.0 within 1% variation. The mismatching relative spectral response (RSR between the two respective bands, with SNPP VIIRS M11 at 2225 to 2275 nm and Aqua MODIS B7 at 2125 to 2175 nm, is demonstrated to be the cause of the large variation because of the different dependence of the spectral responses of the two bands over identical scenes. A consistent radiometric comparison time series, however, can be extracted from SNO events that occur over snowy surfaces. A customized selection and analysis procedure successfully identifies the snowy scenes within the SNO events and builds a stable comparison time series. Particularly instrumental for the success of the comparison is the use of the half-kilometer spatial resolution data of Aqua MODIS B7 that significantly enhances the statistics. The final refined time series of Aqua MODIS B7 radiance over the SNPP VIIRS M11 radiance is stable at around 0.39 within 2.5% showing no evidence of drift. The radiometric ratio near 0.39 suggests the strong presence of medium

  16. Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; hide

    2014-01-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on

  17. eMODIS: A User-Friendly Data Source

    Science.gov (United States)

    Jenkerson, Calli B.; Maiersperger, Thomas; Schmidt, Gail

    2010-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center is generating a suite of products called 'eMODIS' based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). With a more frequent repeat cycle than Landsat and higher spatial resolutions than the Advanced Very High Resolution Spectroradiometer (AVHRR), MODIS is well suited for vegetation studies. For operational monitoring, however, the benefits of MODIS are counteracted by usability issues with the standard map projection, file format, composite interval, high-latitude 'bow-tie' effects, and production latency. eMODIS responds to a community-specific need for alternatively packaged MODIS data, addressing each of these factors for real-time monitoring and historical trend analysis. eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5 Atmospherically Corrected Surface Reflectance production code and USGS EROS MODIS Direct Broadcast System (DBS) software to create surface reflectance and Normalized Difference Vegetation Index (NDVI) products. eMODIS is produced over the continental United States and over Alaska extending into Canada to cover the Yukon River Basin. The 250-meter (m), 500-m, and 1,000-m products are delivered in Geostationary Earth Orbit Tagged Image File Format (Geo- TIFF) and composited in 7-day intervals. eMODIS composites are projected to non-Sinusoidal mapping grids that best suit the geography in their areas of application (see eMODIS Product Description below). For eMODIS products generated over the continental United States (eMODIS CONUS), the Terra (from 2000) and Aqua (from 2002) records are available and continue through present time. eMODIS CONUS also is generated in an expedited process that delivers a 7-day rolling composite

  18. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 2002 on board the Aqua satellite platform (a...

  19. Harmful Algal Blooms in the Mississippi Sound and Mobile Bay: Using MODIS Aqua and In Situ Data for HABs in the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Holiday, Dan; Carter, Gregory; Gould, Richard W; MacIntyre, Hugh

    2007-01-01

    ... 2006 along wi concurrent MODIS Aqua weekly composite or same-day imagery. In situ or satellite-derived water properties included surface temperature, salinity, Chla, TSS, CDOM, and nutrient levels...

  20. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003 (OMMYDCLD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  1. Condition of red tide appearance in Wakasa Bay based on Terra, Aqua/MODIS images

    Science.gov (United States)

    Aoyama, Takashi; Oya, Hiroshi

    2006-12-01

    Since June, 2004, studies on triggering factors of the red tide have been carried out in Awara Space Radio Observatory (ASRO), Fukui University of Technology utilizing directly received data of MODIS on the Terra and Aqua satellites which have been acquired in ASRO. Preliminary results of the data analyses for the period from July, 2001 to April, 2005 indicate conditions, for the appearance of the red tide bloom in Wakasa bay as follows: (1) the threshold amount of chlorophyll-a is close to 1.5mg/m 3, (2) the range of sea surface temperature (SST) is limited in a range from 12 to 20 °C and (3) the period of sunlit time in spring is also a significantly sensitive factor. We propose here to utilize MODIS band1 images corresponding to a red band with spatial resolution of 250m together with NDVI (Normalized Difference Vegetation Index) images which has also spatial resolution of 250m, for the confirmation of the red tide. The problem of coincidence between colored region due to SS (Suspended Sediment) and red tide region using only band1 of MODIS, has been solved by using NDVI images in addition to band1 images together as two dimensional diagram.

  2. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for directional reflectance retrieval

    Science.gov (United States)

    Che, X.; Feng, M.; Sexton, J. O.; Channan, S.; Yang, Y.; Song, J.

    2017-12-01

    Reflection of solar radiation from Earth's surface is the basis for retrieving many higher-level terrestrial attributes such as vegetation indices and albedo. However, reflectance varies with the illumination and viewing geometry of observation (Bi-directional Reflectance Distribution Function (BRDF)) even with constant surface properties, and correcting for these artifacts increases precision of comparisons of images and time series acquired from satellites with different illumination and observation geometries. The operational MODIS processing inverts MODIS BRDF/Albedo Model Parameters (MCD43A1) to retrieve directional reflectance at any solar and view angles, and recently the MCD43A1 (Collection 6) was updated and distributed. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance compared to Collection 5 and tested whether changes in the land surface change over a 16-day composite period affect time series of directional reflectance. Correcting the Terra MODIS daily Surface Reflectance (MOD09GA) to the illumination and view geometries of coincidental Aqua MODIS daily Surface Reflectance (MYD09GA), MCD43A4 Collection 6 and Landsat-5 TM imagery show that the BRDF-corrected results using MCD43A1 Collection 6 hold a higher consistency with higher R2 (0.63 0.955), the slopes close to unity (0.718 0.955) and the lower RMSD (0.422 3.142) and MAE (0.282 1.735) reduced by about 10% than Collection 5. A simple parameter calibration to evaluate the variability of the roughness (R) and the volumetric (V) BRDF parameters for MCD43A1 Collection 6 shows that the assumption of stable land surface characteristic over 16-days composite period, used for BRDF parameters inversion, is plausible in spite of small improvement of directional reflectance and BRDF parameters time series. The larger fluctuations for the MCD43A1 Collection 6 do not have a discernable impact on the reflectance time series. All of these results shows that MCD43A1 Collection

  3. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  4. Validasi Algoritma Estimasi konsentrasi Klorofil-a dan Padatan Tersuspensi Menggunakan Citra Terra dan Aqua Modis dengan Data In situ (Studi Kasus : Perairan Selat Makassar

    Directory of Open Access Journals (Sweden)

    Endang Prinina

    2017-01-01

    Full Text Available Klorofil-a dan Padatan Tersuspensi (TSS merupakan parameter fisik kualitas perairan. Pigmen klorofil-a memiliki daya serap yang tinggi pada gelombang tampak biru dan merah. TSS merupakan zat padatan sedimentasi dari aliran sungai yang membawa material-material organik maupun anorganik. Kandungan TSS yang tinggi sangat mengganggu proses fotosintesis pada fitoplankton yang merupakan produsen penghasil zat klorofil-a. Sehingga TSS juga mampu menyerap gelombang tampak. Kemampuan klorofil-a dan TSS dalam menyerap gelombang tampak dapat di amati dengan menggunakan teknologi penginderaan jauh. Pemanfaatan teknologi ini membutuhkan algoritma dalam menentukan nilai estimasi konsentrasi klorofil-a dan TSS. Penelitian ini menggunakan citra Terra dan Aqua MODIS. Penelitian ini bertujuan untuk memvalidasi hasil algoritma klorofil-a dan TSS yang telah ada dalam perangkat lunak SeaDAS 7.3.1. Dari hasil penelitian ini didapatkan koreksi atmosfer terbaik dalam pendugaan klorofil-a dan TSS yaitu koreksi atmosfer MUMM. Dari hasil pemetaan klorofil-a dan TSS menghasilkan nilai NMAE sebesar 158,34% dan 65,28%. Hal ini menunjukkan bahwa algoritma empiris ini tidak dapat diterapkan pada Selat Makassar. Sebaran klorofil-a terendah sebesar 0,105 µg/l dan tertinggi sebesar 0,783 µg/l pada citra Terra MODIS. Sedangkan sebaran TSS terendah 0,02 mg/l dan tertinggi 6,88 mg/l pada citra Terra MODIS. Citra Terra MODIS lebih baik dalam pendugaan klorofil-a dan TSS dengan menggunakan algoritma empiris di SeaDAS 7.3.1 daripada menggunakan citra Aqua MODIS.

  5. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS

    Science.gov (United States)

    Wei, Jing; Sun, Lin; Huang, Bo; Bilal, Muhammad; Zhang, Zhaoyang; Wang, Lunche

    2018-02-01

    The objective of this study is to evaluate typical aerosol optical depth (AOD) products in China, which experienced seriously increasing atmospheric particulate pollution. For this, the Aqua-MODerate resolution Imaging Spectroradiometer (MODIS) AOD products (MYD04) at 10 km spatial resolution and Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) AOD product at 6 km resolution for different Quality Flags (QF) are obtained for validation against AErosol RObotic NETwork (AERONET) AOD measurements during 2013-2016. Results show that VIIRS EDR similarly Dark Target (DT) and MODIS DT algorithms perform worse with only 45.36% and 45.59% of the retrievals (QF = 3) falling within the Expected Error (EE, ±(0.05 + 15%)) compared to the Deep Blue (DB) algorithm (69.25%, QF ≥ 2). The DT retrievals perform poorly over the Beijing-Tianjin-Hebei (BTH) and Yangtze-River-Delta (YRD) regions, which significantly overestimate the AOD observations, but the performance is better over the Pearl-River-Delta (PRD) region than DB retrievals, which seriously under-estimate the AOD loadings. It is not surprising that the DT algorithm performs better over vegetated areas, while the DB algorithm performs better over bright areas mainly depends on the accuracy of surface reflectance estimation over different land use types. In general, the sensitivity of aerosol to apparent reflectance reduces by about 34% with an increasing surface reflectance by 0.01. Moreover, VIIRS EDR and MODIS DT algorithms perform overall better in the winter as 64.53% and 72.22% of the retrievals are within the EE but with less retrievals. However, the DB algorithm performs worst (57.17%) in summer mainly affected by the vegetation growth but there are overall high accuracies with more than 62% of the collections falling within the EE in other three seasons. Results suggest that the quality assurance process can help improve the overall data quality for MYD04 DB retrievals, but it is

  6. Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets.

    Science.gov (United States)

    Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanré, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika

    2005-04-01

    Understanding the impact of aerosols on the earth's radiation budget and the long-term climate record requires consistent measurements of aerosol properties and radiative fluxes. The Clouds and the Earth's Radiant Energy System (CERES) Science Team combines satellite-based retrievals of aerosols, clouds, and radiative fluxes into Single Scanner Footprint (SSF) datasets from the Terra and Aqua satellites. Over ocean, two aerosol products are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) using different sampling and aerosol algorithms. The primary, or M, product is taken from the standard multispectral aerosol product developed by the MODIS aerosol group while a simpler, secondary [Advanced Very High Resolution Radiometer (AVHRR) like], or A, product is derived by the CERES Science Team using a different cloud clearing method and a single-channel aerosol algorithm. Two aerosol optical depths (AOD), τA1 and τA2, are derived from MODIS bands 1 (0.644 μm) and 6 (1.632 μm) resembling the AVHRR/3 channels 1 and 3A, respectively. On Aqua the retrievals are made in band 7 (2.119 μm) because of poor quality data from band 6. The respective Ångström exponents can be derived from the values of τ. The A product serves as a backup for the M product. More importantly, the overlap of these aerosol products is essential for placing the 20+ year heritage AVHRR aerosol record in the context of more advanced aerosol sensors and algorithms such as that used for the M product.This study documents the M and A products, highlighting their CERES SSF specifics. Based on 2 weeks of global Terra data, coincident M and A AODs are found to be strongly correlated in both bands. However, both domains in which the M and A aerosols are available, and the respective τ/α statistics significantly differ because of discrepancies in sampling due to differences in cloud and sun-glint screening. In both aerosol products, correlation is observed between the retrieved

  7. The comparison of MODIS-Aqua (C5 and CALIOP (V2 & V3 aerosol optical depth

    Directory of Open Access Journals (Sweden)

    J. Redemann

    2012-03-01

    Full Text Available We assess the consistency between instantaneously collocated level-2 aerosol optical depth (AOD retrievals from MODIS-Aqua (C5 and CALIOP (Version 2 & 3, comparing the standard MODIS AOD (MYD04_L2 data to the AOD calculated from CALIOP aerosol extinction profiles for both the previous release (V2 and the latest release (V3 of CALIOP data. Based on data collected in January 2007, we investigate the most useful criteria for screening the MODIS and CALIOP retrievals to achieve the best agreement between the two data sets. Applying these criteria to eight months of data (Jan, Apr, Jul, Oct 2007 and 2009, we find an order of magnitude increase for the CALIOP V3 data density (by comparison to V2, that is generally accompanied by equal or better agreement with MODIS AOD. Differences in global, monthly mean, over-ocean AOD (532 nm between CALIOP and MODIS range between 0.03 and 0.04 for CALIOP V3, with CALIOP generally biased low, when all available data from both sensors are considered. Root-mean-squares (RMS differences in instantaneously collocated AOD retrievals by the two instruments are reduced from values ranging between 0.14 and 0.19 using the unscreened V3 data to values ranging from 0.09 to 0.1 for the screened data. A restriction to scenes with cloud fractions less than 1% (as defined in the MODIS aerosol retrievals generally results in improved correlation (R2>0.5, except for the month of July when correlations remain relatively lower. Regional assessments show hot spots in disagreement between the two sensors in Asian outflow during April and off the coast of South Africa in July.

  8. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 for Directional Reflectance Retrieval

    Directory of Open Access Journals (Sweden)

    Xianghong Che

    2017-11-01

    Full Text Available Measurements of solar radiation reflected from Earth’s surface are the basis for calculating albedo, vegetation indices, and other terrestrial attributes. However, the “bi-directional” geometry of illumination and viewing (i.e., the Bi-directional Reflectance Distribution Function (BRDF impacts reflectance and all variables derived or estimated based on these data. The recently released MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 dataset enables retrieval of directional reflectance at arbitrary solar and viewing angles, potentially increasing precision and comparability of data collected under different illumination and observation geometries. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance and compared the daily Collection 6 retrievals to those of MCD43A1 Collection 5, which are retrieved on an eight-day basis. Correcting MODIS-based estimates of surface reflectance from the illumination and viewing geometry of the Terra satellite (MOD09GA to that of the MODIS Aqua (MYD09GA overpass, as well as MCD43A4 Collection 6 and Landsat-5 TM images show that the BRDF correction of MCD43A1 Collection 6 results in greater consistency among datasets, with higher R2 (0.63–0.955, regression slopes closer to unity (0.718–0.955, lower root mean squared difference (RMSD (0.422–3.142, and lower mean absolute error (MAE (0.282–1.735 compared to the Collection 5 data. Smaller levels of noise (observed as high-frequency variability within the time series in MCD43A1 Collection 6 in comparison to Collection 5 corroborates the improvement of BRDF parameters time series. These results corroborates that the daily MCD43A1 Collection 6 product represents the anisotropy of surface features and results in more precise directional reflectance derivation at any solar and viewing geometry than did the previous Collection 5.

  9. Exploring the differences in cloud properties observed by the Terra and Aqua MODIS Sensors

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2009-05-01

    Full Text Available The aerosol-cloud interaction in different parts of the globe is examined here using multi-year statistics of remotely sensed data from two MODIS sensors aboard NASA's Terra (morning and Aqua (afternoon satellites. Simultaneous retrievals of aerosol loadings and cloud properties by the MODIS sensor allowed us to explore morning-to-afternoon variation of liquid cloud fraction (CF and optical thickness (COT for clean, moderately polluted and heavily polluted clouds in different seasons. Data analysis for seven-years of MODIS retrievals revealed strong temporal and spatial patterns in morning-to-afternoon variation of cloud fraction and optical thickness over different parts of the global oceans and the land. For the vast areas of stratocumulus cloud regions, the data shows that the days with elevated aerosol abundance were also associated with enhanced afternoon reduction of CF and COT pointing to the possible reduction of the indirect climate forcing. A positive correlation between aerosol optical depth and morning-to-afternoon variation of trade wind cumulus cloud cover was also found over the northern Indian Ocean, though no clear relationship between the concentration of Indo-Asian haze and morning-to-afternoon variation of COT was established. Over the Amazon region during wet conditions, aerosols are associated with an enhanced convective process in which morning shallow warm clouds are organized into afternoon deep convection with greater ice cloud coverage. Analysis presented here demonstrates that the new technique for exploring morning-to-afternoon variability in cloud properties by using the differences in data products from the two daily MODIS overpasses is capable of capturing some of the major features of diurnal variations in cloud properties and can be used for better understanding of aerosol radiative effects.

  10. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data

    DEFF Research Database (Denmark)

    Fensholt, R.; Sandholt, I.; Proud, Simon Richard

    2010-01-01

    The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geome......The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun......-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS......, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible...

  11. Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Science.gov (United States)

    Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.

    2012-01-01

    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat

  12. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Science.gov (United States)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  13. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  14. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea

    Science.gov (United States)

    Tilstone, Gavin H.; Lotliker, Aneesh A.; Miller, Peter I.; Ashraf, P. Muhamed; Kumar, T. Srinivasa; Suresh, T.; Ragavan, B. R.; Menon, Harilal B.

    2013-08-01

    The use of ocean colour remote sensing to facilitate the monitoring of phytoplankton biomass in coastal waters is hampered by the high variability in absorption and scattering from substances other than phytoplankton. The eastern Arabian Sea coastal shelf is influenced by river run-off, winter convection and monsoon upwelling. Bio-optical parameters were measured along this coast from March 2009 to June 2011, to characterise the optical water type and validate three Chlorophyll-a (Chla) algorithms applied to Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) data against in situ measurements. Ocean Colour 3 band ratio (OC3M), Garver-Siegel-Maritorena Model (GSM) and Generalized Inherent Optical Property (GIOP) Chla algorithms were evaluated. OC3M performed better than GSM and GIOP in all regions and overall, was within 11% of in situ Chla. GSM was within 24% of in situ Chla and GIOP on average was 55% lower. OC3M was less affected by errors in remote sensing reflectance Rrs(λ) and by spectral variations in absorption coefficient (aCDOM(λ)) of coloured dissolved organic material (CDOM) and total suspended matter (TSM) compared to the other algorithms. A nine year Chla time series from 2002 to 2011 was generated to assess regional differences between OC3M and GSM. This showed that in the north eastern shelf, maximum Chla occurred during the winter monsoon from December to February, where GSM consistently gave higher Chla compared to OC3M. In the south eastern shelf, maximum Chla occurred in June to July during the summer monsoon upwelling, and OC3M yielded higher Chla compared to GSM. OC3M currently provides the most accurate Chla estimates for the eastern Arabian Sea coastal waters.

  15. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  16. Remote Sensing of Ecosystem Light Use Efficiency Using MODIS

    Science.gov (United States)

    Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.

    2009-12-01

    Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing

  17. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    OpenAIRE

    Zhang, Hu; Jiao, Ziti; Dong, Yadong; Li, Xiaowen

    2015-01-01

    Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref) and aditional actual MODIS multi-angular observat...

  18. Clear-sky narrowband albedos derived from VIRS and MODIS

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  19. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2015-06-01

    Full Text Available Bidirectional reflectance distribution function (BRDF archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref and aditional actual MODIS multi-angular observations (MCD-obs in four growing periods in 2008 over three tiles were taken as validation data. First, BRDF archetypes in the principal plane were qualitatively compared with the time-series MODIS BRDF product of randomly sampled pixels. Secondly, BRDF archetypes were used to fit MCD-ref, and the average root-mean-squared errors (RMSEs over each tile were examined for these five years. Finally, both BRDF archetypes and the MODIS BRDF were used to fit MCD-obs, and the histograms of the fit-RMSEs were compared. The consistency of the directional reflectance between the BRDF archetypes and MODIS BRDFs in nadir-view, hotspot and entire viewing hemisphere at 30° and 50° solar geometries were also examined. The results confirm that BRDF archetypes are representative of surface reflectance anisotropy for available snow-free MODIS data.

  20. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    Science.gov (United States)

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  1. Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances

    Science.gov (United States)

    Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.

    2003-12-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.

  2. Can MODIS detect trends in aerosol optical depth over land?

    Science.gov (United States)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  3. Retrieval of Secchi disk depth in the Yellow Sea and East China Sea using 8-day MODIS data

    International Nuclear Information System (INIS)

    Yu, D F; Xing, Q G; Lou, M J; Shi, P

    2014-01-01

    Secchi disk depth (SDD), is widely used as an indicator of water clarity. The traditional sampling method is not only time-consuming and labor-intensive but also limited in terms of temporal and spatial coverage. Remote sensing technology may deal with these limitations. In this paper, the applicability of 8-day MODIS-Aqua remote sensing reflectance data with 4 km spatial resolution for estimating water clarity in the Yellow Sea and the East China Sea was investigated. Field data such as Secchi depths were collected from two cruises conducted in the Yellow Sea and the East China Sea from 5 May to 7 June 2009. A three-band algorithm to retrieve SDD was developed based on remote sensing reflectance at bands of 488, 555, and 678 nm, which performed better than single-band model and band ratio algorithm, with a determination coefficient of 0.72 and a mean relative error of 19%. This suggests that 8-day MODIS-Aqua products of remote sensing reflectance could be used to assess water transparency in the study area

  4. Assessment of biases in MODIS surface reflectance due to Lambertian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Robert B [ORNL; SanthanaVannan, Suresh K [ORNL

    2010-08-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  5. A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data

    Directory of Open Access Journals (Sweden)

    Passang Dorji

    2016-06-01

    Full Text Available Knowledge of the concentration of total suspended sediment (TSS in coastal waters is of significance to marine environmental monitoring agencies to determine the turbidity of water that serve as a proxy to estimate the availability of light at depth for benthic habitats. TSS models applicable to data collected by satellite sensors can be used to determine TSS with reasonable accuracy and of adequate spatial and temporal resolution to be of use for coastal water quality monitoring. Thus, a study is presented here where we develop a semi-analytic sediment model (SASM applicable to any sensor with red and near infrared (NIR bands. The calibration and validation of the SASM using bootstrap and cross-validation methods showed that the SASM applied to Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua band 1 data retrieved TSS with a root mean square error (RMSE and mean averaged relative error (MARE of 5.75 mg/L and 33.33% respectively. The application of the SASM over our study region using MODIS-Aqua band 1 data showed that the SASM can be used to monitor the on-going, post and pre-dredging activities and identify daily TSS anomalies that are caused by natural and anthropogenic processes in coastal waters of northern Western Australia.

  6. Assessment of AOD variability over Saudi Arabia using MODIS Deep Blue products

    International Nuclear Information System (INIS)

    Butt, Mohsin Jamil; Assiri, Mazen Ebraheem; Ali, Md. Arfan

    2017-01-01

    The aim of this study is to investigate the variability of aerosol over The Kingdom of Saudi Arabia. For this analysis, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) Aerosol Optical Depth (AOD) product from Terra and Aqua satellites for the years 2000–2013 is used. The product is validated using AERONET data from ground stations, which are situated at Solar Village Riyadh and King Abdullah University of Science and Technology (KAUST) Jeddah. The results show that both Terra and Aqua satellites exhibit a tendency to show the spatial variation of AOD with Aqua being better than Terra to represent the ground based AOD measurements over the study region. The results also show that the eastern, central, and southern regions of the country have a high concentration of AOD during the study period. The validation results show the highest correlation coefficient between Aqua and KAUST data with a value of 0.79, whilst the Aqua and Solar Village based AOD indicates the lowest Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values which are, 0.17 and 0.12 respectively. Furthermore, the Relative Mean Bias (RMB) based analysis show that the DB algorithm overestimates the AOD when using Terra and Solar Village data, while it underestimates the AOD when using Aqua with Solar Village and KAUST data. The RMB value for Aqua and Solar Village data indicates that the DB algorithm is close to normal in the study region. - Highlights: • The significance of aerosol in the Kingdom of Saudi Arabia is addressed. • MODIS (Terra and Aqua), AERONET and ground based sand event data is used. • MODIS DB product is used to prepare annual aerosol maps and monthly AOD variability. • A comparison is made between Terra and Aqua AOD product over bright surface. • MODIS DB AOD product is validated using AERONET data at Solar Village and KAUST. - This research highlighted the aerosol variability over The Kingdom of Saudi Arabia by using Satellite, AERONET

  7. Thermal band image processing on the warm water discharges of nuclear power plants and the drifting of Echizen-Jellyfishes by using terra/aqua-MODIS data

    International Nuclear Information System (INIS)

    Kato, Yoshinobu; Fujita, Yusuke

    2005-01-01

    At the Awara campus (lat. 36.264degN, long, 136.235degE) of Fukui University of Technology, a Terra/Aqua-MODIS receiving system is operated from September, 2003. This paper deals with the thermal band image processing by using the received MODIS data. In chapter 2, we investigate the image representation of the warm water discharges of nuclear power plants located with Wakasa Bay of Fukui Prefecture. In chapter 3, we describe the image processing of the drifting of Echizen-Jellyfishes. The Echizen-Jellyfish, a kind of big jellyfish, whose scientific name is Nemopilema nomurai Kishinouye, appeared in large quantities in 2003 and did serious damage to the fishery in Japan Sea. (author)

  8. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12years (2002-2014) based on Collection 006 MODIS-Aqua data.

    Science.gov (United States)

    Floutsi, A A; Korras-Carraca, M B; Matsoukas, C; Hatzianastassiou, N; Biskos, G

    2016-05-01

    The Mediterranean basin is a region of particular interest for studying atmospheric aerosols due to the large variety of air masses it receives, and its sensitivity to climate change. In this study we use the newest collection (C006) of aerosol optical depth from MODIS-Aqua, from which we also derived the fine-mode fraction and Ångström exponent over the last 12years (i.e., from 2002 to 2014), providing the longest analyzed dataset for this region. The long-term regional optical depth average is 0.20±0.05, with the indicated uncertainty reflecting the inter-annual variability. Overall, the aerosol optical depth exhibits a south-to-north decreasing gradient and an average decreasing trend of 0.0030 per year (19% total decrease over the study period). The correlation between the reported AOD observations with measurements from the ground AERONET stations is high (R=0.76-0.80 depending on the wavelength), with the MODIS-Aqua data being slightly overestimated. Both fine-fraction and Ångström exponent data highlight the dominance of anthropogenic aerosols over the northern, and of desert aerosols over the southern part of the region. Clear intrusions of desert dust over the Eastern Mediterranean are observed principally in spring, and in some cases in winter. Dust intrusions dominate the Western Mediterranean in the summer (and sometimes in autumn), whereas anthropogenic aerosols dominate the sub-region of the Black Sea in all seasons but especially during summer. Fine-mode optical depth is found to decrease over almost all areas of the study region during the 12-year period, marking the decreasing contribution of anthropogenic particulate matter emissions over the study area. Coarse-mode aerosol load also exhibits an overall decreasing trend. However, its decrease is smaller than that of fine aerosols and not as uniformly distributed, underlining that the overall decrease in the region arises mainly from reduced anthropogenic emissions. Copyright © 2016 Elsevier

  9. Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST Using an Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Takuji Waseda

    2013-06-01

    Full Text Available We develop an assimilation method of high horizontal resolution sea surface temperature data, provided from the Moderate Resolution Imaging Spectroradiometer (MODIS-SST sensors boarded on the Aqua and Terra satellites operated by National Aeronautics and Space Administration (NASA, focusing on the reproducibility of the Kuroshio front variations south of Japan in February 2010. Major concerns associated with the development are (1 negative temperature bias due to the cloud effects, and (2 the representation of error covariance for detection of highly variable phenomena. We treat them by utilizing an advanced data assimilation method allowing use of spatiotemporally varying error covariance: the Local Ensemble Transformation Kalman Filter (LETKF. It is found that the quality control, by comparing the model forecast variable with the MODIS-SST data, is useful to remove the negative temperature bias and results in the mean negative bias within −0.4 °C. The additional assimilation of MODIS-SST enhances spatial variability of analysis SST over 50 km to 25 km scales. The ensemble spread variance is effectively utilized for excluding the erroneous temperature data from the assimilation process.

  10. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  11. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    Science.gov (United States)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  12. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    Science.gov (United States)

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for

  13. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence

    KAUST Repository

    Brewin, Robert J W

    2013-09-01

    The Red Sea is a unique marine environment but relatively unexplored. The only available long-term biological dataset at large spatial and temporal scales is remotely-sensed chlorophyll observations (an index of phytoplankton biomass) derived using satellite measurements of ocean colour. Yet such observations have rarely been compared with in situ data in the Red Sea. In this paper, satellite chlorophyll estimates in the Red Sea from the MODIS instrument onboard the Aqua satellite are compared with three recent cruises of in vivo fluorometric chlorophyll measurements taken in October 2008, March 2010 and September to October 2011. The performance of the standard NASA chlorophyll algorithm, and that of a new band-difference algorithm, is found to be comparable with other oligotrophic regions in the global ocean, supporting the use of satellite ocean colour in the Red Sea. However, given the unique environmental conditions of the study area, regional algorithms are likely to fare better and this is demonstrated through a simple adjustment to the band-difference algorithm. © 2013 Elsevier Inc.

  14. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    Science.gov (United States)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  15. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  16. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    Science.gov (United States)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  17. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    Science.gov (United States)

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  18. Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  19. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  20. Evaluation of the MODIS C6 Aerosol Optical Depth Products over Chongqing, China

    Directory of Open Access Journals (Sweden)

    Guangming Shi

    2017-11-01

    Full Text Available The Moderate Resolution Imaging Spectroradiometer (MODIS Collection 6 (C6 aerosol optical depth (AOD products from the 10/3 km Dark Target (DT and Deep Blue (DB algorithms are firstly evaluated using ground observed AODs by the sun photometer in Chongqing, a mountainous mega-city in southwest China. The validation results show that MODIS AODs from 10/3 km DT algorithm are comparable with those of the sun photometer, although there are slight overestimations. However, the DB algorithm substantially underestimates MODIS AODs when comparing with those of the sun photometer. Error analyses imply that the bias of surface reflectance estimation is the main error source for both algorithms. The cloud screening scheme of the DT algorithm is more effective than the DB algorithm. The cloud vicinity effect should be considered in the quality control processes for both of the algorithms. A sensitivity test suggests that in complex terrain area, like Chongqing, the collocation method in the validation of satellite products should be carefully selected according to local circumstances. When comparing the monthly mean AODs of MODIS products with sun photometer observations, it shows that the Terra MODIS AOD products are valid to represent the mean statuses in summer and autumn, but the monthly mean of Aqua MODIS AODs are limited in Chongqing.

  1. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI...... acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008....... It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI...

  2. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development

    Directory of Open Access Journals (Sweden)

    Fábio M. Breunig

    2012-06-01

    Full Text Available Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS. In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120 with the soybean development in two growing seasons (2004-2005 and 2005-2006. To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.Efeitos direcionais introduzem variabilidade na reflectância e na determinação de índices de vegetação, especialmente quando sensores de amplo campo de visada são usados (p.ex., Moderate Resolution Imaging Spectroradiometer - MODIS. Neste estudo, nós avaliamos os efeitos direcionais sobre a reflectância e quatro índices de vegetação (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized

  3. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  4. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    Science.gov (United States)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  5. Chlorophyll-a, Aqua MODIS, OSU DB, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  7. Chlorophyll-a, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  8. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, East US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  9. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  10. Comparison of MODIS and VIIRS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  11. Diffuse Attenuation Coef. K490, Aqua MODIS, 0.125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSU distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  12. Remote sensing of tropospheric total column water vapor: Intercomparison of POLDER, AMSR-E and MODIS retrievals

    Science.gov (United States)

    Riedi, J.; Mcharek, L.; Dubuisson, P.; Parol, F.; Thieuleux, F.

    2013-05-01

    Since December 2004, the CNES Parasol (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) mission has been flying in the A-train with Aqua (NASA) providing more than 5 years of temporally and spatially coincident observations from POLDER, MODIS and AMSRE which enable total column water vapor amount retrievals. We are providing here a temporal and statistical analysis of water vapor near-infrared retrievals from POLDER against MODIS and AMSR-E products derived from nearinfrared, thermal infrared and microwave observations over ocean. A temporal analysis of POLDER official product is conducted in view of AMSR-E and MODIS coincident retrievals over ocean. In a second step, an alternative approach based on the use of simple multilayer perceptron (MLP) neural network (NN) is developed to improve the mathematical parameterization used to retrieve water vapor amount from near-infrared observation. The retrievals are further improved when an estimate of the 910 nm surface reflectance is obtained through interpolation between PARASOL 865 nm and 1020 nm channels. This last improvement now allows for a unified land/ocean retrieval algorithm for PARASOL/POLDER.

  13. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  14. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  15. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    Science.gov (United States)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  16. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    Science.gov (United States)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  17. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2016-02-01

    Full Text Available The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source—a V-grooved blackbody for the Thermal Emissive Bands (TEB. The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 µm channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST at NASA/GSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher brightness temperature for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  18. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.

    2007-01-01

    -sky solar irradiance components, which links a physically based clear-sky model with a neural network version of a rigorous radiative transfer model. The scheme exploits the improved cloud characterization and retrieval capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard...... contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation...... and become unusable above approximately 60° latitude. However, in principle, the scheme can be applied anywhere on the globe, and a synergistic use of MODIS and geostationary satellite datasets may be envisaged for some applications....

  19. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  20. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  1. Surface circulation patterns in the Gulf of California derived from MODIS Aqua 250 m

    Science.gov (United States)

    Martínez-Flores, G.; Salinas-González, F.; Gutiérrez de Velasco-Sanromán, G.; Godínez-Orta, L.

    2009-04-01

    The Gulf of California (GC) is a marginal elongated and semi-enclosed sea located at northwest of Mexico, between the Peninsula of Baja California and the mainland Mexico. The considered area average 150 km in width and 1500 km in length, from the mouth of the Colorado River to Cabo Corrientes, Jalisco. It has a maximum depth of 3600 m at the southern inlet and the northern region average 200 m in deep. The study of superficial circulation patterns in the GC is of interest because its relevance to the mechanisms of transport for distribution of a variety of materials -plankton, contaminants, microalgae, etc.- and its association with areas of sedimentary deposits, zones where there is a higher probability for fishing or related to the presence of certain species of marine life. Recent studies explain the circulation of the GC as a result of the Pacific Ocean's forcing, wind, heat fluxes on the sea surface and the interaction between the flow produced by these agents and bathymetry. The objective of this work was to obtain evidence of the patterns of surface circulation using a spatial resolution of 250 m over a period of two to seven days (depending on cloud cover), which offered images from the MODIS Level 1B. This essay is an attempt to contribute with more information to the understanding of the regional dynamics of the GC and its local influence on the zones bordering the coast. Thus, MODIS Aqua 250 m data was used, to which algorithms were applied in order to enhance the contrast of reflectance levels of these bands (0.620-0.670 and 0.841-0.876 µm) within the marine environment. The results are associated with suspended particulate matter (SPM), which we used as tracers of the surface circulation, using a sequence of images from January 2004 to December 2008. Algorithms for dust and cloud detection were used and incorporated with thermal band images, in which zones of terrigenous contribution by eolian transport were identified. Furthermore, pluvial

  2. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  3. A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations

    Directory of Open Access Journals (Sweden)

    T. A. Jones

    2011-06-01

    Full Text Available Using daily Goddard Chemistry Aerosol Radiation and Transport (GOCART model simulations and columnar retrievals of 0.55 μm aerosol optical thickness (AOT and fine mode fraction (FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS, we estimate the satellite-derived aerosol properties over the global oceans between June 2006 and May 2007 due to black carbon (BC, organic carbon (OC, dust (DU, sea-salt (SS, and sulfate (SU components. Using Aqua-MODIS aerosol properties embedded in the CERES-SSF product, we find that the mean MODIS FMF values for each aerosol type are SS: 0.31 ± 0.09, DU: 0.49 ± 0.13, SU: 0.77 ± 0.16, and (BC + OC: 0.80 ± 0.16. We further combine information from the ultraviolet spectrum using the Ozone Monitoring Instrument (OMI onboard the Aura satellite to improve the classification process, since dust and carbonate aerosols have positive Aerosol Index (AI values >0.5 while other aerosol types have near zero values. By combining MODIS and OMI datasets, we were able to identify and remove data in the SU, OC, and BC regions that were not associated with those aerosol types.

    The same methods used to estimate aerosol size characteristics from MODIS data within the CERES-SSF product were applied to Level 2 (L2 MODIS aerosol data from both Terra and Aqua satellites for the same time period. As expected, FMF estimates from L2 Aqua data agreed well with the CERES-SSF dataset from Aqua. However, the FMF estimate for DU from Terra data was significantly lower (0.37 vs. 0.49 indicating that sensor calibration, sampling differences, and/or diurnal changes in DU aerosol size characteristics were occurring. Differences for other aerosol types were generally smaller. Sensitivity studies show that a difference of 0.1 in the estimate of the anthropogenic component of FMF produces a corresponding change of 0.2 in the anthropogenic component of AOT (assuming a unit value of AOT. This uncertainty would then be passed

  4. SST, Terra MODIS, NPP, 0.05 degrees, Global, Nighttime (4 microns), Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  5. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — This is MODIS Level-1A Near Real Time (NRT) product containing reformatted and packaged raw instrument data. MODIS instrument data, in packetized form, is reversibly...

  6. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  7. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  8. GHRSST Level 2P USA NASA MODIS Aqua SST:1

    Data.gov (United States)

    National Aeronautics and Space Administration — The production of the MODIS L2P data is a joint collaboration between JPL, OBPG and RSMAS. RSMAS is responsible for sea surface temperature algorithm development,...

  9. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data

    Directory of Open Access Journals (Sweden)

    Ran Huang

    2015-07-01

    Full Text Available Air temperature is one of the most important factors in crop growth monitoring and simulation. In the present study, we estimated and mapped daily mean air temperature using daytime and nighttime land surface temperatures (LSTs derived from TERRA and AQUA MODIS data. Linear regression models were calibrated using LSTs from 2003 to 2011 and validated using LST data from 2012 to 2013, combined with meteorological station data. The results show that these models can provide a robust estimation of measured daily mean air temperature and that models that only accounted for meteorological data from rural regions performed best. Daily mean air temperature maps were generated from each of four MODIS LST products and merged using different strategies that combined the four MODIS products in different orders when data from one product was unavailable for a pixel. The annual average spatial coverage increased from 20.28% to 55.46% in 2012 and 28.31% to 44.92% in 2013.The root-mean-square and mean absolute errors (RMSE and MAE for the optimal image merging strategy were 2.41 and 1.84, respectively. Compared with the least-effective strategy, the RMSE and MAE decreased by 17.2% and 17.8%, respectively. The interpolation algorithm uses the available pixels from images with consecutive dates in a sliding-window mode. The most appropriate window size was selected based on the absolute spatial bias in the study area. With an optimal window size of 33 × 33 pixels, this approach increased data coverage by up to 76.99% in 2012 and 89.67% in 2013.

  10. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  11. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD Retrievals Against Ground Sunphotometer Observations Over East Asia

    Science.gov (United States)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-01-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.

  12. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    Science.gov (United States)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-02-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  13. Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is

  14. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  15. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    Science.gov (United States)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  16. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  17. MODIS/Aqua Thermal Anomalies/Fire 5-Min L2 Swath 1km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  18. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  19. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  20. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

    Science.gov (United States)

    Platnick, Steven E.

    2011-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

  1. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Science.gov (United States)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  2. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  3. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM1-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  4. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  5. Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Photosynthetically Available Radiation (PAR) Global Binned Data, reprocesing v2018

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  6. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  7. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  8. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  9. Fluorescence, Aqua MODIS, NPP, 0.05 degrees, West US, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  10. Inter-annual variability of aerosol optical depth over the tropical Atlantic Ocean based on MODIS-Aqua observations over the period 2002-2012

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikolaos

    2013-04-01

    The tropical Atlantic Ocean is affected by dust and biomass burning aerosol loads transported from the western parts of the Saharan desert and the sub-Sahel regions, respectively. The spatial and temporal patterns of this transport are determined by the aerosol emission rates, their deposition (wet and dry), by the latitudinal shift of the Intertropical Convergence Zone (ITCZ) and the prevailing wind fields. More specifically, in summer, Saharan dust aerosols are transported towards the Atlantic Ocean, even reaching the Gulf of Mexico, while in winter the Atlantic Ocean transport takes place in more southern latitudes, near the equator, sometimes reaching the northern parts of South America. In the later case, dust is mixed with biomass burning aerosols originating from agricultural activities in the sub-Sahel, associated with prevailing north-easterly airflow (Harmattan winds). Satellite observations are the appropriate tool for describing this African aerosol export, which is important to atmospheric, oceanic and climate processes, offering the advantage of complete spatial coverage. In the present study, we use satellite measurements of aerosol optical depth at 550nm (AOD550nm), on a daily and monthly basis, derived from MODIS-Aqua platform, at 1ox1o spatial resolution (Level 3), for the period 2002-2012. The primary objective is to determine the pixel-level and regional mean anomalies of AOD550nm over the entire study period. The regime of the anomalies of African export is interpreted in relation to the aerosol source areas, precipitation, wind patterns and temporal variability of the North Atlantic Oscillation Index (NAOI). In order to ensure availability of AOD over the Sahara desert, MODIS-Aqua Deep Blue products are also used. As for precipitation, Global Precipitation Climatology Project (GPCP) data at 2.5ox2.5o are used. The wind fields are taken from the National Center for Environmental Prediction (NCEP). Apart from the regime of African aerosol export

  11. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  12. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    Science.gov (United States)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds

  13. Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba

    Science.gov (United States)

    Antuña-Marrero, Juan Carlos; Cachorro Revilla, Victoria; García Parrado, Frank; de Frutos Baraja, Ángel; Rodríguez Vega, Albeth; Mateos, David; Estevan Arredondo, René; Toledano, Carlos

    2018-04-01

    In the present study, we report the first comparison between the aerosol optical depth (AOD) and Ångström exponent (AE) of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra (AODt) and Aqua (AODa) satellites and those measured using a sun photometer (AODSP) at Camagüey, Cuba, for the period 2008 to 2014. The comparison of Terra and Aqua data includes AOD derived with both deep blue (DB) and dark target (DT) algorithms from MODIS Collection 6. Combined Terra and Aqua (AODta) data were also considered. Assuming an interval of ±30 min around the overpass time and an area of 25 km around the sun photometer site, two coincidence criteria were considered: individual pairs of observations and both spatial and temporal mean values, which we call collocated daily means. The usual statistics (root mean square error, RMSE; mean absolute error, MAE; median bias, BIAS), together with linear regression analysis, are used for this comparison. Results show very similar values for both coincidence criteria: the DT algorithm generally displays better statistics and higher homogeneity than the DB algorithm in the behaviour of AODt, AODa, AODta compared to AODSP. For collocated daily means, (a) RMSEs of 0.060 and 0.062 were obtained for Terra and Aqua with the DT algorithm and 0.084 and 0.065 for the DB algorithm, (b) MAE follows the same patterns, (c) BIAS for both Terra and Aqua presents positive and negative values but its absolute values are lower for the DT algorithm; (d) combined AODta data also give lower values of these three statistical indicators for the DT algorithm; (e) both algorithms present good correlations for comparing AODt, AODa, AODta vs. AODSP, with a slight overestimation of satellite data compared to AODSP, (f). The DT algorithm yields better figures with slopes of 0.96 (Terra), 0.96 (Aqua) and 0.96 (Terra + Aqua) compared to the DB algorithm (1.07, 0.90, 0.99), which displays greater variability. Multi-annual monthly means of

  14. MODIS/Aqua Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  15. MODIS/Aqua Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  16. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    Science.gov (United States)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  17. Analysis, improvement and application of the MODIS leaf area index products

    Science.gov (United States)

    Yang, Wenze

    Green leaf area governs the exchanges of energy, mass and momentum between the Earth's surface and the atmosphere. Therefore, leaf area index (LAI) and fraction of incident photosynthetically active radiation (0.4-0.7 mum) absorbed by the vegetation canopy (FPAR) are widely used in vegetation monitoring and modeling. The launch of Terra and Aqua satellites with the moderate resolution imaging spectroradiometer (MODIS) instrument onboard provided the first global products of LAI and FPAR, derived mainly from an algorithm based on radiative transfer. The objective of this research is to comprehensively evaluate the Terra and Aqua MODIS LAI/FPAR products. Large volumes of these products have been analyzed with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus back-up), snow (snow-free versus snow on the ground) and cloud (cloud-free versus cloudy) conditions. Field validation efforts identified several key factors that influence the accuracy of algorithm retrievals. The strategy of validation efforts guiding algorithm refinements has led to progressively more accurate LAI/FPAR products. The combination of products derived from the Terra and Aqua MODIS sensors increases the success rate of the main radiative transfer algorithm by 10-20 percent over woody vegetation. The Terra Collection 4 LAI data reveal seasonal swings in green leaf area of about 25 percent in a majority of the Amazon rainforests caused by variability in cloud cover and light. The timing and the influence of this seasonal cycle are critical to understanding tropical plant adaptation patterns and ecological processes. The results presented in this dissertation suggest how the product quality has gradually improved largely through the efforts of validation activities. The Amazon case study highlights the utility of these data sets for monitoring global vegetation dynamics. Thus, these results can be seen as a benchmark for evaluation of

  18. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  19. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  20. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  1. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data

    Science.gov (United States)

    Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel

    2009-02-01

    Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration

  2. Overview of CERES Cloud Properties Derived From VIRS AND MODIS DATA

    Science.gov (United States)

    Minis, Patrick; Geier, Erika; Wielicki, Bruce A.; Sun-Mack, Sunny; Chen, Yan; Trepte, Qing Z.; Dong, Xiquan; Doelling, David R.; Ayers, J. Kirk; Khaiyer, Mandana M.

    2006-01-01

    Simultaneous measurement of radiation and cloud fields on a global basis is recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project (Wielicki et al., 1998) began addressing this issue in 1998 with its first broadband shortwave and longwave scanner on the Tropical Rainfall Measuring Mission (TRMM). This was followed by the launch of two CERES scanners each on Terra and Aqua during late 1999 and early 2002, respectively. When combined, these satellites should provide the most comprehensive global characterization of clouds and radiation to date. Unfortunately, the TRMM scanner failed during late 1998. The Terra and Aqua scanners continue to operate, however, providing measurements at a minimum of 4 local times each day. CERES was designed to scan in tandem with high resolution imagers so that the cloud conditions could be evaluated for every CERES measurement. The cloud properties are essential for converting CERES radiances shortwave albedo and longwave fluxes needed to define the radiation budget (ERB). They are also needed to unravel the impact of clouds on the ERB. The 5-channel, 2-km Visible Infrared Scanner (VIRS) on the TRMM and the 36-channel 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua are analyzed to define the cloud properties for each CERES footprint. To minimize inter-satellite differences and aid the development of useful climate-scale measurements, it was necessary to ensure that each satellite imager is calibrated in a fashion consistent with its counterpart on the other CERES satellites (Minnis et al., 2006) and that the algorithms are as similar as possible for all of the imagers. Thus, a set of cloud detection and retrieval algorithms were developed that could be applied to all three imagers utilizing as few channels as possible

  3. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  4. MODIS on-orbit thermal emissive bands lifetime performance

    Science.gov (United States)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  5. Remote Sensing of Radiative and Microphysical Properties of Clouds During TC (sup 4): Results from MAS, MASTER, MODIS, and MISR

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.

    2010-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.

  6. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  7. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  8. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  9. Evaluating MODIS Collection 6 Dark Target Over Water Aerosol Products for Multi-sensor Data Fusion

    Science.gov (United States)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.; Lee, L.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used in aerosol related climate, visibility, and air quality studies for more than a decade. Recently, the MODIS collection 6 (c6) aerosol products from MODIS-Aqua have been released. The reported changes between Collection 5 and Collection 6 include updates in the retrieving algorithms and a new cloud filtering process for the over-ocean products. Thus it is necessary to fully evaluate the collection 6 products for applications that require high quality MODIS aerosol optical depth data, such as operational aerosol data assimilation. The uncertainties in the MODIS c6 DT over ocean products are studied through both inter-comparing with the Multi-angle Imaging Spectroradiometer (MISR) aerosol products and by evaluation against ground truth. Special attention is given to the low bias in MODIS DT products due to the misclassifications of heavy aerosol plumes as clouds. Finally, a quality assured data assimilation grade aerosol optical product is constructed for aerosol data assimilation related applications.

  10. Developing MODIS-based cloud climatologies to aid species distribution modeling and conservation activities

    Directory of Open Access Journals (Sweden)

    Michael William Douglas

    2016-10-01

    Full Text Available WorldClim (Hijmans et al. 2005 has been the de-facto source of basic climatological analyses for most species distribution modeling research and conservation science applications because of its global coverage and fine (<1 km spatial resolution.  However, it has been recognized since its development that there are limitations in data-poor regions, especially with regard to the precipitation analyses.  Here we describe procedures to develop a satellite-based daytime cloudiness climatology that better reflects the variations in vegetation cover in many regions of the globe than do the WorldClim precipitation products.  Moderate Resolution Imaging Spectroradiometer (MODIS imagery from the National Aeronautics and Space Administration (NASA Terra and Aqua sun-synchronous satellites have recently been used to develop multi-year climatologies of cloudiness.  Several procedures exist for developing such climatologies.  We first discuss a simple procedure that uses brightness thresholds to identify clouds.  We compare these results with those from a more complex procedure: the MODIS Cloud Mask product, recently averaged into climatological products by Wilson and Jetz (2016.  We discuss advantages and limitations of both approaches.  We also speculate on further work that will be needed to improve the usefulness of these MODIS-based climatologies of cloudiness. Despite limitations of current MODIS-based climatology products, they have the potential to greatly improve our understanding of the distribution of biota across the globe.  We show examples from oceanic islands and arid coastlines in the subtropics and tropics where the MODIS products should be of special value in predicting the observed vegetation cover.  Some important applications of reliable climatologies based on MODIS imagery products will include 1 helping to restore long-degraded cloud-impacted environments; 2 improving estimations of the spatial distribution of cloud

  11. MODIS/Aqua Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  12. MODIS/Aqua Near Real Time (NRT) Thermal Anomalies/Fire 5-Min L2 Swath 1km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  13. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  14. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  15. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  16. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    Science.gov (United States)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  17. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  18. Improvement in the Characterization of MODIS Subframe Difference

    Science.gov (United States)

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  19. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  20. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  1. Global cloud database from VIRS and MODIS for CERES

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan

    2003-04-01

    The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  2. A Generic Approach for Inversion of Surface Reflectance over Land: Overview, Application and Validation Using MODIS and LANDSAT8 Data

    Science.gov (United States)

    Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.

    2016-01-01

    This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.

  3. Comparison of CERES-MODIS cloud microphysical properties with surface observations over Loess Plateau

    Science.gov (United States)

    Yan, Hongru; Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Sun-Mack, Sunny; Wang, Tianhe; Nakajima, Takashi Y.

    2015-03-01

    To enhance the utility of satellite-derived cloud properties for studying the role of clouds in climate change and the hydrological cycle in semi-arid areas, it is necessary to know their uncertainties. This paper estimates the uncertainties of several cloud properties by comparing those derived over the China Loess Plateau from the MODerate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua by the Clouds and Earth's Radiant Energy System (CERES) with surface observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The comparisons use data from January 2008 to June 2010 limited to single layer and overcast stratus conditions during daytime. Cloud optical depths (τ) and liquid water paths (LWP) from both Terra and Aqua generally track the variation of the surface counterparts with modest correlation, while cloud effective radius (re) is only weakly correlated with the surface retrievals. The mean differences between Terra and the SACOL retrievals are -4.7±12.9, 2.1±3.2 μm and 30.2±85.3 g m-2 for τ, re and LWP, respectively. The corresponding differences for Aqua are 2.1±8.4, 1.2±2.9 μm and 47.4±79.6 g m-2, respectively. Possible causes for biases of satellite retrievals are discussed through statistical analysis and case studies. Generally, the CERES-MODIS cloud properties have a bit larger biases over the Loess Plateau than those in previous studies over other locations.

  4. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

    DEFF Research Database (Denmark)

    Bergamino, N; Horion, Stéphanie; Stenuite, S

    2010-01-01

    dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions...

  5. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day and Night

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  6. MODIS/Aqua Near Real Time (NRT) Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  7. Analysis of Extracting Prior BRDF from MODIS BRDF Data

    OpenAIRE

    Hu Zhang; Ziti Jiao; Yadong Dong; Peng Du; Yang Li; Yi Lian; Tiejun Cui

    2016-01-01

    Many previous studies have attempted to extract prior reflectance anisotropy knowledge from the historical MODIS Bidirectional Reflectance Distribution Function (BRDF) product based on land cover or Normalized Difference Vegetation Index (NDVI) data. In this study, the feasibility of the method is discussed based on MODIS data and archetypal BRDFs. The BRDF is simplified into six archetypal BRDFs that represent different reflectance anisotropies. Five-year time series of MODIS BRDF data over ...

  8. Operationalizing a Research Sensor: MODIS to VIIRS

    Science.gov (United States)

    Grant, K. D.; Miller, S. W.; Puschell, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and NASA are jointly acquiring the next-generation civilian environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The primary sensor for the JPSS mission is the Visible/Infrared Imager Radiometer Suite (VIIRS) developed by Raytheon Space and Airborne Systems (SAS). The ground processing system for the JPSS mission is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS) which are both developed by Raytheon Intelligence and Information Systems (IIS). The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by Raytheon SAS for the NASA Earth Observing System (EOS) as a research instrument to capture data in 36 spectral bands, ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS data provides unprecedented insight into large-scale Earth system science questions related to cloud and aerosol characteristics, surface emissivity and processes occurring in the oceans, on land, and in the lower atmosphere. MODIS has flown on the EOS Terra satellite since 1999 and on the EOS Aqua satellite since 2002 and provided excellent data for scientific research and operational use for more than a decade. The value of MODIS-derived products for operational environmental monitoring motivated led to the development of an operational counterpart to MODIS for the next-generation polar-orbiting environmental satellites, the Visible/Infrared Imager

  9. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  10. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  11. An improved MODIS standard chlorophyll-a algorithm for Malacca Straits Water

    International Nuclear Information System (INIS)

    Lah, N Z Ab; Reba, M N M; Siswanto, Eko

    2014-01-01

    The Malacca Straits has high productivity of nutrients as a result to potential primary production. Yet, the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua has shown an overestimation of Chl-a retrieval in the case-2 water of Malacca Straits. In an update to the previous study, this paper presents the second validation exercise of MODIS OC3M algorithm using the reprocessed MODIS data (R2013) and locally tuned the algorithm with respect to two in-sit stations located at northern and southern part of Malacca Straits. The result shows the OC3M retrieved in the case-2 (south station) water remarkably overestimated in-situ Chl-a, but it is underestimated in the case-1 (north station). Local tuning was employed by iterative regression at the fourth-order polynomial to improve the accuracy of Chl-a retrieval. As a result, locally tuned OC3M algorithm give robust statistical performance and can be applied best for both case-1 and case-2 water in Malacca Straits

  12. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  13. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    Science.gov (United States)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  14. MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 250m - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 250 meter MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 2 discrete bands located in the 0.62 to 0.88...

  15. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  16. Validation and empirical correction of MODIS AOT and AE over ocean

    Directory of Open Access Journals (Sweden)

    N. A. J. Schutgens

    2013-09-01

    Full Text Available We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness and AE (Ångström exponent over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against Maritime Aerosol Network (MAN data, suggesting that the spatial coverage of our datasets does not preclude global conclusions. Thus, we develop empirical correction formulae for MODIS AOT and AE that significantly improve agreement of MODIS and AERONET observations. We show these correction formulae to be robust. Finally, we study random errors in the corrected MODIS AOT and AE and show that they mainly depend on AOT itself, although small contributions are present due to wind speed and cloud fraction in AOT random errors and due to AE and cloud fraction in AE random errors. Our analysis yields significantly higher random AOT errors than the official MODIS error estimate (0.03 + 0.05 τ, while random AE errors are smaller than might be expected. This new dataset of bias-corrected MODIS AOT and AE over ocean is intended for aerosol model validation and assimilation studies, but also has consequences as a stand-alone observational product. For instance, the corrected dataset suggests that much less fine mode aerosol is transported across the Pacific and Atlantic oceans.

  17. MODIS 250m burned area mapping based on an algorithm using change point detection and Markov random fields.

    Science.gov (United States)

    Mota, Bernardo; Pereira, Jose; Campagnolo, Manuel; Killick, Rebeca

    2013-04-01

    Area burned in tropical savannas of Brazil was mapped using MODIS-AQUA daily 250m resolution imagery by adapting one of the European Space Agency fire_CCI project burned area algorithms, based on change point detection and Markov random fields. The study area covers 1,44 Mkm2 and was performed with data from 2005. The daily 1000 m image quality layer was used for cloud and cloud shadow screening. The algorithm addresses each pixel as a time series and detects changes in the statistical properties of NIR reflectance values, to identify potential burning dates. The first step of the algorithm is robust filtering, to exclude outlier observations, followed by application of the Pruned Exact Linear Time (PELT) change point detection technique. Near-infrared (NIR) spectral reflectance changes between time segments, and post change NIR reflectance values are combined into a fire likelihood score. Change points corresponding to an increase in reflectance are dismissed as potential burn events, as are those occurring outside of a pre-defined fire season. In the last step of the algorithm, monthly burned area probability maps and detection date maps are converted to dichotomous (burned-unburned maps) using Markov random fields, which take into account both spatial and temporal relations in the potential burned area maps. A preliminary assessment of our results is performed by comparison with data from the MODIS 1km active fires and the 500m burned area products, taking into account differences in spatial resolution between the two sensors.

  18. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    Science.gov (United States)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The

  19. MODIS/Aqua Vegetation Indices Monthly L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  20. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    Science.gov (United States)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  1. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Day time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  2. SST, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, Night time (11 microns)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Terra Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  3. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  4. Modeling GPP in the Nordic forest landscape with MODIS time series data—Comparison with the MODIS GPP product

    DEFF Research Database (Denmark)

    Schubert, Per; Lagergren, Fredrik; Aurela, Mika

    2012-01-01

    . The main objective of this study was to investigate if MODIS 500m reflectance data can be used to drive empirical models for regional estimations of GPP in Nordic forests. The performance of the proposed models was compared with the MODIS 1km GPP product. Linear regression analyses were made on 8-day...... averages of eddy covariance GPP from three deciduous and ten coniferous sites in relation to MODIS 8-day composite data and 8-day averages of modeled incoming PPFD (photosynthetic photon flux density). Time series of EVI2 (two-band enhanced vegetation index) were calculated from MODIS 500m reflectance data...... and smoothed by a curve fitting procedure. For most sites, GPP was fairly strongly to strongly related to the product of EVI2 and PPFD (Deciduous: R2=0.45–0.86, Coniferous: R2=0.49–0.90). Similar strengths were found between GPP and the product of EVI2 and MODIS 1km daytime LST (land surface temperature) (R2...

  5. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    Science.gov (United States)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for

  6. MODIS/Terra Land Water Mask Derived from MODIS and SRTM L3 Global 250m SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS 250 m land-water mask (Short Name: MOD44W) is an improvement over the existing MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted...

  7. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    Science.gov (United States)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; hide

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  8. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  9. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  10. Level 1 Processing of MODIS Direct Broadcast Data at the GSFC DAAC

    Science.gov (United States)

    Lynnes, Christopher; Kempler, Steven J. (Technical Monitor)

    2001-01-01

    The GSFC DAAC is working to test and package the MODIS Level 1 Processing software for Aqua Direct Broadcast data. This entails the same code base, but different lookup tables for Aqua and Terra. However, the most significant change is the use of ancillary attitude and ephemeris files instead of orbit/attitude information within the science data stream (as with Terra). In addition, we are working on Linux: ports of the algorithms, which could eventually enable processing on PC clusters. Finally, the GSFC DAAC is also working with the GSFC Direct Readout laboratory to ingest Level 0 data from the GSFC DB antenna into the main DAAC, enabling level 1 production in near real time in support of applications users, such as the Synergy project. The mechanism developed for this could conceivably be extended to other participating stations.

  11. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  12. MODIS/Aqua Vegetation Indices 16-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Global MODIS vegetation indices are designed to provide consistent spatial and temporal comparisons of vegetation conditions. Blue, red, and near-infrared...

  13. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    OpenAIRE

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-01-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. ...

  14. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    Science.gov (United States)

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-10-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8-re2.1 differences are positive ( 45 gm-2, and negative (up to -4 μm) for larger Hσ. While re3.8-re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences - particularly evinced in mean regional maps - are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  15. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    Directory of Open Access Journals (Sweden)

    D. Painemal

    2013-10-01

    Full Text Available The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E, and cloud fraction (CF on MODIS cloud effective radius (re, retrieved from the 2.1 μm (re2.1 and 3.8 μm (re3.8 channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km, while heterogeneities (Hσ are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8–re2.1 differences are positive (Hσ 45 gm−2, and negative (up to −4 μm for larger Hσ. While re3.8–re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences – particularly evinced in mean regional maps – are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  16. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  17. MODIS Snow and Sea Ice Products

    Science.gov (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  18. Improvement in the cloud mask for Terra MODIS mitigated by electronic crosstalk correction in the 6.7 μm and 8.5 μm channels

    Science.gov (United States)

    Sun, Junqiang; Madhavan, S.; Wang, M.

    2016-09-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a remarkable heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms which tracks the Earth in the morning and afternoon orbits. T-MODIS has continued to operate over 15 years easily surpassing the 6 year design life time on orbit. Of the several science products derived from MODIS, one of the primary derivatives is the MODIS Cloud Mask (MOD035). The cloud mask algorithm incorporates several of the MODIS channels in both reflective and thermal infrared wavelengths to identify cloud pixels from clear sky. Two of the thermal infrared channels used in detecting clouds are the 6.7 μm and 8.5 μm. Based on a difference threshold with the 11 μm channel, the 6.7 μm channel helps in identifying thick high clouds while the 8.5 μm channel being useful for identifying thin clouds. Starting 2010, it had been observed in the cloud mask products that several pixels have been misclassified due to the change in the thermal band radiometry. The long-term radiometric changes in these thermal channels have been attributed to the electronic crosstalk contamination. In this paper, the improvement in cloud detection using the 6.7 μm and 8.5 μm channels are demonstrated using the electronic crosstalk correction. The electronic crosstalk phenomena analysis and characterization were developed using the regular moon observation of MODIS and reported in several works. The results presented in this paper should significantly help in improving the MOD035 product, maintaining the long term dataset from T-MODIS which is important for global change monitoring.

  19. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  20. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  1. The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals

    Science.gov (United States)

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8 - re2.1 differences are positive ( 50 g m-2, and negative (up to -4 μm) for larger Hσ. Thus, re3.8 - re2.1 differences are more likely to reflect biases associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  2. Multilayered Clouds Identification and Retrieval for CERES Using MODIS

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Yi, Yuhong; Huang, Jainping; Lin, Bin; Fan, Alice; Gibson, Sharon; Chang, Fu-Lung

    2006-01-01

    Traditionally, analyses of satellite data have been limited to interpreting the radiances in terms of single layer clouds. Generally, this results in significant errors in the retrieved properties for multilayered cloud systems. Two techniques for detecting overlapped clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. The first technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other method uses microwave (MWR) data. The use of BTD, the 11-12 micrometer brightness temperature difference, in conjunction with tau, the retrieved visible optical depth, was suggested by Kawamoto et al. (2001) and used by Pavlonis et al. (2004) as a means to detect multilayered clouds. Combining visible (VIS; 0.65 micrometer) and infrared (IR) retrievals of cloud properties with microwave (MW) retrievals of cloud water temperature Tw and liquid water path LWP retrieved from satellite microwave imagers appears to be a fruitful approach for detecting and retrieving overlapped clouds (Lin et al., 1998, Ho et al., 2003, Huang et al., 2005). The BTD method is limited to optically thin cirrus over low clouds, while the MWR method is limited to ocean areas only. With the availability of VIS and IR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and MW data from the Advanced Microwave Scanning Radiometer EOS (AMSR-E), both on Aqua, it is now possible to examine both approaches simultaneously. This paper explores the use of the BTD method as applied to MODIS and AMSR-E data taken from the Aqua satellite over non-polar ocean surfaces.

  3. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Science.gov (United States)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  4. AquaBuOY

    DEFF Research Database (Denmark)

    Weinstein, Alla; Fredrikson, Göran; Claeson, Lennart

    2003-01-01

    BuOY in five representative generic sea states. Ocean energy and offshore wave energy conversion in the United States is at a significant milestone. During the next year, ocean energy technology developers and energy officials have the potential to deploy pilot scale ocean power plants and transition......This paper describes development of the mathematical model simulating ocean performance of an offshore wave energy point absorber device-AquaBuOY. The AquaBuOY is the next generation of the technology, based on the IPS point absorber system and the hose pump, both of Sweden. AquaEnergy Group Ltd......, engineers, and developers can continue to lay the groundwork for government spending and interest in ocean energies....

  5. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    Science.gov (United States)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes

  6. Earth System Science Research Using Datra and Products from Terra, Aqua, and ACRIM Satellites

    Science.gov (United States)

    Hutchison, Keith D.

    2007-01-01

    The report describes the research conducted at CSR to extend MODIS data and products to the applications required by users in the State of Texas. This research presented in this report was completed during the timeframe of August 2004 - December 31, 2007. However, since annual reports were filed in December 2005 and 2006, results obtained during calendar year 2007 are emphasized in the report. The stated goals of the project were to complete the fundamental research needed to create two types of new, Level 3 products for the air quality community in Texas from data collected by NASA s EOS Terra and Aqua missions.

  7. The Variations and Trends of MODIS C5 & C6 Products’ Errors in the Recent Decade over the Background and Urban Areas of North China

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2016-09-01

    Full Text Available With ten-year (2004–2013 ground-based observations of Beijing Forest (BJF and Beijing City (BJC sites in North China, we validated the high-quality MODerate resolution Imaging Spectroradiometer (MODIS Collection 5 (C5 and Collection 6 (C6 Aerosol Optical Depth (AOD products’ precision and discussed the sensors degradation issues. The annual mean AOD and Angstrom exponent (α were 0.20 ± 0.02 and 0.83 ± 0.15 in the background over the past ten years, and they were 0.59 ± 0.07 and 1.13 ± 0.08 in the urban, respectively. Ground-based AOD had both slightly declining trends, with variations of 0.023 and 0.057 over the past decade in the background and urban, respectively. There were large differences among the eight kinds of MODIS AOD products (Terra vs. Aqua, C5 vs. C6, DT (Deep Target vs. DB (Deep Blue, and DTDB in the background and urban areas, but all the products’ monthly errors had larger variations in the spring and summer, and smaller ones in the autumn and winter. In the background, more than 62% of DT matchups for C5 and C6 products were within NASA’s expected error (EE envelope. In the urban, 69%~72% of C6 DB retrievals were falling within EE envelope. The new dataset named C6 DTDB had better performance in the background, whereas it overestimated by 37%~41% in the urban caused by surface reflectivity estimation error. The range of monthly average error varied from −0.21 to 0.28 in the background and from −0.63 to 0.48 in the urban. From the background to the urban areas, the retrieval errors of Terra and Aqua had slightly increased by 0.0023~0.0158 and 0.0011~0.0124 per year, respectively, which implied that the two MODIS instruments had degraded slowly.

  8. The performance of DC restoration function for MODIS thermal emissive bands

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  9. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    Science.gov (United States)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  10. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2014-09-01

    Full Text Available Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio–temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio–temporal resolution (space: 30 m and time: 2–4 days. The proposed method works by combining the land surface reflectance data at 30 m spatial resolution obtained from the charge-coupled devices in the Huanjing-1A and -1B (HJ-1A/B satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS land surface bidirectional reflectance distribution function (BRDF parameters product (MCD43A1, which is at a spatial resolution of 500 m. First, the land surface BRDF parameters for HJ-1A/B land surface reflectance with a spatial–temporal resolutions of 30 m and 2–4 day are calculated on the basis of the prior knowledge from the MODIS BRDF product; then, the calculated high resolution BRDF parameters are integrated over the illuminating/viewing hemisphere to produce the white- and black-sky albedos at 30 m resolution. These results form the basis for the final land surface albedo derivation by accounting for the proportion of direct and diffuse solar radiation arriving at the ground. The albedo retrieved by this novel method is compared with MODIS land surface albedo products, as well as with ground measurements. The results show that the derived land surface albedo during the growing season of 2012 generally achieved a mean absolute accuracy of ±0.044, and a root mean square error of 0.039, confirming the effectiveness of the newly proposed method.

  11. Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data

    Directory of Open Access Journals (Sweden)

    Andrew K. Heidinger

    2015-06-01

    Full Text Available This paper presents a technique to generate cirrus optical depth and particle effective size estimates from the cloud emissivities at 8.5, 11 and 12 μm contained in the Collection-6 (C6 MYD06 cloud product. This technique employs the latest scattering models and scattering radiative transfer approximations to estimate cloud optical depth and particle effective size using efficient analytical formulae. Two scattering models are tested. The first is the same scattering model as that used in the C6 MYD06 solar reflectance products. The second model is an empirical model derived from radiometric consistency. Both models are shown to generate optical depths that compare well to those from constrained CALIPSO retrievals and MYD06. In terms of effective radius retrievals, the results from the radiometric empirical model agree more closely with MYD06 than those from the C6 model. This analysis is applied to AQUA/MODIS data collocated with CALIPSO/CALIOP during January 2010.

  12. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    International Nuclear Information System (INIS)

    Safarpour, Sahabeh; Abdullah, Khiruddin; Lim, Hwee San; Dadras, Mohsen

    2014-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R 2 is 0.844 and a regression equation of τ M = 0.91·τ A + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R 2 is 0.764 and τ M = 0.95·τ A + 0.03) and the Deep Blue algorithm (correlation coefficient R 2 is 0.652 and τ M = 0.81·τ A + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  13. Estimating Coastal Turbidity using MODIS 250 m Band Observations

    Science.gov (United States)

    Davies, James E.; Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Walker, Nan D.

    2004-01-01

    Terra MODIS 250 m observations are being applied to a Suspended Sediment Concentration (SSC) algorithm that is under development for coastal case 2 waters where reflectance is dominated by sediment entrained in major fluvial outflows. An atmospheric correction based on MODIS observations in the 500 m resolution 1.6 and 2.1 micron bands is used to isolate the remote sensing reflectance in the MODIS 25Om resolution 650 and 865 nanometer bands. SSC estimates from remote sensing reflectance are based on accepted inherent optical properties of sediment types known to be prevalent in the U.S. Gulf of Mexico coastal zone. We present our findings for the Atchafalaya Bay region of the Louisiana Coast, in the form of processed imagery over the annual cycle. We also apply our algorithm to selected sites worldwide with a goal of extending the utility of our approach to the global direct broadcast community.

  14. Improved VIIRS and MODIS SST Imagery

    Directory of Open Access Journals (Sweden)

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  15. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  16. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    Science.gov (United States)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an

  17. A snow cover climatology for the Pyrenees from MODIS snow products

    Science.gov (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  18. Detection of frequently-burn locations using multi-temporal Terra/Aqua MODIS fire product (MOD14) in Oudomxay province, Laos

    International Nuclear Information System (INIS)

    Phonekeo, V; Samarakoon, L; Saphangthong, T

    2014-01-01

    Wildfire is natural and man-made disaster that relates to global warming and climate change. Wildfire is prominent disaster that destroys natural resources, and causes enormous danger to human life and property. The study on the spatial and temporal distribution of wildfire is significant to understand wildfire occurrence and behavior. In the past, people usually study on the pattern of wildfire and open-space burning according to the daily number of active fire detected by MODIS sensor onboard of Terra and Aqua satellites for a particular area at the time of satellite over pass. However, there is no study that focused on the active fire that frequently occurred at the same location for a given period of time. Therefore, in this paper, the authors has focused on the study of frequently-burn locations in Oudomxay province of Laos, which has the 3rd highest active fire number in burning season of year 2007-2009 using spatial and statistical analysis of the active fire distribution and occurrence by time and space. The results of the study show that the highest number of burning frequency is 6 and 7 times within the study period and these numbers are located at 3 districts. One is Xai district which has the highest frequently-burn location for 7 times during the study period at the coordinate of N20.72° and E101.88°. The second districts are Beng and Nga districts which has the 2nd highest frequently-burn location for 6 times during the study period at the coordinate of N 20.28°, E101.68°, and N20.17°, E102.02°, respectively. The obtained information on frequently-burn locations in the province would be useful to identify the repeat burning activity by the local people occurred in the same location and allows the forestry and agricultural officers understand the wildfire distribution pattern

  19. An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models

    Directory of Open Access Journals (Sweden)

    Lin Qi

    2014-11-01

    Full Text Available For near real-time water applications, the Moderate Resolution Imaging Spectroradiometers (MODIS on Terra and Aqua are currently the only satellite instruments that can provide well-calibrated top-of-atmosphere (TOA radiance data over the global aquatic environments. However, TOA radiance data in the MODIS ocean bands over turbid atmosphere in east China often saturate, leaving only four land bands to use. In this study, an approach based on Empirical Orthogonal Function (EOF analysis has been developed and validated to estimate chlorophyll a concentrations (Chla, μg/L in surface waters of Taihu Lake, the third largest freshwater lake in China. The EOF approach analyzed the spectral variance of normalized Rayleigh-corrected reflectance (Rrc data at 469, 555, 645, and 859 nm, and subsequently related that variance to Chla using 28 concurrent MODIS and field measurements. This empirical algorithm was then validated using another 30 independent concurrent MODIS and field measurements. Image analysis and radiative transfer simulations indicated that the algorithm appeared to be tolerant to aerosol perturbations, with unbiased RMS uncertainties of <80% for Chla ranging between 3 and 100 μg/L. Application of the algorithm to a total of 853 MODIS images between 2000 and 2013 under cloud-free conditions revealed spatial distribution patterns and seasonal changes that are consistent to previous findings based on floating algae mats. The current study can provide additional quantitative estimates of Chla that can be assimilated in an existing forecast model, which showed improved performance over the use of a previous Chla algorithm. However, the empirical nature, relatively large uncertainties, and limited number of spectral bands all point to the need of further improvement in data availability and accuracy with future satellite sensors.

  20. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Science.gov (United States)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for

  1. Quality Assessment of Collection 6 MODIS Atmospheric Science Products

    Science.gov (United States)

    Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.

    2015-12-01

    Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the

  2. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images

    Science.gov (United States)

    Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O.

    2014-12-01

    Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC

  3. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  4. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    Science.gov (United States)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-02-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime

  5. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  6. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data

    Science.gov (United States)

    Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio

    2018-03-01

    The analysis of chlorophyll-a (chl-a) variability on a long-term basis could allow detecting possible issues in the whole marine ecosystem functioning. The Gulf of Taranto (Southern Italy), in the North-western Ionian Sea (Mediterranean Sea), has been affected by several environmental threats in the last decade, thus deserving the implementation of an adequate monitoring system able to provide accurate indications about the variability of the most relevant bio-optical parameters. In this context, the main objectives of this study are to investigate the long-term chl-a variability in the Gulf of Taranto and identify the occurrence of any past spatiotemporal anomalies by implementing the multi-temporal Robust Satellite Technique (RST) on a 12-year (2003-2015) period of MODIS/AQUA Level 3/Level 2 chlorophyll-a data. The achieved results show well-clustered near-surface positive chl-a anomalies during the January-February 2011 period. This detected offshore phytoplankton bloom may be related to sub-basin processes, such as the inflow of the Western Adriatic Coastal Current (WACC), probably fostered by the cyclonic reversal of the Bimodal Oscillating System (BiOS) mechanism. Therefore, the RST approach proved successful in detecting chl-a anomalous variations with a high level of confidence regardless of the absolute value measured, thus suggesting its exportability in other areas with different site-setting conditions.

  7. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  8. USAID Expands eMODIS Coverage for Famine Early Warning

    Science.gov (United States)

    Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.

    2011-12-01

    Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.

  9. MODIS/Terra+Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43B1) contains three-dimensional (3D) data sets providing users...

  10. MODIS Data Assimilation in the CROPGRO model for improving soybean yield estimations

    Science.gov (United States)

    Richetti, J.; Monsivais-Huertero, A.; Ahmad, I.; Judge, J.

    2017-12-01

    Soybean is one of the main agricultural commodities in the world. Thus, having better estimates of its agricultural production is important. Improving the soybean crop models in Brazil is crucial for better understanding of the soybean market and enhancing decision making, because Brazil is the second largest soybean producer in the world, Parana state is responsible for almost 20% of it, and by itself would be the fourth greatest soybean producer in the world. Data assimilation techniques provide a method to improve spatio-temporal continuity of crops through integration of remotely sensed observations and crop growth models. This study aims to use MODIS EVI to improve DSSAT-CROPGRO soybean yield estimations in the Parana state, southern Brazil. The method uses the Ensemble Kalman filter which assimilates MODIS Terra and Aqua combined products (MOD13Q1 and MYD13Q1) into the CROPGRO model to improve the agricultural production estimates through update of light interception data over time. Expected results will be validated with monitored commercial farms during the period of 2013-2014.

  11. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature componen

    DEFF Research Database (Denmark)

    Moyano, Carmen; Garcia, Monica; Tornos, Lucia

    2015-01-01

    -sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower...

  12. EOS Aqua Mission Status at Earth Science Constellation MOWG Meeting @ LASP April 13, 2016

    Science.gov (United States)

    Guit, William J.

    2016-01-01

    This presentation reflects the EOS Aqua mission status, spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, orbital maintenance maneuvers, conjunction assessment high interest events, ground track error, spacecraft orbital parameters trends and predictions.

  13. MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites

    Directory of Open Access Journals (Sweden)

    G. Blöschl

    2012-07-01

    Full Text Available Numerous global and regional validation studies have examined MODIS snow mapping accuracy by using measurements at climate stations, which are mainly at open sites. MODIS accuracy in alpine and forested regions is, however, still not well understood. The main objective of this study is to evaluate MODIS (MOD10A1 and MYD10A1 snow cover products in a small experimental catchment by using extensive snow course measurements at open and forest sites. The MODIS accuracy is tested in the Jalovecky creek catchment (northern Slovakia in the period 2000–2011. The results show that the combined Terra and Aqua images enable snow mapping at an overall accuracy of 91.5%. The accuracies at forested, open and mixed land uses at the Červenec sites are 92.7%, 98.3% and 81.8%, respectively. The use of a 2-day temporal filter enables a significant reduction in the number of days with cloud coverage and an increase in overall snow mapping accuracy. In total, the 2-day temporal filter decreases the number of cloudy days from 61% to 26% and increases the snow mapping accuracy to 94%. The results indicate three possible factors leading to misclassification of snow as land: patchy snow cover, limited MODIS geolocation accuracy and mapping algorithm errors. Out of a total of 27 misclassification cases, patchy snow cover, geolocation issues and mapping errors occur in 12, 12 and 3 cases, respectively.

  14. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  15. Local validation of MODIS sensor sea surface temperature on western Mediterranean shallow waters

    Directory of Open Access Journals (Sweden)

    E. Durá

    2014-06-01

    Full Text Available The sea surface temperature (SST estimated from MODIS Aqua products (daytime and nighttime 11 μm and night 4 μm has been correlated with field data taken at three depths (15, 50, 100 cm in a Western Mediterranean coastal area. The comparison has allowed us to analyze the uncertainty in the estimation of this parameter in coastal waters using low spatial resolution satellite images. The results show that the daytime SST_11 μm product obtains fittest statistical values: RMSE (root mean square error and r2 (Pearson’s correlation coefficient of 1°C and 0.96, respectively, for 50 cm depth.

  16. Comparación de los productos de TSM L3 generados a partir de los sensores AVHRR y MODIS frente al Golfo San Jorge, Argentina

    Directory of Open Access Journals (Sweden)

    L. Allega

    2017-12-01

    Full Text Available Desde principios de la década de los 80, el sensor AVHRR a bordo de los satélites NOAA ha provisto de estimaciones de la temperatura de la superficie del mar (TSM a la comunidad científica en general. Hacia finales de la década de los 90, surge una nueva generación de radiómetros que combinan una mayor gama de mediciones espectrales con mejoras en la tecnología, como lo es el sensor  MODIS a bordo de los satélites Terra y Aqua. El desarrollo de este último sensor se basó en los años de trayectoria de la serie NOAA/AVHRR. La comprensión de la relación entre los productos derivados de distintos sensores es fundamental para el seguimiento continuo a largo plazo de cualquier variable y de la construcción de serie de tiempos combinados. El objetivo del presente trabajo fue realizar una comparación de los valores mensuales de TSM para el período 2003-2006 calculadas a partir de datos de la serie NOAA/AVHRR vs Aqua/MODIS sobre un sector de la Plataforma Continental Argentina frente al Golfo San Jorge. El análisis de las isotermas muestra un patrón de distribución similar durante todos los meses para ambos sensores. El coeficiente de correlación de Pearson tanto en el análisis estacional como mensual fue alto (> 0,8. El análisis comparativo de la temperatura medida en ambos sensores muestra que los productos de TSM son similares, teniendo en cuenta que la diferencia media de temperatura entre ambos sensores es inferior a 0,5ºC. Por lo tanto, para el estudio de largas series de tiempo de TSM en la plataforma continental argentina se puede utilizar en forma continua las mediciones de Aqua/MODIS, cuando ya no se disponen las de NOAA/AVHRR.

  17. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  18. Performance of MODIS C6 Aerosol Product during Frequent Haze-Fog Events: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-05-01

    Full Text Available The newly released MODIS Collection 6 aerosol products have been widely used to evaluate fine particulate matter with a 10 km Dark Target aerosol optic depth (DT AOD product, a new 3 km DT AOD product and an enhanced Deep Blue (DB AOD product. However, the representativeness of MODIS AOD products under different air quality conditions remains unclear. In this study, we obtained all three types of MODIS Terra AOD from 2001 to 2015 and Aqua AOD from 2003 to 2015 for the Beijing region to study the performance of the different AOD products (Collection 6 under different air quality situations. The validation of three MODIS AOD products suggests that DB AOD has the highest accuracy with an expected error (EE envelope (containing at least 67% of the matchups on a scatter plot of 0.05 + 0.15τ, followed by 10 km DT AOD (0.08 + 0.2τ and 3 km DT AOD (0.35 + 0.15τ, specifically for Beijing. Near-surface PM2.5 concentrations during the passage of MODIS from 2013 to 2015 were also obtained to categorize air quality as unpolluted, moderately, and heavily polluted, as well as to analyze the performance of the different AOD products under different air quality conditions. Very few MODIS 3 km DT retrievals appeared on heavily polluted days, making it almost impossible to play an effective role in air quality applications in Beijing. While the DB AOD allowed for considerable retrievals under all air quality conditions, it had a coarse spatial resolution. These results demonstrate that the MODIS 3 km DT AOD product may not be the appropriate proxy to be used in the satellite retrieval of surface PM2.5, especially for those areas with frequent haze-fog events like Beijing.

  19. HIF evaluation of In-Situ Aqua TROLL 400

    Science.gov (United States)

    Tillman, Evan F.

    2017-10-18

    The In-Situ Aqua TROLL 400 (Aqua TROLL 400) was tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the Aqua TROLL 400’s operating temperature to verify the manufacturer’s stated accuracy specifications and the USGS recommendations for pH, dissolved oxygen (DO), and specific conductance (SC). The Aqua TROLL 400 manufacturer’s specifications are within the USGS recommendations for all parameters tested, except for DO, which is outside the USGS recommendation at DO concentrations of 8.0 milligrams per liter (mg/L) and higher. The Aqua TROLL 400 was compliant with Serial Digital Interface at 1200 baud (SDI-12) version 1.3. During laboratory testing of pH, the Aqua TROLL 400 sonde met the U.S. Geological Survey “National Field Manual for the Collection of Water-Quality Data” (NFM) recommendations for pH at all values tested, except at 4 degrees Celsius (°C) at pH 9.395 and pH 3.998. The Aqua TROLL 400 met the manufacturer specifications for pH at all values tested, except for pH buffers 3.998, 9.395, and 10.245 at 4 °C; pH 2.990 and 3.998 at 15 °C; and pH 3.040 at 40 °C. The Aqua TROLL 400 met the NFM recommendations at 93.7 percent of the SC values tested and met the manufacturer’s accuracy specifications at 56.3 percent of the SC values tested. During the laboratory testing for DO, the Aqua TROLL 400 met the manufacturer specifications, except at 5.55 mg/L, and met the NFM recommendations at all concentrations tested. An Aqua TROLL 400 was field tested at USGS Station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River for 6 weeks and showed good agreement with the well-maintained site sonde data for pH, DO, temperature, and SC.

  20. Comparasion of Cloud Cover restituted by POLDER and MODIS

    Science.gov (United States)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part

  1. Stormwater runoff plumes in the Southern California Bight: A comparison study with SAR and MODIS imagery.

    Science.gov (United States)

    Holt, Benjamin; Trinh, Rebecca; Gierach, Michelle M

    2017-05-15

    Stormwater runoff is the largest source of pollution in the Southern California Bight (SCB), resulting from untreated runoff and pollutants from urban watersheds entering the coastal waters after rainstorms. We make use of both satellite SAR and MODIS-Aqua ocean color imagery to examine two different components of runoff plumes, the surface slick and the sediment discharge. We expand on earlier satellite SAR studies by examining an extensive collection of multi-platform SAR imagery, spanning from 1992 to 2014, that provides a more comprehensive view of the plume surface slick characteristics, illustrated with distribution maps of the extent and flow direction of the plumes. The SAR-detected surface plumes are compared with coincident rain and runoff measurements, and with available measured shoreline fecal bacteria loads. We illustrate differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS imagery. A conceptual satellite stormwater runoff monitoring approach is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  3. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    Energy Technology Data Exchange (ETDEWEB)

    Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Xie, Yu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance) broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the

  4. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

    Directory of Open Access Journals (Sweden)

    Gemma Simó

    2016-10-01

    Full Text Available Land Surface Temperature (LST as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same observation time, for the very heterogeneous Campus of the University of the Balearic Islands (Mallorca, Western Mediterranean, with an area of about 1 km 2 , for a period between 2014 and 2016. Variations of LST between 10 and 20 K are often found at the sub-kilometre scale. In addition, MODIS values are compared to the ground truth for one point in the Campus, as obtained from a four-component net radiometer, and a bias of 3.2 K was found in addition to a Root Mean Square Error (RMSE of 4.2 K. An indication of a more elaborated local measurement strategy in the Campus is given, using an array of radiometers distributed in the area.

  5. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    Directory of Open Access Journals (Sweden)

    Q. Xiao

    2016-02-01

    Full Text Available Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS aboard the Suomi National Polar-orbiting Partnership (S-NPP, the Geostationary Ocean Color Imager (GOCI aboard the Communication, Ocean, and Meteorology Satellite (COMS, and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS (Collection 6 in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE envelope (±0.05 ± 0.15 AOD. Comparing against AERONET AOD over the Japan–South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  6. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  7. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    Science.gov (United States)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  8. Towards identification of relevant variables in the observed aerosol optical depth bias between MODIS and AERONET observations

    Science.gov (United States)

    Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.

    2013-08-01

    Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.

  9. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  10. Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2015-05-01

    Full Text Available In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM images based on a 30 m digital elevation model (DEM and Moderate Resolution Imaging Spectroradiometer (MODIS atmospheric products. Moreover, we define a normalized factor of a Bidirectional Reflectance Distribution Function (BRDF to convert the sloping pixel reflectance into a flat pixel reflectance by using the Ross Thick-Li Sparse BRDF model (Ambrals algorithm and MODIS BRDF/albedo kernel coefficient products. Sole atmospheric correction and topographic normalization were performed for TM images in the upper stream of the Heihe River Basin. The results show that using MODIS atmospheric products can effectively remove atmospheric effects compared with the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH model and the Landsat Climate Data Record (CDR. Moreover, superior topographic effect removal can be achieved by considering the surface BRDF when compared with the surface Lambertian assumption of topographic normalization.

  11. Development of an Operational Land Water Mask for MODIS Collection 6, and Influence on Downstream Data Products

    Science.gov (United States)

    Carroll, M. L.; DiMiceli, C. M.; Townshend, J. R. G.; Sohlberg, R. A.; Elders, A. I.; Devadiga, S.; Sayer, A. M.; Levy, R. C.

    2016-01-01

    Data from the Moderate Resolution Imaging Spectro-radiometer (MODIS)on-board the Earth Observing System Terra and Aqua satellites are processed using a land water mask to determine when an algorithm no longer needs to be run or when an algorithm needs to follow a different pathway. Entering the fourth reprocessing (Collection 6 (C6)) the MODIS team replaced the 1 km water mask with a 500 m water mask for improved representation of the continental surfaces. The new water mask represents more small water bodies for an overall increase in water surface from 1 to 2 of the continental surface. While this is still a small fraction of the overall global surface area the increase is more dramatic in certain areas such as the Arctic and Boreal regions where there are dramatic increases in water surface area in the new mask. MODIS products generated by the on-going C6 reprocessing using the new land water mask show significant impact in areas with high concentrations of change in the land water mask. Here differences between the Collection 5 (C5) and C6 water masks and the impact of these differences on the MOD04 aerosol product and the MOD11 land surface temperature product are shown.

  12. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Science.gov (United States)

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  13. Diurnal spatial distributions of aerosol optical and cloud micro-macrophysics properties in Africa based on MODIS observations

    Science.gov (United States)

    Ntwali, Didier; Chen, Hongbin

    2018-06-01

    The diurnal spatial distribution of both natural and anthropogenic aerosols, as well as liquid and ice cloud micro-macrophysics have been evaluated over Africa using Terra and Aqua MODIS collection 6 products. The variability of aerosol optical depth (AOD), Ångström exponent (AE), liquid and ice cloud microphysics (Liquid cloud effective radius LCER, Ice cloud effective radius ICER) and cloud macrophysics (Liquid cloud optical thickness LCOT, Liquid cloud water path LCWP, Ice cloud optical thickness ICOT, Ice cloud water path ICWP) parameters were investigated from the morning to afternoon over Africa from 2010 to 2014. In both the morning (Terra) and afternoon (Aqua) heavy pollution (AOD ≥ 0.6) occurs in the coastal and central areas (between 120 N-170 N and 100 E-150 E) of West of Africa (WA), Central of Africa (CA) (0.50 S-70S and 100 E-250 E),. Moderate pollution (0.3 1.2) aerosols. The mixture of dust and biomass burning aerosols (0.7 improve aerosol and cloud remote sensing retrieval.

  14. Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products

    Science.gov (United States)

    Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-01-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.

  15. The Collection 6 'dark-target' MODIS Aerosol Products

    Science.gov (United States)

    Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine

    2013-01-01

    Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and

  16. Using MODIS spectral information to classify sea ice scenes for CERES radiance-to-flux inversion

    Science.gov (United States)

    Corbett, J.; Su, W.; Liang, L.; Eitzen, Z.

    2013-12-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments on NASA's Terra and Aqua satellites measure the shortwave (SW) radiance reflected from the Earth. In order to provide an estimate of the top-of-atmosphere reflected SW flux we need to know the anisotropy of the radiance reflected from the scene. Sea Ice scenes are particularly complex due to the wide range of surface conditions that comprise sea ice. For example, the anisotropy of snow-covered sea ice is quite different to that of sea ice with melt-ponds. To attempt to provide a consistent scene classification we have developed the Sea Ice Brightness Index (SIBI). The SIBI is defined as one minus the normalized difference between reflectances from the 0.469 micron and 0.858 micron bands from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. For brighter snow-covered sea ice scenes the SIBI value is close to 1.0. As the surface changes to bare ice, melt ponds, etc. the SIBI decreases. For open water the SIBI value is around 0.2-0.3. The SIBI exhibits no dependence on viewing zenith or solar zenith angle, allowing for consistent scene identification. To use the SIBI we classify clear-sky CERES field-of-views over sea ice into 3 groups; SIBI≥0.935, 0.935>SIBI≥0.85 and SIBISIBI based ADMs. Using the second metric, we see a reduction in the latitude/longitude binned mean RMS error between the ADM predicted radiance and the measured radiance from 8% to 7% in May and from 17% to 12% in July. These improvements suggest that using the SIBI to account for changes in the sea ice surface will lead to improved CERES flux retrievals.

  17. Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  18. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  19. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  20. Aerosol Optical Depth investigated with satellite remote sensing observations in China

    International Nuclear Information System (INIS)

    Die, Hu; Lei, Zhang; Hongbin, Wang

    2014-01-01

    In this study, Aerosol Optical Depth (AOD) at 550nm from the MODIS sensor on board the Terra/Aqua satellites were compared with sun photometer (CE-318) measurements from 11 AERONET stations in China. The average correlation coefficient (R) value from the AOD product, using the Aqua-MODIS Deep Blue algorithm, in the Hexi Corridor was 0.67. The MODIS Dark Target algorithm AOD product is superior to Deep Blue algorithm AOD products in SACOL of the Semi-arid regions of the Loess Plateau. These two kinds of algorithm are not applicable to sites in Lanzhou city. The average R value of Dark Target algorithm AOD MODIS products is 0.91 for Terra and 0.88 for Aqua in the eastern part of China. According to the analysis of spatial and temporal characteristics of the two MODIS AOD products in China, high value areas are mainly distributed in the southern part of Xinjiang (0.5∼0.8), Sichuan Basin (0.8∼0.9), North China (0.6∼0.8) and the middle and lower reaches of the Changjiang River (0.8∼1.0). The Deep Blue algorithm for Aqua-MODIS is a good supplement for the retrieval of AOD above bright surfaces of deserts in Northwest China

  1. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    Science.gov (United States)

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  2. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    Science.gov (United States)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  3. An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data

    CSIR Research Space (South Africa)

    Hersey, SP

    2015-04-01

    Full Text Available on aerosol optical depth (AOD) from MODIS Aqua and Terra (550 nm) and MISR (555 nm) platforms, Ångström Exponent (a) from MODIS Aqua (550/865 nm) and Terra (470/660 nm), ultraviolet aerosol index (UVAI) from TOMS, and results from the Goddard Ozone Chemistry...

  4. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  5. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    Science.gov (United States)

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  6. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    Science.gov (United States)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  7. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection

    DEFF Research Database (Denmark)

    Ekholm, E; Shaat, N; Holst, Jens Juul

    2012-01-01

    eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P ....01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.......8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P

  8. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  9. Comparing MODIS-Terra and GOES surface albedo for New York City NY, Baltimore MD and Washington DC for 2005

    Science.gov (United States)

    Mubenga, K.; Hoff, R.; McCann, K.; Chu, A.; Prados, A.

    2006-05-01

    The NOAA GOES Aerosol and Smoke Product (GASP) is a product displaying the Aerosol Optical Depth (AOD) over the United States. The GASP retrieval involves discriminating the upwelling radiance from the atmosphere from that of the variable underlying surface. Unlike other sensors with more visible and near- infrared spectral channels such as MODIS, the sensors on GOES 8 through 12 only have one visible and a several far infrared channels. The GASP algorithm uses the detection of the second-darkest pixel from the visible channel over a 28-day period as the reference from which a radiance look-up table gives the corresponding AOD. GASP is reliable in capturing the AOD during large events. As an example, GASP was able to precisely show the Alaska and British Columbia smoke plume advecting from Alaska to the northeastern U.S. during the summer of 2004. Knapp et al. (2005) has shown that the AOD retrieval for GOES- 8 is within +/-0.13 of AERONET ground data with a coefficient of correlation of 0.72. Prados (this meeting) will update that study. However, GASP may not be as reliable when it comes to observing smaller AOD events in the northeast where the surface brightness is relatively high. The presence of large cities, such as New York, increases the surface albedo and produces a bright background against which it may be difficult to deduce the AOD. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System Terra and Aqua platforms provides an independent measurement of the surface albedo at a resolution greater than available on GOES. In this research, the MODIS and GOES surface albedo product for New York, Washington and Baltimore are compared in order to see how we can improve the AOD retrieval in urban areas for air quality applications. Ref: K. Knapp et al. 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. Int.Journal of Remote Sensing 26, 4097-4116

  10. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  11. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    Science.gov (United States)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  12. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    Science.gov (United States)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  13. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  14. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flos-aquae

    Directory of Open Access Journals (Sweden)

    Yoshimasa YAMAMOTO

    2009-02-01

    Full Text Available This study investigated the seasonal dynamics of two populations of Aphanizomenon flos-aquae Ralfs ex Bornet & Flahault var. flos-aquae and four populations of A. flos-aquae var. klebahnii Elenkin in eutrophic water bodies over 1 year from February 2006 to January 2007. The growth of A. flos-aquae var. flos-aquae was promoted at high temperatures even if in one case the biomass development was very low when other co-occurring cyanoprokaryotes (Anabaena spp. and Microcystis spp. were abundant. In contrast, the highest density of the other population of A. flos-aquae var. flos-aquae was observed in August when the population density of M. aeruginosa (Kützing Kützing reached an annual peak. A. flos-aquae var. flos-aquae usually bloomed in summer but could also tolerate low temperatures in the winter, and was present in relatively high densities. The populations of A. flos-aquae var. klebahnii observed in this study can be divided into three groups based on preferred temperature; three populations increased in winter, and the other increased in summer. Large biomasses of the low-temperature-adapted A. flos-aquae were observed mainly during winter when population densities of co-occurring cyanoprokaryotes (Anabaena spp., Microcystis spp. and Planktothrix raciborskii (Woloszynska Anagnostidis & Komárek were relatively low or almost absent. The increase in or existence of cooccurring cyanoprokaryotes during the summer resulted in a decrease of the A. flos-aquae population density. It was revealed that high temperatures (20-25 °C are suitable for maintaining A. flos-aquae var. klebahnii strains isolated from the study ponds, implying that low-temperature-adapted A. flos-aquae can grow over a wide range of water temperatures. The high-temperatureadapted A. flos-aquae var. klebahnii co-existed with M. aeruginosa during summer; however, its peak population density was significantly lower than those in previous years when M. aeruginosa was absent

  15. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico

    Science.gov (United States)

    Jarchow, Christopher J.; Didan, Kamel; Barreto-Muñoz, Armando; Glenn, Edward P.

    2018-01-01

    The Enhanced Vegetation Index (EVI) is a key Earth science parameter used to assess vegetation, originally developed and calibrated for the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. With the impending decommissioning of the MODIS sensors by the year 2020/2022, alternative platforms will need to be used to estimate EVI. We compared Landsat 5 (2000–2011), 8 (2013–2016) and the Visible Infrared Imaging Radiometer Suite (VIIRS; 2013–2016) to MODIS EVI (2000–2016) over a 420,083-ha area of the arid lower Colorado River Delta in Mexico. Over large areas with mixed land cover or agricultural fields, we found high correspondence between Landsat and MODIS EVI (R2 = 0.93 for the entire area studied and 0.97 for agricultural fields), but the relationship was weak over bare soil (R2 = 0.27) and riparian vegetation (R2 = 0.48). The correlation between MODIS and Landsat EVI was higher over large, homogeneous areas and was generally lower in narrow riparian areas. VIIRS and MODIS EVI were highly similar (R2 = 0.99 for the entire area studied) and did not show the same decrease in performance in smaller, narrower regions as Landsat. Landsat and VIIRS provide EVI estimates of similar quality and characteristics to MODIS, but scale, seasonality and land cover type(s) should be considered before implementing Landsat EVI in a particular area. PMID:29757265

  16. Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality Research over the Continental United States

    Directory of Open Access Journals (Sweden)

    J. H. Belle

    2016-10-01

    Full Text Available Satellite-retrieved aerosol optical depth (AOD has become an important predictor of ground-level particulate matter (PM and greatly empowered air pollution research worldwide. We evaluated the AOD parameters included in the Collection 6 aerosol product of the Moderate Resolution Imaging Spectroradiometer (MODIS for two key factors affecting their applications in air quality research—coverage and accuracy—over the continental US. For the high confidence retrievals (QAC 3, the 10 km DB-DT combined AOD has the best coverage nationwide (29.7% of the days in a year in any given 12 km grid cell. While the Eastern US generally had more successful AOD retrievals, the highest spatial coverage of AOD parameters were found in California (>55% and other vegetated parts of the Western US. If lower QAC retrievals were included, the coverage of the 10 km DB AOD was dramatically increased to 49.6%. In the Eastern US, the QAC 3 retrievals of all four AOD parameters are highly correlated with AERONET observations (correlation coefficients between 0.80 and 0.92. In the Western US, positive retrieval errors existed in all MODIS AOD parameters, resulting in lower correlations with AERONET. AOD retrieval errors showed significant dependence on flight geometry, land cover type, and weather conditions. To ensure appropriate use of these AOD values, air quality researchers should carefully balance the needs for coverage and accuracy, and develop additional data screening criteria based on their study design.

  17. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration

    Directory of Open Access Journals (Sweden)

    Rajendra Bhatt

    2017-10-01

    Full Text Available Tropical deep convective clouds (DCC are an excellent invariant target for vicarious calibration of satellite visible (VIS and near-infrared (NIR solar bands. The DCC technique (DCCT is a statistical approach that collectively analyzes all identified DCC pixels on a monthly basis. The DCC reflectance in VIS and NIR spectrums is mainly a function of cloud optical depth, and provides a stable monthly statistical mode. However, for absorption shortwave infrared (SWIR bands, the monthly DCC response is found to exhibit large seasonal cycles that make the implementation of the DCCT more challenging at these wavelengths. The seasonality assumption was tested using the SNPP-VIIRS SWIR bands, with up to 50% of the monthly DCC response temporal variation removed through deseasonalization. In this article, a monthly DCC bidirectional reflectance distribution function (BRDF approach is proposed, which is found to be comparable to or can outperform the effects of deseasonalization alone. To demonstrate that the SNPP-VIIRS DCC BRDF can be applied to other JPSS VIIRS imagers in the same 13:30 sun-synchronous orbit, the VIIRS DCC BRDF was applied to Aqua-MODIS. The Aqua-MODIS SWIR band DCC reflectance natural variability is reduced by up to 45% after applying the VIIRS-based monthly DCC BRDFs.

  18. Genetika MODY diabetu

    OpenAIRE

    Dušátková, Petra

    2012-01-01

    The most common form of monogenic diabetes is MODY (Maturity-Onset Diabetes of the Young). It ranks among genetic defects of the β cell. It is clinically heterogenous group of disorders characterised with non insulin-dependent diabetes mellitus with autosomal dominant inheritance and age at diagnosis up to 40 years. We specified the diagnosis of MODY in more than 240 Czech families using molecular-genetic approach. The most common subtype of MODY is GCK-MODY which was proved in 376 subjects f...

  19. Maturity-onset diabetes of the young (MODY): how many cases are we missing?

    Science.gov (United States)

    Shields, B M; Hicks, S; Shepherd, M H; Colclough, K; Hattersley, A T; Ellard, S

    2010-12-01

    Maturity-onset diabetes of the young is frequently misdiagnosed as type 1 or type 2 diabetes. A correct diagnosis of MODY is important for determining treatment, but can only be confirmed by molecular genetic testing. We aimed to compare the regional distribution of confirmed MODY cases in the UK and to estimate the minimum prevalence. UK referrals for genetic testing in 2,072 probands and 1,280 relatives between 1996 and 2009 were examined by region, country and test result. Referral rate and prevalence were calculated using UK Census 2001 figures. MODY was confirmed in 1,177 (35%) patients, with HNF1A (52%) and GCK mutations (32%) being most frequent in probands confirmed with MODY. There was considerable regional variation in proband referral rates (from 50 per million for South West England and Scotland) and patients diagnosed with MODY (5.3 per million in Northern Ireland, 48.9 per million in South West England). Referral rates and confirmed cases were highly correlated (r = 0.96, p MODY was estimated to be 108 cases per million. Assuming this minimal prevalence throughout the UK then >80% of MODY is not diagnosed by molecular testing. The marked regional variation in the prevalence of confirmed MODY directly results from differences in referral rates. This could reflect variation in awareness of MODY or unequal access to genetic testing. Increased referral for diagnostic testing is required if the majority of MODY patients are to have the genetic diagnosis necessary for optimal treatment.

  20. Comparison of Cloud Detection Using the CERES-MODIS Ed4 and LaRC AVHRR Cloud Masks and CALIPSO Vertical Feature Mask

    Science.gov (United States)

    Trepte, Q. Z.; Minnis, P.; Palikonda, R.; Bedka, K. M.; Sun-Mack, S.

    2011-12-01

    Accurate detection of cloud amount and distribution using satellite observations is crucial in determining cloud radiative forcing and earth energy budget. The CERES-MODIS (CM) Edition 4 cloud mask is a global cloud detection algorithm for application to Terra and Aqua MODIS data with the aid of other ancillary data sets. It is used operationally for the NASA's Cloud and Earth's Radiant Energy System (CERES) project. The LaRC AVHRR cloud mask, which uses only five spectral channels, is based on a subset of the CM cloud mask which employs twelve MODIS channels. The LaRC mask is applied to AVHRR data for the NOAA Climate Data Record Program. Comparisons among the CM Ed4, and LaRC AVHRR cloud masks and the CALIPSO Vertical Feature Mask (VFM) constitute a powerful means for validating and improving cloud detection globally. They also help us understand the strengths and limitations of the various cloud retrievals which use either active and passive satellite sensors. In this paper, individual comparisons will be presented for different types of clouds over various surfaces, including daytime and nighttime, and polar and non-polar regions. Additionally, the statistics of the global, regional, and zonal cloud occurrence and amount from the CERES Ed4, AVHRR cloud masks and CALIPSO VFM will be discussed.

  1. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2018-01-01

    using a multi-scale target sampling scheme that draws Landsat 8 reference data from a series of scenes by using MODIS-consistent surface reflectance time series to quantify relative changes in Landsat-scale reflectances over given Landsat

  2. Validation of MODIS Data for localized spatio-temporal evapotranspiration mapping

    International Nuclear Information System (INIS)

    Nadzri, M I; Hashim, M

    2014-01-01

    Advancement in satellite remote sensing sensors allows evapo-transpiration (ET) from land surfaces to be derived from selected reflectance and emmitance in visible and thermal infrared wavelengths, such as using Moderate Solution Imaging Spectrometer (MODIS). In this paper, we report the validation of recent MODIS-generated higher-order global terrestrial ET product 16A2. The main focus of this paper is to devise the follow-up calibration for the localised region covering the entire Malaysia peninsular. The validation is carried out locally by dividing the study area into 3 distinct climatological regions based on the influence to monsoons, and using multi-temporal MODIS data acquired in 2000-2009. The results, evidently show the local effects still inherit in the MODIS 16A2 products; with varying R2 within the 3 local climatological regions established (Northwest = 0.49 South = 0.47, and Southwest = 0.52; all with P < 0.001). The accuracy of each region validated is within + RMSE 43mm for monthly ET. With P value in acceptable range, the correction is useable for further usage

  3. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  4. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua carries six state-of-the-art instruments to observe the Earth's oceans, atmosphere, land, ice and snow covers, and vegetation, providing high measurement...

  5. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    Science.gov (United States)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  6. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    Science.gov (United States)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far

  7. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  8. MODIS land cover and LAI collection 4 product quality across nine states in the western hemisphere.

    Science.gov (United States)

    Warren B. Cohen; Thomas K. Maiersperger; David P. Turner; William D. Ritts; Dirk Pflugmacher; Robert E. Kennedy; Alan Kirschbaum; Steven W. Running; Marcos Costa; Stith T. Gower

    2006-01-01

    Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS...

  9. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...

  10. Regional Inversion of the Maximum Carboxylation Rate (Vcmax) through the Sunlit Light Use Efficiency Estimated Using the Corrected Photochemical Reflectance Ratio Derived from MODIS Data

    Science.gov (United States)

    Zheng, T.; Chen, J. M.

    2016-12-01

    The maximum carboxylation rate (Vcmax), despite its importance in terrestrial carbon cycle modelling, remains challenging to obtain for large scales. In this study, an attempt has been made to invert the Vcmax using the gross primary productivity from sunlit leaves (GPPsun) with the physiological basis that the photosynthesis rate for leaves exposed to high solar radiation is mainly determined by the Vcmax. Since the GPPsun can be calculated through the sunlit light use efficiency (ɛsun), the main focus becomes the acquisition of ɛsun. Previous studies using site level reflectance observations have shown the ability of the photochemical reflectance ratio (PRR, defined as the ratio between the reflectance from an effective band centered around 531nm and a reference band) in tracking the variation of ɛsun for an evergreen coniferous stand and a deciduous broadleaf stand separately and the potential of a NDVI corrected PRR (NPRR, defined as the product of NDVI and PRR) in producing a general expression to describe the NPRR-ɛsun relationship across different plant function types. In this study, a significant correlation (R2 = 0.67, p<0.001) between the MODIS derived NPRR and the site level ɛsun calculated using flux data for four Canadian flux sites has been found for the year 2010. For validation purpose, the ɛsun in 2009 for the same sites are calculated using the MODIS NPRR and the expression from 2010. The MODIS derived ɛsun matches well with the flux calculated ɛsun (R2 = 0.57, p<0.001). Same expression has then been applied over a 217 × 193 km area in Saskatchewan, Canada to obtain the ɛsun and thus GPPsun for the region during the growing season in 2008 (day 150 to day 260). The Vcmax for the region is inverted using the GPPsun and the result is validated at three flux sites inside the area. The results show that the approach is able to obtain good estimations of Vcmax values with R2 = 0.68 and RMSE = 8.8 μmol m-2 s-1.

  11. a Comparative Analysis of Spatiotemporal Data Fusion Models for Landsat and Modis Data

    Science.gov (United States)

    Hazaymeh, K.; Almagbile, A.

    2018-04-01

    In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

  12. Analysis of the Electronic Crosstalk Effect in Terra MODIS Long-Wave Infrared Photovoltaic Bands Using Lunar Images

    Science.gov (United States)

    Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct

  13. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  14. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    Directory of Open Access Journals (Sweden)

    Jeong Sun-Hee

    2000-07-01

    Full Text Available Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of the mice which were derived pain by injecting acetic acid into the abdomen, after stimulating Bee Venom aqua-acupuncture on Chungwan(CV12 and non acupuncture point on the backside were measured. Results:1. It showed that the writhing reflex were appeared on the groups which injected acetic acid only, and saline-acetic acid group(sample I, but not on the group bee venom-saline group(sample II. 2. The change of writhing reflex by Chungwan(CV12 Bee Venom aqua-acupuncture showed significant decrease in the order of Chungwan(CV12 Bee Venom aqua-acupuncture group III(2.5×10-3g/kg, II(2.5×10-4g/kg, and I(2.5×10-5g/kg, compared with control group. There were significant decrease of number of writhing reflex in 5~10, 10~15 and 15~20 minutes intervals of Chung wan(CV12 Bee Venom aqua-acupuncture group I, and in 0~5, 5~10, 10~15 and 15~20 minutes intervals of II and III, compared with control group. 3. The change of writhing reflex by non acupuncture point Bee Venom aqua-acupuncture showed significant decrease in the 0~5 and 5~10 minutes intervals and the total number of writhing reflex in 2.5×10-4g/kg group, compared with control group 4. The effects of writhing reflex of Chungwan(CV12 Bee Venom aqua-acupuncture group showed significant decrease, compared with non acupuncture point Bee Venom aqua-acupuncture group. Conclusion:This study shows that the Bee Venom aqua-acupuncture on Chungwan(CV12 decreases the numbers of writhing reflex. As the

  15. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  16. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375

  17. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  18. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    Science.gov (United States)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  19. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  20. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  1. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Wahab, A M; Sarker, M L R

    2014-01-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  2. Bio-Optical Data Assimilation With Observational Error Covariance Derived From an Ensemble of Satellite Images

    Science.gov (United States)

    Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter

    2018-03-01

    An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.

  3. Estimating Global Cropland Extent with Multi-year MODIS Data

    Directory of Open Access Journals (Sweden)

    Christopher O. Justice

    2010-07-01

    Full Text Available This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set of global classification tree models using a bagging methodology, resulting in a global per-pixel cropland probability layer. This product was subsequently thresholded to create a discrete cropland/non-cropland indicator map using data from the USDA-FAS (Foreign Agricultural Service Production, Supply and Distribution (PSD database describing per-country acreage of production field crops. Five global land cover products, four of which attempted to map croplands in the context of multiclass land cover classifications, were subsequently used to perform regional evaluations of the global MODIS cropland extent map. The global probability layer was further examined with reference to four principle global food crops: corn, soybeans, wheat and rice. Overall results indicate that the MODIS layer best depicts regions of intensive broadleaf crop production (corn and soybean, both in correspondence with existing maps and in associated high probability matching thresholds. Probability thresholds for wheat-growing regions were lower, while areas of rice production had the lowest associated confidence. Regions absent of agricultural intensification, such as Africa, are poorly characterized regardless of crop type. The results reflect the value of MODIS as a generic global cropland indicator for intensive agriculture production regions, but with little sensitivity in areas of low agricultural intensification. Variability in mapping accuracies between areas dominated by different crop types also points to the desirability of a crop-specific approach rather than attempting

  4. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    Science.gov (United States)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  5. Physically-based Canopy Reflectance Model Inversion of Vegetation Biophysical-Structural Information from Terra-MODIS Imagery in Boreal and Mountainous Terrain for Ecosystem, Climate and Carbon Models using the BIOPHYS-MFM Algorithm

    Science.gov (United States)

    Peddle, D. R.; Hall, F.

    2009-12-01

    The BIOPHYS algorithm provides innovative and flexible methods for the inversion of canopy reflectance models (CRM) to derive essential biophysical structural information (BSI) for quantifying vegetation state and disturbance, and for input to ecosystem, climate and carbon models. Based on spectral, angular, temporal and scene geometry inputs that can be provided or automatically derived, the BIOPHYS Multiple-Forward Mode (MFM) approach generates look-up tables (LUTs) that comprise reflectance data, structural inputs over specified or computed ranges, and the associated CRM output from forward mode runs. Image pixel and model LUT spectral values are then matched. The corresponding BSI retrieved from the LUT matches is output as the BSI results. BIOPHYS-MFM has been extensively used with agencies in Canada and the USA over the past decade (Peddle et al 2000-09; Soenen et al 2005-09; Gamon et al 2004; Cihlar et al 2003), such as CCRS, CFS, AICWR, NASA LEDAPS, BOREAS and MODIS Science Teams, and for the North American Carbon Program. The algorithm generates BSI products such as land cover, biomass, stand volume, stem density, height, crown closure, leaf area index (LAI) and branch area, crown dimension, productivity, topographic correction, structural change from harvest, forest fires and mountain pine beetle damage, and water / hydrology applications. BIOPHYS-MFM has been applied in different locations in Canada (six provinces from Newfoundland to British Columbia) and USA (NASA COVER, MODIS and LEDAPS sites) using 7 different CRM models and a variety of imagery (e.g. MODIS, Landsat, SPOT, IKONOS, airborne MSV, MMR, casi, Probe-1, AISA). In this paper we summarise the BIOPHYS-MFM algorithm and results from Terra-MODIS imagery from MODIS validation sites at Kananaskis Alberta in the Canadian Rocky Mountains, and from the Boreal Ecosystem Atmosphere Study (BOREAS) in Saskatchewan Canada. At the montane Rocky Mountain site, BIOPHYS-MFM density estimates were within

  6. MODIS Near real-time (NRT) data for fire applications

    Science.gov (United States)

    Wong, M.; Davies, D.; Ilavajhala, S.; Molinario, G.; Justice, C.; Latham, J.; Martucci, A.; Murphy, K. J.

    2011-12-01

    This paper describes the lessons learned from the development of the Fire Information for Resource Management System (FIRMS) prototype and its transition to an operational system, the Global Fire Information Management System (GFIMS), at the United Nations Food and Agriculture Organization (FAO) in August 2010. These systems provide active fire data from the MODIS sensor, on board NASA's Terra and Aqua Earth Observing Satellites, to users at no cost, in near-real time and in easy-to-use formats. The FIRMS prototype evolved from simply providing daily active fire text files via FTP, to include services such as providing fire data in various data formats, an interactive WebGIS allowing users to view and query the data and an email alert service enabling users to receive emails of near real-time fire data of their chosen area of interest. FIRMS was designed to remove obstacles to the uptake and use of fire data by addressing issues often associated with satellite data: cost, timeliness of delivery, limited data formats and the need for technical expertise to process and analyze the data. We also illustrate how the MODIS active fire data are routinely used for firefighting and conservation monitoring. We present results from a user survey, completed by approximately 345 people from 65 countries, and provide case studies highlighting how the provision of MODIS active fire data have made an impact on conservation and firefighting, especially in remote areas where it is difficult to have on-the-ground surveillance. We highlight the gaps in current capabilities, both with users and the data. A major obstacle still for some users is having low or no internet connectivity and a possible solution is through the use of cell phone technologies such as SMS text messaging of fire locations and information. GFIMS, and its precursor, FIRMS, were developed by the University of Maryland with funding from NASA's Applied Sciences Program. With GFIMS established at FAO as an operational

  7. Atmospheric correction at AERONET locations: A new science and validation data set

    Science.gov (United States)

    Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.

    2009-01-01

    This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo

  8. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  9. A Methodology for the Optimization of Disaggregated Space System Conceptual Designs

    Science.gov (United States)

    2015-06-18

    the Aqua and Terra satellites, part of the EOS. Additionally, the imaging payloads on the Geostationary Operational Environmental Satellites (GOES... Terra ) «block» EOS PM-1 satellite (Aqua) «block» MODIS «block» MODIS 39 The second cost model used for the OFUEGO example is the Small Satellite Cost...assessed under sparse or incomplete vegetation cover. For low density vegetation the equation for estimating soil moisture is: Equation 17

  10. The Effects of Gardeniae Fructus Aqua-Acupuncture on Liver Injury of Rats Induced by CCI4 (

    Directory of Open Access Journals (Sweden)

    Park, Hee-Soo

    2000-12-01

    Full Text Available This is the study of the effects of Aqua-acupuncture with Gardeniae Fructus on thc recovery of rat's liver which was damaged by 0.3ml/ea of CCI4. Rats were divided into 4 groups; Normal-group(None treated group, Control-group(Not treated after CCI4-intoxicated, Exp. I(Treated with Saline Aqua-acupuncture after CCI4-intoxicated and Exp. ll(Treated with Gardeniae Fructus Aqua-acupuncture after CCI4-intoxicated. Biochemical assays for each serum enzyme activities of AST, ALT, Albumin, LDH, γ-GT, TG and Total cholesterol were performed. The results were summarized as follows: 1. AST activities in serum significantly decreased in the Gardeniae Fructus Aqua-acupuncture treated group after CCI4-intoxicated. In companson with Saline-treated group after CCI4-intoxicated, the Gardeniae Fructus Aqua-acupuncture treated group *The professor of Dept. of Acupuncture & Moxibustion, 2. At T activities in serum significantly decreased in the Gardeniae Fructus Aqua-acupuncture treated group after CCI4-intoxicated. In com pan son with Saline-treated group after CCI4-intoxicated, the Gardeniae Fructus Aqua-acupuncture treated group after CCI4-intoxicated worked effectively to rat's damaged liver. 3. Albumin in serum increased in the Gardeniae Fructus Aqua-acupurkture treated group after CCI4-intoxicated. 4. LDH in serum significantly decreased in the Gardeniae Fructus Aqua-acupuncture treated group after CCI4-intoxicated. In comparison with Saline-treated group after CClcintox icated, the Gardeniae Fructus Aqua acupuncture treated group after CCI4-intoxicated worked highly effectively to rat's damaged liver. 5. γ-GT In serum significantly decreased In the Gardeniae Fructus Aqua-acupuncture trea ted group after CCI4-intoxicated. In compan son with Saline-treated group after CCI4-intoxicated, the Crardeniae Fructus Aqua-acupuncture treated group after CCI4-intoxicated was not recognized significantly. 6. TG in serum significantly decreased in the Gardeniae Fructus

  11. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    Science.gov (United States)

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  12. ELABORATION OF NOT LARGE MOBILE MODULAR INSTALLATION ''AQUA - EXPRESS'' (300 L/H) FOR LRW CLEANING

    International Nuclear Information System (INIS)

    Karlin, Yurii; Dmitriev, Sergey; Iljin, Vadim; Ojovan, Mihail; Burcl, Rudolf

    2003-01-01

    Mobile modular installation ''Aqua-Express'' is a liquid low level and intermediate level radioactive waste (LL and ILRW) treatment facility, intended for not large research centers and other organizations, which activity causes the formation of a few quantity (up to 500 m3/year) of low and intermediate level radioactive waste water. Mobile modular installation ''Aqua-Express'' has the following features: (1) filtration, sorption and ultrafiltration units are used for LL and ILRW purification; (2) installation ''Aqua-Express'' consists of a cascade of three autonomous aqueous liquid waste-purifying installations; (3) installation ''Aqua-Express'' is a mobile installation; the installation can be transported by car, train, ship, or plane, as well as placed in a standard transport (sea or railway) container; (4) installation ''Aqua-Express'' does not includes any technological equipment for conditioning the secondary radioactive waste. Productivity of the installation ''Aqua-Express'' by purified water depends on composition of the initial liquid waste and makes up to 300 l/h. In present report is described the design of installation ''Aqua-Express'', theory of LRW purification in the installation ''Aqua-Express'' and some results of its use at cleaning real radioactive waters at State unitary enterprise - MosNPO ''Radon''

  13. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    DEFF Research Database (Denmark)

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi

    2015-01-01

    -series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology...... model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy...... albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43...

  14. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    Science.gov (United States)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  15. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  16. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  17. Prevalence of Retinopathy in Adult Patients with GCK-MODY and HNF1A-MODY.

    Science.gov (United States)

    Szopa, M; Wolkow, J; Matejko, B; Skupien, J; Klupa, T; Wybrańska, I; Trznadel-Morawska, I; Kiec-Wilk, B; Borowiec, M; Malecki, M T

    2015-10-01

    We aimed to assess the prevalence of diabetic retinopathy (DR) in adult patients with GCK-MODY and HNF1A-MODY in Poland and to identify biochemical and clinical risk factors associated with its occurrence.We examined 74 GCK mutation carriers, 51 with diabetes and 23 with prediabetes, respectively, and 63 patients with HNF1A-MODY. Retinal photographs, 12 for each patient, were done by a fundus camera. Signs of DR were graded according to the DR disease severity scale. Statistical tests were performed to assess differences between the groups and logistic regression was done for the association with DR.The mean age at examination was 34.5±14.8 and 39.9±15.2 in the GCK-MODY and HNF1A-MODY groups, respectively. Mild nonproliferative DR (NPDR) was found in one patient with the GCK mutation and likely concomitant type 1 diabetes, whereas DR was diagnosed in 15 HNF1A-MODY patients: 9 with proliferative, 3 with moderate NPDR and 2 with mild NPDR. In univariate logistic regression analysis in the HNF1A-MODY group, significant results were found for diabetes duration, fasting glycemia, HbA1c, arterial hypertension, age at the examination, and eGFR. The strongest independent predictors of DR in HNF1A-MODY were markers of glucose control: HbA1c (OR: 2.05, CL%95: 1.2-3.83, p=0.01) and glucose (p=0.006, OR: 1.40, CL%95: 1.12-1.83) analyzed in 2 separated models. Additionally, arterial hypertension independently predicted DR (OR: 9.06, CL%95: 1.19-98.99, p=0.04) in the model with HbA1c as glycaemic control marker.In conclusion, DR of any degree was not present in our GCK-MODY group, while in spite of young age almost every fourth subject with HNF1A-MODY showed signs of this complication. © Georg Thieme Verlag KG Stuttgart · New York.

  18. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    Science.gov (United States)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region

  19. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data

  20. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  1. Undiagnosed MODY: Time for Action

    Science.gov (United States)

    Kleinberger, Jeffrey W.; Pollin, Toni I.

    2016-01-01

    Maturity-Onset Diabetes of the Young (MODY) is a monogenic form of diabetes that accounts for at least 1% of all cases of diabetes mellitus. MODY classically presents as non-insulin requiring diabetes in lean individuals younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95% of MODY cases in the U.S. are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals. PMID:26458381

  2. Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery

    Directory of Open Access Journals (Sweden)

    Egídio Arai

    2007-06-01

    Full Text Available The objective of this paper is to provide near real time information about deforestation detection (DETER in the entire Brazilian Amazon using MODIS high temporal resolution images. It is part of the operational deforestation monitoring project to estimate the annual deforestation rate in the Brazilian Amazon (PRODES. A rapid deforestation detection method was designed to support land use policies in this region. In order to evaluate the proposed method a test site was selected covering a Landsat ETM+ scene (227/68 located in Mato Grosso State. For this purpose a multitemporal series of MODIS surface reflectance images (MOD09 and the corresponding ETM+ images from June to October 2002 were analyzed. It was found that small deforested areas (lower than 15 ha were detected by MODIS images with lower accuracy when compared with ETM+ images. As the deforested areas increase MODIS and ETM+ results tend to converge. This procedure showed to be adequate to operationally detect and monitor deforested areas and has been used since 2004 as part of a government plan to control the Amazon deforestation.

  3. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    Science.gov (United States)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  4. MODY diabetes - diagnostika a terapie

    OpenAIRE

    Verner, Miroslav

    2010-01-01

    This work summarized basic informations about different types of MODY diabetes. The keypoint is diagnostic, based on family history, followed by analysis of MODY diabetes types with suggestion of optimal therapy. In conclusion I suggest a possible solution of the underestimated diagnostic in MODY diabetes with an information poster in diabetological consulting rooms.

  5. Protocol for Validation of the Land Surface Reflectance Fundamental Climate Data Record using AERONET: Application to the Global MODIS and VIIRS Data Records

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Holben, B. N.

    2014-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. It is essential that a careful validation of its uncertainties is performed on a global and continuous basis. One approach is the direct comparison of this product with ground measurements but that approach presents several issues related to scale, the episodic nature of ground measurements and the global representativeness. An alternative is to compare the surface reflectance product to reference reflectance determined from Top of atmosphere reflectance corrected using accurate radiative transfer code and very detailed measurements of the atmosphere obtained over the AERONET sites (Vermote and al, 2014, RSE) which allows to test for a large range of aerosol characteristics; formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. This paper describes the protocol we have been working on based on our experience with the AERONET data and its application to the MODIS and VIIRS record.

  6. Undiagnosed MODY: Time for Action.

    Science.gov (United States)

    Kleinberger, Jeffrey W; Pollin, Toni I

    2015-12-01

    Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.

  7. Teledetección de quema de cañaverales en la provincia de Tucumán (Argentina mediante sistema MODIS Sugarcane burning teledetection through MODIS system in Tucumán (Argentina

    Directory of Open Access Journals (Sweden)

    M. Javier Tonatto

    2008-06-01

    Full Text Available En Tucumán, Argentina, una práctica generalizada en el cultivo de la caña de azúcar es la quema de cañaverales previa a la cosecha o la de sus residuos en poscosecha. La Comisión Nacional de Actividades Espaciales (CONAE, ofrece una herramienta para la teledetección de focos de fuego a través de “mapas de focos de calor” generados por los sistemas satelitales TERRA y AQUA MODIS pertenecientes a la NASA. El propósito de este trabajo fue realizar una aplicación de esta información para el registro de focos de fuego en el área cañera de Tucumán, generando una base de datos y estadísticas de la ocurrencia de quema de cañaverales para los períodos de zafra durante los años 2004, 2005 y 2006. Además, se efectuaron validaciones en campo para evaluar su potencial empleo como un sistema de monitoreo de fuegos en áreas agrícolas y otros recursos naturales. En todos los casos, septiembre fue el mes con la mayor ocurrencia de fuegos y Cruz Alta, el departamento con el mayor registro de focos de fuego. Además se observó una tendencia creciente en el uso de la quema previa o posterior a la cosecha.A generalized agricultural practice in Tucumán, Argentina, is pre-harvest sugarcane burning or burning of its post harvest residues. The Comisión Nacional de Actividades Espaciales (CONAE offers a tool for fire ocurrence teledetection using thermal anomalies maps, generated by NASA TERRA and AQUA MODIS satellite systems. This information was used for fire registration on sugarcane cultivation area, generating a database and statistics of sugarcane burning during the harvesting period from 2004 to 2006 in Tucumán. Moreover, an attempt to validate the potential use of this tool as a fire monitoring system in agriculture and natural resources areas was carried out. September was the month with major number of fire occurrences in all considered cases and Cruz Alta was the location with most fire records. The use of pre or post harvest

  8. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  9. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  10. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  11. Mossin, Mody

    DEFF Research Database (Denmark)

    2005-01-01

    Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning.......Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning....

  12. Reducing Striping and Near Field Response Influence in the MODIS 1.38um Cirrus Detection Band.

    Science.gov (United States)

    Ackerman, S. A.; Moeller, C. C.; Frey, R. A.; Gumley, L. E.; Menzel, W. P.

    2002-05-01

    Since first light in February 2000, the MODIS L1B data from Terra has exhibited detector striping in the cirrus detection band at 1.38 um (B26). This band's unique characteristic is that it is potentially able to discriminate very thin cirrus (optical depth of 0.1) because water vapor absorption effectively attenuates the upwelling signal from the earth's surface, leaving a flat dark background underneath the thin cirrus. The striping has diminished the power of this band for detecting thin cirrus in the MODIS Cloud Mask (MOD35) over the global environment by imparting a structure on the background. The striping amplitude (valley to peak) is 10 - 15% of the MODIS Ltyp radiance in B26 over land backgrounds, thus exceeding the 5% radiance prelaunch accuracy specification for the band. Also unexpected has been the presence of earth surface reflectance in B26. Forward model calculations indicate that the two-way transmittance of B26 in-band (1% to 1% response) should be water (TPW) exceeds about 12 mm. However, MODIS B26 imagery has routinely shown land surface reflectance, such as Florida, even in very moist (TPW > 30 mm) tropical air masses. MODIS prelaunch test data suggests that a near field response (NFR) at about 1.3 um in the B26 filter may be contributing to this behavior. A destriping and out-of-band correction algorithm has been under development at the University of Wisconsin to address the these issues. The simple linear algorithm is based on tuning detector dependent influence coefficients for B26 as a function of B5 (1.24 um) radiance so that the corrected B26 radiance is near zero for all B26 detectors in moist atmospheric conditions. B5 was chosen as a surrogate to characterize the NFR leak in the B26 filter because of its close spectral proximity to the NFR leak. Real MODIS L1B data is being used to estimate the influence coefficients. The paper will describe the B5 based destriping and NFR correction algorithm and influence coefficient development. It

  13. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    OpenAIRE

    Jeong Sun-Hee; Koh Hyung-kyun; Park Dong-Suk

    2000-01-01

    Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of ...

  14. APLIKASI GESTALT PADA DESAIN LABEL KEMASAN PRODUK AQUA

    Directory of Open Access Journals (Sweden)

    Nova Kristiana

    2018-02-01

    Full Text Available Abstrak Dalam suatu produk, elemen Positioning, Differensiasi dan Brand merupakan tiga hal pokok yang harus dipertimbangkan dalam sebuah kemasan. Desain kemasan yang menarik mampu membuka ruang tersendiri di benak konsumen melalui komunikasi visual. Danone Perusahaan asal Perancis mengeluarkan desain kemasan yang khusus. Desain kemasan produk air mineral Aqua pada botol minuman ukuran 600ml, bertema ‘Temukan Indonesiamu”  dengan mengangkat tema budaya lokal Indonesia , terdiri dari 5 judul yaitu Berbagi, Santun, Ramah, Kekeluargaan, dan Gotong Royong. Dari kelima seri tersebut ada dua judul yaitu Santun dan Gotong-Royong yang dalam memvisualkannya menggunakan teori Gestalt. Penelitian ini menggunakan metode Deskriptif kualitatif dimana teori Gestalt, selanjutnya dideskripsikan dan dianalisis secara kualitatif. Hasil dari penelitian ini yaitu adanya pesan yang mendalam dari kedua desain kemasan tersebut. Kata Kunci : Desain Kemasan, Gestalt, Aqua,. Abstract In a product, Positioning, Differentiation and Brand elements are the three key points to be considered in a package. An attractive packaging design is able to open its own space in the minds of consumers through visual communication. Danone Company from France issued a special packaging design. The design of Aqua mineral water product packaging at 600ml bottle beverage, themed 'Discover Indonesiamu' with the theme of Indonesian local culture, consists of 5 titles: Sharing, Politeness, Friendly, Kinship, and Cooperation. Of the five series there are two titles namely Politeness and Cooperation which in visualizing using the theory of Gestalt. This research uses qualitative descriptive method in which Gestalt theory, hereinafter described and analyzed qualitatively. The result of this research is the deep message of both packaging design. Keywords: Packaging Design, Gestalt, Aqua.

  15. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  16. Safety dose of three commercially used growth promoters: nuricell- aqua, hepaprotect-aqua and rapid-grow on growth and survival of Thai pangas (Pangasianodon hypophthalmus

    Directory of Open Access Journals (Sweden)

    Md. Ariful Islam

    2014-02-01

    Full Text Available Objective: To optimize the dose of 3 commonly used growth promoters, viz., Nuricell-Aqua (composition: glucomannan complex and mannose polymer, Hepaprotect-Aqua (composition: β-glucan, mannose polymer and essential oil and Rapid-Grow (composition: organic acid and their salt, β-glucan, mannose oligosaccharide and essential oil, using Thai pangas (Pangasiandon hypophthalmus as cultured species. Methods: Thai pangas fingerlings with an average length and weight of 11 cm and 10 g were reared under laboratory condition and growth promoters were fed after incorporating them with a test diet at a ratio of 10% of their body weight for a period of 28 d. Estimation of data on growth such as weight gain (g, specific growth rate, survivability (% test in each aquarium were conducted and data were analyzed using statistical software. Results: After 28 d of feeding with Nutricell-Aqua, 10 mg/(20 g feed·day, which was the dose recommended by the manufacturer, was found better. When Hepaprotect-Aqua and Rapid-Grow were employed, performance was found to be better with the dose of 60 mg/(20 g feed·day which was 1.5 times higher than the dose recommended by the corresponding manufacturer. Conclusions: These results suggest that chemicals and feed additives marketed in Bangladesh Fish Feed Market need further testing under Bangladesh climatic condition before being marketed.

  17. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    Science.gov (United States)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  18. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    Science.gov (United States)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  19. A simple digestion method with a Lefort aqua regia solution for diatom extraction.

    Science.gov (United States)

    Wang, Huipin; Liu, Yan; Zhao, Jian; Hu, Sunlin; Wang, Yuzhong; Liu, Chao; Zhang, Yanji

    2015-01-01

    Presence of diatoms in tissues has been considered as a significant sign of drowning. However, there are limitations in the present extraction methods. We developed a new digestion method using the Lefort aqua regia solution (3:1 nitric acid to hydrochloric acid) for diatom extraction and evaluated the digestive capability, diatom destruction, and diatoms' recovery of this new method. The kidney tissues from rabbit mixed with water rich in diatoms were treated by the Lefort aqua regia digestion method (n = 10) and the conventional acid digestion method (n = 10). The results showed that the digestive capability of Lefort aqua regia digestion method was superior to conventional acid digestion method (p 0.05). The Lefort aqua regia reagent is an improvement over the conventional acid digestion for recovery of diatoms from tissue samples. © 2014 American Academy of Forensic Sciences.

  20. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    International Nuclear Information System (INIS)

    Nguyen, Thanh T N; Bui, Hung Q; Pham, Ha V; Luu, Hung V; Man, Chuc D; Pham, Hai N; Le, Ha T; Nguyen, Thuy T

    2015-01-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM 2.5 data compared to ground-based PM 2.5 (n = 285, r 2  = 0.411, RMSE = 20.299 μg m −3 and RE = 39.789%). Further, validation of satellite-derived PM 2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r 2  = 0.455, RMSE = 21.512 μg m −3 , RE = 45.236% and n = 45, r 2  = 0.444, RMSE = 8.551 μg m −3 , RE = 46.446% respectively). Also, our satellite-derived PM 2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM 2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects. (letter)

  1. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    Science.gov (United States)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  2. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  3. Blue Marble Eastern Hemisphere

    Science.gov (United States)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  4. Blue Marble Western Hemisphere

    Science.gov (United States)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  5. Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands

    Science.gov (United States)

    Maffei, Carmine; Leone, Antonio P.; Meoli, Giuseppe; Calabrò, Gaetano; Menenti, Massimo

    2007-10-01

    Forest fires are one of the major environmental hazards in Mediterranean Europe. Biomass burning reduces carbon fixation in terrestrial vegetation, while soil erosion increases in burned areas. For these reasons, more sophisticated prevention tools are needed by local authorities to forecast fire danger, allowing a sound allocation of intervention resources. Various factors contribute to the quantification of fire hazard, and among them vegetation moisture is the one that dictates vegetation susceptibility to fire ignition and propagation. Many authors have demonstrated the role of remote sensing in the assessment of vegetation equivalent water thickness (EWT), which is defined as the weight of liquid water per unit of leaf surface. However, fire models rely on the fuel moisture content (FMC) as a measure of vegetation moisture. FMC is defined as the ratio of the weight of the liquid water in a leaf over the weight of dry matter, and its retrieval from remote sensing measurements might be problematic, since it is calculated from two biophysical properties that independently affect vegetation reflectance spectrum. The aim of this research is to evaluate the potential of the Moderate Resolution Imaging Spectrometer (MODIS) in retrieving both EWT and FMC from top of the canopy reflectance. The PROSPECT radiative transfer code was used to simulate leaf reflectance and transmittance as a function of leaf properties, and the SAILH model was adopted to simulate the top of the canopy reflectance. A number of moisture spectral indexes have been calculated, based on MODIS bands, and their performance in predicting EWT and FMC has been evaluated. Results showed that traditional moisture spectral indexes can accurately predict EWT but not FMC. However, it has been found that it is possible to take advantage of the multiple MODIS short-wave infrared (SWIR) channels to improve the retrieval accuracy of FMC (r2 = 0.73). The effects of canopy structural properties on MODIS

  6. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF)- Test data in HDF (CER_SSF_TRMM-PFM-VIRS_Subset-Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  7. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_TRMM-PFM-VIRS_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  8. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY.

    Science.gov (United States)

    Bishay, Ramy H; Greenfield, Jerry R

    2016-11-21

    Maturity onset diabetes of the young (MODY), the most common monogenic form of diabetes, accounts for 1-2% of all diabetes diagnoses. Glucokinase (GCK)-MODY (also referred to as MODY2) constitutes 10-60% of all MODY cases and is inherited as an autosomal dominant heterozygous mutation, resulting in loss of function of the GCK gene. Patients with GCK-MODY generally have mild, fasting hyperglycaemia that is present from birth, are commonly leaner and diagnosed at a younger age than patients with type 2 diabetes, and rarely develop complications from diabetes. Hence, treatment is usually unnecessary and may be ceased. Therefore, genetic screening is recommended in all young patients (MODY, such as hepatocyte nuclear factor 1A mutations (MODY3) where hyperglycaemia is managed with low dose sulfonylurea rather than insulin. Patients with GCK-MODY, in line with trends in the general population, are becoming older and more overweight and obese, and are concomitantly developing features of insulin resistance and glucose intolerance. Therefore, controversy exists as to whether such "treatment-exempt" patients should be reassessed for treatment later in life. As testing becomes more accessible, clinicians and patients are likely to embrace genetic screening earlier in the course of diabetes, which may avert the consequences of delayed testing years after diagnosis and treatment initiation.

  9. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  10. Lipoprotein composition in HNF1A-MODY: differentiating between HNF1A-MODY and type 2 diabetes.

    Science.gov (United States)

    McDonald, Tim J; McEneny, Jane; Pearson, Ewan R; Thanabalasingham, Gaya; Szopa, Magdalena; Shields, Beverley M; Ellard, Sian; Owen, Katharine R; Malecki, Maciej T; Hattersley, Andrew T; Young, Ian S

    2012-05-18

    The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type. 1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value. 1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes. The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Humoral response markers in GCK MODY].

    Science.gov (United States)

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Wyka, Krystyna; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    The prevalence of antibodies to pancreatic islets in monogenic diabetes remains unknown and the incidence estimation is difficult as the occurrence of autoantibodies in patient is one of the well-known exclusion criteria for further genetic diagnostics. They has been found not only among patients with type 1 diabetes, but also in other types of diabetes: Type 2 diabetes, Latent Autoimmune Diabetes in Adults (LADA) (16) and monogenic diabetes (MD). Immunological characteristic of GCK MODY patients. The study group included families of 27 adolescent patients with GCK MODY (39 parents and 19 siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. All patients and family members with GCK MODY underwent a blood sample drawing for immunological (classic humoral response markers: ICA, GAD, IA-2, IAA) and biochemical diagnostics. Pediatric, diabetes and family medical history was collected from the subjects and parents. Immunological diagnostics was performed in all patients except 1 (96.3%). Immunological diagnostics included 17 (89.5%) parents and 7 (87.5%) siblings with diagnosed GCK MODY. 8 (30.8%) adolescent patients with GCK MODY, 3 subjects (17.64%) among parents (with GCK MODY), as well as 2 subjects (28.57%) among siblings (with GCK MODY) showed a positive antibodies screen. The results of our study in children with GCK MODY and their family members suggest that the occurrence of classic antibodies directed against pancreatic islets antigens is fairly common in patients with GCK MODY. Despite various observations and many legitimate discussions, it is difficult to clarify the pathogenesis of the occurrence of autoantibodies in monogenic diabetes. © Polish Society for Pediatric Endocrinology and Diabetology.

  12. 75 FR 16732 - Action Affecting Export Privileges; Aqua-Loop Cooling Towers, Co.

    Science.gov (United States)

    2010-04-02

    ... to Iran. With your permission we are going to give Aqua-Loop's information to them so they can send... this channel is what you were thinking, and if I understood correctly, you are going to have some kind... Charges 2-3 occurred. Aqua-Loop received from Parto Abgardan a piece of the original sample as well as a...

  13. Global Near Real-Time MODIS and Landsat Flood Mapping and Product Delivery

    Science.gov (United States)

    Policelli, F. S.; Slayback, D. A.; Tokay, M. M.; Brakenridge, G. R.

    2014-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is increasing in frequency and damage (deaths, displacements, and financial costs) as populations increase and climate change generates more extreme weather events. When major flooding events occur, the disaster management community needs frequently updated and easily accessible information to better understand the extent of flooding and coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide flood extent information within 24-48 hours of events. The principal element of the system applies a water detection algorithm to MODIS imagery, which is processed by the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows the system to deliver an initial daily assessment of flood extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters) for some events, the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extent. We are working on improvements to address these limitations. We have also begun delivery of near real time water maps at 30 m resolution from Landsat imagery. Although Landsat is not available daily globally, but only every 8 days if imagery from both operating platforms (Landsat 7 and 8) is accessed, it can provide useful higher resolution data on water extent when a clear acquisition coincides with an active

  14. Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data

    Science.gov (United States)

    The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...

  15. Land cover mapping of Greater Mesoamerica using MODIS data

    Science.gov (United States)

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  16. Analisis Pengawasan Logistik Produk Aqua Ukuran 330ml Pada CV. Dlu'x Resto Samarinda

    OpenAIRE

    Mardiana, Ali Masuhud, H. Mulyadi Syp

    2016-01-01

    The problem in this research is "Are Determination Against Aqua Products Logistics Control 330ml sizes on CV. DLux Resto has been optimized? "This study aims to determine the amount of inventory on the CV aqua 330ml sizes. Dlu'x Resto in Samarinda.Formulation of the problem in this study is whether the determination of the logistical monitoring product inventory aqua 330ml sizes that have been carried out on the CV. Dlu'x Resto Samarinda already performed optimally.The hypothesis in this stud...

  17. MODIS NDVI Change Detection Techniques and Products Used in the Near Real Time ForWarn System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William; Gasser, Jerry; Smoot, James; Kuper, Philip D.

    2014-01-01

    This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.

  18. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    Science.gov (United States)

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  19. [MODY type diabetes: overview and recent findings].

    Science.gov (United States)

    Ben Khelifa, Souhaïra; Barboura, Ilhem; Dandana, Azza; Ferchichi, Selima; Miled, Abdelhedi

    2011-01-01

    We present an update of knowledge on diabetes MODY (maturity onset diabetes of the young), including the recent molecular discoveries, and new diagnostic strategies. Considerable progress has been made in understanding the different molecular abnormalities that cause MODY and the phenotypic consequences resulting therefrom. MODY diabetes is very heterogeneous and is the most common form of monogenic diabetes. Its distribution is worldwide. MODY is an autosomal dominant diabetes mellitus, nonketotic and occurs at an early age (usually before 25 years). To date, at least seven genes are associated with MODY, with frequencies that differ from one population to another. Both 2 and 3 subtypes predominate, while other subtypes (1, 4, 5, 6 and 7) concern only a few families. Since its discovery in the sixties, studies have succeeded to fully clarify the epidemiological, molecular and clinical diagnosis of each subtype, to provide better care for patients. However, the subject of MODY has not yet revealed all its secrets. Indeed, it remains to identify other genes that are associated with MODY X.

  20. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    Science.gov (United States)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  1. [Diagnosis of MODY - brief overview for clinical practice].

    Science.gov (United States)

    Urbanová, Jana; Brunerová, Ludmila; Brož, Jan

    2018-01-01

    Maturity Onset Diabetes of the Young (MODY) comprises inherited forms of diabetes mellitus caused by the mutations in the genes involved in the development, differentiation and function of beta-cells. The majority of patients with MODY remains misdiagnosed and erroneously classified as type 1 or type 2 diabetic patients. Correct MODY diagnosis is, however, essential since it enables individualization of treatment, assessment of the prognosis and identification of diabetes among patient´s relatives. Clinical presentation of MODY is highly variable and it could resemble other types of diabetes, thus identification of MODY patients might be difficult. In this review, we describe typical clinical presentation of the most common MODY subtypes, we summarize current diagnostic guidelines in confirmation of MODY and we raise the question of possible need for extension of current clinical criteria indicating a patient for molecular-genetic testing.Key words: clinical course - diagnosis - differential diagnosis - glucokinase - hepatocyte nuclear factors - MODY.

  2. Inter Annual Variability of the California Current System and Associated Biochemical Characteristics from Prolonged Data Series

    Science.gov (United States)

    2016-06-01

    and salinity profile data, Moderate Resolution Imaging Spectroradiometer ( MODIS ) that is an instrument deployed on Aqua satellite (A) for surface...data were used specifically to identify the coastal circulations. The data was obtained from Moderate Resolution Imaging Spectroradiometer ( MODIS ), an...surface images are captured in 36 spectral bands at various resolutions, for more specific information on spectral bands see MODIS technical manual on

  3. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Directory of Open Access Journals (Sweden)

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  4. A Comparison of MODIS and DOAS Sulfur Dioxide Measurements of the April 24, 2004 Eruption of Anatahan Volcano, Mariana Islands

    Science.gov (United States)

    Meier, V. L.; Scuderi, L.; Fischer, T.; Realmuto, V.; Hilton, D.

    2006-12-01

    Measurements of volcanic SO2 emissions provide insight into the processes working below a volcano, which can presage volcanic events. Being able to measure SO2 in near real-time is invaluable for the planning and response of hazard mitigation teams. Currently, there are several methods used to quantify the SO2 output of degassing volcanoes. Ground and aerial-based measurements using the differential optical absorption spectrometer (mini-DOAS) provide real-time estimates of SO2 output. Satellite-based measurements, which can provide similar estimates in near real-time, have increasingly been used as a tool for volcanic monitoring. Direct Broadcast (DB) real-time processing of remotely sensed data from NASA's Earth Observing System (EOS) satellites (MODIS Terra and Aqua) presents volcanologists with a range of spectral bands and processing options for the study of volcanic emissions. While the spatial resolution of MODIS is 1 km in the Very Near Infrared (VNIR) and Thermal Infrared (TIR), a high temporal resolution and a wide range of radiance measurements in 32 channels between VNIR and TIR combine to provide a versatile space borne platform to monitor SO2 emissions from volcanoes. An important question remaining to be answered is how well do MODIS SO2 estimates compare with DOAS estimates? In 2004 ground-based plume measurements were collected on April 24th and 25th at Anatahan volcano in the Mariana Islands using a mini-DOAS (Fischer and Hilton). SO2 measurements for these same dates have also been calculated using MODIS images and SO2 mapping software (Realmuto). A comparison of these different approaches to the measurement of SO2 for the same plume is presented. Differences in these observations are used to better quantify SO2 emissions, to assess the current mismatch between ground based and remotely sensed retrievals, and to develop an approach to continuously and accurately monitor volcanic activity from space in near real-time.

  5. Surface spectral emissivity derived from MODIS data

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  6. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    Science.gov (United States)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were

  7. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  8. OW NASA MODIS Aqua Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Moderate Resolution Imaging Spectroradiometer...

  9. MODIS Hotspot Validation over Thailand

    Directory of Open Access Journals (Sweden)

    Veerachai Tanpipat

    2009-11-01

    Full Text Available To ensure remote sensing MODIS hotspot (also known as active fire products or hotspots quality and precision in forest fire control and management in Thailand, an increased level of confidence is needed. Accuracy assessment of MODIS hotspots utilizing field survey data validation is described. A quantitative evaluation of MODIS hotspot products has been carried out since the 2007 forest fire season. The carefully chosen hotspots were scattered throughout the country and within the protected areas of the National Parks and Wildlife Sanctuaries. Three areas were selected as test sites for validation guidelines. Both ground and aerial field surveys were also conducted in this study by the Forest Fire Control Division, National Park, Wildlife and Plant Conversation Department, Ministry of Natural Resources and Environment, Thailand. High accuracy of 91.84 %, 95.60% and 97.53% for the 2007, 2008 and 2009 fire seasons were observed, resulting in increased confidence in the use of MODIS hotspots for forest fire control and management in Thailand.

  10. AquaLase versus NeoSoniX--a comparison study.

    Science.gov (United States)

    Jiraskova, Nada; Rozsival, Pavel; Kadlecova, Jana; Nekolova, Jana; Pozlerova, Jana; Dubravska, Zlatica

    2007-12-01

    To compare the metrics and surgical outcome when using Infiniti AquaLase and NeoSoniX cataract removal modalities. This prospective clinical study involved 50 patients with bilateral cataracts and lens removal using AquaLase in the right eye and NeoSoniX in the left eye. Best corrected visual acuity (BCVA), endothelial cell density and pachymetry were evaluted pre- and postoperatively. Statistical analysis was performed using the Wilcoxon Signed- Rank Test. Preoperative mean pachymetry was 569 +/- 31 mu in the right eye (RE) and 560 +/- 37 mu in the left eye (LE), mean endothelial cell density 2744 +/- 418 cells/mm(2) (RE) and 2730 +/- 472 cells/mm(2) (LE). One week after operation pachymetry was 576 +/- 52 mu (RE) and 583 +/- 72 mu (LE) and endothelial cell density 2388 +/- 586 cells/mm(2) (RE) and 2463 +/- 615 cells/mm(2) (LE). One month after surgery pachymetry was 556 +/- 43 mu (RE) and 559 +/- 44 mu (LE) and endothelial cell density 2368 +/- 52 cells/mm(2) (RE) and 2495 +/- 548 cells/mm(2) (LE). BCVA improved in all eyes and was 0.8 or better on the first postoperative day. Both the NeosoniX and AquaLase minimize intraoperative damage to ocular structures.

  11. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  12. Can the physical properties associated with uncertainties in the NASA MODIS AOD retrievals in the western U.S. be determined?

    Science.gov (United States)

    Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2016-12-01

    Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.

  13. Normalization of NDVI from Different Sensor System using MODIS Products as Reference

    International Nuclear Information System (INIS)

    Wenxia, Gan; Liangpei, Zhang; Wei, Gong; Huanfeng, Shen

    2014-01-01

    Medium Resolution NDVI(Normalized Difference Vegetation Index) from different sensor systems such as Landsat, SPOT, ASTER, CBERS and HJ-1A/1B satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. Limitation of sensor designs, cloud contamination, and sensor failure highlighted the need to normalize and integrate NDVI from multiple sensor system in order to create a consistent, long-term NDVI data set. In this paper, we used a reference-based method for NDVI normalization. And present an application of this approach which covert Landsat ETM+ NDVI calculated by digital number (NDVI DN ) to NDVI calculated by surface reflectance (NDVI SR ) using MODIS products as reference, and different cluster was treated differently. Result shows that this approach can produce NDVI with highly agreement to NDVI calculated by surface reflectance from physical approaches based on 6S (Second Simulation of the satellite Signal in the Solar Spectrum). Although some variability exists, the cluster specified reference based approach shows considerable potential for NDVI normalization. Therefore, NDVI products in MODIS era from different sources can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis

  14. AQUA AMSR-E Sea Surface Temperature

    Science.gov (United States)

    Gentemann, C. L.

    2011-12-01

    NASA's AQUA satellite carries the JAXA's Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). The AQUA satellite was launched in May 2002 into a polar, sun-synchronous orbit at an altitude of 705 km, with a LECT of 1:30 AM/PM. AMSR-E has 12 channels corresponding to 6 frequencies; all except 23.8 GHz measure both vertical and horizontal polarizations. Geophysical retrievals of SST, wind speed, water vapor, cloud liquid water, and rain rates are calculated using a multi-stage linear regression algorithm derived through comprehensive radiative transfer model simulations. SST retrievals are prevented by rain, sun glint, near land emissions, and radio frequency interference due to geostationary satellite broadcasts. Since only a small number of retrievals are unsuccessful, almost complete global coverage is available daily. At high latitudes, where cloud cover regularly prevents infrared observations of SSTs, the microwave observations of SST provide a significant improvement to measurement capabilities. Validation of the datasets through comparison to the global drifting buoy networks yields mean biases of -0.02 K and standard deviations of 0.50 K. AMSR-E SSTs have been widely used for numerical weather prediction, ocean modeling, fisheries, and oceanographic research.

  15. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    Science.gov (United States)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  16. Mapping soil degradation by topsoil grain size using MODIS data

    OpenAIRE

    XIAO, Jieying; SHEN, Yanjun; TATEISHI, Ryutaro

    2005-01-01

    [ABSTRACT] MODIS BRDF reflectance data at the end of April 2004 was selected to make a desertification map base on topsoil grain size by using Gain Size Index at arid and semiarid Asia. After data processing, GSI was applied into desertification mapping, and we find that high GSI area distributed at the desert and its’ marginal area, degraded grassland, desert steppe. The desertification map was output according to the correlation between GSI and grain size distribution, the classification of...

  17. AIRS/Aqua Level 2G Precipitation Estimate V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  18. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes

    Science.gov (United States)

    Althari, Sara; Gloyn, Anna L.

    2015-01-01

    The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119

  19. Effect of the Absorbed Photosynthetically Active Radiation Estimation Error on Net Primary Production Estimation - A Study with MODIS FPAR and TOMS Ultraviolet Reflective Products

    International Nuclear Information System (INIS)

    Kobayashi, H.; Matsunaga, T.; Hoyano, A.

    2002-01-01

    Absorbed photosynthetically active radiation (APAR), which is defined as downward solar radiation in 400-700 nm absorbed by vegetation, is one of the significant variables for Net Primary Production (NPP) estimation from satellite data. Toward the reduction of the uncertainties in the global NPP estimation, it is necessary to clarify the APAR accuracy. In this paper, first we proposed the improved PAR estimation method based on Eck and Dye's method in which the ultraviolet (UV) reflectivity data derived from Total Ozone Mapping Spectrometer (TOMS) at the top of atmosphere were used for clouds transmittance estimation. The proposed method considered the variable effects of land surface UV reflectivity on the satellite-observed UV data. Monthly mean PAR comparisons between satellite-derived and ground-based data at various meteorological stations in Japan indicated that the improved PAR estimation method reduced the bias errors in the summer season. Assuming the relative error of the fraction of PAR (FPAR) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) to be 10%, we estimated APAR relative errors to be 10-15%. Annual NPP is calculated using APAR derived from MODIS/ FPAR and the improved PAR estimation method. It is shown that random and bias errors of annual NPP in a 1 km resolution pixel are less than 4% and 6% respectively. The APAR bias errors due to the PAR bias errors also affect the estimated total NPP. We estimated the most probable total annual NPP in Japan by subtracting the bias PAR errors. It amounts about 248 MtC/yr. Using the improved PAR estimation method, and Eck and Dye's method, total annual NPP is 4% and 9% difference from most probable value respectively. The previous intercomparison study among using fifteen NPP models4) showed that global NPP estimations among NPP models are 44.4-66.3 GtC/yr (coefficient of variation = 14%). Hence we conclude that the NPP estimation uncertainty due to APAR estimation error is small

  20. Effects of Hominis Placenta Aqua-acupuncture on Kidney and Liver Intoxicated by HgCI2 in Rats

    Directory of Open Access Journals (Sweden)

    Lee, Sang-Keel

    2000-12-01

    Full Text Available Objective: This study was perfomled to examine the therapeutic effect of aqua-acupuncture solution of Hominis Placenta(HP on kidney and liver intoxicated by HgCl2 in rats. Methods: 10% and 25% HP aqua-acupuncture were carried out everyday for 8 days on corresponding bilateral loci of Shinsu(BL23 and Kansu(BL18, respectively, after mercuric chloride intoxication in rats. Thereafter BUN, creatinine, GOT, GPT, ALP, -GT, albumin and total bilirubin were measured before intoxication, and at the 4th and the 8th experimental day. Histopathological and immunochemical observation were also carried out. Results: 1. It showed significant decreases of BUN in the group of 10% HP aqua-acupuncture into Shinsu on the 4th experimental day as compared with the control group. 2. It showed significant decreases of creatinine in the group of 10% HP aqua-acupuncture into Shinsu on the 4th and the 8th experimental days as compared with the control group. 3. There were not any significant changes of GOT, GPT, ALP, γ-GT, albumin and total bilirubin in the HP aqua-acupuncture groups compared with the control group. 4. By the histopathological observations on kidney under a light microscope, all the 10% and 25% HP aqua-acupuncture into Shinsu showed the preventive effect on tubulo-interstitial necrosis and muItifocal calcification in tubular lumen respectively compared with the control group. 5. By the histopathological observations on liver under a light mIcroscope, the groups 10% and 25% HP aqua-acupuncture into Kansu did not show any significant changes in the liver compared with the control group. 6. By the immunochemical analysis of heat shock protein(hsp and glucose-regulated protein(grp in rat renal cortex, the expressions of hsp70 and grp78 were decreased in the and HP aqua-acupuncture into Shinsu respectively compared with the control group. Conclusion: These results suggest that Hominis Placenta aqua-acupuncture have an effect on prevention and protection of

  1. Pengaruh Citra Merek Dan Kualitas Produk Dengan Kepuasan Konsumen Sebagai Variabel Antara Terhadap Loyalitas Konsumen Air Minum Merek Aqua (Studi Pada Konsumen Aqua Yang Berdomisili Di Perumahan Puri Anjasmoro)

    OpenAIRE

    Lutfiana, Astri Ayu; Saryadi, Saryadi; Wijayanto, Andi

    2013-01-01

    Aqua is a brand of bottled mineral water. The factors predicted affecting consumer loyalty are brand image and product quality. This study aims to examine the influence of brand image, product quality, customer satisfaction, and customer loyalty of Aqua drinking water in the community who are living in Puri Anjasmoro Residential. Type of research is explanatory research. Sampling technique used purposive sampling, which is sampling techniques used based on purpose and specific considerations....

  2. Effects of Aqua Exercises Towards Improving The Quality of Life (QoL) of Obese Women in Malaysia

    Science.gov (United States)

    Karim, Noor Liyana Binti; Jalil, Asma Diyana binti Abd; Hasri, Noor Haninah Binti; Rahman, Hezlin Aryani Binti Abd; Shari, Maisarah Binti; Idris, Nur Izzati Binti

    2018-05-01

    Aqua exercise is a form of water exercise, done in the water which is beneficial for weight loss as well as improving the quality of life. It is suitable for all age group and fitness levels whereby due to the water buoyancy makes it easier to perform exercises especially for obese and knee-injured people. However, there was not much study done to measure the effectiveness of the aqua exercises in improving the quality life. Thus, this study aims to investigate and compare the effectiveness of aqua exercises towards obese women within eight domains of the Quality of Life (QoL). This study uses the 36-Items Short Form Health Survey (SF-36) questionnaire and a purposive sample of 61 participants to measure the effectiveness of the aqua exercise before and after 36 days of aqua workout. As the nature of the data collected was not normally distributed, hence the Wilcoxon signed rank test was used as the statistical method of analysis. The findings of this study showed that there was a significant difference between the overall QoL pre and post since the p-value physical functioning, general health, social functioning, mental health, and health transition were the domains showing significant difference between the pre and post-test (p-value < 0.05), and where majority of the participants showed a significant improvement after the aqua workouts. Thus, it can be concluded that aqua exercises is effective in improving the general QoL of obese women.

  3. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  4. Circulating ghrelin level is higher in HNF1A-MODY and GCK-MODY than in polygenic forms of diabetes mellitus.

    Science.gov (United States)

    Nowak, Natalia; Hohendorff, Jerzy; Solecka, Iwona; Szopa, Magdalena; Skupien, Jan; Kiec-Wilk, Beata; Mlynarski, Wojciech; Malecki, Maciej T

    2015-12-01

    Ghrelin is a hormone that regulates appetite. It is likely to be involved in the pathophysiology of varying forms of diabetes. In animal studies, the ghrelin expression was regulated by the hepatocyte nuclear factor 1 alpha (HNF1A). Mutations of the HNF1A gene cause maturity onset diabetes of the young (MODY). We aimed to assess the circulating ghrelin levels in HNF1A-MODY and in other types of diabetes and to evaluate its association with HNF1A mutation status. Our cohort included 46 diabetic HNF1A gene mutation carriers, 55 type 2 diabetes (T2DM) subjects, 42 type 1 diabetes (T1DM) patients, and 31 glucokinase (GCK) gene mutation carriers with diabetes as well as 51 healthy controls. Plasma ghrelin concentration was measured using the immunoenzymatic assay with polyclonal antibody against the C-terminal fragment of its acylated and desacylated forms. Ghrelin concentrations were 0.75 ± 0.32, 0.70 ± 0.21, 0.50 ± 0.20, and 0.40 ± 0.16 ng/ml in patients with HNF1A-MODY, GCK-MODY, T1DM, and T2DM, respectively. The ghrelin levels were higher in HNF1A-MODY and GCK-MODY than in T1DM and T2DM (p MODY groups and common diabetes types remained significant. Analysis by a HNF1A mutation type indicated that ghrelin concentration is similar in patients with different types of sequence differences. Plasma ghrelin level is higher in HNF1A-MODY and GCK-MODY than in the common polygenic forms of diabetes.

  5. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  6. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  7. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  8. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-04-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  9. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  10. EOS Aqua: Mission Status at Earth Science Constellation

    Science.gov (United States)

    Guit, Bill

    2016-01-01

    This is an EOS Aqua Mission Status presentation to be given at the MOWG meeting in Albuquerque NM. The topics to discus are: mission summary, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, and mission summary.

  11. Stable Failure-Inducing Micro-Silica Aqua Epoxy Bonding Material for Floating Concrete Module Connection

    Directory of Open Access Journals (Sweden)

    Jang-Ho Jay Kim

    2015-11-01

    Full Text Available Many recent studies in the development of floating concrete structures focused on a connection system made of modules. In the connection system, the modules are designed to be attached by pre-stressing (PS while floating on the water, which exposes them to loads on the surface of the water. Therefore, the development of a pre-connection material becomes critical to ensure successful bonding of floating concrete modules. Micro-silica mixed aqua-epoxy (MSAE was developed for this task. To find the proper MSAE mix proportion, 0% to 4% micro-silica was mixed in a standard mixture of aqua-epoxy for material testing. Also, the effect of micro-silica on the viscosity of the aqua epoxy was evaluated by controlling the epoxy silane at proportions of 0%, ±5%, and ±10%. After completion of the performance tests of the MSAE, we evaluated the effect of MSAE in a connected structure. The plain unreinforced concrete module joint specimens applied with MSAE at thicknesses of 5, 10, and 20 mm were prepared to be tested. Finally, we evaluated the performance of MSAE-applied reinforced concrete (RC module specimens connected by PS tendons, and these were compared with those of continuous RC and non-MSAE-applied beams. The results showed that the mix of micro-silica in the aqua-epoxy changed the performance of the aqua-epoxy and the mix ratio of 2% micro-silica gave a stable failure behavior. The flexural capacity of concrete blocks bonded with MSAE changed according to the bond thickness and was better than that of concrete blocks bonded with aqua-epoxy without micro-silica. Even though MSAE insignificantly increases the load-carrying capacity of the attached concrete module structure, the stress concentration reduction effect stabilized the failure of the structure.

  12. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    Science.gov (United States)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  13. Discriminating sediment and clear water over coastal water using GD technique

    Directory of Open Access Journals (Sweden)

    Amin Abd Rahman Mat

    2017-03-01

    Full Text Available Currently two algorithms are being used routinely by the MODIS Atmosphere and Ocean Team in order to distinguish sediment influence and clear water pixels over turbid water area. These two algorithms require complicated computational analyses. In this paper, a simple algorithm based on empirical technique to detect the sediment-influenced pixels over coastal waters is proposed as an alternative to these two algorithms. This study used apparent reflectance acquired from MODIS L1B product. This algorithm is based on the gradient difference of the line connecting the 0.47- and 1.24-μm channels and 0.47- and 0.66-μm channels of a log-log graph of the apparent reflectance values against MODIS wavelengths. Over clear-water areas (deep blue sea, the 0.47-, 0.66- and 1.24-μm channels fitted very well in line with correlation R > 0.99. Over turbid waters, a substantial increase of 0.66 μm in the reflectance leads to a low correlation value. By computing the difference between the gradient of the line connecting 0.47 and 0.66 μm and the gradient of the line connecting 0.47 and 1.24 μm, the threshold to discriminate turbid and shallow coastal waters from clear-water pixels can be obtained. If the gradient difference is greater than 0, the pixels were then marked as sediment-influenced pixels. This proposed algorithm works well for MODIS Terra and Aqua sensor. The comparison of this algorithm with an established algorithm also showed a good agreement.

  14. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    Science.gov (United States)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  15. Maturity-onset diabetes of the young (MODY): an update.

    Science.gov (United States)

    Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Böber, Ece

    2015-03-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders characterized by autosomal dominantly inherited non-insulin dependent form of diabetes classically presenting in adolescence or young adults before the age of 25 years. MODY is a rare cause of diabetes (1% of all cases) and is frequently misdiagnosed as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A precise molecular diagnosis is essential because it leads to optimal treatment of the patients and allows early diagnosis for their asymptomatic family members. Mutations in the glucokinase (GCK) (MODY 2) and hepatocyte nuclear factor (HNF)1A/4A (MODY 3 and MODY 1) genes are the most common causes of MODY. GCK mutations cause a mild, asymptomatic, and stable fasting hyperglycemia usually requiring no specific treatment. However, mutations in the HNF1A and HNF4A cause a progressive pancreatic β-cell dysfunction and hyperglycemia that can result in microvascular complications. Sulfonylureas are effective in these patients by acting on adenosine triphosphate (ATP)-sensitive potassium channels, although insulin therapy may be required later in life. Mutations in the HNF1B (MODY 5) is associated with pancreatic agenesis, renal abnormalities, genital tract malformations, and liver dysfunction. Compared to MODY 1, 2, 3, and 5, the remaining subtypes of MODY have a much lower prevalence. In this review, we summarize the main clinical and laboratory characteristics of the common and rarer causes of MODY.

  16. Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2013-09-01

    Full Text Available The increasingly intensive and extensive coal mining activities on the Loess Plateau pose a threat to the fragile local ecosystems. Quantifying the effects of coal mining activities on environmental conditions is of great interest for restoring and managing the local ecosystems and resources. This paper generates dense NDVI (Normalized Difference Vegetation Index time series between 2000 and 2011 at a spatial resolution of 30 m by blending Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer data using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM and further evaluates its capability for mapping vegetation trends around a typical coalfield on the Loss Plateau. Synthetic NDVI images were generated using (1 STARFM-generated NIR (near infrared and red band reflectance data (scheme 1 and (2 Landsat and MODIS NDVI images directly as inputs for STARFM (scheme 2. By comparing the synthetic NDVI images with the corresponding Landsat NDVI, we found that scheme 2 consistently generated better results (0.70 < R2 < 0.76 than scheme 1 (0.56 < R2 < 0.70 in this study area. Trend analysis was then performed with the synthetic dense NDVI time series and the annual maximum NDVI (NDVImax time series. The accuracy of these trends was evaluated by comparing to those from the corresponding MODIS time series, and it was concluded that both the trends from synthetic/MODIS NDVI dense time series and synthetic/MODIS NDVImax time series (2000–2011 were highly consistent. Compared to trends from MODIS time series, trends from synthetic time series are better able to capture fine scale vegetation changes. STARFM-generated synthetic NDVI time series could be used to quantify the effects of mining activities on vegetation, but the test areas should be selected with caution, as the trends derived from synthetic and MODIS time series may be significantly different in some areas.

  17. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications.

    Science.gov (United States)

    Kyithar, M P; Bacon, S; Pannu, K K; Rizvi, S R; Colclough, K; Ellard, S; Byrne, M M

    2011-12-01

    The prevalence of hepatocyte nuclear factor (HNF)-1A and HNF4A mutations, and the clinical implications following the genetic diagnosis of maturity-onset diabetes of the young (MODY) in the Irish population, remain unknown. The aim of this study was to establish the occurrence of HNF1A and HNF4A mutations in subjects classified clinically as MODY to identify novel mutations, and to determine the phenotypic features and response to therapy. A total of 36 unrelated index cases with a clinical diagnosis of MODY were analyzed for HNF1A/HNF4A mutations. OGTT was performed to determine the degree of glucose tolerance and insulin secretory response. Also, 38 relatives underwent OGTT and were tested for the relevant known mutations. HNF1A-/HNF4A-MODY subjects were compared with nine HNF1A mutation-negative relatives and 20 type 2 diabetic (T2DM) patients. Seven different HNF1A mutations were identified in 11/36 (30.5%) index cases, two of which were novel (S352fsdelG and F426X), as well as two novel HNF4A mutations (M1? and R290C; 6%). Family screening revealed 20 subjects with HNF1A and seven with HNF4A mutations. Only 51.6% of HNF1A mutation carriers were diagnosed with diabetes by age 25 years; 11 of the mutation carriers were overweight and four were obese. Insulin secretory response to glucose was significantly lower in HNF1A-MODY subjects than in T2DM patients and HNF1A mutation-negative relatives (P=0.01). Therapeutic changes occurred in 48% of mutation carriers following genetic diagnosis. There was an HNF1A-MODY pick-up rate of 30.5% and an HNF4A-MODY pick-up rate of 6% in Irish MODY families. Genetically confirmed MODY has significant therapeutic implications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    Science.gov (United States)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  19. The use of a multilayer perceptron for detecting new human settlements from a time series of MODIS images

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-12-01

    Full Text Available This paper presents a novel land cover change detection method that employs a sliding window over hyper-temporal multi-spectral images acquired from the 7 bands of the MODerate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance...

  20. 77 FR 63801 - Aqua-Leisure Industries, Inc., Provisional Acceptance of a Settlement Agreement and Order

    Science.gov (United States)

    2012-10-17

    ... filed a Supplemental Full Report in which it reported that the Firm had received at least 28 consumer... millions of units sold, Aqua Leisure received only 6 consumer reports (including suspect reports) in 2004... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 13-C0001] Aqua-Leisure Industries, Inc...

  1. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  2. MODY in Ukraine: genes, clinical phenotypes and treatment.

    Science.gov (United States)

    Globa, Evgenia; Zelinska, Nataliya; Elblova, Lenka; Dusatkova, Petra; Cinek, Ondrej; Lebl, Jan; Colclough, Kevin; Ellard, Sian; Pruhova, Stepanka

    2017-10-26

    Maturity-onset diabetes of the young (MODY) has not been previously studied in Ukraine. We investigated the genetic etiology in a selected cohort of patients with diabetes diagnosed before 18 years of age, and in their family members. Genetic testing of the most prevalent MODY genes (GCK, HNF1A, HNF4A, HNF1B and INS) was undertaken for 36 families (39 affected individuals) by Sanger or targeted next generation sequencing. A genetic diagnosis of MODY was made in 15/39 affected individuals from 12/36 families (33%). HNF1A and HNF4A MODY were the most common subtypes, accounting for 9/15 of MODY cases. Eight patients with HNF1A or HNF4A MODY and inadequate glycemic control were successfully transferred to sulfonylureas. Median HbA1c decreased from 67 mmol/mol (range 58-69) to 47 mmol/mol (range 43-50) (8.3% [7.5-8.5] to 6.4% [6.1-6.7]) 3 months after transfer (p=0.006). Genetic testing identified pathogenic HNF1A and HNF4A variants as the most common cause of MODY in Ukraine. Transfer to sulfonylureas substantially improved the glycemic control of these patients.

  3. One-year outcomes of AquaLase cataract surgery.

    Science.gov (United States)

    Yoo, Sonia H; Bhatt, Anand B

    2007-01-01

    The authors report surgical experience and clinical outcomes up to 1 year postoperatively in patients who underwent cataract surgery with the AquaLase liquefaction device (Alcon Laboratories, Fort Worth, TX). The device is a handpiece option for use with Alcon's Infiniti Vision System that uses heated balanced saline solution micropulses to liquefy lenticular material. Twenty-seven eyes of 23 patients underwent cataract extraction with the use of the AquaLase liquefaction device. The average age of participants was 68 years, and the average nuclear sclerotic grade was 1.96 on a 4-point scale. Outcomes were judged by metrics such as visual acuity, inflammation, endothelial cell count, and postoperative posterior capsule opacification. At 30 days postoperatively, 78% of eyes had a best-corrected visual acuity of 20/20. Visual acuity was 20/25 or better 1 year postoperatively in 88% of patients without complications except conversion to ultrasound phacoemulsification for two dense cataracts.

  4. A sea surface reflectance model for (AATSR, and application to aerosol retrievals

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-07-01

    Full Text Available A model of the sea surface bidirectional reflectance distribution function (BRDF is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm of the dual-viewing Along-Track Scanning Radiometers (ATSRs. The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  5. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of

  6. Validation of MODIS snow cover images over Austria

    Directory of Open Access Journals (Sweden)

    J. Parajka

    2006-01-01

    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  7. Dissolved Organic Carbon along the Louisiana coast from MODIS and MERIS satellite data

    Science.gov (United States)

    Chaichi Tehrani, N.; D'Sa, E. J.

    2012-12-01

    Dissolved organic carbon (DOC) plays a critical role in the coastal and ocean carbon cycle. Hence, it is important to monitor and investigate its the distribution and fate in coastal waters. Since DOC cannot be measured directly through satellite remote sensors, chromophoric dissolved organic matter (CDOM) as an optically active fraction of DOC can be used as an alternative proxy to trace DOC concentrations. Here, satellite ocean color data from MODIS, MERIS, and field measurements of CDOM and DOC were used to develop and assess CDOM and DOC ocean color algorithms for coastal waters. To develop a CDOM retrieval algorithm, empirical relationships between CDOM absorption coefficient at 412 nm (aCDOM(412)) and reflectance ratios Rrs(488)/Rrs(555) for MODIS and Rrs(510)/Rrs(560) for MERIS were established. The performance of two CDOM empirical algorithms were evaluated for retrieval of (aCDOM(412)) from MODIS and MERIS in the northern Gulf of Mexico. Further, empirical algorithms were developed to estimate DOC concentration using the relationship between in situ aCDOM(412) and DOC, as well as using the newly developed CDOM empirical algorithms. Accordingly, our results revealed that DOC concentration was strongly correlated to aCDOM (412) for summer and spring-winter periods (r2 = 0.9 for both periods). Then, using the aCDOM(412)-Rrs and the aCDOM(412)-DOC relationships derived from field measurements, a relationship between DOC-Rrs was established for MODIS and MERIS data. The DOC empirical algorithms performed well as indicated by match-up comparisons between satellite estimates and field data (R2=0.52 and 0.58 for MODIS and MERIS for summer period, respectively). These algorithms were then used to examine DOC distribution along the Louisiana coast.

  8. International Earth Science Constellation Mission Operations Working Group September 27-29, 2016 Aqua Spring 2017 IAM Series

    Science.gov (United States)

    Good, Susan M.

    2016-01-01

    This Aqua Spring 2017 IAM Series powerpoint presentation will be presented at the MOWG meeting in Albuquerque, NM. Topics to be discussed are: recap Aqua 2016 IAM campaign maneuver results and post 2016 IAM MLT evolution; current DMU strategy; 2017 IAM campaign dates and planning; Aqua latest lifetime MLT team predictions. Susan Good is a contractor who supports David Tracewell in code 595 therefore this is being routed through 595. Eric Moyer, ESMO Deputy Project Manager-Technical has reviewed and approved this presentation.

  9. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    Science.gov (United States)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  10. Contribution of National near Real Time MODIS Forest Maximum Percentage NDVI Change Products to the U.S. ForWarn System

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.

    2012-01-01

    This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product

  11. AIRS/Aqua Level 2 Support retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  12. Aqua AIRS Level 2 Support Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  13. Development of a Low Cost Microcontroller-Enabled Handheld Sunphotometer and Comparison with NASA AERONET and MODIS

    Science.gov (United States)

    Krintz, I. A.; Ruble, W.; Sherman, J. P.

    2017-12-01

    Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.

  14. Capability of integrated MODIS imagery and ALOS for oil palm, rubber and forest areas mapping in tropical forest regions.

    Science.gov (United States)

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-05-07

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.

  15. Updates on the development of Deep Blue aerosol algorithm for constructing consistent long-term data records from MODIS to VIIRS

    Science.gov (United States)

    Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.

    2017-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.

  16. Maturity-onset diabetes of the young--MODY. Molekylaergenetiske, patofysiologiske og kliniske karakteristika

    DEFF Research Database (Denmark)

    Hansen, Torben; Urhammer, Søren A; Pedersen, Oluf Borbye

    2002-01-01

    Maturity-onset diabetes of the young (MODY) is a genetically and clinically heterogeneous subtype of type 2 diabetes characterised by an early onset, an autosomal dominant inheritance, and a primary defect in insulin secretion. MODY comprises 2-5% of cases of type 2 diabetes. So far, six MODY genes...... have been identified (MODY1-6): hepatocyte nuclear factor (HNF-4 alpha), glucokinase, HNF-1 alpha, HNF-1 beta, insulin promoter factor 1(IPF-1), and neurogenic differentiation factor 1 (NEUROD1). MODY2 and MODY3 are the most common forms of MODY. Mutations in glucokinase/MODY2 result in a mild form...... of diabetes. In contrast, MODY3 and some of the other MODY forms are characterised by major insulin secretory defects and severe hyperglycaemia associated with microvascular complications. About 25% of known MODY is caused by mutations in yet unknown genes and present results suggest that other monogenic...

  17. Aqua ammonia 15 N obtaining and application with vainness for sugar-cane fertilization

    International Nuclear Information System (INIS)

    Vitti, Andre Cesar; Trivellin, Paulo Cesar O.; Oliveira, Claudineia R. de; Bendassoli, Jose A.

    2000-01-01

    Nitrogen compounds marked with the isotope 15 N are continuously being used in agronomic studies and, when associated to the isotopic dilution technique, they constitute an important tool in clarifying the N cycle. At the Centro de Energia Nuclear na Agricultura (CENA/USP), it was obtained ( 15 NH 4 ) 2 SO 4 enhanced at 3,5% of 15 N atoms, by means of the ionic exchange chromatography technique, which made possible to produce aqua ammonia ( 15 NH 3 aq). Four repetitions were taken to the aqua ammonia production process to use the nitrogen compound in the field experiment. In each process 150g of ammonium sulfate enhanced at 3,5% of 15 N atoms was used, obtaining 31,0 ± 1,6 g of aqua ammonia on the average (80% yield), with the same enhancement. The incidence of isotopic dilution has not been observed during the procedure, what made the use of such methodology possible. After obtaining the aqua ammonia 15 N through this procedure, it was added to the vinasse (an equivalent to 50 m 3 ha -1 ) in doses that corresponded to 70 kg ha -1 of N-NH 3 aq. The mixture was applied to the sugar-cane straw on the soil's surface, aimed to the crop's fertilization. The compound's isotopic composition was analyzed by means of a spectrometer of masses ANCA-SL Europe Scientific, while the total-N volatilized, by the micro-Kjeldahl. Method. In accordance to the low NH 3 (6,4 ± 1,9 kg ha -1 ) volatilization results, it could be concluded that the application of vinasse and aqua ammonia mixture to the straw on the soil's surface was efficient, due to the vinasse's acid character, which allowed the NH 3 , in presence of the ion H + , to stay in the NH 4 + form in solution. (author)

  18. MODIS Level-3 Standard Mapped Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  19. HDL cholesterol as a diagnostic tool for clinical differentiation of GCK-MODY from HNF1A-MODY and type 1 diabetes in children and young adults.

    Science.gov (United States)

    Fendler, Wojciech; Borowiec, Maciej; Antosik, Karolina; Szadkowska, Agnieszka; Deja, Grazyna; Jarosz-Chobot, Przemyslawa; Mysliwiec, Malgorzata; Wyka, Krystyna; Pietrzak, Iwona; Skupien, Jan; Malecki, Maciej T; Mlynarski, Wojciech

    2011-09-01

    Confirmation of monogenic diabetes caused by glucokinase mutations (GCK-MODY) allows pharmacogenetic intervention in the form of insulin discontinuation. This is especially important among paediatric and young adult populations where GCK-MODY is most prevalent. The study evaluated the utility of lipid parameters in screening for patients with GCK-MODY. Eighty-nine children with type 1 diabetes and 68 with GCK-MODY were screened for triglyceride (TG), total and HDL cholesterol levels. Standardization against a control group of 171 healthy children was applied to eliminate the effect of development. Clinical applicability and cut-off value were evaluated in all available patients with GCK-MODY (n = 148), hepatocyte nuclear factor 1-alpha-MODY (HNF1A MODY) (n = 37) or type 1 diabetes (n = 221). Lower lipid parameter values were observed in GCK-MODY than in patients with type 1 diabetes. Standard deviation scores were -0·22 ± 2·24 vs 1·31 ± 2·17 for HDL cholesterol (P MODY selection [sensitivity 87%, specificity 54%, negative predictive value (NPV) 86%, positive PV 56%]. A threshold HDL concentration of 1·56 mm offered significantly better diagnostic efficiency than total cholesterol (cut-off value 4·51 mm; NPV 80%; PPV 38%; P MODY and differentiation from T1DM and HNF1A-MODY, regardless of treatment or metabolic control. © 2011 Blackwell Publishing Ltd.

  20. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  1. MODY in Siberia – molecular genetics and clinical characteristics

    Directory of Open Access Journals (Sweden)

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  2. Detection of Asian Dust Storm Using MODIS Measurements

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2017-08-01

    Full Text Available Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS reflective solar bands and thermal emissive bands. Data from dust events that occurred during the past several years were collected as training data for spectral and statistical analyses. According to the spectral curves of various scene types, a series of spectral bands was selected individually or jointly, and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral algorithm was applied mainly to detect dust storms in Asia. The detection results were validated not only visually with MODIS true color images, but also quantitatively with products of Ozone Monitoring Instrument (OMI and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP. The validations showed that this multi-spectral detection algorithm was suitable to monitor dust aerosols in the selected study areas.

  3. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    Science.gov (United States)

    2015-09-03

    Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometers ( MODIS on Aqua), and Medium Resolution Imaging Spectrometer (MERIS). This VTR documents...the MOBY site. 3.2.1 Image to Image Comparison The AOPS v4.12 upgrades are detailed in Section 2 System Description. Figure 5 shows the MODIS ...bottom images were processed with AOPS v4.12; MODIS imagery on the left and VIIRS on the right. The most significant change in the VIIRS imagery is

  4. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    Science.gov (United States)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  5. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  6. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    Science.gov (United States)

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  7. Long-Term, High-Resolution Survey of Atmospheric Aerosols over Egypt with NASA’s MODIS Data

    Directory of Open Access Journals (Sweden)

    Mohammed Shokr

    2017-10-01

    Full Text Available A decadal survey of atmospheric aerosols over Egypt and selected cities and regions is presented using daily aerosol optical depth (AOD data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS at 550 nm wavelength onboard the Aqua satellite. We explore the AOD spatio-temporal variations over Egypt during a 12-year record (2003 to 2014 using the MODIS high-resolution (10 km Level 2 data product. Five cities and two geographic regions that feature different landscape and human activities were selected for detailed analysis. For most of the examined areas, AOD is found to be most frequent in the 0.2–0.3 range, and the highest mean AOD was found to be over Cairo, Alexandria, and the Nile Delta region. Severe events are identified based on AOD higher than a selected threshold. Most of these events are engendered by sand and dust storms that originate from the Western Desert during January–April. Spatial analysis indicates that they cover the Nile Delta region, including cities of Cairo and Alexandria, on the same day. Examination of the spatial gradient of AOD along the four cardinal directions originating from the city’s center reveals seasonally dependent gradients in some cases. The gradients have been linked to locations of industrial activity. No trend of AOD has been observed in the studied areas during the study period, though data from Cairo and Asyut reveal a slight linear increase of AOD. Considering Cairo is commonly perceived as a city of poor air quality, the results show that local events are fairly constrained. The study highlights spatial and seasonal distributions of AOD and links them to geographic and climatic conditions across the country.

  8. Chlorophyll-a retrieval in the Philippine waters

    Science.gov (United States)

    Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.

    2017-12-01

    Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This

  9. Towards a systematic nationwide screening strategy for MODY.

    Science.gov (United States)

    Shields, Beverley; Colclough, Kevin

    2017-04-01

    MODY is an early-onset monogenic form of diabetes. Correctly identifying MODY is of considerable importance as diagnosing the specific genetic subtype can inform the optimal treatment, with many patients being able to discontinue unnecessary insulin treatment. Diagnostic molecular genetic testing to confirm MODY is expensive, so screening strategies are required to identify the most appropriate patients for testing. In this issue of Diabetologia, Johansson and colleagues (DOI 10.1007/s00125-016-4167-1 ) describe a nationwide systematic screening approach to identify individuals with MODY in the paediatric age range. They focused testing on patients negative for both GAD and islet antigen 2 (IA-2) islet autoantibodies, thereby ruling out those with markers of type 1 diabetes, the most common form of diabetes in this age group. This commentary discusses the advantages and limitations of the approach, and the caution required when interpreting variants of uncertain pathogenicity identified from testing whole populations rather than targeting only patients with a strong MODY phenotype.

  10. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  11. Sonochemical Preparation and Subsequent Fixation of Oxygen-Free Graphene Sheets at N,N-Dimethyloctylamine-Aqua Boundary

    Directory of Open Access Journals (Sweden)

    Elena A. Trusova

    2018-01-01

    Full Text Available In this study, the syntheses of oxygen-free graphene sheets and the method of its fixation at an oil-aqua interface were presented. The graphene sheets were prepared by exfoliation of synthetic graphite powder in an aqua-organic medium under ultrasound irradiation. N,N-Dimethyloctylamine- (DMOA- aqua emulsion was used as the liquid medium, and pH was equal to 3. The obtained graphene nanosuspension was fractionated by sedimentation and decanted according to the weight. The graphene nanoparticle fractions, differing in configuration and number of layers, have been characterized using transmission electron microscopy (TEM, electron diffraction, HRTEM, Raman spectroscopy, and electron energy loss spectroscopy (EELS. It was found that using a DMOA-aqua mixture as the liquid medium in ultrasonic treatment of synthetic graphite leads to the formation of oxygen-free 1-2-layer graphene sheets attached to the DMOA-aqua interface. The proposed method differs from known ones by using a small amount of more environmentally friendly organic substances. It allows to obtain large quantities of oxygen-free graphene, and finally unconverted graphite can be directed for reuse. The proposed method allows to obtain both 2D graphene sheets with micron linear dimensions and 3D packages with a high content of defects. Both these species are in demand in areas related to the development of new materials with unique electrophysical properties.

  12. PODAAC-MODST-AN9N4

    Data.gov (United States)

    National Aeronautics and Space Administration — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) on board the NASA Terra and Aqua satellite platforms, launched in...

  13. PODAAC-MODST-AN4D4

    Data.gov (United States)

    National Aeronautics and Space Administration — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) on board the NASA Terra and Aqua satellite platforms, launched in...

  14. PODAAC-MODST-M1D9N

    Data.gov (United States)

    National Aeronautics and Space Administration — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) on board the NASA Terra and Aqua satellite platforms, launched in...

  15. PODAAC-MODSA-M1D4N

    Data.gov (United States)

    National Aeronautics and Space Administration — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) on board the NASA Terra and Aqua satellite platforms, launched in...

  16. Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines

    Science.gov (United States)

    Akyurek, Z.; Kuter, S.; Weber, G. W.

    2016-12-01

    Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model

  17. New Approach for Snow Cover Detection through Spectral Pattern Recognition with MODIS Data

    Directory of Open Access Journals (Sweden)

    Kyeong-Sang Lee

    2017-01-01

    Full Text Available Snow cover plays an important role in climate and hydrology, at both global and regional scales. Most previous studies have used static threshold techniques to detect snow cover, which can lead to errors such as misclassification of snow and clouds, because the reflectance of snow cover exhibits variability and is affected by several factors. Therefore, we present a simple new algorithm for mapping snow cover from Moderate Resolution Imaging Spectroradiometer (MODIS data using dynamic wavelength warping (DWW, which is based on dynamic time warping (DTW. DTW is a pattern recognition technique that is widely used in various fields such as human action recognition, anomaly detection, and clustering. Before performing DWW, we constructed 49 snow reflectance spectral libraries as reference data for various solar zenith angle and digital elevation model conditions using approximately 1.6 million sampled data. To verify the algorithm, we compared our results with the MODIS swath snow cover product (MOD10_L2. Producer’s accuracy, user’s accuracy, and overall accuracy values were 92.92%, 78.41%, and 92.24%, respectively, indicating good overall classification accuracy. The proposed algorithm is more useful for discriminating between snow cover and clouds than threshold techniques in some areas, such as those with a high viewing zenith angle.

  18. [Maturity onset diabetes of the young (MODY) - screening, diagnostic and therapy].

    Science.gov (United States)

    Kaser, Susanne; Resl, Michael

    2016-04-01

    Maturity onset diabetes of the young (MODY) is a group of monogenetic diabetes types affecting up to 2% all known diabetics. Transcription factor MODY (HNF1α, HNF4α), the most frequent forms of MODY, allow treatment with sulfonylureas, mutations of glucokinase (GCK-MODY) usually do not require any therapy. Especially in younger patients correct diagnosis of MODY often results in discontinuation of insulin therapy and initiation of a sulfonylurea. Accordingly, in patients with diabetes onset below age of 25 years, with a positive family history for diabetes and negative autoantibodies screening for MODY is recommended.

  19. Estimation of underwater visibility in coastal and inland waters using remote sensing data.

    Science.gov (United States)

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2017-04-01

    An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite

  20. Avaliação de índices de vegetação MODIS para detecção de desmatamentos na Amazônia

    Directory of Open Access Journals (Sweden)

    Valdete Duarte

    2006-12-01

    Full Text Available Os índices de vegetação NDVI e EVI obtidos a partir de dados MODIS (25m e 50m, reflectância de superfície foram avaliados com relação à possibilidade de detectar e monitorar áreas de desmatamentos na Amazônia. Além disso, foi também proposto o índice DNRG [Diferença Normalizada entre as bandas do Vermelho (Red e do Verde (Green], com o mesmo objetivo. Avaliou-se a qualidade radiométrica dos dados multidatas MODIS, com o objetivo de verificar a possibilidade de usar índices de vegetação para gerar mapas de desmatamento. A acurácia interna das composições multidatas MODIS foi avaliada, tendo fornecido um valor de erro de localização menor que 1 pixel (< 25m e, portanto, não são necessárias correções geométricas. A potencialidade dos produtos MODIS reflectância de superfície foi avaliada na região da Terra do Meio (Estado do Pará, Brasil, entre as latitudes 06°00’S a 08°00’S e as longitudes 51°00’W a 54°00’W, utilizando-se o classificador supervisionado de mínima distância euclidiana. Exatidões globais superiores a 87% foram obtidas, demonstrando uma boa potencialidade dos produtos MODIS, quando utilizados em sistemas de detecção de desmatamentos em tempo quase real

  1. MODIS Collection 6 Land Product Subsets Web Service

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Web Service provides data access capabilities for Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 land products. The web service...

  2. The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals

    OpenAIRE

    D. Painemal; P. Minnis; S. Sun-Mack

    2013-01-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean...

  3. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    Science.gov (United States)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  4. Aqua AIRS Level 2G Precipitation Estimate (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  5. AIRS/Aqua Level 2 Standard physical retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  6. Aqua AIRS Level 2 Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  7. Large-sized seaweed monitoring based on MODIS

    Science.gov (United States)

    Ma, Long; Li, Ying; Lan, Guo-xin; Li, Chuan-long

    2009-10-01

    In recent years, large-sized seaweed, such as ulva lactuca, blooms frequently in coastal water in China, which threatens marine eco-environment. In order to take effective measures, it is important to make operational surveillance. A case of large-sized seaweed blooming (i.e. enteromorpha), occurred in June, 2008, in the sea near Qingdao city, is studied. Seaweed blooming is dynamically monitored using Moderate Resolution Imaging Spectroradiometer (MODIS). After analyzing imaging spectral characteristics of enteromorpha, MODIS band 1 and 2 are used to create a band ratio algorithm for detecting and mapping large-sized seaweed blooming. In addition, chlorophyll-α concentration is inversed based on an empirical model developed using MODIS. Chlorophyll-α concentration maps are derived using multitemporal MODIS data, and chlorophyll-α concentration change is analyzed. Results show that the presented methods are useful to get the dynamic distribution and the growth of large-sized seaweed, and can support contingency planning.

  8. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  9. Cystatin C is not a good candidate biomarker for HNF1A-MODY.

    Science.gov (United States)

    Nowak, Natalia; Szopa, Magdalena; Thanabalasingham, Gaya; McDonald, Tim J; Colclough, Kevin; Skupien, Jan; James, Timothy J; Kiec-Wilk, Beata; Kozek, Elzbieta; Mlynarski, Wojciech; Hattersley, Andrew T; Owen, Katharine R; Malecki, Maciej T

    2013-10-01

    Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.

  10. MODISA_L3m_SNSP_PIC_4km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  11. MODIST_L3m_SCSP_RRS_4km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  12. MODIST_L3b_SNSP_CHL

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  13. MODISA_L3m_MO_CDOM_9km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  14. MODISA_L3b_MO_CDOM

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  15. MODISA_L3b_SCWI_RRS

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  16. MODISA_L3b_SNSU_PIC

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  17. MODIST_L3m_SCWI_CHL_chlor_a_9km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  18. MODIST_L3m_CU_POC_4km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  19. MODIST_L3m_MC_SST_4km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  20. MODISA_L3b_SCWI_CDOM

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...