WorldWideScience

Sample records for aptamer-derived molecular adaptors

  1. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    Energy Technology Data Exchange (ETDEWEB)

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.; (HHMI)

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  2. Molecular analysis of the prostacyclin receptor's interaction with the PDZ1 domain of its adaptor protein PDZK1.

    Directory of Open Access Journals (Sweden)

    Gabriel Birrane

    Full Text Available The prostanoid prostacyclin, or prostaglandin I2, plays an essential role in many aspects of cardiovascular disease. The actions of prostacyclin are mainly mediated through its activation of the prostacyclin receptor or, in short, the IP. In recent studies, the cytoplasmic carboxy-terminal domain of the IP was shown to bind several PDZ domains of the multi-PDZ adaptor PDZK1. The interaction between the two proteins was found to enhance cell surface expression of the IP and to be functionally important in promoting prostacyclin-induced endothelial cell migration and angiogenesis. To investigate the interaction of the IP with the first PDZ domain (PDZ1 of PDZK1, we generated a nine residue peptide (KK(411IAACSLC(417 containing the seven carboxy-terminal amino acids of the IP and measured its binding affinity to a recombinant protein corresponding to PDZ1 by isothermal titration calorimetry. We determined that the IP interacts with PDZ1 with a binding affinity of 8.2 µM. Using the same technique, we also determined that the farnesylated form of carboxy-terminus of the IP does not bind to PDZ1. To understand the molecular basis of these findings, we solved the high resolution crystal structure of PDZ1 bound to a 7-residue peptide derived from the carboxy-terminus of the non-farnesylated form of IP ((411IAACSLC(417. Analysis of the structure demonstrates a critical role for the three carboxy-terminal amino acids in establishing a strong interaction with PDZ1 and explains the inability of the farnesylated form of IP to interact with the PDZ1 domain of PDZK1 at least in vitro.

  3. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING.

    Science.gov (United States)

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J; Chen, Chuo

    2015-07-21

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein-ligand interactions.

  4. Optimization of multiplexed RADseq libraries using low-cost adaptors.

    Science.gov (United States)

    Henri, Hélène; Cariou, Marie; Terraz, Gabriel; Martinez, Sonia; El Filali, Adil; Veyssiere, Marine; Duret, Laurent; Charlat, Sylvain

    2015-04-01

    Reduced representation genomics approaches, of which RADseq is currently the most popular form, offer the possibility to produce genome wide data from potentially any species, without previous genomic information. The application of RADseq to highly multiplexed libraries (including numerous specimens, and potentially numerous different species) is however limited by technical constraints. First, the cost of synthesis of Illumina adaptors including molecular identifiers (MIDs) becomes excessive when numerous specimens are to be multiplexed. Second, the necessity to empirically adjust the ratio of adaptors to genomic DNA concentration impedes the high throughput application of RADseq to heterogeneous samples, of variable DNA concentration and quality. In an attempt to solve these problems, we propose here some adjustments regarding the adaptor synthesis. First, we show that the common and unique (MID) parts of adaptors can be synthesized separately and subsequently ligated, which drastically reduces the synthesis cost, and thus allows multiplexing hundreds of specimens. Second, we show that self-ligation of adaptors, which makes the adaptor concentration so critical, can be simply prevented by using unphosphorylated adaptors, which significantly improves the ligation and sequencing yield.

  5. The fifth adaptor protein complex.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2011-10-01

    Full Text Available Adaptor protein (AP complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.

  6. SLAM-family receptors: immune regulators with or without SAP-family adaptors.

    Science.gov (United States)

    Veillette, André

    2010-03-01

    The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.

  7. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    Science.gov (United States)

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  8. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    Science.gov (United States)

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  9. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    Science.gov (United States)

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  10. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-08-31

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability.

  11. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins

    Directory of Open Access Journals (Sweden)

    Vasko eVeljanovski

    2014-06-01

    Full Text Available Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double-membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins.

  12. Proteasome inhibition, the pursuit of new cancer therapeutics, and the adaptor molecule p130Cas

    Directory of Open Access Journals (Sweden)

    Anderson Kenneth C

    2011-10-01

    Full Text Available Abstract Current interest in proteasome inhibitors for cancer therapy has stimulated considerable research efforts to identify the molecular pathway to their cytotoxicity with a view to identifying the mechanisms of sensitivity and resistance as well as informing the development of new drugs. Zhao and Vuori describe this month in BMC Biology experiments indicating a novel role of the adaptor protein p130Cas in sensitivity to apoptosis induced not only by proteasome inhibitors but also by the unrelated drug doxorubicin. See research article: http:// http://www.biomedcentral.com/1741-7007/9/73

  13. Optimized Adaptor Polymerase Chain Reaction Method for Efficient Genomic Walking

    Institute of Scientific and Technical Information of China (English)

    Peng XU; Rui-Ying HU; Xiao-Yan DING

    2006-01-01

    Genomic walking is one of the most useful approaches in genome-related research. Three kinds of PCR-based methods are available for this purpose. However, none of them has been generally applied because they are either insensitive or inefficient. Here we present an efficient PCR protocol, an optimized adaptor PCR method for genomic walking. Using a combination of a touchdown PCR program and a special adaptor, the optimized adaptor PCR protocol achieves high sensitivity with low background noise. By applying this protocol, the insertion sites of a gene trap mouse line and two gene promoters from the incompletely sequenced Xenopus laevis genome were successfully identified with high efficiency. The general application of this protocol in genomic walking was promising.

  14. Structural basis for the interaction of the adaptor protein grb14 with activated ras.

    Directory of Open Access Journals (Sweden)

    Rohini Qamra

    Full Text Available Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA domain, a pleckstrin-homology (PH domain, a family-specific BPS (between PH and SH2 region, and a C-terminal Src-homology-2 (SH2 domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V. The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.

  15. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  16. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER

    Directory of Open Access Journals (Sweden)

    Yoichi Noda

    2014-07-01

    Full Text Available The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases.

  17. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Ricardo Núñez Miguel

    Full Text Available The Toll-like receptor 4 (TLR4 is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3 and nuclear factor kappaB (NFkappaB respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu.

  18. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  19. Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (σS by ClpXP.

    Directory of Open Access Journals (Sweden)

    Dimce eMicevski

    2015-04-01

    Full Text Available In Escherichia coli, σS is the master regulator of the general stress response. The level of σS changes in response to multiple stress conditions and it is regulated at many levels including protein turnover. In the absence of stress, σS is rapidly degraded by the AAA+ protease, ClpXP in a regulated manner that depends on the adaptor protein RssB. This two-component response regulator mediates the recognition of σS and its delivery to ClpXP. The turnover of σS however, can be inhibited in a stress specific manner, by one of three anti-adaptor proteins. Each anti-adaptor binds to RssB and inhibits its activity, but how this is achieved is not fully understood at a molecular level. Here we describe details of the interaction between each anti-adaptor and RssB that leads to the stabilization of σS. By defining the domains of RssB using partial proteolysis we demonstrate that each anti-adaptor uses a distinct mode of binding to inhibit RssB activity. IraD docks specifically to the N-terminal domain of RssB, IraP interacts primarily with the C-terminal domain, while IraM interacts with both domains. Despite these differences in binding, we propose that docking of each anti-adaptor induces a conformational change in RssB, which resembles the inactive dimer of RssB. This dimer-like state of RssB not only prevents substrate binding but also triggers substrate release from a pre-bound complex.

  20. Role of adaptor proteins in secretory granule biogenesis and maturation

    Directory of Open Access Journals (Sweden)

    Mathilde L Bonnemaison

    2013-08-01

    Full Text Available In the regulated secretory pathway, secretory granules (SGs store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network (TGN and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins, which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by PACS-1 (Phosphofurin Acidic Cluster Sorting protein 1, a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The GGA (Golgi-localized, -ear containing, ADP-ribosylation factor binding family of adaptor proteins serve a similar role. We review the functions of AP-1A, PACS-1 and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by adaptor proteins.

  1. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    Science.gov (United States)

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  2. Adaptor-tagged competitive PCR: a novel method for measuring relative gene expression.

    OpenAIRE

    Kato, K.

    1997-01-01

    A simple and reliable PCR-based method to quantitate gene expression is described. Following the digestion of double-stranded cDNA by a restriction enzyme, an adaptor is ligated to a cDNA from a first RNA sample, and another adaptor to a second RNA sample. The two adaptors share a common sequence at the outer region, but differ in size. Equal amounts of the ligated samples are mixed, and amplified by an adaptor-primer and a primer specific to the gene of interest. Products derived from the tw...

  3. XB130: A novel adaptor protein in cancer signal transduction

    Science.gov (United States)

    ZHANG, RUIYAO; ZHANG, JINGYAO; WU, QIFEI; MENG, FANDI; LIU, CHANG

    2016-01-01

    Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration. PMID:26998266

  4. A Big-Five Personality Profile of the Adaptor and Innovator.

    Science.gov (United States)

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  5. SLAM family receptors and SAP adaptors in immunity.

    Science.gov (United States)

    Cannons, Jennifer L; Tangye, Stuart G; Schwartzberg, Pamela L

    2011-01-01

    The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.

  6. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  7. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    Science.gov (United States)

    Balasubramaniam, Vinod R M T; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  8. Increasing the efficiency of SAGE adaptor ligation by directed ligation chemistry

    Science.gov (United States)

    So, Austin P.; Turner, Robin F. B.; Haynes, Charles A.

    2004-01-01

    The ability of Serial Analysis of Gene Expression (SAGE) to provide a quantitative picture of global gene expression relies not only on the depth and accuracy of sequencing into the SAGE library, but also on the efficiency of each step required to generate the SAGE library from the starting mRNA material. The first critical step is the ligation of adaptors containing a Type IIS recognition sequence to the anchored 3′ end cDNA population that permits the release of short sequence tags (SSTs) from defined sites within the 3′ end of each transcript. Using an in vitro transcript as a template, we observed that only a small fraction of anchored 3′ end cDNA are successfully ligated with added SAGE adaptors under typical reaction conditions currently used in the SAGE protocol. Although the introduction of ∼500-fold molar excess of adaptor or the inclusion of 15% (w/v) PEG-8000 increased the yield of the adaptor-modified product, complete conversion to the desired adaptor:cDNA hetero-ligation product is not achieved. An alternative method of ligation, termed as directed ligation, is described which exploits a favourable mass-action condition created by the presence of NlaIII during ligation in combination with a novel SAGE adaptor containing a methylated base within the ligation site. Using this strategy, we were able to achieve near complete conversion of the anchored 3′ end cDNA into the desired adaptor-modified product. This new protocol therefore greatly increases the probability that a SST will be generated from every transcript, greatly enhancing the fidelity of SAGE. Directed ligation also provides a powerful means to achieve near-complete ligation of any appropriately designed adaptor to its respective target. PMID:15247329

  9. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Yu

    Full Text Available Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN. We found that activation of interferon regulatory factor 3 (IRF3 triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  10. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Science.gov (United States)

    Yu, Chia-Yi; Chang, Tsung-Hsien; Liang, Jian-Jong; Chiang, Ruei-Lin; Lee, Yi-Ling; Liao, Ching-Len; Lin, Yi-Ling

    2012-01-01

    Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96)G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  11. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  12. The TIR-domain containing adaptor TRAM is required for TLR7 mediated RANTES production.

    Directory of Open Access Journals (Sweden)

    Enda Shevlin

    Full Text Available Toll-like receptor 7 (TLR7 plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV and Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor molecule (TRAM plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the complex and initiation of IRF3 dependent type I interferon production as well as NF-κB dependent pro-inflammatory cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that TRAM(-/- murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not TNFα, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7 mediated CCL5 and IFN-β, but not TNFα, gene induction. Furthermore, suppression of endogenous human TRAM expression in human macrophages significantly impaired RV16 induced CCL5 and IFNβ, but not TNFα gene induction. Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNβ and IFNα reporter genes. TLR7-mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM(-/- cells. Finally, co-immunoprecipitation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions. Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity.

  13. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    Science.gov (United States)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  14. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry

    DEFF Research Database (Denmark)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven;

    2016-01-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxida......Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol......-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress...... and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby...

  15. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  16. The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease

    Directory of Open Access Journals (Sweden)

    Nikolett Marton

    2015-01-01

    Full Text Available Although Src-like adaptor proteins (SLAP-1 and SLAP-2 were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins.

  17. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor prote... (.svg) (.html) (.csml) Show Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. ...PubmedID 17667936 Title Structure, function and regulation of the Toll/IL-1 recep

  18. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  19. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    Science.gov (United States)

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  20. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein

    DEFF Research Database (Denmark)

    Pelicci, G; Giordano, S; Zhen, Z

    1995-01-01

    The receptor of Hepatocyte Growth Factor-Scatter Factor (HGF) is a tyrosine kinase which regulates cell motility and growth. After ligand-induced tyrosine phosphorylation, the HGF receptor associates with the Shc adaptor, via the SH2 domain. Site-directed mutagenesis of the HGF receptor indicates...

  1. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis.

    Science.gov (United States)

    Teckchandani, Anjali; Mulkearns, Erin E; Randolph, Timothy W; Toida, Natalie; Cooper, Jonathan A

    2012-08-01

    Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.

  2. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Science.gov (United States)

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  3. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Directory of Open Access Journals (Sweden)

    Tonika Lam

    Full Text Available Class switch DNA recombination (CSR of the immunoglobulin heavy chain (IgH locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID expression and AID targeting to switch (S regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit and PKA-RIα (regulatory inhibitory subunit and uracil DNA glycosylase (Ung. 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198 or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR. 14-3-3 adaptors colocalized with AID and replication protein A (RPA in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr, an accessory protein of human immunodeficiency virus type-1 (HIV-1, which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  4. Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates

    NARCIS (Netherlands)

    Niemeyer, CM; Burger, W; Hoedemakers, RMJ

    1998-01-01

    Semisynthetic, covalent streptavidin-DNA adducts are versatile molecular connectors for the fabrication of both nano-and microstructured protein arrays by use of DNA hybridization. In this study, the hybridization characteristics of six adduct species, each containing a different DNA sequence of 21

  5. Expression of Chicken Toll-Like Receptors and Signal Adaptors in Spleen and Cecum of Young Chickens Infected with Eimeria tenella

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zuo-yong; HU Shi-jun; WANG Zhi-ying; GUO Zhi-li; QIN Bo; NIE Kui

    2014-01-01

    Toll-like receptors (TLRs) are a group of highly conserved molecules which initiate the innate immune response to pathogens by recognizing structural motifs of microbes. Understanding the changes in chicken Toll-like receptors (ChTLRs) and signal adaptors expression that occur with Eimeria tenella infection will help to elucidate the molecular basis of immune control of coccidiosis caused by Eimeria. The present study detected the dynamic changes in the expression of ChTLRs and associated signal adaptors in the spleen and cecum of E. tenella-infected chickens during the early stage of infection. The results showed that the expression peak for ChTLRs, MyD88 and TRIF occurred at 12 h post-infection (hpi), ChTLR3, ChTLR15 and MyD88 mRNA expression in the spleen of E. tenella infected chickens were signiifcantly higher (P<0.05) than that of negative control chickens, and there were similar tendencies of these molecules expression in the cecum and spleen of E. tenella-infected chickens. The expression of MyD88 was upregulated at four time points in the cecum of E. tenella-infected chickens. The results of this study indicate that ChTLR3, ChTLR15 and MyD88 play a role in young chickens infected with E. tenella.

  6. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    Science.gov (United States)

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  7. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.

  8. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling.

    Science.gov (United States)

    Kazi, Julhash U; Kabir, Nuzhat N; Rönnstrand, Lars

    2015-07-01

    SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.

  9. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.

    Science.gov (United States)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven; Højrup, Peter; Emanuelsson, Cecilia; von Wachenfeldt, Claes

    2016-09-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc.

  10. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling.

    Science.gov (United States)

    Pertl-Obermeyer, Heidi; Wu, Xu Na; Schrodt, Jens; Müdsam, Christina; Obermeyer, Gerhard; Schulze, Waltraud X

    2016-09-01

    Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.

  11. Use of Conversion Adaptors to Clone Antigen Genes in Lambda gt11

    Science.gov (United States)

    1987-01-01

    gradients of 19, 30, and 50%. with 4 units ofT 4 DNA ligase for 60 min at Chromosomal DNA was prepared by dode- 16°C. Because the adaptor-insert...0.75 M and 6.5%. respectively. After chill- Biotec. Madison. WI) and 0.5 unit of T4 ing on ice for I h. the mixture was centri- DNA ligase , in 5ul of

  12. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    Science.gov (United States)

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  13. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, Igor; Grant, Robert A.; Flynn, Julia M.; Sauer, Robert T.; Baker, Tania A. (MIT)

    2010-07-19

    Energy-dependent proteases often rely on adaptor proteins to modulate substrate recognition. The SspB adaptor binds peptide sequences in the stress-response regulator RseA and in ssrA-tagged proteins and delivers these molecules to the AAA+ ClpXP protease for degradation. The structure of SspB bound to an ssrA peptide is known. Here, we report the crystal structure of a complex between SspB and its recognition peptide in RseA. Notably, the RseA sequence is positioned in the peptide-binding groove of SspB in a direction opposite to the ssrA peptide, the two peptides share only one common interaction with the adaptor, and the RseA interaction site is substantially larger than the overlapping ssrA site. This marked diversity in SspB recognition of different target proteins indicates that it is capable of highly flexible and dynamic substrate delivery.

  14. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    Science.gov (United States)

    Wiley, H Steven; VanHook, Annalisa M

    2016-07-12

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast.

  15. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure.

    Directory of Open Access Journals (Sweden)

    Ryan T Fuchs

    Full Text Available High-throughput sequencing (HTS has become a powerful tool for the detection of and sequence characterization of microRNAs (miRNA and other small RNAs (sRNA. Unfortunately, the use of HTS data to determine the relative quantity of different miRNAs in a sample has been shown to be inconsistent with quantitative PCR and Northern Blot results. Several recent studies have concluded that the major contributor to this inconsistency is bias introduced during the construction of sRNA libraries for HTS and that the bias is primarily derived from the adaptor ligation steps, specifically where single stranded adaptors are sequentially ligated to the 3' and 5'-end of sRNAs using T4 RNA ligases. In this study we investigated the effects of ligation bias by using a pool of randomized ligation substrates, defined mixtures of miRNA sequences and several combinations of adaptors in HTS library construction. We show that like the 3' adaptor ligation step, the 5' adaptor ligation is also biased, not because of primary sequence, but instead due to secondary structures of the two ligation substrates. We find that multiple secondary structural factors influence final representation in HTS results. Our results provide insight about the nature of ligation bias and allowed us to design adaptors that reduce ligation bias and produce HTS results that more accurately reflect the actual concentrations of miRNAs in the defined starting material.

  16. TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88.

    Directory of Open Access Journals (Sweden)

    Hidenori Ohnishi

    Full Text Available MyD88, a Toll/interleukin-1 receptor homology (TIR domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.

  17. Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes.

    Science.gov (United States)

    Cheung, Giselle; Cousin, Michael A

    2012-04-25

    Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.

  18. DMPD: Adaptor usage and Toll-like receptor signaling specificity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 05 Jun 13;579(15):3330-5. Epub 2005 Apr 26. Pathway - PNG File (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csm...ll LA. FEBS Lett. 2005 Jun 13;579(15):3330-5. Epub 2005 Apr 26. (.png) (.svg) (.html) (.csml) Show Adaptor u...l file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  19. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  20. The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer

    Directory of Open Access Journals (Sweden)

    Natsume Hiroko

    2012-07-01

    Full Text Available Abstract Background Genomic DNA amplification is a genetic factor involved in cancer, and some oncogenes, such as ERBB2, are highly amplified in gastric cancer. We searched for the possible amplification of other genes in gastric cancer. Methods and Results A genome-wide single nucleotide polymorphism microarray analysis was performed using three cell lines of differentiated gastric cancers, and 22 genes (including ERBB2 in five highly amplified chromosome regions (with a copy number of more than 6 were identified. Particular attention was paid to the CRKL gene, the product of which is an adaptor protein containing Src homology 2 and 3 (SH2/SH3 domains. An extremely high CRKL copy number was confirmed in the MKN74 gastric cancer cell line using fluorescence in situ hybridization (FISH, and a high level of CRKL expression was also observed in the cells. The RNA-interference-mediated knockdown of CRKL in MKN74 disclosed the ability of CRKL to upregulate gastric cell proliferation. An immunohistochemical analysis revealed that CRKL protein was overexpressed in 24.4% (88/360 of the primary gastric cancers that were analyzed. The CRKL copy number was also examined in 360 primary gastric cancers using a FISH analysis, and CRKL amplification was found to be associated with CRKL overexpression. Finally, we showed that MKN74 cells with CRKL amplification were responsive to the dual Src/BCR-ABL kinase inhibitor BMS354825, likely via the inhibition of CRKL phosphorylation, and that the proliferation of MKN74 cells was suppressed by treatment with a CRKL-targeting peptide. Conclusion These results suggested that CRKL protein is overexpressed in a subset of gastric cancers and is associated with CRKL amplification in gastric cancer. Furthermore, our results suggested that CRKL protein has the ability to regulate gastric cell proliferation and has the potential to serve as a molecular therapy target for gastric cancer.

  1. The interaction between the adaptor protein APS and Enigma is involved in actin organisation

    DEFF Research Database (Denmark)

    Barres, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick

    2005-01-01

    APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein...... that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma...... and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin...

  2. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    Science.gov (United States)

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  3. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    Science.gov (United States)

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  4. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  5. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    Science.gov (United States)

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  6. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine-phos...

  7. The late endosomal adaptor p14 is a macrophage host-defense factor against Salmonella infection.

    Science.gov (United States)

    Taub, Nicole; Nairz, Manfred; Hilber, Diana; Hess, Michael W; Weiss, Günter; Huber, Lukas A

    2012-06-01

    The outcome of an infection depends on the balance between host resistance and bacterial virulence. Here, we show that the late endosomal adaptor p14 (also known as LAMTOR2) is one of the components for cellular host defense against the intracellular pathogen Salmonella enterica serovar Typhimurium. During Salmonella infection, the complex of p14 and MP1 is required for the accurately timed transport of Salmonella through the endolysosomal system. Loss of p14 opens a time window that allows Salmonella to populate a replication niche, in which early and late antimicrobial effector systems, comprising NADPH phagocytic oxidase and inducible nitric oxide synthase, respectively, are inappropriately activated. Thus, p14 supports the accurate transport of Salmonella through the endolysosomal system, thereby limiting bacterial replication in both, professional phagocytes and in non-phagocytic cells in vitro, and helps mice to successfully battle Salmonella infection in vivo.

  8. Alternatively spliced short and long isoforms of adaptor protein intersectin 1 form complexes in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2012-12-01

    Full Text Available Intersectin 1 (ITSN1 is an adaptor protein involved in membrane trafficking and cell signaling. Long and short isoforms of ITSN1 (ITSN1-L and ITSN1-S are produced by alternative splicing. The aim of our study was to investigate whether ITSN1-L and ITSN1-S could interact in mammalian cells. Methods. During this study we employed immunoprecipitation and confocal microscopy. Results. We have shown that endogenous ITSN1-S co-precipitates with overexpressed ITSN1-L in PC12, 293 and 293T cells. Long and short isoforms of ITSN1 also co-localize in 293T cells. Conclusions. ITSN1-L and ITSN1-S form complexes in mammalian cells.

  9. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

    Science.gov (United States)

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S.; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J.; Wang, Junzhi; Stuart, David I.; Fry, Elizabeth E.; Rao, Zihe

    2012-01-01

    Enterovirus 71 (EV71), a major agent of hand-foot-and-mouth disease in children, can cause severe central nervous system disease and mortality. At present no vaccine or antiviral therapy is available. We have determined high-resolution structures for the mature virus and natural empty particles. The structure of the mature virus is similar to that of other enteroviruses, whilst the empty particles are dramatically expanded, with notable fissures, resembling elusive enterovirus uncoating intermediates not previously characterized in atomic detail. Hydrophobic capsid pockets within the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. The results provide a paradigm for enterovirus uncoating, in which the VP1 GH loop acts as an adaptor-sensor for the attachment of cellular receptors, converting heterologous inputs to a generic uncoating mechanism, spotlighting novel points for therapeutic intervention. PMID:22388738

  10. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  11. The Influences of Connectors and Adaptors to Fiber-To-The-Home Network Performance

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ab-Rahman

    2012-01-01

    Full Text Available Problem statement: The reliability of the entire communications network was dependent on the reliability of each single element. Connector was important devices that can affect the performance of the fiber communication. There were a large number of issues that affect the performance of fiber optic connectors in todays networks. These factors were increasingly as data rates, the number of wavelengths and transmission distances continue to escalate. Approach: Therefore this study was carried out to test on the influence of connectors and adapters to the performance of the optical network. Initially the actual attenuation of connector and adaptor were tested by using multifunction loss tester. The first two 1 m corning optical fibers with a connector at each end are measured. Then, both the 1 m corning optical fibers were joined together by an adaptor and connected to the Multifunction loss tester. Three types of wavelength are used as the source to test the attenuation of the fiber which is 1310, 1490-1550 nm. In order to measure the Bit Error Rate (BER and the power loss in optical fiber communication, a simple simulation was carried out by using software opti sys. Results: The attenuation on the connector was caused mainly by existence of impurities in the connector, less perfect connection, scattering of beam and others. These causes the parameter such as power received, Q-factor, minimum BER and also the eye-height to change. Changes in these parameters also affect the performance at the user end. It was very critical that causes of attenuation to be eliminated. Conclusion/Recommendations: From the result it can be concluded that, the greater the attenuation, the greater the decrease in power received. It also affects the Q-factor of the system where as the attenuation increase, the maximum Q-factor decreases. As for the minimum BER, minimum BER changes as the attenuation increase initially, after a maximum value it decreases as the

  12. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency.

    Science.gov (United States)

    Gerrish, Robert S; Gill, Steven R

    2010-11-01

    Suppression Subtractive Hybridization (SSH) and its derivative, Pooled Suppression Subtractive hybridization (PSSH), are powerful tools used to study variances larger than ~100 bp in prokaryotic genome structure. The initial steps involve ligating an oligonucleotide of known sequence (the "adaptor") to a fragmented genome to facilitate amplification, subtraction and downstream sequencing. SSH results in the creation of a library of unique DNA fragments which have been traditionally analyzed via Sanger sequencing. Numerous next generation sequencing technologies have entered the market yet SSH is incompatible with these platforms. This is due to the high level of sequence conservation of the oligonucleotide used for SSH. This rigid adherence is partly because it has yet to be determined if alteration of this oligonucleotide will have a deleterious impact on subtraction efficiency. The subtraction occurs when non-unique fragments are inhibited by a secondary self-pairing structure which requires exact nucleotide sequence. We determine if appending custom sequence to the 5' terminal ends of these oligonucleotides during the nested PCR stages of PSSH will reduce subtraction efficiency. We compare a pool of ten S. aureus clinical isolates with a standard PSSH and custom tailed-PSSH. We detected no statistically significant difference between their subtraction efficiencies. Our observations suggest that the adaptor's terminal ends may be labeled during the nested PCR step. This produces libraries labeled with custom sequence. This does not lead to loss of subtraction efficiency and would be invaluable for groups wishing to combine SSH or PSSH with their own downstream applications, such as a high throughput sequencing platform.

  13. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    Science.gov (United States)

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-01

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  14. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    Science.gov (United States)

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  15. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  16. Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals.

    Science.gov (United States)

    Smith, Stephen C; Joshi, Kamal K; Zik, Justin J; Trinh, Katherine; Kamajaya, Aron; Chien, Peter; Ryan, Kathleen R

    2014-09-30

    The cell-division cycle of Caulobacter crescentus depends on periodic activation and deactivation of the essential response regulator CtrA. Although CtrA is critical for transcription during some parts of the cell cycle, its activity must be eliminated before chromosome replication because CtrA also blocks the initiation of DNA replication. CtrA activity is down-regulated both by dephosphorylation and by proteolysis, mediated by the ubiquitous ATP-dependent protease ClpXP. Here we demonstrate that proteins needed for rapid CtrA proteolysis in vivo form a phosphorylation-dependent and cyclic diguanylate (cdG)-dependent adaptor complex that accelerates CtrA degradation in vitro by ClpXP. The adaptor complex includes CpdR, a single-domain response regulator; PopA, a cdG-binding protein; and RcdA, a protein whose activity cannot be predicted. When CpdR is unphosphorylated and when PopA is bound to cdG, they work together with RcdA in an all-or-none manner to reduce the Km of CtrA proteolysis 10-fold. We further identified a set of amino acids in the receiver domain of CtrA that modulate its adaptor-mediated degradation in vitro and in vivo. Complex formation between PopA and CtrA depends on these amino acids, which reside on alpha-helix 1 of the CtrA receiver domain, and on cdG binding by PopA. These results reveal that each accessory factor plays an essential biochemical role in the regulated proteolysis of CtrA and demonstrate, to our knowledge, the first example of a multiprotein, cdG-dependent proteolytic adaptor.

  17. Lymphocytes and the Dap12 adaptor are key regulators of osteoclast activation associated with gonadal failure.

    Directory of Open Access Journals (Sweden)

    Adrienne Anginot

    Full Text Available Bone resorption by osteoclasts is necessary to maintain bone homeostasis. Osteoclast differentiation from hematopoietic progenitors and their activation depend on M-CSF and RANKL, but also requires co-stimulatory signals acting through receptors associated with DAP12 and FcRgamma adaptors. Dap12 mutant mice (KDelta75 are osteopetrotic due to inactive osteoclasts but, surprisingly, these mice are more sensitive than WT mice to bone loss following an ovariectomy. Because estrogen withdrawal is known to disturb bone mass, at least in part, through lymphocyte interaction, we looked at the role of mature lymphocytes on osteoclastogenesis and bone mass in the absence of functional DAP12. Lymphocytes were found to stimulate an early osteoclast differentiation response from Dap12-deficient progenitors in vitro. In vivo, Rag1-/- mice lacking mature lymphocytes did not exhibit any bone phenotype, but lost their bone mass after ovariectomy like KDelta75 mice. KDelta75;Rag1-/- double mutant female mice exhibited a more severe osteopetrosis than Dap12-deficient animals but lost their bone mass after ovariectomy, like single mutants. These results suggest that both DAP12 and mature lymphocytes act synergistically to maintain bone mass under physiological conditions, while playing similar but not synergistic co-stimulatory roles in protecting bone loss after gonadal failure. Thus, our data support a role for lymphocytes during osteoclast differentiation and suggest that they may function as accessory cells when regular osteoclast function is compromised.

  18. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  19. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    Science.gov (United States)

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  20. Novel isoform of adaptor protein ITSN1 forms homodimers via its C-terminus

    Directory of Open Access Journals (Sweden)

    Skrypkina I. Ya.

    2011-06-01

    Full Text Available Aim. Previously we have identified a novel isoform of endocytic adaptor protein ITSN1 designated as ITSN122a. Western blot revealed two immunoreactive bands of 120 and 250 kDa that corresponded to ITSN1-22a. The goal of this study was to investigate the possibility of dimer formation by the novel isoform. Methods. Dimerization ability of ITSN1-22a was tested by immunoprecipitation and subsequent Western blot analysis. To specify the region responsible for dimerization, site-directed mutagenesis and truncation analysis were carried out. Inhibition of endocytosis by potassium depletion and EGF stimulation of HEK293 were performed. Results. We have found that ITSN1-22a forms dimers in HEK293 cells. The dimerization of ITSN1-22a was mediated by C-terminal domain. We showed that cysteines C1016 and C1019 were involved in homodimerization. Inhibition of clathrin-mediated endocytosis and mitogen stimulation did not affect ITSN1-22a dimer formation. Conclusions. ITSN1-22a is the only one known ITSN1 isoform, which is capable to form homodimers via disulphide bonds. This could be important for the formation of protein complexes containing ITSN1 molecules.

  1. A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling.

    Science.gov (United States)

    Ní Cheallaigh, Clíona; Sheedy, Frederick J; Harris, James; Muñoz-Wolf, Natalia; Lee, Jinhee; West, Kim; McDermott, Eva Palsson; Smyth, Alicia; Gleeson, Laura E; Coleman, Michelle; Martinez, Nuria; Hearnden, Claire H A; Tynan, Graham A; Carroll, Elizabeth C; Jones, Sarah A; Corr, Sinéad C; Bernard, Nicholas J; Hughes, Mark M; Corcoran, Sarah E; O'Sullivan, Mary; Fallon, Ciara M; Kornfeld, Hardy; Golenbock, Douglas; Gordon, Stephen V; O'Neill, Luke A J; Lavelle, Ed C; Keane, Joseph

    2016-02-16

    Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.

  2. The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection.

    Science.gov (United States)

    Nordhoff, Carolin; Hillesheim, Andrea; Walter, Beate M; Haasbach, Emanuel; Planz, Oliver; Ehrhardt, Christina; Ludwig, Stephan; Wixler, Viktor

    2012-07-01

    The innate immune response of influenza A virus-infected cells is predominantly mediated by type I interferon-induced proteins. Expression of the interferon β (IFNβ) itself is initiated by accumulating viral RNA and is transmitted by different signalling cascades that feed into activation of the three transcriptional elements located in the IFNβ promoter, AP-1, IRF-3 and NF-κB. FHL2 (four-and-a-half LIM domain protein 2) is an adaptor molecule that shuttles between membrane and nucleus regulating signalling cascades and gene transcription. Here we describe FHL2 as a novel regulator of influenza A virus propagation. Using mouse FHL2 wild-type, knockout and rescued cells and human epithelial cells with different expression levels of FHL2 we showed that FHL2 decreases influenza A virus propagation by regulating the intrinsic cellular antiviral immune response. On virus infection FHL2 translocates into the nucleus, potentiating the IRF-3-dependent transcription of the IFNβ gene.

  3. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    Science.gov (United States)

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  4. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  5. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    Science.gov (United States)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  6. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  7. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  8. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  9. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    Science.gov (United States)

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.

  10. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    Directory of Open Access Journals (Sweden)

    Matthew A.M. Todd

    2015-06-01

    Full Text Available The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6 gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS, while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL and acute myeloid leukemia (AML. Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.

  11. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo.

    Science.gov (United States)

    Carvajal-Gonzalez, Jose Maria; Balmer, Sophie; Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-04-07

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.

  12. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    Science.gov (United States)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of

  13. The Toll-Like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery

    Directory of Open Access Journals (Sweden)

    Pak Kwang

    2009-08-01

    Full Text Available Abstract Background Toll-like receptor (TLR signalling is crucial for innate immune responses to infection. The involvement of TLRs in otitis media (OM, the most prevalent childhood disease in developed countries, has been implicated by studies in middle ear cell lines, by association studies of TLR-related gene polymorphisms, and by altered OM in mice bearing mutations in TLR genes. Activated TLRs signal via two alternative intracellular signaling molecules with differing effects; MyD88 (Myeloid differentiation primary response gene 88 inducing primarily interleukin expression and TRIF (Tir-domain-containing adaptor inducing interferon β mediating type I interferon (IFN expression. We tested the hypothesis that TRIF and type I IFN signaling play a role in OM, using a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi. The ME inflammatory response to NTHi was examined in wild-type (WT and TRIF-/- mice by qPCR, gene microarray, histopathology and bacterial culture. Results Expression of TRIF mRNA was only modesty enhanced during OM, but both type I IFN signalling genes and type I IFN-inducible genes were significantly up-regulated in WT mice. TRIF-deficient mice showed reduced but more persistent mucosal hyperplasia and less leukocyte infiltration into the ME in response to NTHi infection than did WT animals. Viable bacteria could be cultured from MEs of TRIF-/- mice for much longer in the course of disease than was the case for middle ears of WT mice. Conclusion Our results demonstrate that activation of TRIF/type I IFN responses is important in both the pathogenesis and resolution of NTHi-induced OM.

  14. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Maria Zwiewka; Elena Feraru; Barbara M(o)ller; Inhwan Hwang; Mugurel I Feraru; Jürgen Kleine-Vehn; Dolf Weijers; Ji(n) Friml

    2011-01-01

    Subcellular trafficking is required for a multitude of functions in eukaryotic cells.It involves regulation of cargo sorting,vesicle formation,trafficking and fusion processes at multiple levels.Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated.Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex.pat4 and pat2,a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β,as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development,but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures.All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs.Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits.Furthermore,both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries.Taken together,these results demonstrate that AP complexes,similar to those in other eukaryotes,exist in plants,and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.

  15. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  16. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis.

    Science.gov (United States)

    Chetrit, David; Barzilay, Lior; Horn, Galit; Bielik, Tom; Smorodinsky, Nechama I; Ehrlich, Marcelo

    2011-02-18

    Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle.

  17. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    Science.gov (United States)

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  18. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA.

    Science.gov (United States)

    Hautbergue, Guillaume M; Hung, Ming-Lung; Walsh, Matthew J; Snijders, Ambrosius P L; Chang, Chung-Te; Jones, Rachel; Ponting, Chris P; Dickman, Mark J; Wilson, Stuart A

    2009-12-01

    Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5' capping and 3' end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4-7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8-10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.

  19. Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia.

    Science.gov (United States)

    Mansha, Muhammad; Carlet, Michela; Ploner, Christian; Gruber, Georg; Wasim, Muhammad; Wiegers, Gerrit Jan; Rainer, Johannes; Geley, Stephan; Kofler, Reinhard

    2010-04-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and are used in the therapy of lymphoid malignancies. SLA (Src-like-adaptor), an inhibitor of T- and B-cell receptor signaling, is a promising candidate derived from expression profiling analyses in children with acute lymphoblastic leukemia (ALL). Over-expression and knock-down experiments in ALL in vitro model revealed that transgenic SLA alone had no effect on survival or cell cycle progression, nor did it affect sensitivity to, or kinetics of, GC-induced apoptosis. Although SLA is a prominent GC response gene, it does not seem to contribute to the anti-leukemic effects of GC.

  20. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Bolanle Famakin

    2012-07-01

    Full Text Available Abstract Background Deletion of some Toll-like receptors (TLRs affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT, MyD88−/− and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO. Methods Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO. Results IL-6, keratinocyte chemoattractant (KC, granulocyte colony-stimulating factor (G-CSF and IL-10 were significantly decreased in MyD88−/− mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88−/− mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. MyD88−/− mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO. Conclusions Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88−/− mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. The MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.

  1. The cell signaling adaptor protein EPS-8 is essential for C. elegans epidermal elongation and interacts with the ankyrin repeat protein VAB-19.

    Directory of Open Access Journals (Sweden)

    Mei Ding

    Full Text Available The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described.In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures.EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms.

  2. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    Science.gov (United States)

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.

  3. Advances on the research of adaptor SARM of Toll like receptor%TLR接头蛋白SARM研究进展

    Institute of Scientific and Technical Information of China (English)

    李涛; 徐元宏; 熊自忠

    2012-01-01

    SARM是最后一个发现的TLR接头蛋白,也是唯一具有抑制作用的接头蛋白,SARM的功能在不同物种和不同研究体系中结果差异较大,本文综述了人和小鼠中SARM的基因定位、基因结构和表达情况,并综述了线虫、鲎、文昌鱼、斑马鱼、小鼠和人等不同物种中SARM功能研究的最新进展.%SARM is the last adaptor of Toll like receptor to be found and a unique adaptor to possess inhibitory action. The function of SARM is largely difference in disparate species and research system. This paper reviews the gene location, gene structure and gene expression of SARM in human beings and mice and the advancement of SARM function research in Caenorhabditis elegans, horseshoe crab, amphioxus, zebra fish, mouse and human beings.

  4. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex.

    Science.gov (United States)

    Bondage, Devanand D; Lin, Jer-Sheng; Ma, Lay-Sun; Kuo, Chih-Horng; Lai, Erh-Min

    2016-07-05

    Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone-effector complex (Tap-1-Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1-PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1-Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1-Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity.

  5. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio

    NARCIS (Netherlands)

    Hovens, Iris; Nyakas, Csaba; Schoemaker, Regina

    2014-01-01

    Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1) stained brain sections. Methods: The novel method was compared to currently used analy

  6. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences

    DEFF Research Database (Denmark)

    Su, J; Yang, L T; Sap, J

    1996-01-01

    Receptor protein-tyrosine phosphatase RPTPalpha is found associated in vivo with the adaptor protein Grb2. Formation of this complex, which contains no detectable levels of Sos, is known to depend on a C-terminal phosphorylated tyrosine residue (Tyr798) in RPTPalpha and on the Src homology (SH) 2...

  7. Ubc2, an Ortholog of the Yeast Ste50p Adaptor, Possesses a Basidiomycete-Specific Carboxy terminal Extension Essential for Pathogenicity Independent of Pheromone Response.

    Science.gov (United States)

    Proteins involved in the MAP kinase pathway controlling mating, morphogenesis and pathogenicity have been identified previously in the fungus Ustilago maydis. One of these, the Ubc2 adaptor protein, possesses a basidiomycete-specific structure. In addition to containing SAM and RA domains typical of...

  8. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  9. Ascent Heating Thermal Analysis on the Spacecraft Adaptor (SA) Fairings and the Interface with the Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Wang, Xiao-Yen; Yuko, James; Motil, Brian

    2009-01-01

    When the crew exploration vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aero heating case. Heating rates from Thermal Environment (TE) 3 aero heating analysis computed by engineers at Marshall Space Flight Center (MSFC) are used in the thermal analysis. Both MSC Patran 2007r1b/Pthermal and C&R Thermal Desktop 5.1/Sinda models are built to validate each other. The numerical results are also compared with those reported by Lockheed Martin (LM) and show a reasonably good agreement.

  10. Analysis of Arf1 GTPase-dependent membrane binding and remodeling using the exomer secretory vesicle cargo adaptor

    Science.gov (United States)

    Paczkowski, Jon E.; Fromme, J. Christopher

    2016-01-01

    Summary Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  11. A Patient-Controlled Analgesia Adaptor to Mitigate Postsurgical Pain for Combat Casualties With Multiple Limb Amputation: A Case Series.

    Science.gov (United States)

    Pasquina, Paul F; Isaacson, Brad M; Johnson, Elizabeth; Rhoades, Daniel S; Lindholm, Mark P; Grindle, Garrett G; Cooper, Rory A

    2016-08-01

    The use of explosive armaments during Operation Iraqi Freedom, Operation Enduring Freedom, and Operation New Dawn has resulted in a significant number of injured U.S. service members. These weapons often generate substantial extremity trauma requiring multiple surgical procedures to preserve life, limb, and restore function. For those individuals who require multiple surgeries, the use of patient-controlled analgesia (PCA) devices can be an effective way to achieve adequate pain management and promote successful rehabilitation and recovery during inpatient treatment. A subpopulation of patients are unable to independently control a PCA device because of severe multiple limb dysfunction and/or loss. In response to the needs of these patients, our team designed and developed a custom adaptor to assist service members who would otherwise not be able to use a PCA. Patient feedback of the device indicated a positive response, improved independence, and overall satisfaction during inpatient hospitalization.

  12. Src-like adaptor protein (SLAP) is upregulated in antigen-stimulated mast cells and acts as a negative regulator.

    Science.gov (United States)

    Park, Seung-Kiel; Qiao, Huihong; Beaven, Michael A

    2009-06-01

    Our studies in the RBL-2H3 mast cell line suggest that responses to antigen (Ag) are negatively modulated through upregulation of Src-like adaptor protein (SLAP). Ag stimulation of RBL-2H3 cells leads to increased levels of SLAP (but not SLAP2) transcripts and protein over a period of several hours. The effects of pharmacologic inhibitors indicate that the upregulation of SLAP is dependent on multiple signaling pathways. Knockdown of SLAP with anti-SLAP siRNA is associated with enhanced phosphorylation of Syk, the linker for activation of T cells (LAT), phospholipase C gamma, MAP kinases, and various transcription factors. Production of IL-3 and MCP-1, but not degranulation, is also enhanced. The upregulation of SLAP may thus serve to limit the duration of cytokine production in Ag-stimulated cells.

  13. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM.

    Science.gov (United States)

    Togni, M; Swanson, K D; Reimann, S; Kliche, S; Pearce, A C; Simeoni, L; Reinhold, D; Wienands, J; Neel, B G; Schraven, B; Gerber, A

    2005-09-01

    SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca(2+) responses, are normal in SKAP-HOM(-/-) animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM(-/-). In addition, adhesion of activated B cells to fibronectin (a ligand for beta1 integrins) as well as to ICAM-1 (a ligand for beta2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins.

  14. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zawawi, M.S.F. [Universiti Sains Malaysia (USM) (Malaysia); Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Dharmapatni, A.A.S.S.K.; Cantley, M.D. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); McHugh, K.P. [University of Florida, College of Dentistry, Fl (United States); Haynes, D.R. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Crotti, T.N., E-mail: tania.crotti@adelaide.edu.au [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  15. Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Spicka, Jiri; Tkaczyk, Christine;

    2008-01-01

    The transmembrane adaptor protein (TRAP), NTAL, is phosphorylated in mast cells following FcvarepsilonRI aggregation whereby it cooperates with LAT to induce degranulation. The Kit ligand, stem cell factor (SCF), enhances antigen-induced degranulation and this also appears to be NTAL......-knock down-human mast cells. The observations reported herein support the conclusion that NTAL may be differentially utilized by specific receptors for relaying alternative signals and this suggests a flexibility in the function of TRAPs not previously appreciated....

  16. Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice.

    Directory of Open Access Journals (Sweden)

    Henrike Lenzen

    Full Text Available BACKGROUND: Impaired salt and water absorption is an important feature in the pathogenesis of diarrhea in inflammatory bowel disease (IBD. We analyzed the expression of proinflammatory cytokines in the infiltrating immune cells and the function and expression of the Na(+/H(+ exchanger isoform 3 (NHE3 and its regulatory PDZ-adaptor proteins NHERF1, NHERF2, and PDZK1 in the colon of interleukin-10-deficient (IL-10(-/- mice. METHODOLOGY/PRINCIPAL FINDINGS: Gene and protein expression were analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR, in situ RT-PCR, and immunohistochemistry. NHE3 activity was measured fluorometrically in apical enterocytes within isolated colonic crypts. Mice developed chronic colitis characterized by a typical immune cell infiltration composed of T-lymphocytes and macrophages, with high levels of gene and protein expression of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. In parallel, inducible nitric oxide synthase expression was increased while procaspase 3 expression was unaffected. Interferon-γ expression remained low. Although acid-activated NHE3 activity was significantly decreased, the inflammatory process did not affect its gene and protein expression or its abundance and localization in the apical membrane. However, expression of the PDZ-adaptor proteins NHERF2 and PDZK1 was downregulated. NHERF1 expression was unchanged. In a comparative analysis we observed the PDZK1 downregulation also in the DSS (dextran sulphate sodium model of colitis. CONCLUSIONS/SIGNIFICANCE: The impairment of the absorptive function of the inflamed colon in the IL-10(-/- mouse, in spite of unaltered NHE3 expression and localization, is accompanied by the downregulation of the NHE3-regulatory PDZ adaptors NHERF2 and PDZK1. We propose that the downregulation of PDZ-adaptor proteins may be an important factor leading to NHE3 dysfunction and diarrhea in the course of the cytokine

  17. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation.

    Science.gov (United States)

    Tsuchiya, Yoshihiro; Asano, Tomoichiro; Nakayama, Keiko; Kato, Tomohisa; Karin, Michael; Kamata, Hideaki

    2010-08-27

    Proinflammatory cytokines activate NF-kappaB using the IkappaB kinase (IKK) complex that phosphorylates inhibitory proteins (IkappaBs) at N-terminal sites resulting in their ubiquitination and degradation in the cytoplasm. Although ultraviolet (UV) irradiation does not lead to IKK activity, it activates NF-kappaB by an unknown mechanism through IkappaBalpha degradation without N-terminal phosphorylation. Here, we describe an adaptor function of nuclear IKKbeta in UV-induced IkappaBalpha degradation. UV irradiation induces the nuclear translocation of IkappaBalpha and association with IKKbeta, which constitutively interacts with beta-TrCP through heterogeneous ribonucleoprotein-U (hnRNP-U) leading to IkappaBalpha ubiquitination and degradation. Furthermore, casein kinase 2 (CK2) and p38 associate with IKKbeta and promote IkappaBalpha degradation by phosphorylation at C-terminal sites. Thus, nuclear IKKbeta acts as an adaptor protein for IkappaBalpha degradation in UV-induced NF-kappaB activation. NF-kappaB activated by the nuclear IKKbeta adaptor protein suppresses anti-apoptotic gene expression and promotes UV-induced cell death.

  18. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL.

    Science.gov (United States)

    Zhu, Minghua; Liu, Yan; Koonpaew, Surapong; Granillo, Olivia; Zhang, Weiguo

    2004-10-18

    Linker for activation of B cells (LAB, also called NTAL; a product of wbscr5 gene) is a newly identified transmembrane adaptor protein that is expressed in B cells, NK cells, and mast cells. Upon BCR activation, LAB is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT-deficient mice. To study the in vivo function of LAB, LAB-deficient mice were generated. Although disruption of the Lab gene did not affect lymphocyte development, it caused mast cells to be hyperresponsive to stimulation via the FcepsilonRI, evidenced by enhanced Erk activation, calcium mobilization, degranulation, and cytokine production. These data suggested that LAB negatively regulates mast cell function. However, mast cells that lacked both linker for activation of T cells (LAT) and LAB proteins had a more severe block in FcepsilonRI-mediated signaling than LAT(-/-) mast cells, demonstrating that LAB also shares a redundant function with LAT to play a positive role in FcepsilonRI-mediated signaling.

  19. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    Science.gov (United States)

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.

  20. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  1. Yeast Endocytic Adaptor AP-2 Binds the Stress Sensor Mid2 and Functions in Polarized Cell Responses

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Allwood, Ellen G; Smaczynska-de Rooij, Iwona I; Snape, Mary L; Ayscough, Kathryn R

    2014-01-01

    The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth. PMID:24460703

  2. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  3. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    Institute of Scientific and Technical Information of China (English)

    va Korpos; Ferenc Dek; Ibolya Kiss

    2015-01-01

    The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic chang-es during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junc-tion formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

  4. RECOMBINANT LENTIVIRUS-MEDIATED SILENCING OF ADAPTOR PROTEIN RUK/CIN85 EXPRESSION INFLUENCES BIOLOGICAL RESPONSES OF TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    A. A. Samoylenko

    2013-08-01

    Full Text Available Ruk/CIN85 is an adaptor protein that plays important roles in the regulation of cellular processes such as cell death, proliferation and motility. It was recently shown that overexpression of Ruk/CIN85 increases the oncogenic potential of human breast adenocarcinoma MCF-7 cells. It was the aim of the present study to investigate whether inhibition of Ruk/CIN85 expression has an effect on the biological properties of the cells. In order to down-regulate Ruk/CIN85 expression of small interfering RNA-based approach was used. For down-regulation of Ruk/CIN85 lentiviral constructs encoding Ruk/CIN85-specific small hairpin RNA sequences were generated. By using the obtained recombinant lentiviruses it was shown that inhibition of Ruk/CIN85 expression influences biological properties (motility, proliferation, ABCG2 expression, and ROS generation of various tumour cell types such as human breast adenocarcinoma MCF-7, human colorectal adenocarcinoma HT-29, and Lewis mouse lung carcinoma cells.

  5. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development.

    Science.gov (United States)

    Lin, Wai W; Yi, Zuoan; Stunz, Laura L; Maine, Christian J; Sherman, Linda A; Bishop, Gail A

    2015-09-01

    Tumor necrosis factor receptor-associated factor 3 (TRAF3) is an adaptor protein that inhibits signaling by CD40 and by the receptor for B cell-activating factor (BAFF) and negatively regulates homeostatic B cell survival. Loss-of-function mutations in TRAF3 are associated with human B cell malignancies, in particular multiple myeloma. The cytokine interleukin-6 (IL-6) supports the differentiation and survival of normal and neoplastic plasma cells. We found that mice with a deficiency in TRAF3 specifically in B cells (B-Traf3(-/-) mice) had about twice as many plasma cells as did their littermate controls. TRAF3-deficient B cells had enhanced responsiveness to IL-6, and genetic loss of IL-6 in B-Traf3(-/-) mice restored their plasma cell numbers to normal. TRAF3 inhibited IL-6 receptor (IL-6R)-mediated signaling by facilitating the association of PTPN22 (a nonreceptor protein tyrosine phosphatase) with the kinase Janus-activated kinase 1 (Jak1), which in turn blocked phosphorylation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Consistent with these results, the number of plasma cells in the PTPN22-deficient mice was increased compared to that in the wild-type mice. Our findings identify TRAF3 and PTPN22 as inhibitors of IL-6R signaling in B cells and reveal a previously uncharacterized role for TRAF3 in the regulation of plasma cell differentiation.

  6. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling.

    Science.gov (United States)

    Yu, Anan; Rual, Jean-François; Tamai, Keiko; Harada, Yuko; Vidal, Marc; He, Xi; Kirchhausen, Tomas

    2007-01-01

    Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.

  7. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Núñez

    Full Text Available African swine fever virus (ASFV CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  8. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.

    Science.gov (United States)

    Hoang, Ha Thi; Schlager, Max A; Carter, Andrew P; Bullock, Simon L

    2017-02-28

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.

  9. CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis.

    Science.gov (United States)

    Bai, Baoyan; Moore, Henna M; Laiho, Marikki

    2013-01-01

    CRM1 is an export factor that together with its adaptor NMD3 transports numerous cargo molecules from the nucleus to cytoplasm through the nuclear pore. Previous studies have suggested that CRM1 and NMD3 are detected in the nucleolus. However, their localization with subnucleolar domains or participation in the activities of the nucleolus are unclear. We demonstrate here biochemically and using imaging analyses that CRM1 and NMD3 co-localize with nucleolar marker proteins in the nucleolus. In particular, their nucleolar localization is markedly increased by inhibition of RNA polymerase I (Pol I) transcription by actinomycin D or by silencing Pol I catalytic subunit, RPA194. We show that CRM1 nucleolar localization is dependent on its activity and the expression of NMD3, whereas NMD3 nucleolar localization is independent of CRM1. This suggests that NMD3 provides nucleolar tethering of CRM1. While inhibition of CRM1 by leptomycin B inhibited processing of 28S ribosomal (r) RNA, depletion of NMD3 did not, suggesting that their effects on 28S rRNA processing are distinct. Markedly, depletion of NMD3 and inhibition of CRM1 reduced the rate of pre-47S rRNA synthesis. However, their inactivation did not lead to nucleolar disintegration, a hallmark of Pol I transcription stress, suggesting that they do not directly regulate transcription. These results indicate that CRM1 and NMD3 have complex functions in pathways that couple rRNA synthetic and processing engines and that the rRNA synthesis rate may be adjusted according to proficiency in rRNA processing and export.

  10. The Shc family protein adaptor, Rai, negatively regulates T cell antigen receptor signaling by inhibiting ZAP-70 recruitment and activation.

    Directory of Open Access Journals (Sweden)

    Micol Ferro

    Full Text Available Rai/ShcC is a member of the Shc family of protein adaptors expressed with the highest abundance in the central nervous system, where it exerts a protective function by coupling neurotrophic receptors to the PI3K/Akt survival pathway. Rai is also expressed, albeit at lower levels, in other cell types, including T and B lymphocytes. We have previously reported that in these cells Rai attenuates antigen receptor signaling, thereby impairing not only cell proliferation but also, opposite to neurons, cell survival. Here we have addressed the mechanism underlying the inhibitory activity of Rai on TCR signaling. We show that Rai interferes with the TCR signaling cascade one of the earliest steps--recruitment of the initiating kinase ZAP-70 to the phosphorylated subunit of the TCR/CD3 complex, which results in a generalized dampening of the downstream signaling events. The inhibitory activity of Rai is associated to its inducible recruitment to phosphorylated CD3, which occurs in the physiological signaling context of the immune synapse. Rai is moreover found as a pre-assembled complex with ZAP-70 and also constitutively interacts with the regulatory p85 subunit of PI3K, similar to neuronal cells, notwithstanding the opposite biological outcome, i.e. impairment of PI-3K/Akt activation. The data highlight the ability of Rai to establish interactions with the TCR and key signaling mediators which, either directly (e.g. by inhibiting ZAP-70 recruitment to the TCR or sequestering ZAP-70/PI3K in the cytosol or indirectly (e.g. by promoting the recruitment of effectors responsible for signal extinction prevent full triggering of the TCR signaling cascade.

  11. The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria.

    Directory of Open Access Journals (Sweden)

    Stefan Pils

    Full Text Available BACKGROUND: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. PRINCIPAL FINDINGS: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. CONCLUSIONS: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.

  12. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor.

    Directory of Open Access Journals (Sweden)

    Crystal M Botham

    2008-05-01

    Full Text Available Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS. Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW. These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function.

  13. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Chien-Hung Shih

    Full Text Available Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  14. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Science.gov (United States)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  15. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng, E-mail: lizheng@xtu.edu.cn [School of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Chen, Wei [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-11-21

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  16. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    Science.gov (United States)

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  17. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis.

    Directory of Open Access Journals (Sweden)

    Deysi V T Wong

    Full Text Available Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days. On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50% and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%, TLR9 (400%, TRAF6 (236%, IL-1β (405%, IL-18 (365%, COX-2 (2,777% and NF-κB (245% in the WT animals when compared with saline-injected group (P<0.05. Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05. In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.

  18. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    Science.gov (United States)

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  19. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

    Science.gov (United States)

    Szretter, Kristy J; Samuel, Melanie A; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S

    2009-09-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.

  20. Differential association of the Na+/H+ exchanger regulatory factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3

    NARCIS (Netherlands)

    A. Sultan (Ayesha); M. Luo (Ma); Q. Yu (Qingbao); B. Riederer (Beat Michel); W. Xia (Weiliang); M. Chen (Mingmin); S. Lissner (Simone); J.E. Gessner (Johannes); M. Donowitz (Mark); C. Chris Yun (C.); H. deJonge (Hugo); G. Lamprecht (Georg); U. Seidler (Ursula)

    2013-01-01

    textabstractBackground/Aims: Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is uncl

  1. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α) in C. elegans neurons.

    Science.gov (United States)

    Hsu, C-C; Moncaleano, J D; Wagner, O I

    2011-03-10

    The accumulation of cargo (tau, amyloid precursor protein, neurofilaments etc.) in neurons is a hallmark of various neurodegenerative diseases while we have only little knowledge how axonal transport is regulated. Kinesin-3 UNC-104(KIF1A) is the major transporter of synaptic vesicles and recent reports suggest that a cargo itself can affect the motor's activity. Inspecting an interactome map, we identify three putative UNC-104 interactors, namely UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α), known to be adaptors in essential neuronal protein complexes. We then employed the novel method bimolecular fluorescence complementation (BiFC) assay to visualize motor-adaptor complexes in the nervous system of living C. elegans. Interestingly, the binding of UNC-104 to each adaptor protein results in different sub-cellular distributions and has distinctive effects on the motor's motility. Specifically, if UNC-104 bound to UNC-16, the motor is primarily localized in the soma of neurons while bound to DNC-1, the motor is basically found in axonal termini. On the other hand, if UNC-104 is bound to SYD-2 we identify motor populations mostly along axons. Therefore, these three adaptors inherit different functions in steering the motor to specific sub-cellular locations in the neuron.

  2. Expression of the neuronal adaptor protein X11alpha protects against memory dysfunction in a transgenic mouse model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C

    2010-01-01

    X11alpha is a neuronal-specific adaptor protein that binds to the amyloid-beta protein precursor (AbetaPP). Overexpression of X11alpha reduces Abeta production but whether X11alpha also protects against Abeta-related memory dysfunction is not known. To test this possibility, we crossed X11alpha transgenic mice with AbetaPP-Tg2576 mice. AbetaPP-Tg2576 mice produce high levels of brain Abeta and develop age-related defects in memory function that correlate with increasing Abeta load. Overexpression of X11alpha alone had no detectable adverse effect upon behavior. However, X11alpha reduced brain Abeta levels and corrected spatial reference memory defects in aged X11alpha\\/AbetaPP double transgenics. Thus, X11alpha may be a therapeutic target for Alzheimer\\'s disease.

  3. RECOMBINANT FLUORESCENT SENSOR OF HYDROGEN PEROXIDE HyPer FUSED WITH ADAPTOR PROTEIN Ruk/CIN85: DESIGNING OF EXPRESSION VECTOR AND ITS FUNCTIONAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    А. V. Bazalii

    2015-10-01

    Full Text Available The aim of this study was to design the expression vector encoding fluorescent sensor of hydrogen peroxide HyPer fused with adaptor protein Ruk/CIN85 as well as to check its subcellular distribution and ability to sense hydrogen peroxide. It was demonstrated that in transiently transfected HEK293 and MCF-7 cells Ruk/CIN85-HyPer is concentrated in dot-like vesicular structures of different size while HyPer is diffusely distributed throughout the cell. Using live cell fluorescence microscopy we observed gradual increase in hydrogen peroxide concentration in representative vesicular structures during the time of experiment. Thus, the developed genetic construction encoding the chimeric Ruk/CIN85-HyPer fluorescent protein represents a new tool to study localized H2O2 production in living cells.

  4. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2015-02-01

    SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.

  5. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential.

    Science.gov (United States)

    Oshiumi, Hiroyuki; Sakai, Keisuke; Matsumoto, Misako; Seya, Tsukasa

    2010-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLR) are members of the DEAD box helicases, and recognize viral RNA in the cytoplasm, leading to IFN-beta induction through the adaptor IFN-beta promoter stimulator-1 (IPS-1) (also known as Cardif, mitochondrial antiviral signaling protein or virus-induced signaling adaptor). Since uninfected cells usually harbor a trace of RIG-I, other RNA-binding proteins may participate in assembling viral RNA into the IPS-1 pathway during the initial response to infection. We searched for proteins coupling with human IPS-1 by yeast two-hybrid and identified another DEAD (Asp-Glu-Ala-Asp) box helicase, DDX3 (DEAD/H BOX 3). DDX3 can bind viral RNA to join it in the IPS-1 complex. Unlike RIG-I, DDX3 was constitutively expressed in cells, and some fraction of DDX3 is colocalized with IPS-1 around mitochondria. The 622-662 a.a DDX3 C-terminal region (DDX3-C) directly bound to the IPS-1 CARD-like domain, and the whole DDX3 protein also associated with RLR. By reporter assay, DDX3 helped IPS-1 up-regulate IFN-beta promoter activation and knockdown of DDX3 by siRNA resulted in reduced IFN-beta induction. This activity was conserved on the DDX3-C fragment. DDX3 only marginally enhanced IFN-beta promoter activation induced by transfected TANK-binding kinase 1 (TBK1) or I-kappa-B kinase-epsilon (IKKepsilon). Forced expression of DDX3 augmented virus-mediated IFN-beta induction and host cell protection against virus infection. Hence, DDX3 is an antiviral IPS-1 enhancer.

  6. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration

    Institute of Scientific and Technical Information of China (English)

    Takuya Watanabe; Masumi Tsuda; Yoshinori Makino; Tassos Konstantinou; Hiroshi Nishihara; Tokifumi Majima; Akio Minami; Stephan M Feller; Shinya Tanaka

    2009-01-01

    Upon growth factor stimulation, the scaffold protein, Gabl, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gabl. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extraceilular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of Crkll demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of Crkll, is critical for the induction of Gabl-Y307 phosphorylation. SH2 mutation of Crkll also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gabl, whereas Crk-SH3(N) interacted with the Gabl mutant, which lacks the clus-tered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gabl was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gabl. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gabl with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The GabI-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gabl-Y307F disturbed the localization of Crk, FAK, and paxiilin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphory-lation of Gabl-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.

  7. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  8. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.

    Science.gov (United States)

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C

    2014-05-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.

  9. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  10. Interaction of ubiquitin ligase CBL with LMP2A protein of Epstein-Barr virus occurs via PTB domain of CBL and does not depend on adaptor ITSN1

    Directory of Open Access Journals (Sweden)

    Dergai O. V.

    2013-03-01

    Full Text Available Aim. Previously Latent membrane protein 2A (LMP2A of Epstein-Barr virus was found to be ubiquitylated by CBL ubiquitin ligase but no direct interaction of LMP2A with CBL was reported. We aimed to explore this interaction and study a possibility of adaptor protein involvement. Taking into consideration that both LMP2A and CBL were shown to interact with endocytic adaptor protein intersectin 1 (ITSN1, we assumed that the latter could serve as a scaffold for LMP2A/CBL complex. Methods. We used an immunofluorescence and coimmuno- precipitation approaches to test a mutual complex formation of ITSN1, CBL and LMP2A proteins. Results. LMP2A coimmunoprecipitated with CBL while LMP2A did not interact with CBL G306E mutant harboring inactive phosphotyrosine-binding domain. We observed a triple colocalization of ITSN1, CBL and LMP2A signals in MCF-7 cells as well as coprecipitation of all mentioned proteins. Overexpression of ITSN1 did not affect the efficiency of complex formation of LMP2A with CBL. Moreover, LMP2A mutant unable to interact with ITSN1 was readily precipitated with CBL. Conclusions. LMP2A can be engaged in the complex together with endocytic adaptor ITSN1 and ubiquitin ligase CBL. We show that PTB domain of CBL is responsible for interaction with LMP2A. ITSN1 is not required for LMP2A recruiting to CBL.

  11. Fission yeast arrestin-related trafficking adaptor, Arn1/Any1, is ubiquitinated by Pub1 E3 ligase and regulates endocytosis of Cat1 amino acid transporter

    Directory of Open Access Journals (Sweden)

    Akio Nakashima

    2014-05-01

    Full Text Available The Tsc1–Tsc2 complex homologous to human tuberous sclerosis complex proteins governs amino acid uptake by regulating the expression and intracellular distribution of amino acid transporters in Schizosaccharomyces pombe. Here, we performed a genetic screening for molecules that are involved in amino acid uptake and found Arn1 (also known as Any1. Arn1 is homologous to ART1, an arrestin-related trafficking adaptor (ART in Saccharomyces cerevisiae, and contains a conserved arrestin motif, a ubiquitination site, and two PY motifs. Overexpression of arn1+ confers canavanine resistance on cells, whereas its disruption causes hypersensitivity to canavanine. We also show that Arn1 regulates endocytosis of the Cat1 amino acid transporter. Furthermore, deletion of arn1+ suppresses a defect of amino acid uptake and the aberrant Cat1 localization in tsc2Δ. Arn1 interacts with and is ubiquitinated by the Pub1 ubiquitin ligase, which is necessary to regulate Cat1 endocytosis. Cat1 undergoes ubiquitinations on lysine residues within the N-terminus, which are mediated, in part, by Arn1 to determine Cat1 localization. Correctively, Arn1 is an ART in S. pombe and contributes to amino acid uptake through regulating Cat1 endocytosis in which Tsc2 is involved.

  12. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    Science.gov (United States)

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  13. Induction of Androgen Formation in the Male by a TAT-VDAC1 Fusion Peptide Blocking 14-3-3ɛ Protein Adaptor and Mitochondrial VDAC1 Interactions

    Science.gov (United States)

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-01-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production. PMID:24947306

  14. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    Science.gov (United States)

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  15. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.

    Science.gov (United States)

    Houtman, Jon C D; Brown, Patrick H; Bowden, Brent; Yamaguchi, Hiroshi; Appella, Ettore; Samelson, Lawrence E; Schuck, Peter

    2007-01-01

    Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.

  16. Involvement of β3A Subunit of Adaptor Protein-3 in Intracellular Trafficking of Receptor-like Protein Tyrosine Phosphatase PCP-2

    Institute of Scientific and Technical Information of China (English)

    Hui DONG; Hong YUAN; Weirong JIN; Yan SHEN; Xiaojing XU; Hongyang WANG

    2007-01-01

    PCP-2 is a human receptor-like protein tyrosine phosphatase and a member of the MAM domain family cloned in human pancreatic adenocarcinoma cells. Previous studies showed that PCP-2 directly interacted with β-catenin through the juxtamembrane domain, dephosphorylated β-catenin and played an important role in the regulation of cell adhesion. Recent study showed that PCP-2 was also involved in the repression of β-catenin-induced transcriptional activity. Here we describe the interactions of PCP-2 with the β3A subunit of adaptor protein (AP)-3 and sorting nexin (SNX) 3. These protein complexes were detected using the yeast two-hybrid assay with the juxtamembrane and membrane-proximal catalytic domain of PCP-2 as "bait". Both AP-3 and SNX3 are molecules involved in intracellular trafficking of membrane receptors. The association between the β3A subunit of AP-3 and PCP-2 was further confirmed in mammalian cells. Our results suggested a possible mechanism of intracellular trafficking of PCP-2 mediated by AP-3 and SNX3 which might participate in the regulation of PCP-2 functions.

  17. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Science.gov (United States)

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  18. Src-Like adaptor protein (SLAP binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Directory of Open Access Journals (Sweden)

    Julhash U Kazi

    Full Text Available Fms-like tyrosine kinase 3 (Flt3 is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML. Src-like adaptor protein (SLAP is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  19. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  20. Molecular physics

    CERN Document Server

    Williams, Dudley

    2013-01-01

    Methods of Experimental Physics, Volume 3: Molecular Physics focuses on molecular theory, spectroscopy, resonance, molecular beams, and electric and thermodynamic properties. The manuscript first considers the origins of molecular theory, molecular physics, and molecular spectroscopy, as well as microwave spectroscopy, electronic spectra, and Raman effect. The text then ponders on diffraction methods of molecular structure determination and resonance studies. Topics include techniques of electron, neutron, and x-ray diffraction and nuclear magnetic, nuclear quadropole, and electron spin reson

  1. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    Science.gov (United States)

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  2. Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.

    Science.gov (United States)

    Kumar, Mukesh; Roe, Kelsey; Orillo, Beverly; Muruve, Daniel A; Nerurkar, Vivek R; Gale, Michael; Verma, Saguna

    2013-04-01

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognition receptors and caspase 1 in inflammasome complexes, but its role in WNV immunopathogenesis is not defined. Here, we demonstrate that ASC is essential for interleukin-1β (IL-1β) production and development of effective host immunity against WNV. ASC-deficient mice exhibited increased susceptibility to WNV infection, and reduced survival was associated with enhanced virus replication in the peripheral tissues and central nervous system (CNS). Infection of cultured bone marrow-derived dendritic cells showed that ASC was essential for the activation of caspase 1, a key component of inflammasome assembly. ASC(-/-) mice exhibited attenuated levels of proinflammatory cytokines in the serum. Intriguingly, infected ASC(-/-) mice also displayed reduced levels of alpha interferon (IFN-α) and IgM in the serum, indicating the overall protective role of ASC in restricting WNV infection. However, brains from ASC(-/-) mice displayed unrestrained inflammation, including elevated levels of proinflammatory cytokines and chemokines, such as IFN-γ, CCL2, and CCL5, which correlated with more pronounced activation of the astrocytes, enhanced infiltration of peripheral immune cells in the CNS, and increased neuronal cell death. Collectively, our data provide new insights into the role of ASC as an essential modulator of inflammasome-dependent and -independent immune responses to effectively control WNV infection.

  3. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes

    Science.gov (United States)

    Luo, Min; Yeruva, Sunil; Liu, Yongjian; Chodisetti, Giriprakash; Riederer, Brigitte; Menon, Manoj B.; Tachibana, Keisuke; Doi, Takefumi; Seidler, Ursula E.

    2017-01-01

    Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy.

  4. Protein modifications regulate the role of 14-3-3γ adaptor protein in cAMP-induced steroidogenesis in MA-10 Leydig cells.

    Science.gov (United States)

    Aghazadeh, Yasaman; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios

    2014-09-19

    The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser(58) phosphorylation and 14-3-3γ Lys(49) acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser(58) or Lys(49). Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser(58) phosphorylation and Lys(49) acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser(58) phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys(49) acetylation is important for the cAMP-dependent induction of these interactions.

  5. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    Science.gov (United States)

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  6. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  7. Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2.

    Science.gov (United States)

    Aldhamen, Y A; Seregin, S S; Kousa, Y A; Rastall, D P W; Appledorn, D M; Godbehere, S; Schutte, B C; Amalfitano, A

    2013-10-01

    The signaling lymphocytic activation molecule-associated adaptor Ewing's sarcoma's-activated transcript 2 (EAT-2) is primarily expressed in dendritic cells, macrophages and natural killer cells. Including EAT-2 in a vaccination regimen enhanced innate and adaptive immune responses toward pathogen-derived antigens, even in the face of pre-existing vaccine immunity. Herein, we investigate whether co-vaccinations with two recombinant Ad5 (rAd5) vectors, one expressing the carcinoembryonic antigen (CEA) and one expressing EAT-2, can induce more potent CEA-specific cytotoxic T lymphocyte (CTL) and antitumor activity in the therapeutic CEA-expressing MC-38 tumor model. Our results suggest that inclusion of EAT-2 significantly alters the kinetics of Th1-biasing proinflammatory cytokine and chemokine responses, and enhances anti-CEA-specific CTL responses. As a result, rAd5-EAT2-augmented rAd5-CEA vaccinations are more efficient in eliminating CEA-expressing target cells as measured by an in vivo CTL assay. Administration of rAd5-EAT2 vaccines also reduced the rate of growth of MC-38 tumor growth in vivo. Also, an increase in MC-38 tumor cell apoptosis (as measured by hematoxylin and eosin staining, active caspase-3 and granzyme B levels within the tumors) was observed. These data provide evidence that more efficient, CEA-specific effector T cells are generated by rAd5 vaccines expressing CEA, when augmented by rAd5 vaccines expressing EAT-2, and this regimen may be a promising approach for cancer immunotherapy in general.

  8. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa [Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yang, Jun-Mo [Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710 (Korea, Republic of); Kang, Jong-Sun, E-mail: kangj01@skku.edu [Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Hahn, Myong-Joon, E-mail: hahnmj@skku.edu [Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  9. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.

    Science.gov (United States)

    Chen, Arnold; Pan, Tingrui

    2011-02-21

    World-to-chip (macro-to-micro) interface continues to be one of the most complicated, ineffective, and unreliable components in the development of emerging lab-on-a-chip systems involving integrated microfluidic operations. A number of irreversible (e.g., adhesive gluing) and reversible techniques (e.g., press fitting) have attempted to provide dedicated fluidic passage from standard tubing to miniature on-chip devices, none of which completely addresses the above concerns. In this paper, we present standardized adhesive-free microfluidic adaptors, referred to as Fit-to-Flow (F2F) Interconnects, to achieve reliable hermetic seal, high-density tube packing, self-aligned plug-in, reworkable connectivity, straightforward scalability and expandability, and applicability to broad lab-on-a-chip platforms; analogous to the modular plug-and-play USB architecture employed in modern electronics. Specifically, two distinct physical packaging mechanisms are applied, with one utilizing induced tensile stress in elastomeric socket to establish reversible seal and the other using negative pressure to provide on demand vacuum shield, both of which can be adapted to a variety of experimental configurations. The non-leaking performance (up to 336 kPa) along with high tube-packing density (of 1 tube/mm(2)) and accurate self-guided alignment (of 10 μm) have been characterized. In addition, a 3D microfluidic mixer and a 6-level chemical gradient generator paired with the corresponding F2F Interconnects have been devised to illustrate the applicability of the universal fluidic connections to classic lab-on-a-chip operations.

  10. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin.

    Science.gov (United States)

    Wood, Stephen; Goldufsky, Josef; Shafikhani, Sasha H

    2015-05-01

    Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell.

  11. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    Science.gov (United States)

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  12. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  13. Structural basis for the recognition of the scaffold protein Frmpd4/Preso1 by the TPR domain of the adaptor protein LGN.

    Science.gov (United States)

    Takayanagi, Hiroki; Yuzawa, Satoru; Sumimoto, Hideki

    2015-02-01

    The adaptor protein LGN interacts via the N-terminal domain comprising eight tetratricopeptide-repeat (TPR) motifs with its partner proteins mInsc, NuMA, Frmpd1 and Frmpd4 in a mutually exclusive manner. Here, the crystal structure of the LGN TPR domain in complex with human Frmpd4 is described at 1.5 Å resolution. In the complex, the LGN-binding region of Frmpd4 (amino-acid residues 990-1011) adopts an extended structure that runs antiparallel to LGN along the concave surface of the superhelix formed by the TPR motifs. Comparison with the previously determined structures of the LGN-Frmpd1, LGN-mInsc and LGN-NuMA complexes reveals that these partner proteins interact with LGN TPR1-6 via a common core binding region with consensus sequence (E/Q)XEX4-5(E/D/Q)X1-2(K/R)X0-1(V/I). In contrast to Frmpd1, Frmpd4 makes additional contacts with LGN via regions N- and C-terminal to the core sequence. The N-terminal extension is replaced by a specific α-helix in mInsc, which drastically increases the direct contacts with LGN TPR7/8, consistent with the higher affinity of mInsc for LGN. A crystal structure of Frmpd4-bound LGN in an oxidized form is also reported, although oxidation does not appear to strongly affect the interaction with Frmpd4.

  14. Magnetismo Molecular (Molecular Magentism)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  15. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  16. Molecular pharmacognosy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This article analyzes the background and significance of molecular pharmacognosy,including the molecular identification of medicinal raw materials,phylogenetic evolution of medicinal plants and animals,evaluation and preservation of germplasm resources for medicinal plants and animals,etiology of endangerment and protection of endangered medicinal plants and animals,biosynthesis and bioregulation of active components in medicinal plants,and characteristics and the molecular bases of top-geoherbs.

  17. Molecular Spintronics

    OpenAIRE

    Shiraishi, Masashi; Ikoma, Tadaaki

    2011-01-01

    Molecular spintronics is recognized to as an attractive new research direction in a field of spintronics, following to metallic spintronics and inorganic semiconductor spintronics, and attracts many people in recent decades. The purpose of this manuscript is to describe the history of molecular spintronics by introducing important achievements and to show the current status of this field. In addition, the authors briefly introduce several theories for implementing studies in molecular spintro...

  18. Molecular dynamics

    NARCIS (Netherlands)

    Bergstra, J.A.; Bethke, I.

    2002-01-01

    Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is model

  19. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  20. Structural Molecular Components of Septate Junctions in Cnidarians Point to the Origin of Epithelial Junctions in Eukaryotes

    KAUST Repository

    Ganot, P.

    2014-09-21

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.

  1. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  2. An introduction to adherens junctions: from molecular mechanisms to tissue development and disease.

    Science.gov (United States)

    Harris, Tony J C

    2012-01-01

    Adherens junctions (AJs) are fundamental for the development of animal tissues and organs. The core complex is formed from transmembrane cell-cell adhesion molecules, cadherins, and adaptor molecules, the catenins, that link to cytoskeletal and regulatory networks within the cell. This complex can be considered over a wide range of biological organization, from atoms to molecules, protein complexes, molecular networks, cells, tissues, and overall animal development. AJs have also been an integral part of animal evolution, and play central roles in cancer development and pathogen infection. This book addresses major questions encompassing these aspects of AJ biology. How did AJs evolve? How do the cadherins and catenins interact to assemble AJs and mediate adhesion? How do AJs interface with other cellular machinery to couple adhesion with the whole cell? How do AJs affect cell behaviour and multicellular development? How can abnormal AJ activity lead to disease?

  3. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  4. Molecular physics

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    The richly illustrated book comprehensively explains the important principles of diatomic and polyatomic molecules and their spectra in two separate, distinct parts. The first part concentrates on the theoretical aspects of molecular physics, such as the vibration, rotation, electronic states, potential curves, and spectra of molecules. The different methods of approximation for the calculation of electronic wave functions and their energy are also covered. The introduction of basics terms used in group theory and their meaning in molecular physics enables an elegant description of polyatomic

  5. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection...... of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  6. Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C on the regulation of Toll-like receptors, adaptor proteins and inflammatory response

    Directory of Open Access Journals (Sweden)

    Weith Andreas

    2005-11-01

    Full Text Available Abstract Background Bacterial and viral exacerbations play a crucial role in a variety of lung diseases including COPD or asthma. Since the lung epithelium is a major source of various inflammatory mediators that affect the immune response, we analyzed the inflammatory reaction of primary lung epithelial cells to different microbial molecules that are recognized by Toll-like receptors (TLR. Methods The effects of TLR ligands on primary small airway epithelial cells were analyzed in detail with respect to cytokine, chemokine and matrix metalloproteinase secretion. In addition, the regulation of the expression of TLRs and their adaptor proteins in small airway epithelial cells was investigated. Results Our data demonstrate that poly(I:C, a synthetic analog of viral dsRNA, mediated the strongest proinflammatory effects among the tested ligands, including an increased secretion of IL-6, IL-8, TNF-α, GM-CSF, GRO-α, TARC, MCP-1, MIP-3α, RANTES, IFN-β, IP-10 and ITAC as well as an increased release of MMP-1, MMP-8, MMP-9, MMP-10 and MMP-13. Furthermore, our data show that poly(I:C as well as type-1 and type-2 cytokines have a pronounced effect on the expression of TLRs and molecules involved in TLR signaling in small airway epithelial cells. Poly(I:C induced an elevated expression of TLR1, TLR2 and TLR3 and increased the gene expression of the general TLR adaptor MyD88 and IRAK-2. Simultaneously, poly(I:C decreased the expression of TLR5, TLR6 and TOLLIP. Conclusion Poly(I:C, an analog of viral dsRNA and a TLR3 ligand, triggers a strong inflammatory response in small airway epithelial cells that is likely to contribute to viral exacerbations of pulmonary diseases like asthma or COPD. The pronounced effects of poly(I:C on the expression of Toll-like receptors and molecules involved in TLR signaling is assumed to influence the immune response of the lung epithelium to viral and bacterial infections. Likewise, the regulation of TLR expression by type

  7. Molecular farming

    NARCIS (Netherlands)

    Merck, K.B.; Vereijken, J.M.

    2006-01-01

    Molecular Farming is a new and emerging technology that promises relatively cheap and flexible production of large quantities of pharmaceuticals in genetically modified plants. Many stakeholders are involved in the production of pharmaceuticals in plants, which complicates the discussion on the poss

  8. Molecular gastronomy

    Science.gov (United States)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  9. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  10. Molecular cytogenetics.

    Science.gov (United States)

    Carpenter, N J

    2001-09-01

    In the past decade, clinical cytogenetics has undergone remarkable advancement as molecular biology techniques have been applied to conventional chromosome analysis. The limitations of conventional banding analysis in the accurate diagnosis and interpretation of certain chromosome abnormalities have largely been overcome by these new technologies, which include fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and multicolor FISH (M-FISH, SKY, and Rx-FISH). Clinical applications include diagnosis of microdeletion and microduplication syndromes, detection of subtelomeric rearrangements in idiopathic mental retardation, identification of marker and derivative chromosomes, prenatal diagnosis of trisomy syndromes, and gene rearrangements and gene amplification in tumors. Molecular cytogenetic methods have expanded the possibilities for precise genetic diagnoses, which are extremely important for clinical management of patients and appropriate counseling of their families.

  11. Molecular Fountain

    Science.gov (United States)

    Cheng, Cunfeng; van der Poel, Aernout P. P.; Jansen, Paul; Quintero-Pérez, Marina; Wall, Thomas E.; Ubachs, Wim; Bethlem, Hendrick L.

    2016-12-01

    The resolution of any spectroscopic or interferometric experiment is ultimately limited by the total time a particle is interrogated. Here we demonstrate the first molecular fountain, a development which permits hitherto unattainably long interrogation times with molecules. In our experiments, ammonia molecules are decelerated and cooled using electric fields, launched upwards with a velocity between 1.4 and 1.9 m/s and observed as they fall back under gravity. A combination of quadrupole lenses and bunching elements is used to shape the beam such that it has a large position spread and a small velocity spread (corresponding to a transverse temperature of free fall, while being strongly focused at the detection region. The molecules are in free fall for up to 266 ms, making it possible, in principle, to perform sub-Hz measurements in molecular systems and paving the way for stringent tests of fundamental physics theories.

  12. Molecular scale

    Directory of Open Access Journals (Sweden)

    Christopher H. Childers

    2016-03-01

    Full Text Available This manuscript demonstrates the molecular scale cure rate dependence of di-functional epoxide based thermoset polymers cured with amines. A series of cure heating ramp rates were used to determine the influence of ramp rate on the glass transition temperature (Tg and sub-Tg transitions and the average free volume hole size in these systems. The networks were comprised of 3,3′-diaminodiphenyl sulfone (33DDS and diglycidyl ether of bisphenol F (DGEBF and were cured at ramp rates ranging from 0.5 to 20 °C/min. Differential scanning calorimetry (DSC and NIR spectroscopy were used to explore the cure ramp rate dependence of the polymer network growth, whereas broadband dielectric spectroscopy (BDS and free volume hole size measurements were used to interrogate networks’ molecular level structural variations upon curing at variable heating ramp rates. It was found that although the Tg of the polymer matrices was similar, the NIR and DSC measurements revealed a strong correlation for how these networks grow in relation to the cure heating ramp rate. The free volume analysis and BDS results for the cured samples suggest differences in the molecular architecture of the matrix polymers due to cure heating rate dependence.

  13. Molecular Cloning and Functional Characterization of Tibetan Porcine STING

    Directory of Open Access Journals (Sweden)

    Daiwen Chen

    2012-01-01

    Full Text Available Tibetan pig is well known for its strong disease resistance. However, little is known about the molecular basis of its strong resistance to disease. Stimulator of interferon (IFN genes (STING, also known as MPYS/MITA/ERIS/TMEM173, is an adaptor that functions downstream of RIG-I and MAVS and upstream of TBK1 and plays a critical role in type I IFN induction. Here we report the first cloning and characterization of STING gene from Tibetan pig. The entire open reading frame (ORF of the Tibetan porcine STING is 1137 bp, with a higher degree of sequence similarity with Landrace pig (98% and cattle (88% than with chimpanzee (84%, human (83% or mouse (77%. The predicted protein is composed of 378 amino acids and has 4 putative transmembrane domains. Real-time quantitative PCR analysis indicated that Tibetan pig STING mRNA was most abundant in the lung and heart. Overexpression of Tibetan porcine STING led to upregulation of IFN-β and IFN-stimulated gene 15 (ISG15 in porcine jejunal epithelial cell line IPEC-J2 cells. This is the first study investigating the biological role of STING in intestinal epithelial cells, which lays a foundation for the further study of STING in intestinal innate immunity.

  14. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO.

    Directory of Open Access Journals (Sweden)

    Marcos Rodrigo Alborghetti

    Full Text Available Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans, SCOCO (short coiled-coil protein / UNC-69 and kinesins (e.g. kinesin heavy chain / UNC116 are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth, we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance, cross-linking coupled with mass spectrometry (MS, SAXS (Small Angle X-ray Scattering and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance studies of the region involved in this process, corresponding to FEZ1 (92-194. Through studies involving the protein in its monomeric configuration (reduced and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  15. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    Science.gov (United States)

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  16. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.

    Science.gov (United States)

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Farooq, Amjad

    2009-05-19

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.

  17. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  18. Molecular nanomagnets

    CERN Document Server

    Gatteschi, Dante; Villain, Jacques

    2006-01-01

    Nanomagnetism is a rapidly expanding area of research which appears to be able to provide novel applications. Magnetic molecules are at the very bottom of the possible size of nanomagnets and they provide a unique opportunity to observe the coexistence of classical and quantum properties. The discovery in the early 90's that a cluster comprising twelve manganese ions shows hysteresis of molecular origin, and later proved evidence of quantum effects, opened a new research area whichis still flourishing through the collaboration of chemists and physicists. This book is the first attempt to cover

  19. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    Science.gov (United States)

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-02-02

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT.

  20. Molecular spintronics.

    Science.gov (United States)

    Sanvito, Stefano

    2011-06-01

    The electron spin made its debut in the device world only two decades ago but today our ability of detecting the spin state of a moving electron underpins the entire magnetic data storage industry. This technological revolution has been driven by a constant improvement in our understanding on how spins can be injected, manipulated and detected in the solid state, a field which is collectively named Spintronics. Recently a number of pioneering experiments and theoretical works suggest that organic materials can offer similar and perhaps superior performances in making spin-devices than the more conventional inorganic metals and semiconductors. Furthermore they can pave the way for radically new device concepts. This is Molecular Spintronics, a blossoming research area aimed at exploring how the unique properties of the organic world can marry the requirements of spin-devices. Importantly, after a first phase, where most of the research was focussed on exporting the concepts of inorganic spintronics to organic materials, the field has moved to a more mature age, where the exploitation of the unique properties of molecules has begun to emerge. Molecular spintronics now collects a diverse and interdisciplinary community ranging from device physicists to synthetic chemists to surface scientists. In this critical review, I will survey this fascinating, rapidly evolving, field with a particular eye on new directions and opportunities. The main differences and challenges with respect to standard spintronics will be discussed and so will be the potential cross-fertilization with other fields (177 references).

  1. Challenges in using cultured primary rodent hepatocytes or cell lines to study hepatic HDL receptor SR-BI regulation by its cytoplasmic adaptor PDZK1.

    Directory of Open Access Journals (Sweden)

    Kosuke Tsukamoto

    Full Text Available BACKGROUND: PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293 for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI's C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo. CONCLUSIONS/SIGNIFICANCE: Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.

  2. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable.

    Science.gov (United States)

    Johnson, Lisa A; Li, Ling; Sandri-Goldin, Rozanne M

    2009-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.

  3. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  4. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Hsieh

    Full Text Available The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON and AWC(OFF, by inhibiting a calcium-mediated signaling pathway in the future AWC(ON cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON, in which mir-71 is expressed at a higher level than in AWC(OFF. In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  5. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF Family of Adaptor Proteins with the Raft- and the Non-Raft Brush Border Membrane Fractions of NHE3

    Directory of Open Access Journals (Sweden)

    Ayesha Sultan

    2013-11-01

    Full Text Available Background/Aims: Trafficking, brush border membrane (BBM retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50, NHERF2 (E3KARP, and NHERF3 (PDZK1 with lipid rafts in murine small intestinal BBM. Methods: Detergent resistant membranes (“lipid rafts” were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3- mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results: NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions: The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.

  6. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Science.gov (United States)

    Hsieh, Yi-Wen; Chang, Chieh; Chuang, Chiou-Fen

    2012-01-01

    The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON) and AWC(OFF), by inhibiting a calcium-mediated signaling pathway in the future AWC(ON) cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON) fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON) cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON) identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON) neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON), in which mir-71 is expressed at a higher level than in AWC(OFF). In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON) identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  7. Role of polymorphisms of toll-like receptor (TLR 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP and FCGR2A genes in malaria susceptibility and severity in Burundian children

    Directory of Open Access Journals (Sweden)

    Esposito Susanna

    2012-06-01

    Full Text Available Abstract Background Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like receptors (TLRs-signalling pathway have been associated with either susceptibility or resistance to several infectious and inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs of TLR2, TLR4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP and FCGR2A could modulate malaria susceptibility and severity. Methods This study was planned to make a further contribution to solving the problem of the real role of the most common polymorphisms of TLR4, TLR9, TIRAP and FCGR2A genes in modulating the risk of malaria and disease severity in children from Burundi, Central Africa. All the paediatric patients aged six months to 10 years admitted to the hospital of Kiremba, Burundi, between February 2011 and September 2011, for fever and suspicion of acute malaria were screened for malaria parasitaemia by light microscopy of thick and thin blood smears. In children with malaria and in uninfected controls enrolled during the study period in the same hospital, blood samples were obtained on filter paper and TLR4 Asp299Gly rs4986790, TLR9 G1174A rs352139, T-1486 C rs187084 TLR9 T-1237 C rs5743836, TIRAP Ser180Leu rs8177374 and the FCGR2A His131Arg rs1801274 polymorphisms were studied using an ABI PRISM 7900 HT Fast Real-time instrument. Results A total of 602 patients and 337 controls were enrolled. Among the malaria cases, 553 (91.9 % were considered as suffering from uncomplicated and 49 (8.1 % from severe malaria. TLR9 T1237C rs5743836CC was associated with an increased risk of developing malaria (p = 0.03, although it was found with the same frequency in uncomplicated and severe malaria cases. No other differences were found in all alleles studied and in

  8. Contamination of sequence databases with adaptor sequences

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takeo; Sanders, A.R.; Detera-Wadleigh, S.D. [National Institute of Mental Health, Bethesda, MD (United States)

    1997-02-01

    Because of the exponential increase in the amount of DNA sequences being added to the public databases on a daily basis, it has become imperative to identify sources of contamination rapidly. Previously, contaminations of sequence databases have been reported to alert the scientific community to the problem. These contaminations can be divided into two categories. The first category comprises host sequences that have been difficult for submitters to manage or control. Examples include anomalous sequences derived from Escherichia coli, which are inserted into the chromosomes (and plasmids) of the bacterial hosts. Insertion sequences are highly mobile and are capable of transposing themselves into plasmids during cloning manipulation. Another example of the first category is the infection with yeast genomic DNA or with bacterial DNA of some commercially available cDNA libraries from Clontech. The second category of database contamination is due to the inadvertent inclusion of nonhost sequences. This category includes incorporation of cloning-vector sequences and multicloning sites in the database submission. M13-derived artifacts have been common, since M13-based vectors have been widely used for subcloning DNA fragments. Recognizing this problem, the National Center for Biotechnology Information (NCBI) started to screen, in April 1994, all sequences directly submitted to GenBank, against a set of vector data retrieved from GenBank by use of key-word searches, such as {open_quotes}vector.{close_quotes} In this report, we present evidence for another sequence artifact that is widespread but that, to our knowledge, has not yet been reported. 11 refs., 1 tab.

  9. On molecular graph comparison.

    Science.gov (United States)

    Melo, Jenny A; Daza, Edgar

    2011-06-01

    Since the last half of the nineteenth century, molecular graphs have been present in several branches of chemistry. When used for molecular structure representation, they have been compared after mapping the corresponding graphs into mathematical objects. However, direct molecular comparison of molecular graphs is a research field less explored. The goal of this mini-review is to show some distance and similarity coefficients which were proposed to directly compare molecular graphs or which could be useful to do so.

  10. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  11. Adaptor protein Crk Ⅰ mediates malignant potential of human ovarian cancer%接合物蛋白CrkⅠ在卵巢癌恶性潜能中的作用

    Institute of Scientific and Technical Information of China (English)

    车亚玲; 王瑾; 令狐华

    2011-01-01

    Objective To explore the role of adaptor protein Crk Ⅰ in malignant potential of human ovarian cancer. Methods Crk and Dock180 expression were detected by Western blotting in ovarian cancer tissues (EOC, n =28), benign ovarian tumors (BOT, n =13) and normal ovary tissues (Normal, n =10). Co-precipitation was performed to evaluate the in vivo protein-protein interaction of Dock180 and Crk Ⅰn 3 different ovarian cancer cell lines ( SKOV3, MCAS and RMUG-L cells). The expression of Crk Ⅰn SKOV3 cells were silenced by using siRNA interference, and then Rac1 activity and cell invasion in the transfected cells were observed. Results The intensity of Crk Ⅰ and Dock180 expression was consistent with each other in EOC tissues. Both were observed to be significantly higher in EOC than those in the BOT and normal ovary tissues(P < 0. 05 ). No significant difference was found between BOT and Normal group either for Crk Ⅰ or Dock180 expression (P > 0. 05 ). In consistent with this result, Dock180 preferred to combine with Crk Ⅰ rather than with Crk Ⅱ in all 3 ovarian cancer cell lines. Furthermore, Crk knockdown celIs presented with sustainable Crk Ⅰ expression depletion, significantly decreased Rac1 activity and cell invasion. Conclusion Crk might be involved in malignant potential of human EOC mainly through Crk Ⅰ/Dock180/Rac1 pathway.%目的 证实接合物蛋白CrkⅠ在卵巢癌恶性潜能中的作用.方法 采用Western blot法检测卵巢癌组织、卵巢良性肿瘤组织、正常卵巢组织中Crk和Dock180蛋白的表达;用免疫沉淀法检测3种卵巢癌细胞株中Crk与Dock180蛋白的内源性结合;用小干扰RNA敲低SKOV3细胞中内源性的Crk,检测Crk表达缺失性细胞Crk蛋白表达水平、Rac1酶活性和侵袭力的变化.结果 Dock180与CrkⅠ的表达强度呈现明显的一致性,卵巢癌组织中二者的表达均显著高于卵巢良性肿瘤组织和正常卵巢组织(P0.05).3个卵巢癌细胞株中Dock180主要

  12. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  13. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    Science.gov (United States)

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  14. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    @@ Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and ultrastructural levels.

  15. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  16. Physical Chemistry of Molecular

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Established in 2009, the group consists of six researchers and more than 70 research assistants and graduate students from the CAS Key Laboratory of Molecular Nanostructures and Nanotechnologies at the CAS Institute of Chemistry.Its research focuses on the physical chemistry involved in molecular assembly, molecular nanostructures, functional nanomaterials and conceptual nano-devices.

  17. Engineering molecular machines

    Science.gov (United States)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  18. Workshop on molecular animation.

    Science.gov (United States)

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E

    2010-10-13

    From February 25 to 26, 2010, in San Francisco, the Resource for Biocomputing, Visualization, and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for producing high-quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories.

  19. Molecular dynamics simulations

    OpenAIRE

    Tarmyshov, Konstantin B.

    2007-01-01

    Molecular simulations can provide a detailed picture of a desired chemical, physical, or biological process. It has been developed over last 50 years and is being used now to solve a large variety of problems in many different fields. In particular, quantum calculations are very helpful to study small systems at a high resolution where electronic structure of compounds is accounted for. Molecular dynamics simulations, in turn, are employed to study development of a certain molecular ensemble ...

  20. Sober Topological Molecular Lattices

    Institute of Scientific and Technical Information of China (English)

    张德学; 李永明

    2003-01-01

    A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.

  1. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  2. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  3. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and uhrastructural levels. Morphology is defined as a field of science investigating the shape,

  4. Molecular Stirrers in Action

    NARCIS (Netherlands)

    Chen, Jiawen; Kistemaker, Jos C. M.; Robertus, Jort; Feringa, Ben L.

    2014-01-01

    A series of first-generation light-driven molecular motors with rigid substituents of varying length was synthesized to act as "molecular stirrers". Their rotary motion was studied by H-1 NMR and UV-vis absorption spectroscopy in a variety of solvents with different polarity and viscosity. Quantitat

  5. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  6. Molecular Population Genetics

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  7. Modeling of molecular properties

    CERN Document Server

    Comba, Peter

    2011-01-01

    Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28

  8. Molecular heat pump.

    Science.gov (United States)

    Segal, Dvira; Nitzan, Abraham

    2006-02-01

    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  9. Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Fabrizio Caldera

    2012-07-01

    Full Text Available Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed.

  10. The Molecular Foundry (TMF)

    Data.gov (United States)

    Federal Laboratory Consortium — Founded in 2006 by the Department of Energy (DOE), the Molecular Foundry is a critical part of the DOE's National Nanotechnology Initiative, a multi-agency framework...

  11. Are there molecular signatures?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  12. Molecular marker databases.

    Science.gov (United States)

    Lai, Kaitao; Lorenc, Michał Tadeusz; Edwards, David

    2015-01-01

    The detection and analysis of genetic variation plays an important role in plant breeding and this role is increasing with the continued development of genome sequencing technologies. Molecular genetic markers are important tools to characterize genetic variation and assist with genomic breeding. Processing and storing the growing abundance of molecular marker data being produced requires the development of specific bioinformatics tools and advanced databases. Molecular marker databases range from species specific through to organism wide and often host a variety of additional related genetic, genomic, or phenotypic information. In this chapter, we will present some of the features of plant molecular genetic marker databases, highlight the various types of marker resources, and predict the potential future direction of crop marker databases.

  13. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  14. Molecular Mechanisms of Preeclampsia

    OpenAIRE

    N. Vitoratos; D. Hassiakos; Iavazzo, C.

    2012-01-01

    Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.

  15. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  16. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  17. Open source molecular modeling.

    Science.gov (United States)

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  18. Biomolecular Architectures Molecular Biology

    Science.gov (United States)

    2013-08-31

    designed molecular beacon probes for detecting hlyA and invA genes from Listeria monocytogenes (Gram-positive) and Salmonella spp . (Gram-negative...bacterium, Bacillus thuringiensis, transgenic tobacco containing the transgene, Bt cry1Ac, the Gram-negative bacterium, Salmonella Typhimurium, and the Gram... Salmonella Typhimurium, and the Gram-positive bacterium, Listeria monocytogenes, were monitored for detection by coupling molecular beacon (MB

  19. Molecular and Metallic Hydrogen

    Science.gov (United States)

    1977-05-01

    interaction between hydroge , molecules. Fortunately, theoretical calculation of the pair potential from first principles at small intermolecular...three- ,’ody effect is a general phenomenon for all highly condensed states of molecular hydroger The effect of t’ ,ree-body contribution to the...parameters of metallic hydroge -. have given more consis- tent results than those for the molecular hydrogen. For example, the r-sults of the earliest

  20. Interstellar molecular clouds

    Science.gov (United States)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  1. The Dark Molecular Gas

    CERN Document Server

    Wolfire, Mark G; McKee, Christopher F

    2010-01-01

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H_2 mass. However, a significant H_2 mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas phase carbon resides in C or C+. Here, H_2 self-shields or is shielded by dust from UV photodissociation, where as CO is photodissociated. This H_2 gas is "dark" in molecular transitions because of the absence of CO and other trace molecules, and because H_2 emits so weakly at temperatures 10 K < T < 100 K typical of this molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component ...

  2. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  3. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    Science.gov (United States)

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-01-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed “type VII.” How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE–PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways. PMID:25275011

  4. Nanotechnology Review: Molecular Electronics to Molecular Motors

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  5. [Molecular techniques in mycology].

    Science.gov (United States)

    Rodríguez-Tudela, Juan Luis; Cuesta, Isabel; Gómez-López, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martínez, Leticia; Cuenca-Estrella, Manuel

    2008-11-01

    An increasing number of molecular techniques for the diagnosis of fungal infections have been developed in the last few years, due to the growing prevalence of mycoses and the length of time required for diagnosis when classical microbiological methods are used. These methods are designed to resolve the following aspects of mycological diagnosis: a) Identification of fungi to species level by means of sequencing relevant taxonomic targets; b) early clinical diagnosis of invasive fungal infections; c) detection of molecular mechanisms of resistance to antifungal agents; and d) molecular typing of fungi. Currently, these methods are restricted to highly developed laboratories. However, some of these techniques will probably be available in daily clinical practice in the near future.

  6. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  7. Molecular psychiatry of zebrafish.

    Science.gov (United States)

    Stewart, A M; Ullmann, J F P; Norton, W H J; Parker, M O; Brennan, C H; Gerlai, R; Kalueff, A V

    2015-02-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.

  8. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  9. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  10. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  11. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  12. [Tuberculosis and molecular biology].

    Science.gov (United States)

    Andersen, Ase Bengård; Lillebaek, Troels; Søborg, Christian; Johansen, Isik Somuncu; Thomsen, Vibeke Østergaard

    2003-02-24

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) hunting millions worldwide, is a challenge to work with in the laboratory. Modern molecular biology has provided extremely useful tools which have changed conventional diagnostic procedures in the TB laboratories. Research in molecular epidemiology is currently expanding our knowledge of the natural history of TB. Access to the genome sequence has opened new avenues for research in drug development and new vaccines. However, we are still awaiting the impact of these efforts in the resource-poor TB endemic countries.

  13. [Molecular diagnostics and imaging].

    Science.gov (United States)

    Fink, Christian; Fisseler-Eckhoff, Annette; Huss, Ralf; Nestle, Ursula

    2009-01-01

    Molecular diagnostic methods and biological imaging techniques can make a major contribution to tailoring patients' treatment needs with regard to medical, ethical and pharmaco-economic aspects. Modern diagnostic methods are already being used to help identify different sub-groups of patients with thoracic tumours who are most likely to benefit significantly from a particular type of treatment. This contribution looks at the most recent developments that have been made in the field of thoracic tumour diagnosis and analyses the pros and cons of new molecular and other imaging techniques in day-to-day clinical practice.

  14. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  15. Synergetics of molecular systems

    CERN Document Server

    Lupichev, Lev N; Kadantsev, Vasiliy N

    2014-01-01

    Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences.Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural pro

  16. The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules.

    Science.gov (United States)

    Paredes-Juarez, Genaro A; de Haan, Bart J; Faas, Marijke M; de Vos, Paul

    2013-12-28

    Alginate-based microcapsules are used for immunoisolation of cells to release therapeutics on a minute-to-minute basis. Unfortunately, alginate-based microcapsules are suffering from varying degrees of success, which is usually attributed to differences in tissue responses. This results in failure of the therapeutic cells. In the present study we show that commercial, crude alginates may contain pathogen-associated molecular patterns (PAMPs), which are recognized by the sensors of the innate immune system. Known sensors are Toll-like receptors (TLRs), NOD receptors, and C-type lectins. By using cell-lines with a non-functional adaptor molecule essential in Toll-like receptor signaling, i.e. MyD88, we were able to show that alginates signal mainly via MyD88. This was found for low-G, intermediate-G, and high-G alginates applied in calcium-beads, barium-beads as well as in alginate-PLL-alginate capsules. These alginates did stimulate TLRs 2, 5, 8, and 9 but not TLR4 (LPS receptor). Upon implantation in rats these alginates provoked a strong inflammatory response resulting in fibrosis of the capsules. Analysis demonstrated that commercial alginates contain the PAMPs peptidoglycan, lipoteichoic acid, and flagellin. By applying purification procedures, these PAMPs were largely removed. This was associated with deletion of the inflammatory tissue responses as confirmed by an implantation experiment in rats. Our data also show that alginate itself does not provoke TLR mediated responses. We were able to unravel the sensor mechanism by which contaminants in alginates may provoke inflammatory responses.

  17. Molecular epidemiology of ascariasis

    DEFF Research Database (Denmark)

    Betson, Martha; Halstead, Fennella; Nejsum, Peter;

      We are using molecular epidemiology techniques to study the population structure of Ascaris obtained from humans and pigs. Worms were obtained from human hosts on Zanzibar and in Uganda, Bangladesh, Guatemala and Nepal and Ascaris from pigs were collected from in Uganda, Tanzania, Denmark...

  18. Molecular gastronomy in Spain

    DEFF Research Database (Denmark)

    García-Segovia, P.; Garrido, M. D.; Vercet, A.

    2014-01-01

    Beyond the overwhelming international success of Ferrán Adria, Spain has been one of the countries with a more active implication in molecular gastronomy as a scientific discipline but also in the use of ingredients, technologies, and equipment from the scientific and technological universe...... with scientists for facing the future of Spanish gastronomy. © Taylor & Francis Group, LLC....

  19. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP.

  20. [Biology molecular of glioblastomas].

    Science.gov (United States)

    Franco-Hernández, C; Martínez-Glez, V; Rey, J A

    2007-10-01

    Glioblastomas, the most frequent and malignant human brain tumors, may develop de novo (primary glioblastoma) or by progression from low-grade or anapalsic astrocytoma (secondary glioblastoma). The molecular alteration most frequent in these tumor-like types is the loss of heterozygosity on chromosome 10, in which several genes have been identified as tumors suppressor. The TP53/MDM2/P14arf and CDK4/RB1/ P16ink4 genetic pathways involved in cycle control are deregulated in the majority of gliomas as well as genes that promote the cellular division, EGFR. Finally the increase of growth and angiogenics factors is also involved in the development of glioblastomas. One of the objectives of molecular biology in tumors of glial ancestry is to try to find the genetic alterations that allow to approach better the classification of glioblastomas, its evolution prediction and treatment. The new pathmolecular classification of gliomas should improve the old one, especially being concerned about the oncogenesis and heterogeneity of these tumors. It is desirable that this classification had clinical applicability and integrates new molecular findings with some known histological features with pronostic value. In this paper we review the most frequent molecular mechanisms involved in the patogenesis of glioblastomas.

  1. Molecular theory of capillarity

    CERN Document Server

    Rowlinson, J S

    2002-01-01

    History of thought on molecular origins of surface phenomena offers a critical and detailed examination and assessment of modern theories, focusing on statistical mechanics and application of results in mean-field approximation to model systems. Emphasis on liquid-gas surface, with a focus on liquid-liquid surfaces in the final chapters. 1989 edition.

  2. Molecular ion photofragment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  3. Visualization of molecular fingerprints.

    Science.gov (United States)

    Owen, John R; Nabney, Ian T; Medina-Franco, José L; López-Vallejo, Fabian

    2011-07-25

    A visualization plot of a data set of molecular data is a useful tool for gaining insight into a set of molecules. In chemoinformatics, most visualization plots are of molecular descriptors, and the statistical model most often used to produce a visualization is principal component analysis (PCA). This paper takes PCA, together with four other statistical models (NeuroScale, GTM, LTM, and LTM-LIN), and evaluates their ability to produce clustering in visualizations not of molecular descriptors but of molecular fingerprints. Two different tasks are addressed: understanding structural information (particularly combinatorial libraries) and relating structure to activity. The quality of the visualizations is compared both subjectively (by visual inspection) and objectively (with global distance comparisons and local k-nearest-neighbor predictors). On the data sets used to evaluate clustering by structure, LTM is found to perform significantly better than the other models. In particular, the clusters in LTM visualization space are consistent with the relationships between the core scaffolds that define the combinatorial sublibraries. On the data sets used to evaluate clustering by activity, LTM again gives the best performance but by a smaller margin. The results of this paper demonstrate the value of using both a nonlinear projection map and a Bernoulli noise model for modeling binary data.

  4. Reading the Molecular Clock.

    Science.gov (United States)

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  5. [Molecular abnormalities in lymphomas].

    Science.gov (United States)

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  6. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain.

    Science.gov (United States)

    He, Ju; Scott, Jordan L; Heroux, Annie; Roy, Siddhartha; Lenoir, Marc; Overduin, Michael; Stahelin, Robert V; Kutateladze, Tatiana G

    2011-05-27

    Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 Å resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded β-barrel capped by an α-helix at one edge, whereas the opposite edge is flanked by three loops and the β4 and β7 strands that form a lipid-binding pocket within the β-barrel. The ARF1-binding site is located on the outer side of the β-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.

  7. Molecular Programming Pseudo-code Representation to Molecular Electronics

    OpenAIRE

    2010-01-01

    This research paper is proposing the idea of pseudo code representation to molecular programming used in designing molecular electronics devices. Already the schematic representation of logical gates like AND, OR, NOT etc.from molecular diodes or resonant tunneling diode are available. This paper is setting a generic pseudo code model so that various logic gates can be formulated. These molecular diodes have designed from organic molecules or Bio-molecules. Our focus is on to give a scenario ...

  8. Fine tuning of molecular rotor function in photochemical molecular switches

    NARCIS (Netherlands)

    ter Wiel, Matthijs K. J.; Feringa, Ben L.

    2009-01-01

    Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the ba

  9. Interactive molecular dynamics

    Science.gov (United States)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  10. Interactive molecular dynamics

    CERN Document Server

    Schroeder, Daniel V

    2015-01-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in HTML5 and JavaScript for running within any modern Web browser, is provided as an online supplement.

  11. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.

  12. Templated quasicrystalline molecular layers

    Science.gov (United States)

    Smerdon, Joe; Young, Kirsty; Lowe, Michael; Hars, Sanger; Yadav, Thakur; Hesp, David; Dhanak, Vinod; Tsai, An-Pang; Sharma, Hem Raj; McGrath, Ronan

    2014-03-01

    Quasicrystals are materials with long range ordering but no periodicity. We report scanning tunneling microscopy (STM) observations of quasicrystalline molecular layers on five-fold quasicrystal surfaces. The molecules adopt positions and orientations on the surface consistent with the quasicrystalline ordering of the substrate. Carbon-60 adsorbs atop sufficiently-separated Fe atoms on icosahedral Al-Cu-Fe to form a unique quasicrystalline lattice whereas further C60 molecules decorate remaining surface Fe atoms in a quasi-degenerate fashion. Pentacene (Pn) adsorbs at tenfold-symmetric points around surface-bisected rhombic triacontahedral clusters in icosahedral Ag-In-Yb. These systems constitute the first demonstrations of quasicrystalline molecular ordering on a template. EPSRC EP/D05253X/1, EP/D071828/1, UK BIS.

  13. Measuring Dark Molecular Gas

    Science.gov (United States)

    Li, Di; Heiles, Carl E.

    2017-01-01

    It is now well known that a substantial fraction of Galactic molecular gas cannot be traced by CO emission. The thus dubbed CO dark molecular gas (DMG) occupy a large volume of ISM with intermediate extinction, where CO is either not self-shielded and/or subthermally excited. We explore the utilities of simple hydrides, such OH, CH, etc., in tracing DMG. We mapped and modeled the transition zone cross a cloud boundary and derived emperical OH abundance and DMG distribution formulae. We also obtained absorption measurements of various species using Arecibo, VLA, ATCA, and ALMA. The absorption technique has the potential to provide systematic quantification of DMG in the next few years.

  14. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  15. Molecular pathology of retinoblastoma

    Directory of Open Access Journals (Sweden)

    Kandalam Mallikarjuna

    2010-01-01

    Full Text Available Retinoblastoma (RB is an embryonic neoplasm of retinal origin. For many years, scientists have sought the fundamental origins of tumorigenesis, with the ultimate hope of discovering a cure. Indeed, these efforts have led to a significant understanding that multiple molecular and genetic aberrations, such as uncontrolled proliferation and the inhibition of apoptosis that contribute to the canonical characteristics of tumor biology. Despite these advances, a thorough understanding, such as the precise cells, which are the targets of neoplastic transformation, especially in solid tumors, is currently lacking. The focus of this review is to emphasize the molecular defects involved in the RB tumor progression and mechanisms associated with inhibition of tumor cell apoptotic processes. This review also discusses the importance of target molecules characterization and their potential therapeutic or prognostic use in RB disease.

  16. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  17. A estrutura organizacional molecular

    Directory of Open Access Journals (Sweden)

    Edinice Mei Silva

    2002-01-01

    Full Text Available Consumer market is pointing out to market one-to-one, fragmentation and segmentation, which requires a new form of organizational structure, more flexible, modern, adaptable, and capable of satisfying consumer needs, at the same time aiming at survival through defense mechanism and adaptation, just the way live beings do. Hence, it is emerging the molecular organizational structure, which is the purpose of the present

  18. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  19. Molecular Pathogenesis of Spondyloarthritis

    DEFF Research Database (Denmark)

    Carlsen, Thomas Gelsing

    This dissertation includes a presentation of knowledge on the molecular pathogenesis of spondyloarthritis achieved through a PhD programme at Aalborg University from 1.12.2011 - 1.12.2014. Work was carried out in the Laboratory of Medical Mass Spectrometry, headed by: Professor Svend Birkelund...... and Immunology in San Diego, USA. Research was conducted on biological material from patients suffering from spondyloarthritis and healthy donors, to whom I dedicate this work....

  20. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  1. Communication: Molecular gears

    Science.gov (United States)

    Burnell, E. Elliott; de Lange, Cornelis A.; Meerts, W. Leo

    2016-09-01

    The 1H nuclear magnetic resonance spectrum of hexamethylbenzene orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy. The spectrum contains over 350 000 lines with many overlapping transitions, from which four independent direct dipolar couplings are obtained. The rotations of the six methyl groups appear to be correlated due to mutual steric hindrance. Adjacent methyl groups show counter-rotating or geared motion. Hexamethylbenzene thus behaves as a molecular hexagonal gear.

  2. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  3. Molecular basis of alcoholism.

    Science.gov (United States)

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  4. Fluorinated benzalkylsilane molecular rectifiers

    Science.gov (United States)

    Lamport, Zachary A.; Broadnax, Angela D.; Harrison, David; Barth, Katrina J.; Mendenhall, Lee; Hamilton, Clayton T.; Guthold, Martin; Thonhauser, Timo; Welker, Mark E.; Jurchescu, Oana D.

    2016-11-01

    We report on the synthesis and electrical properties of nine new alkylated silane self-assembled monolayers (SAMs) - (EtO)3Si(CH2)nN = CHPhX where n = 3 or 11 and X = 4-CF3, 3,5-CF3, 3-F-4-CF3, 4-F, or 2,3,4,5,6-F, and explore their rectification behavior in relation to their molecular structure. The electrical properties of the films were examined in a metal/insulator/metal configuration, with a highly-doped silicon bottom contact and a eutectic gallium-indium liquid metal (EGaIn) top contact. The junctions exhibit high yields (>90%), a remarkable resistance to bias stress, and current rectification ratios (R) between 20 and 200 depending on the structure, degree of order, and internal dipole of each molecule. We found that the rectification ratio correlates positively with the strength of the molecular dipole moment and it is reduced with increasing molecular length.

  5. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  6. Molecular biology of hearing [

    Directory of Open Access Journals (Sweden)

    Diensthuber, Marc

    2012-04-01

    Full Text Available [english] The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.

  7. Molecular Classification of Medulloblastoma

    Science.gov (United States)

    KIJIMA, Noriyuki; KANEMURA, Yonehiro

    2016-01-01

    Medulloblastoma (MB) is one of the most frequent malignant brain tumors in children. The current standard treatment regimen consists of surgical resection, craniospinal irradiation, and adjuvant chemotherapy. Although these treatments have the potential to increase the survival of 70–80% of patients with MB, they are also associated with serious treatment-induced morbidity. The current risk stratification of MB is based on clinical factors, including age at presentation, metastatic status, and the presence of residual tumor following resection. In addition, recent genomic studies indicate that MB consists of at least four distinct molecular subgroups: WNT, sonic hedgehog (SHH), Group 3, and Group 4. WNT and SHH MBs are characterized by aberrations in the WNT and SHH signaling pathways, respectively. WNT MB has the best prognosis compared to the other MBs, while SHH MB has an intermediate prognosis. The underlying signaling pathways associated with Group 3 and 4 MBs have not been identified. Group 3 MB is frequently associated with metastasis, resulting in a poor prognosis, while Group 4 is sometimes associated with metastasis and has an intermediate prognosis. Group 4 is the most frequent MB and represents 35% of all MBs. These findings suggest that MB is a heterogeneous disease, and that MB subgroups have distinct molecular, demographic, and clinical characteristics. The molecular classification of MBs is redefining the risk stratification of patients with MB, and has the potential to identify new therapeutic strategies for the treatment of MB. PMID:27238212

  8. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  9. The California Molecular Cloud

    CERN Document Server

    Lada, Charles J; Alves, Joao F

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). From comparison of foreground star counts with Galactic models we derive a distance of 450 +/- 23 parsecs to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of approximately 10^5 solar masses, rivaling the Orion (A) Molecular Cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion Molecular Cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps ...

  10. An improved molecular connectivity index

    Institute of Scientific and Technical Information of China (English)

    李新华; 俞庆森; 朱龙观

    2000-01-01

    Through modification of the delta values of the molecular connectivity indexes, and connecting the quantum chemistry with topology method effectively, the molecular connectivity indexes are converted into quantum-topology indexes. The modified indexes not only keep all information obtained from the original molecular connectivity method but also have their own virtue in application, and at the same time make up some disadvantages of the quantum and molecular connectivity methods.

  11. Chaos Behaviour of Molecular Orbit

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-Tang; SUN Fu-Yan; SHEN Shu-Lan

    2007-01-01

    Based on H(u)ckel's molecular orbit theory,the chaos and;bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied.The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.

  12. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    Directory of Open Access Journals (Sweden)

    Carmine Tomasetti

    2017-01-01

    Full Text Available Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies.

  13. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  14. Handbook of molecular plasmonics

    CERN Document Server

    Sala, Fabio Della

    2013-01-01

    While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon-emitter interaction, ranging from electromagnetism to quantum mechanics, from metal-enhanced fluorescence to surface-enhanced Raman scattering, from optical microscopy to synthesis of metal nanoparticles, filling the gap in the literature of this merging field. It allows experimentalists to have a solid

  15. Supported Molecular Matrix Electrophoresis.

    Science.gov (United States)

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  16. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    to retain their native structure. This creates a challenge for studying the true structures of such proteins. Here, we present an approach via the immobilization of the transmembrane leucine transporter protein (LeuT) to a functionalized surface. Moreover, we created a native-like lipid environment post...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...

  17. Switchable molecular magnets.

    Science.gov (United States)

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  18. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  19. Bienvenida la Medicina Molecular

    OpenAIRE

    Orlando R. Serrano-Barrera

    2015-01-01

    No ha cambiado la medicina, sino que ha avanzado. Los métodos clínico-epidemiológicos  incluyen hoy y se benefician del conocimiento de las bases moleculares del proceso salud-enfermedad, tanto las variaciones individuales, como los caracteres compartidos por comunidades y poblaciones, que las hacen resistentes o vulnerables a una enfermedad. La estimación presintomática e, incluso, prenatal del riesgo de enfermar, el diagnóstico, el pronóstico, la elección del tratamiento más ajustado al pac...

  20. Molecular collision theory

    CERN Document Server

    Child, M S

    2010-01-01

    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  1. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  2. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  3. De novo molecular design

    CERN Document Server

    Schneider, Gisbert

    2013-01-01

    Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes an

  4. Quantum molecular master equations

    Science.gov (United States)

    Brechet, Sylvain D.; Reuse, Francois A.; Maschke, Klaus; Ansermet, Jean-Philippe

    2016-10-01

    We present the quantum master equations for midsize molecules in the presence of an external magnetic field. The Hamiltonian describing the dynamics of a molecule accounts for the molecular deformation and orientation properties, as well as for the electronic properties. In order to establish the master equations governing the relaxation of free-standing molecules, we have to split the molecule into two weakly interacting parts, a bath and a bathed system. The adequate choice of these systems depends on the specific physical system under consideration. Here we consider a first system consisting of the molecular deformation and orientation properties and the electronic spin properties and a second system composed of the remaining electronic spatial properties. If the characteristic time scale associated with the second system is small with respect to that of the first, the second may be considered as a bath for the first. Assuming that both systems are weakly coupled and initially weakly correlated, we obtain the corresponding master equations. They describe notably the relaxation of magnetic properties of midsize molecules, where the change of the statistical properties of the electronic orbitals is expected to be slow with respect to the evolution time scale of the bathed system.

  5. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Molecular epidemiology of giardiasis.

    Science.gov (United States)

    Cacciò, Simone M; Ryan, Una

    2008-08-01

    Giardia duodenalis is a widespread parasite of mammalian species, including humans. Due to its invariant morphology, investigation on aspects such as host specificity and transmission patterns requires a direct genetic characterization of cysts/trophozoites from host samples. A number of molecular assays have been developed to help unravel the complex epidemiology of this infection. A coherent picture has emerged from those studies, indicating the existence of seven genetic groups (or assemblages), two of which (A and B) are found in both humans and animals, whereas the remaining five (C-G) are host-specific. Sequence-based surveys have identified a number of genotypes within assemblages A and B in animal species, some of which may have zoonotic potential. Recently, however, molecular approaches have been complicated by the recognition of intra-isolate sequence heterogeneity (i.e., "mixed templates", that affects identification of subtypes within each assemblage), and by the unreliable assignment of isolates to G. duodenalis assemblages generated by different genetic markers. This raises concerns about previous interpretation of genotyping data, especially when single genetic markers have been used. The mechanisms that may be responsible for these findings, including allelic sequence heterozygosity and meiotic recombination, are discussed.

  7. Molecular enzymology of lipoxygenases.

    Science.gov (United States)

    Ivanov, Igor; Heydeck, Dagmar; Hofheinz, Katharina; Roffeis, Jana; O'Donnell, Valerie B; Kuhn, Hartmut; Walther, Matthias

    2010-11-15

    Lipoxygenases (LOXs) are lipid peroxidizing enzymes, implicated in the pathogenesis of inflammatory and hyperproliferative diseases, which represent potential targets for pharmacological intervention. Although soybean LOX1 was discovered more than 60years ago, the structural biology of these enzymes was not studied until the mid 1990s. In 1993 the first crystal structure for a plant LOX was solved and following this protein biochemistry and molecular enzymology became major fields in LOX research. This review focuses on recent developments in molecular enzymology of LOXs and summarizes our current understanding of the structural basis of LOX catalysis. Various hypotheses explaining the reaction specificity of different isoforms are critically reviewed and their pros and cons briefly discussed. Moreover, we summarize the current knowledge of LOX evolution by profiling the existence of LOX-related genomic sequences in the three kingdoms of life. Such sequences are found in eukaryotes and bacteria but not in archaea. Although the biological role of LOXs in lower organisms is far from clear, sequence data suggests that this enzyme family might have evolved shortly after the appearance of atmospheric oxygen on earth.

  8. Photoinduced diffusion molecular transport

    Science.gov (United States)

    Rozenbaum, Viktor M.; Dekhtyar, Marina L.; Lin, Sheng Hsien; Trakhtenberg, Leonid I.

    2016-08-01

    We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

  9. Molecular Cloud Evolution

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2010-01-01

    I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by large-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N \\sim 1.5 \\times 10^21 \\psc \\approx 10 \\Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($\\sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall time...

  10. Towards graphyne molecular electronics.

    Science.gov (United States)

    Li, Zhihai; Smeu, Manuel; Rives, Arnaud; Maraval, Valérie; Chauvin, Remi; Ratner, Mark A; Borguet, Eric

    2015-02-20

    α-Graphyne, a carbon-expanded version of graphene ('carbo-graphene') that was recently evidenced as an alternative zero-gap semiconductor, remains a theoretical material. Nevertheless, using specific synthesis methods, molecular units of α-graphyne ('carbo-benzene' macrocycles) can be inserted between two anilinyl (4-NH2-C6H4)-anchoring groups that allow these fragments to form molecular junctions between gold electrodes. Here, electrical measurements by the scanning tunnelling microscopy (STM) break junction technique and electron transport calculations are carried out on such a carbo-benzene, providing unprecedented single molecule conductance values: 106 nS through a 1.94-nm N-N distance, essentially 10 times the conductance of a shorter nanographenic hexabenzocoronene analogue. Deleting a C4 edge of the rigid C18 carbo-benzene circuit results in a flexible 'carbo-butadiene' molecule that has a conductance 40 times lower. Furthermore, carbo-benzene junctions exhibit field-effect transistor behaviour when an electrochemical gate potential is applied, opening the way for device applications. All the results are interpreted on the basis of theoretical calculations.

  11. A molecular fountain

    CERN Document Server

    Cheng, Cunfeng; Jansen, Paul; Quintero-Pérez, Marina; Wall, Thomas E; Ubachs, Wim; Bethlem, Hendrick L

    2016-01-01

    The resolution of any spectroscopic or interferometric experiment is ultimately limited by the total time a particle is interrogated. We here demonstrate the first molecular fountain, a development which permits hitherto unattainably long interrogation times with molecules. In our experiments, ammonia molecules are decelerated and cooled using electric fields, launched upwards with a velocity between 1.4 and 1.9\\,m/s and observed as they fall back under gravity. A combination of quadrupole lenses and bunching elements is used to shape the beam such that it has a large position spread and a small velocity spread (corresponding to a transverse temperature of $<$10\\,$\\mu$K and a longitudinal temperature of $<$1\\,$\\mu$K) when the molecules are in free fall, while being strongly focused at the detection region. The molecules are in free fall for up to 266\\,milliseconds, making it possible to perform sub-Hz measurements in molecular systems and paving the way for stringent tests of fundamental physics theorie...

  12. Thermal conductance through molecular wires

    CERN Document Server

    Segal, D; Nitzan, A; Segal, Dvira; Nitzan, Abraham; Hanggi, Peter

    2003-01-01

    We consider phononic heat transport through molecular chains connecting two thermal reservoirs. For relatively short molecules at normal temperatures heat conduction is dominated by the harmonic part of the molecular force-field. We develop a general theory for the heat conduction through harmonic chains in 3-dimensions. A Landauer-type expression for the heat conduction is obtained, in agreement with other recent studies. We use this formalism to study the heat conduction properties of alkanes. For relatively short (1-30 carbon atoms) chains the length and temperature dependence of the molecular heat conduction result from the balance of three factors: (i) The molecular frequency spectrum in relation to the frequency cutoff of the thermal reservoirs, (ii) the degree of localization of the molecular normal modes and (iii) the molecule-heat reservoirs coupling. The fact that molecular modes at different frequency regimes have different localization properties gives rise to intricate dependence of the heat cond...

  13. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  14. Molecular Dynamics Calculations

    Science.gov (United States)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  15. Molecular imaging I

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Wolfhard [Deutsches Krebsforschungszentrum, Heidelberg (DE). Abt. fuer Medizinische Physik in der Radiologie (E020) Forschungsschwerpunkt Innovative Krebsdiagnostik und -therapie (E); Schwaiger, Markus (eds.) [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    2008-07-01

    The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation. (orig.)

  16. Molecular imaging II

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Wolfhard [Deutsches Krebsforschungszentrum, Heidelberg (DE). Abt. fuer Medizinische Physik in der Radiologie (E020) Forschungsschwerpunkt Innovative Krebsdiagnostik und -therapie (E); Schwaiger, Markus (eds.) [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    2008-07-01

    The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation. (orig.)

  17. Molecular logic circuits.

    Science.gov (United States)

    Balzani, Vincenzo; Credi, Alberto; Venturi, Margherita

    2003-01-13

    Miniaturization has been an essential ingredient in the outstanding progress of information technology over the past fifty years. The next, perhaps ultimate, limit of miniaturization is that of molecules, which are the smallest entities with definite size, shape, and properties. Recently, great effort has been devoted to design and investigate molecular-level systems that are capable of transferring, processing, and storing information in binary form. Some of these nanoscale devices can, in fact, perform logic operations of remarkable complexity. This research--although far from being transferred into technology--is attracting interest, as the nanometer realm seems to be out of reach for the "top-down" techniques currently available to microelectronics industry. Moreover, such studies introduce new concepts in the "old" field of chemistry and stimulate the ingenuity of researchers engaged in the "bottom-up" approach to nanotechnology.

  18. NMR molecular photography

    CERN Document Server

    Khitrin, A K; Fung, B M; Khitrin, Anatoly K.; Ermakov, Vladimir L.

    2002-01-01

    A procedure is described for storing a 2D pattern consisting of 32x32 = 1024 bits in a spin state of a molecular system and then retrieving the stored information as a stack of NMR spectra. The system used is a nematic liquid crystal, the protons of which act as spin clusters with strong intramolecular interactions. The technique used is a programmable multi-frequency irradiation with low amplitude. When it is applied to the liquid crystal, a large number of coherent long-lived 1H response signals can be excited, resulting in a spectrum showing many sharp peaks with controllable frequencies and amplitudes. The spectral resolution is enhanced by using a second weak pulse with a 90 phase shift, so that the 1024 bits of information can be retrieved as a set of well-resolved pseudo-2D spectra reproducing the input pattern.

  19. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  20. Molecular Structure of Membrane Tethers

    OpenAIRE

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains unknown due to their small diameters and dynamic nature. We used molecular dynamics simulations to obtain molecular-level insight into tether formation. Tethers were pulled from single-component lipid b...

  1. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    Science.gov (United States)

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  2. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Jorgensen, Poul

    2013-01-01

    Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.

  3. Molecular marker applications in plants.

    Science.gov (United States)

    Hayward, Alice C; Tollenaere, Reece; Dalton-Morgan, Jessica; Batley, Jacqueline

    2015-01-01

    Individuals within a population of a sexually reproducing species will have some degree of heritable genomic variation caused by mutations, insertion/deletions (INDELS), inversions, duplications, and translocations. Such variation can be detected and screened using molecular, or genetic, markers. By definition, molecular markers are genetic loci that can be easily tracked and quantified in a population and may be associated with a particular gene or trait of interest. This chapter will review the current major applications of molecular markers in plants.

  4. Máquinas Moleculares Artificiais

    OpenAIRE

    Mariana F. A. N. Guterres; Celia M. Ronconi

    2009-01-01

    The past decade has seen a dramatic increase in the number and structural/functional complexity of the artificial molecular machines that have been designed. In particular, numerous improvements in the construction procedures have led to the development of molecular switches, nanovalves, molecular muscles, nanoelevators, and rotary motors powered by photochemical, chemical, and electrochemical energy. The aim of this work is to discuss the basic principles involved in the construction of arti...

  5. Time-resolved molecular imaging

    Science.gov (United States)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  6. Lubricant characterization by molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.D.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-01

    The authors have reported the calculation of the kinematic viscosity index of squalane from nonequilibrium molecular dynamics simulations. This represents the first accurate quantitative prediction of this measure of lubricant performance by molecular simulation. Using the same general alkane potential model, this computational approach offers the possibility of predicting the performance of potential lubricants prior to synthesis. Consequently, molecular simulation is poised to become an important tool for future lubricant development.

  7. Time Delay in Molecular Photoionization

    OpenAIRE

    Hockett, P.; Frumker, E.; Villeneuve, D M; Corkum, P. B.

    2015-01-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitroge...

  8. Engineering Nanoscale Biological Molecular Motors

    OpenAIRE

    Korosec, Chapin; Forde, Nancy R.

    2017-01-01

    Understanding the operation of biological molecular motors, nanoscale machines that transduce electrochemical energy into mechanical work, is enhanced by bottom-up strategies to synthesize novel motors.

  9. Molecular Epidemiology of Foodborne Pathogens

    Science.gov (United States)

    Chen, Yi; Brown, Eric; Knabel, Stephen J.

    The purpose of this chapter is to describe the basic principles and advancements in the molecular epidemiology of foodborne pathogens. Epidemiology is the study of the distribution and determinants of infectious diseases and/or the dynamics of disease transmission. The goals of epidemiology include the identification of physical sources, routes of transmission of infectious agents, and distribution and relationships of different subgroups. Molecular epidemiology is the study of epidemiology at the molecular level. It has been defined as "a science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of diseases within families and across populations".

  10. Interface-assisted molecular spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Karthik V. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  11. Thermally driven molecular linear motors - A molecular dynamics study

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence

    2009-01-01

    We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled...

  12. Bienvenida la Medicina Molecular

    Directory of Open Access Journals (Sweden)

    Orlando R. Serrano-Barrera

    2015-11-01

    Full Text Available No ha cambiado la medicina, sino que ha avanzado. Los métodos clínico-epidemiológicos  incluyen hoy y se benefician del conocimiento de las bases moleculares del proceso salud-enfermedad, tanto las variaciones individuales, como los caracteres compartidos por comunidades y poblaciones, que las hacen resistentes o vulnerables a una enfermedad. La estimación presintomática e, incluso, prenatal del riesgo de enfermar, el diagnóstico, el pronóstico, la elección del tratamiento más ajustado al paciente, las posibilidades de rehabilitación y reinserción social, la educación y promoción sanitarias son todos momentos del proceso de toma de decisiones, que el médico debe asumir en el nuevo escenario de una ciencia que ha logrado discernir las implicaciones de un número creciente de moléculas, sus variantes, sus formas mutadas y sus interacciones con otras moléculas y con factores ambientales. (1 ¿Cuán lejos está tal panorama de nuestra práctica clínica? También en nuestros escenarios se hace medicina molecular. Así ha sido desde que en 1949 Pauling catalogara la primera enfermedad molecular: la anemia drepanocítica. (2 La más temprana acción de prevención, la vacunación, se realiza a diario en las áreas de salud e incluye preparados conformados por moléculas obtenidas por vía recombinante o síntesis química, como el antígeno de superficie del virus de la hepatitis B y el polisacárido de membrana del Haemophilus influenzae, respectivamente. (3 La pesquisa poblacional de cáncer de próstata, enfocado hacia los hombres mayores de 50 años o con síntomas sugestivos, se auxilia de la cuantificación en sangre del antígeno prostático específico. (4 El tratamiento del infarto agudo del miocardio, ahora la segunda causa de muerte en Cuba, incluye la trombolisis con estreptocinasa, otra biomolécula recombinante. (5 En desarrollo, en etapa de ensayos clínicos o ya como productos registrados algunas vacunas terap

  13. Role of adaptor proteins in motor regulation and membrane transport

    NARCIS (Netherlands)

    M.A. Schlager (Max)

    2010-01-01

    markdownabstract__Abstract__ Active transport along the cytoskeleton is a process essential for proper cellular function. Although much is known about the motor proteins that generate the necessary force and the cytoskeleton that provides the cellular infrastructure, many questions still remain. Fo

  14. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  15. Gene expression profiling of TIR-domain-containing adaptor molecule (TICAM)in channel catfish Ictalurus punctatus challenged with different pathogens including bacteria and virus%斑点叉尾(鱼回)TICAM在细菌和病毒感染后的基因表达特征

    Institute of Scientific and Technical Information of China (English)

    王启龙; 李敏; 路飏; 黄爱平; 曾令兵; 王文琪; 陈松林; 沙珍霞

    2012-01-01

    In mammals, Toll-IL-1 receptor (TIR) domain-containing adaptor molecule 1(TICAM-1) is a signaling adaptor for TLR3 and TLR4 that activates the transcription factors IRF-3, NF-kB, and AP-1, leading to the induction of type I interferon and cytokines. TICAM is also identified in some fish species, however, the gene expression profiling of TICAM is largely unknown in teleosts. Because bacteria such as Aeromonas hydrophila , Streptococcus spp. And Edwardsiella tarda and viruses such as channel catfish virus cause a multisystemic disease responsible for severe losses in channel catfish aquaculture in China. In this study, gene expression profiling of TICAM in different immune tissues(iver, headkidney, spleen,and intestine) after infection with these pathogens assayed by quantitative RT-PCR was described. After infection with A. Hydrophila, TICAM was up-regulated approximately 2. 3-fold at 24 h in liver and 1. 9-fold at 12 h in spleen, while expression of this gene was down-regulated in headkidney and intestine, with the lowest expression as 0. 15-fold at 48 h in headkidney, 0. 53-fold at 24 h in intestine, respectively. TICAM was up-regulated drastically in liver, spleen, headkidney and intestine after infection with Streptococcus spp. It reached the highest level with 23-fold in liver at 7 d post infection, and it increased about 10 times in headkidney and spleen after infection. The expression of TICAM increased in all tested tissues after infection with E. Tarda, especially it was up-regulated to the highest (23. 1-fold) at 7d in spleen. After infection with channel catfish virus, the gene TICAM expression was up-regulated in liver, headkidney and intestine moderately, with the highest expression of 3. 7-fold in liver at 72 h, 2. 8-fold in headkidney at 7 d, 1. 5-fold at 24 h in intestine. However, it was down-regulated in spleen,and its lowest expression was 0. 13-fold at 24 h. In conclusion, the results of this study suggest that the TICAM gene may play crucial

  16. Molecular Dynamics of Lipid Bilayers

    Science.gov (United States)

    1989-08-09

    The aim of this work is to study, by molecular dynamics simulations, the properties of lipid bilayers. We have applied the vectorizable, order-N...fast angle-dependent force/potential algorithms to treat angle bending and torsion. Keywords: Molecular dynamics , Lipid bilayers.

  17. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...

  18. Light-driven molecular motors

    OpenAIRE

    van Delden, RA; FERINGA, BL; Kuzmany, H.; Fink, J.; Mehring, M.; Roth, S.

    2004-01-01

    Molecular motors can be defined as molecules that are able to convert any type of energy input (a fuel) into controlled motion. These systems can be categorized into linear and rotary motors, depending on the motion induced. This brief account will discuss the state of affairs of the research on light-driven rotary molecular motors.

  19. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  20. Molecular cytogenetics in reproductive pathology.

    Science.gov (United States)

    Bruyère, Hélène; Rajcan-Separovic, Evica; Kalousek, Dagmar K

    2002-01-01

    This chapter presents the summary of two molecular cytogenetic techniques--FISH and CGH--with their applications and limitations in the studies of pregnancy loss. These molecular techniques clearly represent a significant advantage over the traditional cytogenetic technique and likely will become the predominant cytogenetic techniques in reproductive cytogenetics of the future.

  1. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  2. Classical and molecular genetic mapping

    Science.gov (United States)

    A brief history of classical genetic mapping in soybean [Glycine max (L.) Merr.] is described. Detailed descriptions are given of the development of molecular genetic linkage maps based upon various types of DNA markers Like many plant and animal species, the first molecular map of soybean was bas...

  3. Molecular beacon sequence design algorithm.

    Science.gov (United States)

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  4. Recent patents on molecular cytogenetics.

    Science.gov (United States)

    Iourov, Ivan Y; Vorsanova, Svetlana G; Yurov, Yuri B

    2008-01-01

    The questions surrounding patenting of DNA sequences encoding specific proteins are relatively well reviewed in the available literature. However, neither applications nor molecular cytogenetic techniques, which use these sequences as a probe, have been reviewed in the light of the patenting. Furthermore, the patenting of the use of numerous probes, which are produced on different types of repetitive genome elements (i.e. satellite DNA or telomeric DNA sequences) and those generated by chromosome microdissection has not been reviewed. Molecular cytogenetic techniques are one of the most applied in current bioscience (as to June 2007, over 40,000 papers in browseable scientific databases mention one or several molecular cytogenetic techniques). Therefore, reviewing recent patents in this field is of general interest for numerous researchers in different areas of biology and medicine. Here, we address world-wide patents on DNA sequences used as molecular cytogenetic probes and molecular cytogenetic techniques to define current state and perspectives of this biomedical direction.

  5. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  6. Molecular methods for biofilms

    KAUST Repository

    Ferrera, Isabel

    2014-08-30

    This chapter deals with both classical and modern molecular methods that can be useful for the identification of microorganisms, elucidation and comparison of microbial communities, and investigation of their diversity and functions. The most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples; these are discussed in the first part. The second part provides an overview over DNA polymerase chain reaction (PCR) amplification and DNA sequencing methods. Protocols and analysis software as well as potential pitfalls associated with application of these methods are discussed. Community fingerprinting analyses that can be used to compare multiple microbial communities are discussed in the third part. This part focuses on Denaturing Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP) and Automated rRNA Intergenic Spacer Analysis (ARISA) methods. In addition, classical and next-generation metagenomics methods are presented. These are limited to bacterial artificial chromosome and Fosmid libraries and Sanger and next-generation 454 sequencing, as these methods are currently the most frequently used in research. Isolation of nucleic acids: This chapter discusses, the most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples. Nucleic acid isolation methods generally include three steps: cell lysis, removal of unwanted substances, and a final step of DNA purification and recovery. The first critical step is the cell lysis, which can be achieved by enzymatic or mechanical procedures. Removal of proteins, polysaccharides and other unwanted substances is likewise important to avoid their interference in subsequent analyses. Phenol-chloroform-isoamyl alcohol is commonly used to recover DNA, since it separates nucleic acids into an aqueous phase and precipitates proteins and

  7. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Molecular screening in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Singh, R.; Fernhoff, P.M. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    Classical galactosemia (G/G) is caused by the absence of galactose-1-phosphate uridyl transferase (GALT) activity while the Duarte allele produces partial impairment and a specific biochemical phenotype. Cloning and sequencing of the human GALT gene has enabled the identification of prevalent mutations for both Classical and Duarte alleles. The G allele is caused by a Q188R codon mutation in exon 6 in 70% of a Caucasian population while the D allele is caused by an N134D codon mutation in exon 10. Since the Q188R sequence creates a new Hpa II site and the N314D sequence creates a new Sin I site, it is relatively easy to screen for both mutations by multiplex PCR and restriction digest. Here we describe a method for detection of new mutations producing impaired GALT. Patient DNAs are subjected to SSCP (single strand conformational polymorphism) analysis of their 11 GALT exons. Direct sequencing of the exons targeted by SSCP has revealed many codon changes: IVSC 956 (a splice acceptor site loss), S135L, V151A, E203K, A320T, and Y323D. Two of these codon changes, V151A and S135L, have been confirmed as mutations by finding impaired GALT activity in a yeast expression system. We conclude that molecular screening of GALT DNA will clarify the structural biology of GALT and the pathophysiology of galactosemia.

  9. Molecular genetics of ependymoma

    Institute of Scientific and Technical Information of China (English)

    Yuan Yao; Stephen C.Mack; Michael D.Taylor

    2011-01-01

    Brain tumors are the leading cause of cancer death in children,with ependymoma being the third most common and posing a significant clinical burden.Its mechanism of pathogenesis,reliable prognostic indicators,and effective treatments other than surgical resection have all remained elusive.Until recently,cytogenetic techniques,and lack of cell lines and animal models.Ependymoma heterogeneity,which manifests as variations in tumor location,patient age,histological grade,and clinical behavior,together with the observation of a balanced genomic profile in up to 50% of cases,presents additional challenges in understanding the development and progression of this disease.Despite these difficulties,we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms.Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin.This review summarizes our current knowledge in the molecular genetics of ependymoma and proposesfuture research directions necessary to further advance this field.

  10. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  11. Diffractive molecular-orbital tomography

    Science.gov (United States)

    Zhai, Chunyang; Zhu, Xiaosong; Lan, Pengfei; Wang, Feng; He, Lixin; Shi, Wenjing; Li, Yang; Li, Min; Zhang, Qingbin; Lu, Peixiang

    2017-03-01

    High-order-harmonic generation in the interaction of femtosecond lasers with atoms and molecules opens the path to molecular-orbital tomography and to probe the electronic dynamics with attosecond-Ångström resolutions. Molecular-orbital tomography requires both the amplitude and phase of the high-order harmonics. Yet the measurement of phases requires sophisticated techniques and represents formidable challenges at present. Here we report a scheme, called diffractive molecular-orbital tomography, to retrieve the molecular orbital solely from the amplitude of high-order harmonics without measuring any phase information. We have applied this method to image the molecular orbitals of N2, CO2, and C2H2 . The retrieved orbital is further improved by taking account the correction of Coulomb potential. The diffractive molecular-orbital tomography scheme, removing the roadblock of phase measurement, significantly simplifies the molecular-orbital tomography procedure and paves an efficient and robust way to the imaging of more complex molecules.

  12. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  13. Advances in multimodal molecular imaging.

    Science.gov (United States)

    Auletta, Luigi; Gramanzini, Matteo; Gargiulo, Sara; Albanese, Sandra; Salvatore, Marco; Greco, Adelaide

    2017-03-01

    Preclinical molecular imaging is an emerging field. Improving the ability of scientists to study the molecular basis of human pathology in animals is of the utmost importance for future advances in all fields of human medicine. Moreover, the possibility of developing new imaging techniques or of implementing old ones adapted to the clinic is a significant area. Cardiology, neurology, immunology and oncology have all been studied with preclinical molecular imaging. The functional techniques of photoacoustic imaging (PAI), fluorescence molecular tomography (FMT), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in association with each other or with the anatomic reference provided by computed tomography (CT) as well as with anatomic and functional information provided by magnetic resonance (MR) have all been proficiently applied to animal models of human disease. All the above-mentioned imaging techniques have shown their ability to explore the molecular mechanisms involved in animal models of disease. The clinical translatability of most of the techniques motivates the ongoing study of their possible fields of application. The ability to combine two or more techniques allows obtaining as much information as possible on the molecular processes involved in pathologies, reducing the number of animals necessary in each experiment. Merging molecular probes compatible with various imaging technique will further expand the capability to achieve the best results.

  14. Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds

    CERN Document Server

    Pon, A; Kaufman, M J

    2012-01-01

    Giant molecular clouds contain supersonic turbulence and simulations of MHD turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C-type shocks propagating into gas with densities around 10^3 cm^(-3) at velocities of a few km / s, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre-existing magnetic fields. We present model spectra for these shocks and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J >5) of CO. ...

  15. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure

    OpenAIRE

    Garcia-Garibay, Miguel A.

    2005-01-01

    Crystalline molecular machines represent an exciting new branch of crystal engineering and materials science with important implications to nanotechnology. Crystalline molecular machines are crystals built with molecules that are structurally programmed to respond collectively to mechanic, electric, magnetic, or photonic stimuli to fulfill specific functions. One of the main challenges in their construction derives from the picometric precision required for their mechanic operation within the...

  16. Structure of Hot Molecular Cores

    OpenAIRE

    Rolffs, Rainer

    2011-01-01

    High-mass stars form deeply embedded in dense molecular gas, which they heat up and ionize due to their high energy output. During an early phase, the ionization is confined to small regions, and the stellar radiation is absorbed by dust. The high temperatures lead to the evaporation of ice mantles around dust grains, and many highly excited and complex molecules can be observed in these Hot Molecular Cores. At later stages, the whole molecular cloud is ionized and disrupted, and a...

  17. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  18. Bilingual teaching of molecular biology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Recently bilingual teaching in China's universities has been widely carried out and become a popular subject for study. In this paper, the reasons for bilingual teaching of molecular biology are pointed out, the textbook of molecular biology and teaching method in bilingual teaching classes are determined after investigation and the practice of bilingually teaching molecular biology use both English and Chinese in a class. The effect has proved good. The bilingual teaching methods, the problem of bilingual teaching, the importance of understanding its significance and the possibilities of improving such teaching of the subject are also discussed.

  19. [Molecular diagnosis of melanocytic tumors].

    Science.gov (United States)

    Bauer, J

    2016-01-01

    Melanoma therapy has undergone a paradigm shift. Classic chemotherapies with poor treatment responses have been replaced by modern immune checkpoint blockades and targeted therapies with excellent responses. The latter require precise diagnosis of mutations in the melanoma genome as molecular targets for the small molecules. The diagnosis of melanomas has also been supplemented by molecular techniques. Differential diagnosis of melanoma and melanoma simulators such as atypical Spitz nevi can be supported by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). Here we review the indications and methods for molecular diagnosis of melanocytic tumors.

  20. Molecular hydrodynamics from memory kernels

    CERN Document Server

    Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin

    2016-01-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.

  1. Time Delay in Molecular Photoionization

    CERN Document Server

    Hockett, P; Villeneuve, D M; Corkum, P B

    2015-01-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  2. Photoelectron photoion molecular beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  3. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Olsen, Jeppe

    2014-01-01

    Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluati

  4. Modelos moleculares interactivos usando Jmol

    OpenAIRE

    Herráez Sánchez, Ángel; Miró Obradors, María Jesús; Palacios Alaiz, Evangelina

    2008-01-01

    El empleo de medios informáticos para examinar de forma interactiva modelos moleculares tridimensionales presenta ventajas bien conocidas para el estudio y la enseñanza de Química, Bioquímica, Biología Molecular y otras ciencias afines (Cristalografía, Ciencia de Materiales, etc.). Jmol es un programa escrito en Java, compatible con todos los sistemas operativos y navegadores de Internet, así como con otros programas de visualización molecular anteriores. Jmol destaca por ofrecer numerosas...

  5. Molecularly doped metals.

    Science.gov (United States)

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  6. Exercises in molecular computing.

    Science.gov (United States)

    Stojanovic, Milan N; Stefanovic, Darko; Rudchenko, Sergei

    2014-06-17

    CONSPECTUS: The successes of electronic digital logic have transformed every aspect of human life over the last half-century. The word "computer" now signifies a ubiquitous electronic device, rather than a human occupation. Yet evidently humans, large assemblies of molecules, can compute, and it has been a thrilling challenge to develop smaller, simpler, synthetic assemblies of molecules that can do useful computation. When we say that molecules compute, what we usually mean is that such molecules respond to certain inputs, for example, the presence or absence of other molecules, in a precisely defined but potentially complex fashion. The simplest way for a chemist to think about computing molecules is as sensors that can integrate the presence or absence of multiple analytes into a change in a single reporting property. Here we review several forms of molecular computing developed in our laboratories. When we began our work, combinatorial approaches to using DNA for computing were used to search for solutions to constraint satisfaction problems. We chose to work instead on logic circuits, building bottom-up from units based on catalytic nucleic acids, focusing on DNA secondary structures in the design of individual circuit elements, and reserving the combinatorial opportunities of DNA for the representation of multiple signals propagating in a large circuit. Such circuit design directly corresponds to the intuition about sensors transforming the detection of analytes into reporting properties. While this approach was unusual at the time, it has been adopted since by other groups working on biomolecular computing with different nucleic acid chemistries. We created logic gates by modularly combining deoxyribozymes (DNA-based enzymes cleaving or combining other oligonucleotides), in the role of reporting elements, with stem-loops as input detection elements. For instance, a deoxyribozyme that normally exhibits an oligonucleotide substrate recognition region is

  7. Computerized molecular modeling of carbohydrates

    Science.gov (United States)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  8. Molecular Biology of Nitrogen Fixation

    Science.gov (United States)

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  9. Molecular Advancements in Forensic Odontology.

    Science.gov (United States)

    Babu Rs, A; Rose, D

    2015-05-11

    Forensic odontology explores the field of human identification through dental tissues in cases where there is destruction of body tissues in criminal investigations and mass disasters. Forensic odontology involves dentists participating in legal and criminal issues. Parameters such as age and gender identification are important in identifying the person or persons. Over the last two decades, the molecular aspect of forensic sciences has increased, and these molecular techniques now provide a novel approach to forensic odontology. Molecular advancements in science like DNA analysis has extended the range of forensic dentistry as teeth possess the character of resistance toward physical or chemical aggressions. Teeth provide the abundant space for DNA, and hence teeth represent an excellent source of genomic DNA. The present paper focusses on molecular advancements in the field of forensic odontology.

  10. Molecular imaging applications for immunology.

    Science.gov (United States)

    Hildebrandt, Isabel Junie; Gambhir, Sanjiv Sam

    2004-05-01

    The use of multimodality molecular imaging has recently facilitated the study of molecular and cellular events in living subjects in a noninvasive and repetitive manner to improve the diagnostic capability of traditional assays. The noninvasive imaging modalities utilized for both small animal and human imaging include positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound, and computed tomography (CT). Techniques specific to small-animal imaging include bioluminescent imaging (BIm) and fluorescent imaging (FIm). Molecular imaging permits the study of events within cells, the examination of cell trafficking patterns that relate to inflammatory diseases and metastases, and the ability to rapidly screen new drug treatments for distribution and effectiveness. In this paper, we will review the current field of molecular imaging assays (especially those utilizing PET and BIm modalities) and examine how they might impact animal models and human disease in the field of clinical immunology.

  11. Molecular Aggregation in Disodium Cromoglycate

    Science.gov (United States)

    Singh, Gautam; Agra-Kooijman, D.; Collings, P. J.; Kumar, Satyendra

    2012-02-01

    Details of molecular aggregation in the mesophases of the anti-asthmatic drug disodium cromoglycate (DSCG) have been studied using x-ray synchrotron scattering. The results show two reflections, one at wide angles corresponding to π-π stacking (3.32 å) of molecules, and the other at small angles which is perpendicular to the direction of molecular stacking and corresponds to the distance between the molecular aggregates. The latter varies from 35 - 41 å in the nematic (N) phase and 27 -- 32 å in the columnar (M) phase. The temperature evolution of the stack height, positional order correlations in the lateral direction, and orientation order parameter were determined in the N, M, and biphasic regions. The structure of the N and M phases and the nature of the molecular aggregation, together with their dependence on temperature and concentration, will be presented.

  12. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Siddharth Gautam; S Mitra; R Mukhopadhyay

    2008-10-01

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations: An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.

  13. Computer representation of molecular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.L.

    1981-07-06

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered.

  14. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  15. Quantum logic with molecular ions

    CERN Document Server

    Wolf, Fabian; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2015-01-01

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state...

  16. Molecular diagnostics of myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Langabeer, S. E.; Andrikovics, H.; Asp, J.;

    2015-01-01

    identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation...... of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic...

  17. Molecular dynamics simulation of pyridine

    Science.gov (United States)

    Trumpakaj, Zygmunt; Linde, Bogumił

    2015-04-01

    Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.

  18. Functionalizable oligoprolines as molecular scaffolds.

    Science.gov (United States)

    Nagel, Yvonne A; Kuemin, Michael; Wennemers, Helma

    2011-01-01

    Azidoproline (Azp) containing oligoprolines are conformationally well-defined, helical molecular scaffolds that allow for facile functionalization. Within this article we describe the synthesis of Azp-containing oligoprolines and different strategies to introduce functional moieties. In addition, the influence of factors such as substituents at the y-position of proline as well as functional groups at the termini on the conformational stability of the molecular scaffolds are briefly presented.

  19. Molecular Tweezers Targeting Transthyretin Amyloidosis

    OpenAIRE

    Ferreira, N.; Pereira-Henriques, A; Attar, A.; Klärner, FG; Schrader, T; Bitan, G.; Gales, L.; Saraiva, MJ; Almeida,MR

    2014-01-01

    Transthyretin (TTR) amyloidoses comprise a wide spectrum of acquired and hereditary diseases triggered by extracellular deposition of toxic TTR aggregates in various organs. Despite recent advances regarding the elucidation of the molecular mechanisms underlying TTR misfolding and pathogenic self-assembly, there is still no effective therapy for treatment of these fatal disorders. Recently, the “molecular tweezers”, CLR01, has been reported to inhibit self-assembly and toxicity of different a...

  20. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  1. Ultraviolet Photodissociation of Molecular Beams.

    Science.gov (United States)

    1980-12-15

    Continue on reerse side if neceesry and identify by block number) Photodissociation , excimer laser, nitrocompounds, carbon disulfide, sulfur dioxide ...4 ULTRAVIOLET PHOTODISSOCIATION OF MOLECULAR BEAMS. * TYPE OF REPORT (TECHNICAL, FINAL, ETC.) FINAL REPOT OR PERIOD 0/01/77 - 9/30/80 AUTHOR (S... Photodissociation of Final report for period 10/01/77 - 9/30/80 Molecular Beams 6. PERFORMIN, CRG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e) R

  2. Chemical engineering of molecular qubits.

    Science.gov (United States)

    Wedge, C J; Timco, G A; Spielberg, E T; George, R E; Tuna, F; Rigby, S; McInnes, E J L; Winpenny, R E P; Blundell, S J; Ardavan, A

    2012-03-09

    We show that the electron spin phase memory time, the most important property of a molecular nanomagnet from the perspective of quantum information processing, can be improved dramatically by chemically engineering the molecular structure to optimize the environment of the spin. We vary systematically each structural component of the class of antiferromagnetic Cr(7)Ni rings to identify the sources of decoherence. The optimal structure exhibits a phase memory time exceeding 15  μs.

  3. Molecular mechanisms of rosacea pathogenesis

    Directory of Open Access Journals (Sweden)

    Davydova A.M.

    2013-09-01

    Full Text Available The article presents possible molecular mechanisms for rosacea pathogenesis from current domestic and foreign clinical observations and laboratory research: regulation and expression defects of antimicrobial peptides, vascular endothelial growth factor, the effect of serine proteases, oxidative stress, reactive oxygen species and ferritin on the occurrence and course of rosacea. New developments in molecular biology and genetics are advanced for researching the interaction of multiple factors involved in rosacea pathogenesis, as well as providing the bases for potentially new therapies.

  4. Molecular Gas at High Redshift

    CERN Document Server

    Solomon, P M

    2005-01-01

    The Early Universe Molecular Emission Line Galaxies (EMGs) are a population of galaxies with only 36 examples that hold great promise for the study of galaxy formation and evolution at high redshift. The classification, luminosity of molecular line emission, molecular mass, far-infrared (FIR) luminosity, star formation efficiency, morphology, and dynamical mass of the currently known sample are presented and discussed. The star formation rates derived from the FIR luminosity range from about 300 to 5000 M(sun)per year and the molecular mass from 4 x 10^9 to 1 x 10^{11} M(sun). At the lower end, these star formation rates, gas masses, and diameters are similar to those of local ultraluminous infrared galaxies, and represent starbursts in centrally concentrated disks, sometimes, but not always, associated with active galactic nuclei. The evidence for large (> 5 kpc) molecular disks is limited. Morphology and several high angular resolution images suggest that some EMGs are mergers with a massive molecular inter...

  5. Temperature Evolution of Molecular Clouds in the Central Molecular Zone

    CERN Document Server

    Krieger, Nico; Walter, Fabian; Kruijssen, J M Diederik; Beuther, Henrik

    2016-01-01

    We infer the absolute time dependence of kinematic gas temperature along a proposed orbit of molecular clouds in the Central Molecular Zone (CMZ) of the Galactic Center (GC). Ammonia gas temperature maps are one of the results of the "Survey of Water and Ammonia in the Galactic Center" (SWAG, PI: J. Ott); the dynamical model of molecular clouds in the CMZ was taken from Kruijssen et al. (2015). We find that gas temperatures increase as a function of time in both regimes before and after the cloud passes pericenter on its orbit in the GC potential. This is consistent with the recent proposal that pericenter passage triggers gravitational collapse. Other investigated quantities (line width, column density, opacity) show no strong sign of time dependence but are likely dominated by cloud-to-cloud variations.

  6. Contributions of plant molecular systematics to studies of molecular evolution.

    Science.gov (United States)

    Soltis, E D; Soltis, P S

    2000-01-01

    Dobzhansky stated that nothing in biology makes sense except in the light of evolution. A close corollary, and the central theme of this paper, is that everything makes a lot more sense in the light of phylogeny. Systematics is in the midst of a renaissance, heralded by the widespread application of new analytical approaches and the introduction of molecular techniques. Molecular phylogenetic analyses are now commonplace, and they have provided unparalleled insights into relationships at all levels of plant phylogeny. At deep levels, molecular studies have revealed that charophyte green algae are the closest relatives of the land plants and suggested that liverworts are sister to all other extant land plants. Other studies have suggested that lycopods are sister to all other vascular plants and clarified relationships among the ferns. The impact of molecular phylogenetics on the angiosperms has been particularly dramatic--some of the largest phylogenetic analyses yet conducted have involved the angiosperms. Inferences from three genes (rbcL, atpB, 18S rDNA) agree in the major features of angiosperm phylogeny and have resulted in a reclassification of the angiosperms. This ordinal-level reclassification is perhaps the most dramatic and important change in higher-level angiosperm taxonomy in the past 200 years. At lower taxonomic levels, phylogenetic analyses have revealed the closest relatives of many crops and 'model organisms' for studies of molecular genetics, concomitantly pointing to possible relatives for use in comparative studies and plant breeding. Furthermore, phylogenetic information has contributed to new perspectives on the evolution of polyploid genomes. The phylogenetic trees now available at all levels of the taxonomic hierarchy for angiosperms and other green plants should play a pivotal role in comparative studies in diverse fields from ecology to molecular evolution and comparative genetics.

  7. Molecular modeling of inelastic electron transport in molecular junctions

    Science.gov (United States)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2008-09-01

    A quantum chemical approach for the modeling of inelastic electron tunneling spectroscopy of molecular junctions based on scattering theory is presented. Within a harmonic approximation, the proposed method allows us to calculate the electron-vibration coupling strength analytically, which makes it applicable to many different systems. The calculated inelastic electron transport spectra are often in very good agreement with their experimental counterparts, allowing the revelation of detailed information about molecular conformations inside the junction, molecule-metal contact structures, and intermolecular interaction that is largely inaccessible experimentally.

  8. Molecular modeling of inelastic electron transport in molecular junctions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jun; Kula, Mathias; Luo Yi [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden)], E-mail: luo@kth.se

    2008-09-17

    A quantum chemical approach for the modeling of inelastic electron tunneling spectroscopy of molecular junctions based on scattering theory is presented. Within a harmonic approximation, the proposed method allows us to calculate the electron-vibration coupling strength analytically, which makes it applicable to many different systems. The calculated inelastic electron transport spectra are often in very good agreement with their experimental counterparts, allowing the revelation of detailed information about molecular conformations inside the junction, molecule-metal contact structures, and intermolecular interaction that is largely inaccessible experimentally.

  9. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  10. Predator-prey molecular ecosystems.

    Science.gov (United States)

    Fujii, Teruo; Rondelez, Yannick

    2013-01-22

    Biological organisms use intricate networks of chemical reactions to control molecular processes and spatiotemporal organization. In turn, these living systems are embedded in self-organized structures of larger scales, for example, ecosystems. Synthetic in vitro efforts have reproduced the architectures and behaviors of simple cellular circuits. However, because all these systems share the same dynamic foundations, a generalized molecular programming strategy should also support complex collective behaviors, as seen, for example, in animal populations. We report here the bottom-up assembly of chemical systems that reproduce in vitro the specific dynamics of ecological communities. We experimentally observed unprecedented molecular behaviors, including predator-prey oscillations, competition-induced chaos, and symbiotic synchronization. These synthetic systems are tailored through a novel, compact, and versatile design strategy, leveraging the programmability of DNA interactions under the precise control of enzymatic catalysis. Such self-organizing assemblies will foster a better appreciation of the molecular origins of biological complexity and may also serve to orchestrate complex collective operations of molecular agents in technological applications.

  11. Molecular imprinting: perspectives and applications.

    Science.gov (United States)

    Chen, Lingxin; Wang, Xiaoyan; Lu, Wenhui; Wu, Xiaqing; Li, Jinhua

    2016-04-21

    Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

  12. Reduction of molecular gas diffusion through gaskets in leaf gas exchange cuvettes by leaf‐mediated pores

    DEFF Research Database (Denmark)

    Boesgaard, Kristine Stove; Mikkelsen, Teis Nørgaard; Ro‐Poulsen, Helge;

    2013-01-01

    at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant...

  13. Manipulation of molecular structures with magnetic fields

    NARCIS (Netherlands)

    Boamfa, M.I.

    2003-01-01

    The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high magne

  14. Molecular imaging in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Mark H. [Stanford University School of Medicine, Stanford, CA (United States); Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States)

    2011-02-15

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. (orig.)

  15. Molecular Processes in Biological Thermosensation

    Directory of Open Access Journals (Sweden)

    I. Digel

    2008-01-01

    Full Text Available Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.

  16. Energy Dissipation in Molecular Systems

    CERN Document Server

    Tramer, André; Lahmani, Fran oise

    2005-01-01

    Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.

  17. State-Dependent Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ciann-Dong Yang

    2014-10-01

    Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  18. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  19. Molecular morphology of cyanobacterial phycobilisomes

    Energy Technology Data Exchange (ETDEWEB)

    Siegelman, H.W.; Kycia, J.H.

    1982-09-01

    Phycobilisomes were isolated from several cyanobacteria following cell lysis with Triton X-100. They were purified by phosphate precipitation and hydrophobic-interaction chromatography. Their phycobiliprotein compositions were quantitatively determined by application of sets of simultaneous absorbance equations to gel chromatographic separations of the chromoproteins. Phycobilisomes purified from several cyanobacteria had characteristic elution times on agarose gel chromatography. Combining electron microscope observations of phycobilisome structure, phycobiliprotein composition, and agarose gel chromatography estimates of molecular weight permitted the calculation of many details of phycobilisome molecular structure. Complementary chromatic adaptation resulted in a change of phycobilisome composition and structure. The polypeptide compositions of phycobilisomes were examined by sodium dodecyl sulfate-agarose gel chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The phycobilisomes were composed of phycobilipeptides derived from the constituent phycobiliproteins. Higher molecular-weight phycobilipeptide aggregates were also observed. The dominant forces responsible for the maintenance of phycobilisome structure are concluded to be hydropohobic interactions.

  20. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  1. OH+ in Diffuse Molecular Clouds

    CERN Document Server

    Porras, A J; Welty, D E; Ritchey, A M

    2013-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with differen...

  2. Nanofriction properties of molecular deposition films

    Institute of Scientific and Technical Information of China (English)

    王强斌; 高芒来; 张嗣伟

    2000-01-01

    The nanofriction properties of Au substrate and monolayer molecular deposition film and multilayer molecular deposition films on Au substrate and the molecular deposition films modified with alkyl-terminal molecule have been investigated by using an atomic force microscope. It is concluded that ( i ) the deposition of molecular deposition films on Au substrate and the modification of alkyl-terminal molecule to the molecular deposition films can reduce the frictional force; (ii) the molecular deposition films with the same terminal exhibit similar nanofriction properties, which has nothing to do with the molecular chain-length and the layer number; (iii) the unstable nanofriction properties of molecular deposition films are contributed to the active terminal of the molecular deposition film, which can be eliminated by decorating the active molecular deposition film with alkyl-terminal molecule, moreover, the decoration of alkyl-terminal molecule can lower the frictional force conspicuously; (iv) the relat

  3. Molecular modeling of heterogeneous catalysis

    Science.gov (United States)

    Gislason, Jason Joseph

    A novel method for modeling heterogeneous catalysis was developed to further facilitate the understanding of catalytic reactor mechanisms. The method employs molecular dynamics simulations, statistical mechanical, and Unity Bond Index - Quadratic Exponential Potential (UBI-QEP) calculations to calculate the rate constants for reactions on metal surfaces. The primary difficulty of molecular dynamics simulations on metal surfaces has been the lack of reliable reactive potential energy surfaces. We have overcome this through the development of the Normalized Bond Index - Reactive Potential Function (NBI-RPF), which can accurately describe the reaction of adsorbates on metal surfaces. The first calculations of rate constants for a reaction on a metal surface using molecular dynamics simulations are presented. This method is applied to the determination of the mechanism for selective hydrogenation of acetylene in an ethylene rich flow. It was determined that the selectivity for acetylene hydrogenation is attributable to the higher reactivity of acetylene versus ethylene with respect to hydrogenation by molecular hydrogen. It was shown that hydrogen transfer from the carbonaceous layer to acetylene or ethylene is insignificant in the hydrogenation process. Molecular dynamics simulations and molecular mechanics calculations were used to determine the diffusion rate constants for dimethylnaphthalene isomers is mordenite. 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene were found to have similar diffusion rate constants. Grand canonical Monte Carlo calculations were performed on the competitive adsorption of 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in type X zeolites exchanged individually with barium, calcium, potassium, and rubidium ions, calcium exchanged MCM-22, and hydrogen form mordenite (MOR), X zeolite, Y zeolite, hypBEB, ZSM- 12, and MCM-22. These calculations showed that barium exchanged X zeolite was the most selective toward 2

  4. Molecular Modeling of Estrogen Receptor Using Molecular Operating Environment

    Science.gov (United States)

    Roy, Urmi; Luck, Linda A.

    2007-01-01

    Molecular modeling is pervasive in the pharmaceutical industry that employs many of our students from Biology, Chemistry and the interdisciplinary majors. To expose our students to this important aspect of their education we have incorporated a set of tutorials in our Biochemistry class. The present article describes one of our tutorials where…

  5. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerou

  6. Advanced molecular devices based on light-driven molecular motors

    NARCIS (Netherlands)

    Chen, Jiawen

    2015-01-01

    Nature has provided a large collection of molecular machines and devices that are among the most amazing nanostructures on this planet. These machines are able to operate complex biological processes which are of great importance in our organisms. Inspired by these natural devices, artificial molecu

  7. Industrial Applications of Molecular Simulations

    CERN Document Server

    Meunier, Marc

    2011-01-01

    The field of quantum and molecular simulations has experienced strong growth since the time of the early software packages. A recent study, showed a large increase in the number of people publishing papers based on ab initio methods from about 3,000 in 1991 to roughly 20,000 in 2009, with particularly strong growth in East Asia. Looking to the future, the question remains as to how these methods can be further integrated into the R&D value chain, bridging the gap from engineering to manufacturing. Using successful case studies as a framework, Industrial Applications of Molecular Simulations de

  8. Molecular pathogenesis of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Andersen, Jesper Bøje

    2014-01-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop...... underlying the diversity of growth patterns of this malignancy remain a clinical concern. It is crucial to advance our present understanding of the molecular pathogenesis of CCA to improve current clinical strategies and patient outcome. This will facilitate the delineation of patient subsets...

  9. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches......Initially, molecular techniques were used to detect and distinguish Plasmodiophora pathotypes in soil. Meanwhile, chromosomes from 2.2 Mb to 680 kb are characterized and the total genome size is estimated to be approximately 20 Mb. Furthermore, the genomic gene structure and the cDNA structure...

  10. A molecular-structure hypothesis.

    Science.gov (United States)

    Boeyens, Jan C A

    2010-11-01

    The self-similar symmetry that occurs between atomic nuclei, biological growth structures, the solar system, globular clusters and spiral galaxies suggests that a similar pattern should characterize atomic and molecular structures. This possibility is explored in terms of the current molecular structure-hypothesis and its extension into four-dimensional space-time. It is concluded that a quantum molecule only has structure in four dimensions and that classical (Newtonian) structure, which occurs in three dimensions, cannot be simulated by quantum-chemical computation.

  11. Molecular design of allergy vaccines.

    Science.gov (United States)

    Linhart, Birgit; Valenta, Rudolf

    2005-12-01

    Recombinant-allergen-based diagnostic tests enable the dissection and monitoring of the molecular reactivity profiles of allergic patients, resulting in more specific diagnosis, disease monitoring, prevention and therapy. In vitro experiments, animal studies and clinical trials in patients demonstrate that allergenic molecules can be engineered to induce different immune responses ranging from tolerance to vigorous immunity. The available data thus suggest that molecular engineering of the disease-related antigens is a technology that may be applicable not only for the design of allergy vaccines but also for the design of vaccines against infectious diseases, autoimmunity and cancer.

  12. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  13. Grand canonical Molecular Dynamics Simulations

    CERN Document Server

    Fritsch, S; Junghans, C; Ciccotti, G; Site, L Delle; Kremer, K

    2011-01-01

    For simulation studies of (macro-) molecular liquids it would be of significant interest to be able to adjust/increase the level of resolution within one region of space, while allowing for the free exchange of molecules between (open) regions of different resolution/representation. In the present work we generalize the adaptive resolution idea in terms of a generalized Grand Canonical approach. This provides a robust framework for truly open Molecular Dynamics systems. We apply the method to liquid water at ambient conditions.

  14. Molecular pathophysiology of cerebral edema.

    Science.gov (United States)

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  15. [MOLECULAR ASPECTS OF BRUCELLA PERSISTENCE].

    Science.gov (United States)

    Kulakov Yu K

    2016-01-01

    Brucellosis is a dangerous zoonotic disease of animals and humans caused by bacteria of the genus Brucella, which are able to survive, multiply, and persist in host cells. The review is devoted to the Brucella species persistence connected to the molecular mechanisms of escape from innate and adaptive immunity of the host and active interaction of effector proteins of the type IV secretion system with the host's signaling pathways. Understanding of the molecular mechanisms used by Brucella for the intracellular persistence in the host organism can allow us to develop new and effective means for the prevention and treatment of chronic brucellosis infection.

  16. Cosmic rays and molecular clouds

    OpenAIRE

    2012-01-01

    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a giv...

  17. Molecular calculations with B functions

    CERN Document Server

    Steinborn, E O; Ema, I; López, R; Ramírez, G

    1998-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.

  18. The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy.

    Directory of Open Access Journals (Sweden)

    David A Tumbarello

    2015-10-01

    Full Text Available Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.

  19. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  20. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Science.gov (United States)

    Jiang, Zheng-Yu; Chu, Hong-Xi; Xi, Mei-Yang; Yang, Ting-Ting; Jia, Jian-Min; Huang, Jing-Jie; Guo, Xiao-Ke; Zhang, Xiao-Jin; You, Qi-Dong; Sun, Hao-Peng

    2013-01-01

    Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1), a substrate adaptor component of the Cullin3 (Cul3)-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2) and IκB kinase β (IKKβ), which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI), the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  1. Molecular Mobility in Sugar Glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar glasses. S

  2. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  3. Molecular epidemiology of glanders, Pakistan.

    Science.gov (United States)

    Hornstra, Heidie; Pearson, Talima; Georgia, Shalamar; Liguori, Andrew; Dale, Julia; Price, Erin; O'Neill, Matthew; Deshazer, David; Muhammad, Ghulam; Saqib, Muhammad; Naureen, Abeera; Keim, Paul

    2009-12-01

    We collected epidemiologic and molecular data from Burkholderia mallei isolates from equines in Punjab, Pakistan from 1999 through 2007. We show that recent outbreaks are genetically distinct from available whole genome sequences and that these genotypes are persistent and ubiquitous in Punjab, probably due to human-mediated movement of equines.

  4. Small Molecular as SIRT Modulators.

    Science.gov (United States)

    Yao, Lei; Xu, Xiangming; Chen, Kai

    2016-06-19

    Sirtuins are class III histone deacetylases, they involve in many important biological functions. Small molecules that can modulate sirtuin activity have been shown to have potential for treating many human diseases. In the article, recent development of small molecular as SIRT modulators has been reviewed.

  5. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  6. Cotransporters as molecular water pumps

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; MacAulay, Nanna

    2002-01-01

    Molecular water pumps are membrane proteins of the cotransport type in which a flux of water is coupled to substrate fluxes by a mechanism within the protein. Free energy can be exchanged between the fluxes. Accordingly, the flux of water may be relatively independent of the external water chemical...

  7. Thermoelectric efficiency of molecular junctions

    Science.gov (United States)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  8. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  9. Molecular Epidemiology of Glanders, Pakistan

    OpenAIRE

    Hornstra, Heidie; Pearson, Talima; Georgia, Shalamar; Liguori, Andrew; Dale, Julia; Price, Erin; O’Neill, Matthew; DeShazer, David; Muhammad, Ghulam; Saqib, Muhammad; Naureen, Abeera; Keim, Paul

    2009-01-01

    We collected epidemiologic and molecular data from Burkholderia mallei isolates from equines in Punjab, Pakistan from 1999 through 2007. We show that recent outbreaks are genetically distinct from available whole genome sequences and that these genotypes are persistent and ubiquitous in Punjab, probably due to human-mediated movement of equines.

  10. Molecular mechanisms of NCAM function

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Berezin, Vladimir; Bock, Elisabeth

    2004-01-01

    receptor that responds to both homophilic and heterophilic cues, as well as a mediator of cell-cell adhesion. This review describes NCAM function at the molecular level. We discuss recent models for extracellular ligand-interactions of NCAM, and the intracellular signaling cascade that follows to define...

  11. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE-D...

  12. Deterioration of the molecular field

    NARCIS (Netherlands)

    Falk, H.; Ruijgrok, Th.W.

    1974-01-01

    The molecular-field model of an Ising ferromagnet is modified by cutting interaction bonds so as to leave a system of M chains with long-range interactions between nearest-neighbor chains only. Equilibrium properties of the model, such as the critical temperature.

  13. Molecular detection technologies for arboviruses

    Science.gov (United States)

    Arthropod-borne animal viruses (arboviruses) cause significant livestock and economic losses to world agriculture. This paper discusses the current and potential impact of these viruses, as well as the current and developing molecular diagnostic tools for these emerging and re-emerging insect transm...

  14. Molecular dynamics simulation of diffusivity

    Institute of Scientific and Technical Information of China (English)

    Juanfang LIU; Danling ZENG; Qin LI; Hong GAO

    2008-01-01

    Equilibrium molecular dynamics simulation was performed on water to calculate its diffusivity by adopting different potential models. The results show that the potential models have great influence on the simulated results. In addition, the diffusivities obtained by the SPCE model conform well to the experimental values.

  15. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an African...

  16. Optical dynamics of molecular aggregates

    NARCIS (Netherlands)

    de Boer, Steven

    2006-01-01

    The subject of this thesis is the spectroscopy and dynamics of molecular aggregates in amorphous matrices. Aggregates of three different molecules were studied. The molecules are depicted in Fig. (1.1). Supersaturated solutions of these molecules show aggregate formation. Aggregation is a process si

  17. Molecular Foundry, Berkeley, California (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, N.

    2008-03-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers. The result is an energy efficient high-performing sustainable laboratory.

  18. Molecular chaperones and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the production of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.

  19. Molecular dynamics of silicon indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J.S.; Hoover, W.G.; Hoover, C.G.; De Groot, A.J.; Lee, S.M.; Wooten, F. (Department of Applied Science Davis-Livermore, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-04-01

    We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.

  20. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  1. Alligator clips to molecular dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Prokopuk, Nicholas [NAVAIR Research Department, Chemistry Branch, China Lake, CA 93555-6100 (United States); Son, Kyung-Ah [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2008-09-17

    Techniques for fabricating nanospaced electrodes suitable for studying electron tunneling through metal-molecule-metal junctions are described. In one approach, top contacts are deposited/placed on a self-assembled monolayer or Langmuir-Blodgett film resting on a conducting substrate, the bottom contact. The molecular component serves as a permanent spacer that controls and limits the electrode separations. The top contact can be a thermally deposited metal film, liquid mercury drop, scanning probe tip, metallic wire or particle. Introduction of the top contact can greatly affect the electrical conductance of the intervening molecular film by chemical reaction, exerting pressure, or simply migrating through the organic layer. Alternatively, vacant nanogaps can be fabricated and the molecular component subsequently inserted. Strategies for constructing vacant nanogaps include mechanical break junction, electromigration, shadow mask lithography, focused ion beam deposition, chemical and electrochemical plating techniques, electron-beam lithography, and molecular and atomic rulers. The size of the nanogaps must be small enough to allow the molecule to connect both leads and large enough to keep the molecules in a relaxed and undistorted state. A significant advantage of using vacant nanogaps in the construction of metal-molecule-metal devices is that the junction can be characterized with and without the molecule in place. Any electrical artifacts introduced by the electrode fabrication process are more easily deconvoluted from the intrinsic properties of the molecule.

  2. Alligator clips to molecular dimensions

    Science.gov (United States)

    Prokopuk, Nicholas; Son, Kyung-Ah

    2008-09-01

    Techniques for fabricating nanospaced electrodes suitable for studying electron tunneling through metal-molecule-metal junctions are described. In one approach, top contacts are deposited/placed on a self-assembled monolayer or Langmuir-Blodgett film resting on a conducting substrate, the bottom contact. The molecular component serves as a permanent spacer that controls and limits the electrode separations. The top contact can be a thermally deposited metal film, liquid mercury drop, scanning probe tip, metallic wire or particle. Introduction of the top contact can greatly affect the electrical conductance of the intervening molecular film by chemical reaction, exerting pressure, or simply migrating through the organic layer. Alternatively, vacant nanogaps can be fabricated and the molecular component subsequently inserted. Strategies for constructing vacant nanogaps include mechanical break junction, electromigration, shadow mask lithography, focused ion beam deposition, chemical and electrochemical plating techniques, electron-beam lithography, and molecular and atomic rulers. The size of the nanogaps must be small enough to allow the molecule to connect both leads and large enough to keep the molecules in a relaxed and undistorted state. A significant advantage of using vacant nanogaps in the construction of metal-molecule-metal devices is that the junction can be characterized with and without the molecule in place. Any electrical artifacts introduced by the electrode fabrication process are more easily deconvoluted from the intrinsic properties of the molecule.

  3. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  4. Fluctuation Relations for Molecular Motors

    Science.gov (United States)

    Lacoste, David; Mallick, Kirone

    This review is focused on the application of specific fluctuation relations, such as the Gallavotti-Cohen relation, to ratchet models of a molecular motor. A special emphasis is placed on two-state models such as the flashing ratchet model. We derive the Gallavotti-Cohen fluctuation relation for these models and we discuss some of its implications.

  5. OH+ in Diffuse Molecular Clouds

    Science.gov (United States)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.

  6. Molecular Testing for Gastrointestinal Cancer

    Science.gov (United States)

    Lee, Hye Seung; Kim, Woo Ho; Kwak, Yoonjin; Koh, Jiwon; Bae, Jeong Mo; Kim, Kyoung-Mee; Chang, Mee Soo; Han, Hye Seung; Kim, Joon Mee; Kim, Hwal Woong; Chang, Hee Kyung; Choi, Young Hee; Park, Ji Y.; Gu, Mi Jin; Lhee, Min Jin; Kim, Jung Yeon; Kim, Hee Sung; Cho, Mee-Yon

    2017-01-01

    With recent advances in molecular diagnostic methods and targeted cancer therapies, several molecular tests have been recommended for gastric cancer (GC) and colorectal cancer (CRC). Microsatellite instability analysis of gastrointestinal cancers is performed to screen for Lynch syndrome, predict favorable prognosis, and screen patients for immunotherapy. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor has been approved in metastatic CRCs with wildtype RAS (KRAS and NRAS exon 2–4). A BRAF mutation is required for predicting poor prognosis. Additionally, amplification of human epidermal growth factor receptor 2 (HER2) and MET is also associated with resistance to EGFR inhibitor in metastatic CRC patients. The BRAF V600E mutation is found in sporadic microsatellite unstable CRCs, and thus is helpful for ruling out Lynch syndrome. In addition, the KRAS mutation is a prognostic biomarker and the PIK3CA mutation is a molecular biomarker predicting response to phosphoinositide 3-kinase/AKT/mammalian target of rapamycin inhibitors and response to aspirin therapy in CRC patients. Additionally, HER2 testing should be performed in all recurrent or metastatic GCs. If the results of HER2 immunohistochemistry are equivocal, HER2 silver or fluorescence in situ hybridization testing are essential for confirmative determination of HER2 status. Epstein-Barr virus–positive GCs have distinct characteristics, including heavy lymphoid stroma, hypermethylation phenotype, and high expression of immune modulators. Recent advances in next-generation sequencing technologies enable us to examine various genetic alterations using a single test. Pathologists play a crucial role in ensuring reliable molecular testing and they should also take an integral role between molecular laboratories and clinicians. PMID:28219002

  7. Fine specificity and molecular competition in SLAM family receptor signalling.

    Science.gov (United States)

    Wilson, Timothy J; Garner, Lee I; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H

    2014-01-01

    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  8. Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps

    CERN Document Server

    Volkovich, Roie

    2010-01-01

    The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

  9. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery.

    Science.gov (United States)

    Doerr, S; Harvey, M J; Noé, Frank; De Fabritiis, G

    2016-04-12

    Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features.

  10. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  11. Available Instruments for Analyzing Molecular Dynamics Trajectories.

    Science.gov (United States)

    Likhachev, I V; Balabaev, N K; Galzitskaya, O V

    2016-01-01

    Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed.

  12. Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps

    OpenAIRE

    2010-01-01

    The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor ...

  13. Molecular Engineering of dosimetric materials; Ingenieria Molecular de materiales dosimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro (Mexico); Mendoza, D.; Gonzalez, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027 Mexico D.F. (Mexico)

    1999-07-01

    It was studied the thermoluminescent response to the gamma radiation of a new family of solid materials of zircon-silica. In this study some materials have been prepared by the sol-gel method with different stoichiometric relations, finding that it is possible to control, at least, partially, the thermoluminescent behavior starting from the Molecular Engineering of those materials, since the mixture of both ceramics allows to produce materials with different spatial structures. (Author)

  14. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.

    Science.gov (United States)

    Chahibi, Youssef; Akyildiz, Ian F; Balasingham, Ilangko

    2016-12-01

    Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.

  15. The molecular biology of cancer.

    Science.gov (United States)

    Bertram, J S

    2000-12-01

    identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.

  16. Fragmentation in filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Rathborne, Jill M; Sanhueza, Patricio

    2015-01-01

    Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the over-densities (clumps). In this paper, we present a multi-wavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage' instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find t...

  17. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  18. Molecular genetics of cutaneous lymphomas.

    Science.gov (United States)

    Whittaker, S

    2001-09-01

    The underlying molecular basis of primary cutaneous lymphomas has not yet been clarified. However, abnormalities of cell cycle control genes and well-defined tumor suppressor genes such as p53 are common and may contribute to disease progression and treatment resistance. Biallelic inactivation of tumor suppressor genes usually occurs by a combination of deletion, point mutation, and/or promotor hypermethylation. The detection of UVB-specific mutations of p53 requires confirmation but may have important implications for the management of patients with mycosis fungoides. Molecular cytogenetic studies have identified common regions of chromosomal deletion and amplification, which suggests the presence and location of genes that are of critical importance in the pathogenesis of cutaneous lymphoma.

  19. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    function. At the molecular level PICK1 contains both a BAR and a PDZ domain making it quite unique. Especially the specificity and promiscuity of the PICK1 PDZ domain seems to be more complicated than normally seen for PDZ domains. Also, the ability of PICK1 to form dimeric structures via its central BAR...... by the spatial architecture of the synapse itself. In this thesis, the molecular scaffolding mechanisms of PICK1 have been investigated in both isolated and near native conditions. Our findings have significantly benefitted the general understanding of how PICK1 and PDZ domain scaffolding works. In the first......-inhibitory mechanism of PICK1 and allows the N-BAR domains or the PDZ domains themselves to cluster and shape membranes. Finally, we utilized our in-solution structural knowledge to investigate the scaffolding events in context of a native cell membrane. We initially showed that we were able to qualitatively assess...

  20. [Molecular diagnostics of lung cancer].

    Science.gov (United States)

    Ryska, A; Dziadziuszko, R; Olszewski, W; Berzinec, P; Öz, B; Gottfried, M; Cufer, T; Samarzija, M; Plank, L; Ostoros, Gy; Tímár, J

    2015-09-01

    Development of the target therapies of lung cancer was a rapid process which fundamentally changed the pathological diagnosis as well. Furthermore, molecular pathology became essential part of the routine diagnostics of lung cancer. These changes generated several practical problems and in underdeveloped countries or in those with reimbursement problems have been combined with further challenges. The central and eastern region of Europe are characterized by similar problems in this respect which promoted the foundation of NSCLC Working Group to provide up to date protocols or guidelines. This present paper is a summary of the molecular pathology and target therapy guidelines written with the notion that it has to be upgraded continuously according to the development of the field.

  1. Molecular Recognition and Ligand Association

    Science.gov (United States)

    Baron, Riccardo; McCammon, J. Andrew

    2013-04-01

    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  2. Variational Approach to Molecular Kinetics.

    Science.gov (United States)

    Nüske, Feliks; Keller, Bettina G; Pérez-Hernández, Guillermo; Mey, Antonia S J S; Noé, Frank

    2014-04-08

    The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous to the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics.

  3. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  4. Molecular deformation mechanisms in polyethylene

    CERN Document Server

    Coutry, S

    2001-01-01

    adjacent labelled stems is significantly larger when the DPE guest is a copolymer molecule. Our comparative studies on various types of polyethylene lead to the conclusion that their deformation behaviour under drawing has the same basis, with additional effects imputed to the presence of tie-molecules and branches. Three major points were identified in this thesis. The changes produced by drawing imply (1) the crystallisation of some of the amorphous polymer and the subsequent orientation of the newly formed crystals, (2) the re-orientation of the crystalline ribbons and (3) the beginning of crystallite break-up. However, additional effects were observed for the high molecular weight linear sample and the copolymer sample and were attributed, respectively, to the presence of tie-molecules and of branches. It was concluded that both the tie-molecules and the branches are restricting the molecular movement during deformation, and that the branches may be acting as 'anchors'. This work is concerned with details...

  5. Seebeck effect in molecular junctions

    Science.gov (United States)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  6. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  7. Tumor Molecular Imaging with Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhen Cheng

    2016-03-01

    Full Text Available Molecular imaging (MI can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI, and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.

  8. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  9. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  10. Molecular imaging with terahertz waves.

    Science.gov (United States)

    Oh, Seung Jae; Choi, Jihye; Maeng, Inhee; Park, Jae Yeon; Lee, Kwangyeol; Huh, Yong-Min; Suh, Jin-Suck; Haam, Seungjoo; Son, Joo-Hiuk

    2011-02-28

    We demonstrate a highly sensitive THz molecular imaging (TMI) technique involving differential modulation of surface plasmons induced on nanoparticles and obtain target specific in vivo images of cancers. This technique can detect quantities of gold nanoparticles as small as 15 µM in vivo. A comparison of TMI images with near infrared absorption images shows the superior sensitivity of TMI. Furthermore, the quantification property of TMI is excellent, being linearly proportional to the concentration of nanoparticles. The target specificity issue is also addressed at the ex vivo and cell levels. The high thermal sensitivity of TMI can help extend photonic-based photothermal molecular imaging researches from the in vitro level to the in vivo level. The TMI technique can be used for monitoring drug delivery processes and for early cancer diagnosis.

  11. Molecular mimicry and multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Michael Namaka; Michael R. Mulvey; Sabina Kapoor; Leann Simms; Christine Leong; Amy Grossberndt; Michael Prouta; Emma Frost; Farid Esfahani; Andrew Gomori

    2011-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Although the exact underlying mechanism leading to myelin destruction is unknown, the molecular mimicry theory is the most commonly acknowledged elucidation of MS pathology. Although various antigens have been associated with MS induction, this review presents studies focused on key bacterial and viral antigens that lead to the development of MS. The research specific to a molecular mimicry theory of MS via each implicated agent is weak; however, collectively the reports provide credible support for this theory. Given that homologous sequences are not required to lead to antigenic cross-reactivity, it is reasonable to conclude that certain viral and bacterial antigens with 5-10 similar amino acids in sequence can lead to self destruction of similar myelin sequences. Thus, this literature review has provided insight to further the understanding of the etiology of multiple sclerosis.

  12. Journal of Molecular Structure: THEOCHEM

    OpenAIRE

    Mundim, K.C.; Malbouisson, L.A.C.; Dorfman, S.; Fuks, D.; Van Humbeeck, J.; Liubich, V.

    2001-01-01

    Texto completo: acesso restrito. p. 191–197 The results of atomistic simulations of migration and formation energies of mono- and di-vacancies in bulk tungsten are presented in our paper. The interatomic potential for tungsten was extracted with the recursive procedure from ab initio calculations of the cohesive energy. A stochastic molecular dynamics using a generalized simulated annealing procedure was employed in the simulations. Calculated values of mono- and di-vacancies energy parame...

  13. Ontological Status of Molecular Structure

    OpenAIRE

    Giuseppe Del Re

    1998-01-01

    Molecular structure (MS) has been treated as a convention or an epiphenomenon by physicists and quantum chemists interpreting the mathematical formalism of quantum mechanics as the essential reality criterion in the submicroscopic world (R2 world). This paper argues that, (a) even in the R2 world there is a class of entities which are real per se, even though they cannot be separated from their material support, and MS may belong to that class; (b) MS actualizes a particular molecule from the...

  14. Better, Cheaper, Faster Molecular Dynamics

    Science.gov (United States)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  15. EAACI Molecular Allergology User's Guide

    DEFF Research Database (Denmark)

    Matricardi, P. M.; Kleine-Tebbe, J.; Hoffmann, H. J.

    2016-01-01

    E-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup...... progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients....

  16. Molecular fluorescence principles and applications

    CERN Document Server

    Valeur, Bernard

    2013-01-01

    This second edition of the well-established bestseller is completely updated and revised with approximately 30 % additional material, including two new chapters on applications, which has seen the most significant developments. The comprehensive overview written at an introductory level covers fundamental aspects, principles of instrumentation and practical applications, while providing many valuable tips. For photochemists and photophysicists, physical chemists, molecular physicists, biophysicists, biochemists and biologists, lecturers and students of chemistry, physic

  17. Molecular Genetics of Lactase Deficiencies

    OpenAIRE

    Kuokkanen, Mikko

    2006-01-01

    Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleot...

  18. Chemomechanics with Molecular Force Probes

    Science.gov (United States)

    2010-03-30

    energies with chemical accuracy (±1 kcal/mol). Solvent-dependent reactions (e.g., SN2 substitutions, see below) are calculated with a continuum...mechanotransduction [51]. As shown by Whitesides et al. and others, the reaction proceeds through a classical SN2 rate-determining step in which thiolate attacks... reaction dynamics in multiscale phenomena. These are characterized by correlated directional motion at multiple length scales—from molecular to

  19. Molecular diagnosis: Implications for ophthalmology.

    Science.gov (United States)

    Rosenbaum, James T; Sibley, Cailin H; Choi, Dongseok; Harrington, Christina A; Planck, Stephen R

    2016-01-01

    The effort to subdivide diseases and to individualize therapies based on characteristics of the patient has been labeled precision medicine. Jameson and Longo define precision medicine as "treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations" (Jameson and Longo, 2015). We illustrate how molecular diagnosis can be applied to orbital inflammatory disease to achieve the goals of precision medicine.

  20. Gastronomic botany and molecular gastronomy

    OpenAIRE

    Pérez-Urria Carril, Elena; Gómez Garay, Aranzazu; Ávalos García, Adolfo; Martín Calvarro, Luisa; Pintos López, Beatriz; Saco Sierra, M. Dolores; Martín Gómez, M. Soledad; Pérez Alonso, M. José; Puelles Gallo, María; Palá Paúl, Jesús; Cifuentes Cuencas, Blanca; Llamas Ramos, José Eugenio

    2011-01-01

    Complutense University of Madrid through the "Vicerrectorado de Calidad" develops projects to innovate and improve teaching quality. Among these projects is "Gastronomic Botany and Molecular Gastronomy" which aims to develop new materials and tools for the Virtual Campus and consequently offer new possibilities for teaching and training. Also this project organize and structure a new teaching matter for post-graduate education that will be an example of approach, relationship and cooper...

  1. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  2. Molecular diagnostics and parasitic disease.

    Science.gov (United States)

    Vasoo, Shawn; Pritt, Bobbi S

    2013-09-01

    Molecular parasitology represents an emerging field in microbiology diagnostics. Although most assays use nonstandardized, laboratory-developed methods, a few commercial systems have recently become available and are slowly being introduced into larger laboratories. In addition, a few methodologies show promise for use in field settings in which parasitic infections are endemic. This article reviews the available techniques and their applications to major parasitic diseases such as malaria, leishmaniasis, and trichomoniasis.

  3. Polymer-solvent molecular compounds

    CERN Document Server

    Guenet, Jean-Michel

    2010-01-01

    Crystallisable polymers represent a large share of the polymers used for manufacturing a wide variety of objects, and consequently have received continuous attention from scientists these past 60 years. Molecular compounds from crystallisable polymers, particularly from synthetic polymers, are receiving growing interest due to their potential application in the making of new materials such as multiporous membranes capable of capturing large particles as well as small pollutant molecules. The present book gives a detailed description of these promising systems. The first chapter

  4. Molecular fluctuation in living cells

    Institute of Scientific and Technical Information of China (English)

    唐孝威

    1997-01-01

    The concept of molecular fluctuation in living cells is introduced. Many apparently different experi-mental facts in living cells, including the velocity non-uniformity of organelle movement, the saltatory movement of transport vesicles in axoplasmic transport, the chromosome oscillation during metaphase in mitosis and the pauses in the chromosome movement during anaphase are explained using a unified viewpoint. A method of determination of average number of the attached motor protein molecules from the experimental data is also proposed.

  5. Interactive Modelling of Molecular Structures

    Science.gov (United States)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  6. Controlling proteins through molecular springs.

    Science.gov (United States)

    Zocchi, Giovanni

    2009-01-01

    We argue that the mechanical control of proteins-the notion of controlling chemical reactions and processes by mechanics-is conceptually interesting. We give a brief review of the main accomplishments so far, leading to our present approach of using DNA molecular springs to exert controlled stresses on proteins. Our focus is on the physical principles that underlie both artificial mechanochemical devices and natural mechanisms of allostery.

  7. Light-Powered Molecular Engineering

    DEFF Research Database (Denmark)

    Neves Petersen, Teresa; Crookshanks, Meg; Skovsen, Esben;

    2007-01-01

    We present a new photonic technology and demonstrate that it allows for precise immobilisation of biomolecules to sensor surfaces. The technology secures spatially controlled molecular immobilisation since immobilisation of each molecule to a support surface can be limited to the focal point of t...... potential for biomedical, bioelectronic, surface chemistry, security markers production, nanotechnology and therapeutical applications. We also show an in depth analyses of the immobilized patterns and of the microarrays with our software BNIP Pro....

  8. The Molecular Weight Distribution of Polymer Samples

    Science.gov (United States)

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  9. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  10. Molecular Strategies Against Sulfur Mustard Toxicity

    Science.gov (United States)

    2010-04-01

    meiosis . Our current understanding of epigenetic regulation of gene expression involves basically two classes of molecular mechanisms: histone...Molecular Strategies Against Sulfur Mustard Toxicity 30 - 4 RTO-MP-HFM-182 meiosis . Our current understanding of epigenetic gene regulation

  11. Informing mechanistic toxicology with computational molecular models.

    Science.gov (United States)

    Goldsmith, Michael R; Peterson, Shane D; Chang, Daniel T; Transue, Thomas R; Tornero-Velez, Rogelio; Tan, Yu-Mei; Dary, Curtis C

    2012-01-01

    Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo efforts. From a molecular biophysical ansatz, we describe how 3D molecular modeling methods used to numerically evaluate the classical pair-wise potential at the chemical/biological interface can inform mechanism of action and the dose-response paradigm of modern toxicology. With an emphasis on molecular docking, 3D-QSAR and pharmacophore/toxicophore approaches, we demonstrate how these methods can be integrated with chemoinformatic and toxicogenomic efforts into a tiered computational toxicology workflow. We describe generalized protocols in which 3D computational molecular modeling is used to enhance our ability to predict and model the most relevant toxicokinetic, metabolic, and molecular toxicological endpoints, thereby accelerating the computational toxicology-driven basis of modern risk assessment while providing a starting point for rational sustainable molecular design.

  12. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  13. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  14. Molecular approaches in experimental neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Tavitian, B. [CEA Saclay, 91 - Gif sur Yvette (France)

    2009-07-01

    We quantified and compared six parameters (resolution, depth, sensitivity, portability, quantification and cost) of four molecular imaging techniques (MRI, optics, ultrasound and TEP), with the three types of electromagnetic radiation used in vivo (Frequencies (10{sup 6} to 10{sup 22} Hz), Photonic Energy (10{sup -4} to 10{sup 9} eV) and Wavelengths (10{sup -2} to 10{sup -15} m)). This form of molecular imaging demands the most sensitive technique available (Pl. 26-2 to 26-4). Four examples of experimental in vivo approaches on small animals are shown: molecular passage through the blood-brain barrier (endothelial cells, astrocytes and occludin, pharmacokinetics, studied with PET) (Pl. 2-5 to 2-11); imaging of receptors and ligands, especially peripheral benzodiazepine receptors (PBR) by PET and MRI in the rat (Pl. 2-12 to Pl. 2-15); neuro-pathology of neuro-degenerative and inflammatory diseases and stroke by PET and MRI in the rat (Pl. 2-16 to 2-17); and the study of responses to stimulation explored with in vivo imaging of calcium signals and their variations by photonic analysis, as on the scale of mitochondrial calcium (Pl.2-18 to Pl.2-22). (author)

  15. Evolving Molecular Genetics of Glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu

    2016-01-01

    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease.Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords "molecular", "genetics", "GBM", "isocitrate dehydrogenase", "telomerase reverse transcriptase", "epidermal growth factor receptor", "PTPRZ1-MET", and "clinical treatment".Study Selection: Articles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed.Results: There is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations.Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations.These differences are important, especially because they may affect sensitivity to radio-and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches.Conclusion: This review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.

  16. Photoionization studies with molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.

  17. Molecular approach to echinoderm regeneration.

    Science.gov (United States)

    Thorndyke, M C; Chen, W C; Beesley, P W; Patruno, M

    2001-12-15

    Until very recently echinoderm regeneration research and indeed echinoderm research in general has suffered because of the lack of critical mass. In terms of molecular studies of regeneration, echinoderms in particular have lagged behind other groups in this respect. This is in sharp contrast to the major advances achieved with molecular and genetic techniques in the study of embryonic development in echinoderms. The aim of our studies has been to identify genes involved in the process of regeneration and in particular neural regeneration in different echinoderm species. Our survey included the asteroid Asterias rubens and provided evidence for the expression of Hox gene homologues in regenerating radial nerve cords. Present evidence suggests: 1) ArHox1 expression is maintained in intact radial nerve cord and may be upregulated during regeneration. 2) ArHox1 expression may contribute to the dedifferentiation and/or cell proliferation process during epimorphic regeneration. From the crinoid Antedon bifida, we have been successful in cloning a fragment of a BMP2/4 homologue (AnBMP2/4) and analysing its expression during arm regeneration. Here, we discuss the importance of this family of growth factors in several regulatory spheres, including maintaining the identity of pluripotent blastemal cells or as a classic skeletal morphogenic regulator. There is clearly substantial scope for future echinoderm research in the area of molecular biology and certain aspects are discussed in this review.

  18. Molecular biology of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Miroslav Zavoral; Petra Minarikova; Filip Zavada; Cyril Salek; Marek Minarik

    2011-01-01

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  19. Rheology via nonequilibrium molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference.

  20. The molecular composition of ambers

    Science.gov (United States)

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.