WorldWideScience

Sample records for aptamer impairs endothelial

  1. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  2. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Science.gov (United States)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  3. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  4. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  5. Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand

    Science.gov (United States)

    Ara, Mst Naznin; Hyodo, Mamoru; Ohga, Noritaka; Akiyama, Kosuke; Hida, Kyoko; Hida, Yasuhiro; Shinohara, Nobuo; Harashima, Hideyoshi

    2014-01-01

    The identification of a specific biomarker involves the development of new clinical diagnostic tools, and an in-depth understanding of the disease at the molecular level. When new blood vessels form in tumor cells, endothelial cell production is induced, a process that plays a key role in disease progression and metastasis to distinct organs for solid tumor types. The present study reports on the identification of a new biomarker on primary cultured mouse tumor endothelial cells (mTECs) using our recently developed high-affinity DNA aptamer AraHH001 (Kd = 43 nmol/L) assisted proteomics approach. We applied a strategy involving aptamer-facilitated biomarker discovery. Biotin-tagged AraHH001 was incubated with lysates of mTECs and the aptamer-proteins were then conjugated with streptavidin magnetic beads. Finally, the bound proteins were separated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. We identified troponin T via matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, the molecular target of aptamer AraHH001, and its presence was confirmed by measuring mRNA, protein levels, western blot, immunostaining, a gel shift assay of AraHH001 with troponin T. We first report here on the discovery of troponin T on mTECs, a promising and interesting diagnostic tool in the development of antiangiogenic therapy techniques the involves the targeting of the tumor vasculature. PMID:24810801

  6. Impaired endothelial function in lone atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Polovina Marija

    2013-01-01

    Full Text Available Background/Aim. Impaired endothelial function has been previously documented in patients with atrial fibrillation (AF and underlying comorbidities or older patients with idiopathic AF. The aim of this study was to evaluate systemic endothelial function in younger AF patients (less than 7 days lone AF. The second group comprised of 28 healthy controls in sinus rhythm (the mean age 43 ± 13, 53% male, matched by age, gender and atherosclerotic risk factors. All the participants underwent physical examination, laboratory analysis [including determination of C-reactive protein (CRP], standard echocardiography and exercise-stress testing. Brachial artery FMD and endothelium independent dilation (NMD were assessed with a high-resolution ultrasound probe and arterial diameters taken from 5 consecutive cardiac cycles were averaged for each measurement to accommodate to beat-to-beat flow variations in AF. Results. There were no differences between the 2 groups regarding age, gender and most clinical, laboratory and echocardiographic characteristics (all p > 0.05, apart from the increased heart rate (p = 0.018, body mass index (p = 0.027, CRP levels (p = 0.007 and left atrial anteroposterior dimension (p 0.05. In the multivariate analysis, the independent FMD determinants in our study population were the presence of AF, smoking and total cholesterol levels (all p < 0.001. In patients with AF, the strongest independent FMD determinant was arrhythmia duration (p < 0.001, followed by smoking (p = 0.013 and total cholesterol levels (p = 0.045. Conclusions. Our findings confirm that sustained AF is associated with systemic endothelial dysfunction even in relatively young patients with no cardiovascular disorders or risk factors. AF is an independent contributor to lower FMD and a prolonged arrhythmia duration may confer the risk for more profound endothelial damage.

  7. Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method.

    Directory of Open Access Journals (Sweden)

    Mst Naznin Ara

    Full Text Available The present study used a spontaneous cell-based SELEX method (Systemic Evolution of Ligands by EXponential Enrichment to produce DNA aptamers that specifically bind to cell surface proteins or biomarkers produced by primary cultured mouse tumor endothelial cells (mTECs. In solid tumors, new blood vessels are formed through an angiogenesis process, and this plays a critical role in cancer development as well as metastasis. To combat angiogenesis, an appropriate diagnosis and a molecular-level understanding of the different cancer types are now a high priority. The novel DNA aptamer AraHH001, developed in this study, binds specifically to mTECs with high affinity in the nano-molar range, but does not bind to normal skin endothelial cells (skin-ECs. The selected DNA aptamer was also found to bind to cultured human tumor endothelial cells (hTECs, isolated from a clinical patient with a renal carcinoma. The aptamer AraHH001 showed significant anti-angiogenesis activity by inhibiting tube formation by mTECs on matrigel. Interestingly, a confocal laser scanning microscopy examination of in vitro cellular uptake revealed that AraHH001 was assimilated by mTECs, and became co-localized in acidic compartments, as detected by labeling with Lysotracker Red. Therefore, the development of a specific DNA aptamer that binds to mTECs, as reported here for the first time, holds great promise not only as a therapeutic aptamer but also as a targeted molecular probe that appears to play a major role in angiogenesis, and for the development of a targeted new drug delivery system.

  8. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  9. A two-step stimulus-response cell-SELEX method to generate a DNA aptamer to recognize inflamed human aortic endothelial cells as a potential in vivo molecular probe for atherosclerosis plaque detection.

    Science.gov (United States)

    Ji, Kaili; Lim, Wee Siang; Li, Sam Fong Yau; Bhakoo, Kishore

    2013-08-01

    Aptamers are single-stranded oligonucleotides that are capable of binding wide classes of targets with high affinity and specificity. Their unique three-dimensional structures present numerous possibilities for recognizing virtually any class of target molecules, making them a promising alternative to antibodies used as molecular probes in biomedical analysis and clinical diagnosis. In recent years, cell-systematic evolution of ligands by exponential enrichment (SELEX) has been used extensively to select aptamers for various cell targets. However, aptamers that have evolved from cell-SELEX to distinguish the "stimulus-response cell" have not previously been reported. Moreover, a number of cumbersome and time-consuming steps involved in conventional cell-SELEX reduce the efficiency and efficacy of the aptamer selection. Here, we report a "two-step" methodology of cell-SELEX that successfully selected DNA aptamers specifically against "inflamed" endothelial cells. This has been termed as stimulus-response cell-SELEX (SRC-SELEX). The SRC-SELEX enables the selection of aptamers to distinguish the cells activated by stimulus of healthy cells or cells isolated from diseased tissue. We report a promising aptamer, N55, selected by SRC-SELEX, which can bind specifically to inflamed endothelial cells both in cell culture and atherosclerotic plaque tissue. This aptamer probe was demonstrated as a potential molecular probe for magnetic resonance imaging to target inflamed endothelial cells and atherosclerotic plaque detection.

  10. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue, E-mail: 362947953@qq.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); RegeMed Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi' an, 710069 (China); Li, Quanli [College of Stomology, Anhui Medical University, Hefei, 230032 (China); Chen, Jialong [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); College of Stomology, Anhui Medical University, Hefei, 230032 (China); Luo, Rifang [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden (Germany); Huang, Nan, E-mail: huangnan1956@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-03-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin–biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. - Highlights: • We construct a multifunctional surface based on immobilization of BSA and aptamer. • It can significantly reduce platelet adhesion and fibrinogen adsorption/activation. • Such functional surface could remarkably enhance EPC adhesion in vitro. • It can induce rapid self-endothelialization of the implant surface in situ in vivo. • It is possible to use such a multifunctional surface in cardiovascular implants.

  11. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis.

    Science.gov (United States)

    Tuleta, I; França, C N; Wenzel, D; Fleischmann, B; Nickenig, G; Werner, N; Skowasch, D

    2015-01-01

    Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea-associated progression of atherosclerosis. The goal of the present study was to assess the influence of hypoxia on endothelial function depending on the initial stage of vasculopathy. We used 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia either immediately (early preatherosclerosis) or after 5 weeks of high-cholesterol diet (advanced preatherosclerosis). Another 16 ApoE-/- mice under normoxia served as corresponding controls. Endothelial function was measured by an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. The findings were that intermittent hypoxia impaired endothelial function (56.6±6.2% of maximal phenylephrine-induced vasoconstriction vs. 35.2±4.1% in control) and integrity (increased percentage of endothelial microparticles: 0.28±0.05% vs. 0.15±0.02% in control) in early preatherosclerosis. Peripheral repair capacity expressed as the number of endothelial progenitor cells in blood was attenuated under hypoxia (2.0±0.5% vs. 5.3±1.9% in control), despite the elevated number of these cells in the bone marrow (2.0±0.4% vs. 1.1±0.2% in control). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced preatherosclerosis. We conclude that hypoxia aggravates endothelial dysfunction and destruction in early preatherosclerosis.

  12. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization.

    Science.gov (United States)

    Chen, Zhuoyue; Li, Quanli; Chen, Jialong; Luo, Rifang; Maitz, Manfred F; Huang, Nan

    2016-03-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin-biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Genistein Attenuates Vascular Endothelial Impairment in Ovariectomized Hyperhomocysteinemic Rats

    Directory of Open Access Journals (Sweden)

    Panpan Zhen

    2012-01-01

    Full Text Available Hyperhomocysteinemia (HHcy is a well-known independent risk factor for vascular diseases in the general population. This study was to explore the effect of genistein (GST, a natural bioactive compound derived from legumes, on HHcy-induced vascular endothelial impairment in ovariectomized rats in vivo. Thirty-two adult female Wistar rats were assigned randomly into four groups (n=8: (a Con: control; (b Met: 2.5% methionine diet; (c OVX + Met: ovariectomy + 2.5% methionine diet; (d OVX + Met + GST: ovariectomy + 2.5% methionine diet + supplementation with genistein. After 12 wk of different treatment, the rats' blood, toracic aortas and liver samples were collected for analysis. Results showed that high-methionine diet induced both elevation of plasma Hcy and endothelial dysfunction, and ovariectomy deteriorated these injuries. Significant improvement of both functional and morphological changes of vascular endothelium was observed in OVX + Met + GST group; meanwhile the plasma Hcy levels decreased remarkably. There were significant elevations of plasma ET-1 and liver MDA levels in ovariectomized HHcy rats, and supplementation with genistein could attenuate these changes. These results implied that genistein could lower the elevated Hcy levels, and prevent the development of endothelial impairment in ovariectomized HHcy rats. This finding may shed a novel light on the anti-atherogenic activities of genistein in HHcy patients.

  14. Microbubbles shunting via a patent foramen ovale impair endothelial function

    Directory of Open Access Journals (Sweden)

    Henry Fok

    2015-08-01

    Full Text Available Objectives Exposure to intravascular microbubbles after diving and during medical procedures alters endothelial function. The aim of this study was to investigate whether a patent foramen ovale altered forearm endothelial function by facilitating microbubbles transfer. Design Patients attended on two separate visits, at least seven days apart receiving agitated saline or no active intervention in random order. On both days, flow-mediated dilatation of the brachial artery was measured using vascular ultrasound. On the intervention visit, agitated saline was injected and the passage of microbubbles into the arterial circulation was confirmed by echocardiography. Serial flow-mediated dilatation measurements were made after agitated saline and at the same time points after no intervention. Setting St Thomas’ Hospital in London. Participants Patients with a patent foramen ovale (PFO+n = 14, 9 male, mean ± SD age 42.2 ± 10.5 years and patients without a patent foramen ovale (PFO− n = 10, 7 male, mean ± SD age 49.4 ± 18.4 years were recruited. Main outcome measures Change in brachial artery flow-mediated dilatation. Results In patent foramen ovale + patients, flow-mediated dilatation did not change significantly on the control day but after agitated saline reduced by 2.3 ± 0.3%, 20 minutes after bubble injection (P < 0.005 vs. corresponding change in flow-mediated dilatation during control study. There was no significant change in flow-mediated dilatation for patent foramen ovale− patients at either visit. Conclusion These results suggest that the presence of a patent foramen ovale facilitated impairment of endothelial function acutely by the transfer of microbubbles into the arterial circulation. As a patent foramen ovale is a common condition, this may be relevant to microbubbles exposure in medical procedures and in decompression illness.

  15. Endothelial NOS (NOS3) impairs myocardial function in developing sepsis.

    Science.gov (United States)

    van de Sandt, Annette M; Windler, Rainer; Gödecke, Axel; Ohlig, Jan; Zander, Simone; Reinartz, Michael; Graf, Jürgen; van Faassen, Ernst E; Rassaf, Tienush; Schrader, Jürgen; Kelm, Malte; Merx, Marc W

    2013-03-01

    Endothelial nitric oxide synthase (NOS)3-derived nitric oxide (NO) modulates inotropic response and diastolic interval for optimal cardiac performance under non-inflammatory conditions. In sepsis, excessive NO production plays a key role in severe hypotension and myocardial dysfunction. We aimed to determine the role of NOS3 on myocardial performance, NO production, and time course of sepsis development. NOS3(-/-) and C57BL/6 wildtype mice were rendered septic by cecum ligation and puncture (CLP). Cardiac function was analyzed by serial echocardiography, in vivo pressure and isolated heart measurements. Cardiac output (CO) increased to 160 % of baseline at 10 h after sepsis induction followed by a decline to 63 % of baseline after 18 h in wildtype mice. CO was unaltered in septic NOS3(-/-) mice. Despite the hyperdynamic state, cardiac function and mean arterial pressure were impaired in septic wildtype as early as 6 h post CLP. At 12 h, cardiac function in septic wildtype was refractory to catecholamines in vivo and respective isolated hearts showed impaired pressure development and limited coronary flow reserve. Hemodynamics remained stable in NOS3(-/-) mice leading to significant survival benefit. Unselective NOS inhibition in septic NOS3(-/-) mice diminished this survival benefit. Plasma NO( x )- and local myocardial NO( x )- and NO levels (via NO spin trapping) demonstrated enhanced NO( x )- and bioactive NO levels in septic wildtype as compared to NOS3(-/-) mice. Significant contribution by inducible NOS (NOS2) during this early phase of sepsis was excluded. Our data suggest that NOS3 relevantly contributes to bioactive NO pool in developing sepsis resulting in impaired cardiac contractility.

  16. Endothelin-1 decreases endothelial PPARγ signaling and impairs angiogenesis after chronic intrauterine pulmonary hypertension

    OpenAIRE

    Wolf, David; Tseng, Nancy; Seedorf, Gregory; Roe, Gates; Abman, Steven H.; Gien, Jason

    2013-01-01

    Increased endothelin-1 (ET-1) disrupts angiogenesis in persistent pulmonary hypertension of the newborn (PPHN), but pathogenic mechanisms are unclear. Peroxisome proliferator activated receptor γ (PPARγ) is decreased in adult pulmonary hypertension, but whether ET-1-PPARγ interactions impair endothelial cell function and angiogenesis in PPHN remains unknown. We hypothesized that increased PPHN pulmonary artery endothelial cell (PAEC) ET-1 production decreases PPARγ signaling and impairs tube ...

  17. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome.

    Science.gov (United States)

    Sharda, Anish; Kim, Sarah H; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C; Furie, Bruce

    2015-03-05

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6(-/-) mice after vascular injury. HPS6(-/-) platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5'-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6(-/-) mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype.

  18. Inhibition of cortisol production with metyrapone prevents mental stress-induced endothelial dysfunction and baroreflex impairment.

    Science.gov (United States)

    Broadley, Andrew J M; Korszun, Ania; Abdelaal, Eltigani; Moskvina, Valentina; Jones, Christopher J H; Nash, Gerard B; Ray, Clare; Deanfield, John; Frenneaux, Michael P

    2005-07-19

    This study was designed to investigate the role of cortisol in stress-induced endothelial dysfunction and impaired baroreflex sensitivity (BRS) by blocking cortisol production with metyrapone before subjecting healthy volunteers to mental stress. Mental stress raises cortisol levels and is associated with increased coronary heart disease (CHD) morbidity and mortality, especially from sudden cardiac death. It also causes endothelial dysfunction and impaired BRS. We measured brachial artery flow-mediated dilation (FMD), a measure of endothelial function, and BRS in 36 subjects without CHD risk factors who were then randomized in a double-blind fashion to oral metyrapone 750 mg x 2 or placebo. Five hours later we subjected subjects to mental stress and then remeasured endothelial function and BRS. Prestress cortisol levels were significantly higher in the placebo group at 270.5 (30.9) nmol/l versus 89.1 (11.8) nmol/l (p = 0.01), and the increase with stress was higher at 57.9 (17.9) nmol/l versus 11.2 (2.2) nmol/l (p Analysis of covariation showed a significant effect of metyrapone on change in both FMD (p = 0.009) and BRS (p = 0.024). Stress-related endothelial dysfunction and BRS impairment can be prevented by blocking cortisol production with metyrapone, demonstrating a direct or facilitative role for cortisol in these phenomena and suggesting mechanisms by which stress contributes to CHD and sudden cardiac death.

  19. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  20. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    Science.gov (United States)

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease.

  1. Impaired endothelial nitric oxide bioavailability: a common link between aging, hypertension, and atherogenesis?

    LENUS (Irish Health Repository)

    Walsh, Thomas

    2012-01-31

    Endothelial-derived nitric oxide (NO) is responsible for maintaining continuous vasodilator tone and for regulating local perfusion and systemic blood pressure. It also has significant antiproliferative effects on vascular smooth muscle and platelet anti-aggregatory effects. Impaired endothelial-dependent (NO mediated) vasorelaxation is observed in most animal and human models of healthy aging. It also occurs in age-associated conditions such as atherosclerosis and hypertension. Such "endotheliopathy" increases vascular risk in older adults. Studies have indicated that pharmacotherapeutic intervention with angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitors may improve NO-mediated vasomotor function. This review, evaluates the association between impaired endothelial NO bioavailability, accelerated vascular aging, and the age-associated conditions hypertension and atherogenesis. This is important, because pharmacotherapy aimed at improving endothelial NO bioavailability could modify age-related vascular disease and transform age into a potentially modifiable vascular risk factor, at least in a subpopulation of older adults.

  2. PLATELET ACTIVATION AND ENDOTHELIAL CELL IMPAIRMENT ON ADRENOGLUCOCORTISONE-INDUCED OSTEONECROSIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the effects of the platelet activation and the endothelial cell impairment on the osteonecrosis. Methods The contents of TXB2,6-keto-PGF1a, GMP-140 and TM in different periods of animal models of adrenoglucocortisone-induced osteonerosis were measured by the radio-immunity method. Results The contents in group B increased dramatically from 24h after the injection of adrenoglucocortisone, and the contents of GMP-140 and TM from 3d after injection increased with significant difference from group A. Conclusion The results suggest that the early emergence of the platelet activation and endothelial cell impairment models induced by horse serum and adrenoglucocortisone plays a role in the formation of the osteonecrosis.

  3. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available BACKGROUND: Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. METHODS: Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. RESULTS: In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. CONCLUSION: EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  4. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    Science.gov (United States)

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  5. Olmesartan Attenuates the Impairment of Endothelial Cells Induced by Oxidized Low Density Lipoprotein through Downregulating Expression of LOX-1

    Directory of Open Access Journals (Sweden)

    Ruolong Zheng

    2012-02-01

    Full Text Available Oxidized low density lipoprotein (ox-LDL and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1, play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exerting its effects on LOX-1 both in vitro and in vivo. Incubation of cultured endothelial cells of neonatal rats with ox-LDL for 24 h or infusion of ox-LDL in mice for 3 weeks led to the remarkable impairment of endothelial cells, including increased lactate dehydrogenase synthesis, phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK and expression of apoptotic genes such as B-cell leukemia/lymphoma 2 (Bcl-2-associated X protein (Bax and caspase-3. Simultaneously, the cell vitality and expression of Bcl-2 gene were greatly reduced. All these effects, however, were significantly suppressed by the treatment with olmesartan. Furthermore, ox-LDL promoted up-regulation of LOX-1 expression either in cultured endothelial cells or in the aortas of mice, which was reversed with the administration of olmesartan. Our data indicated that olmesartan may attenuate the impairment of endothelial cell via down-regulation of the increased LOX-1 expression induced by ox-LDL.

  6. Olmesartan Attenuates the Impairment of Endothelial Cells Induced by Oxidized Low Density Lipoprotein through Downregulating Expression of LOX-1

    Science.gov (United States)

    Zhang, Hua; Ma, Genshan; Yao, Yuyu; Qian, Huidong; Li, Weizhang; Chen, Xinjun; Jiang, Wenlong; Zheng, Ruolong

    2012-01-01

    Oxidized low density lipoprotein (ox-LDL) and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1), play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exerting its effects on LOX-1 both in vitro and in vivo. Incubation of cultured endothelial cells of neonatal rats with ox-LDL for 24 h or infusion of ox-LDL in mice for 3 weeks led to the remarkable impairment of endothelial cells, including increased lactate dehydrogenase synthesis, phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK) and expression of apoptotic genes such as B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3. Simultaneously, the cell vitality and expression of Bcl-2 gene were greatly reduced. All these effects, however, were significantly suppressed by the treatment with olmesartan. Furthermore, ox-LDL promoted up-regulation of LOX-1 expression either in cultured endothelial cells or in the aortas of mice, which was reversed with the administration of olmesartan. Our data indicated that olmesartan may attenuate the impairment of endothelial cell via down-regulation of the increased LOX-1 expression induced by ox-LDL. PMID:22408405

  7. Elevated 20-HETE Impairs Coronary Collateral Growth in Metabolic Syndrome Via Endothelial Dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Laniado Schwartzman, Michal; Rocic, Petra

    2016-12-23

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of metabolic syndrome (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished, and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists ((collateral-dependent zone)CZ/(normal zone)NZ flow ratio was 0.76±0.07 in JCR+20-SOLA, 0.84±0.05 in JCR+20-HEDGE vs. 0.11±0.02 in JCR vs. 0.84±0.03 in normal rats). In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, eNOS Ser1179 phosphorylation, eNOS-dependent NO.- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.

  8. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

    Science.gov (United States)

    Fey, Theres; Schubert, Kai Michael; Schneider, Holger; Fein, Evelyn; Kleinert, Eike; Pohl, Ulrich; Dendorfer, Andreas

    2016-08-01

    Podosomes are dynamic cytoskeletal membrane structures with local adhesive and proteolytic activity. They are critically involved in angiogenesis and vascular adaptive growth. Here, we studied in HUVECs and murine small vessels whether shear stress controls podosome assembly and local proteolytic activity. Podosomes were characterized by immunohistochemistry, and their proteolytic activity was assessed as degradation imprints in fluorescent gelatin that was used as growth substrate. Compared with controls (10 dyn/cm(2)), the number of podosomes formed per time was doubled when cells were exposed to low shear stress (0.3 dyn/cm(2)) or even increased 5-fold under static conditions. This was a result of an enhanced expression of VEGF after reduction of shear stress. Consequently, enhanced podosome formation could be prevented by a VEGF receptor antagonist as well by interruption of VEGF signaling via inhibition of PI3K, Src, or p38. Increase of podosome assembly went along with significantly augmented cell motility. In vivo experiments in mouse arteries confirmed increased endothelial podosome numbers when shear stress was abolished by vessel occlusion. We conclude that shear stress, by reducing VEGF release, inhibits podosome assembly. Hence, endothelial cell-mediated matrix proteolysis and migratory activity are inhibited, thereby stabilizing the structure of the vessel wall.-Fey, T., Schubert, K. M., Schneider, H., Fein, E., Kleinert, E., Pohl, U., Dendorfer, A. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

  9. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Li Hong

    2012-04-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs, especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Advanced glycation end products (AGEs have been shown to impair EPC functions, such as proliferation, migration and adhesion. However, their role in the regulation of the production of vasoactive substances in late EPCs is less well defined. Methods Passages of 3~5 EPCs, namely late EPCs, were cultured with different concentrations (0~500 μg/ml of AGEs, and the apoptosis, adhesion and migration were subsequently determined. The release of vasoactive substances, such as stromal cell-derived factor-1 (SDF-1, nitric oxide (NO, prostaglandin I2 (PGI2, plasminogen activator inhibitor-1 (PAI-1, tissue plasminogen activator (tPA, and in addition the activity of superoxide dismutase (SOD, were evaluated by ELISA. At the same time, the gene and protein expressions of CXCR4 were assayed by real-time RT-PCR and western-blot. Results AGEs promoted late EPC apoptosis. Moreover, AGEs impaired late EPC migration and adhesion in a concentration-dependent manner. Accordingly, the production of SDF-1 was decreased by AGEs. Although the CXCR4 expressions of late EPCs were up-regulated for AGE concentrations of 50, 100 or 200 μg/ml, a marked decrease was observed for the higher concentration of 500 μg/ml. Furthermore, co-culturing with AGEs decreased the levels of NO, t-PA, PGI2, and the activity of SOD but up-regulated the production of PAI-1. Conclusion Our data provide evidence that AGEs play an important role in impairing late EPC functions, which could contribute to the development of vascular diseases in diabetes.

  10. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension.

    Science.gov (United States)

    Yang, Zhen; Chen, Long; Su, Chen; Xia, Wen-Hao; Wang, Yan; Wang, Jie-Mei; Chen, Fei; Zhang, Yuan-Yuan; Wu, Fang; Xu, Shi-Yue; Zhang, Xiao-Lin; Tao, Jun

    2010-01-01

    Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.

  11. MiR-492 impairs the angiogenic potential of endothelial cells

    DEFF Research Database (Denmark)

    Patella, Francesca; Leucci, Eleonora; Evangelista, Monica

    2013-01-01

    was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind m....... To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression......RNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors...

  12. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.

    Directory of Open Access Journals (Sweden)

    Lasse H Lauridsen

    Full Text Available BACKGROUND: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF for the treatment of age related macular degeneration (AMD. Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period. PRINCIPAL FINDINGS: Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM. CONCLUSION: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.

  13. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.

    Science.gov (United States)

    Lauridsen, Lasse H; Shamaileh, Hadi A; Edwards, Stacey L; Taran, Elena; Veedu, Rakesh N

    2012-01-01

    Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period. Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM. We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.

  14. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  15. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Tugues, Sònia; Fernández-Varo, Guillermo; Held, Kara F; Soria, Guadalupe; Tudela, Raúl; Planas, Anna M; Fernández-Hernando, Carlos; Arroyo, Vicente; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2013-01-01

    The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.

  16. Impaired endothelial calcium signaling is responsible for the defective dilation of mesenteric resistance arteries from db/db mice to acetylcholine.

    Science.gov (United States)

    Chen, Hua; Kold-Petersen, Henrik; Laher, Ismael; Simonsen, Ulf; Aalkjaer, Christian

    2015-11-15

    We aimed at assessing the role of endothelial cell calcium for the endothelial dysfunction of mesenteric resistance arteries of db/db mice (a model of type 2 diabetes) and determine whether treatment with sulfaphenazole, improves endothelial calcium signaling and function. Pressure myography was used to study acetylcholine (ACh) -induced vasodilation. Intracellular calcium ([Ca(2+)]i) transients was measured by confocal laser scanning microscopy and smooth muscle membrane potential with sharp microelectrodes. The impaired dilation to ACh observed in mesenteric resistance arteries from db/db mice was improved by treatment of the mice with sulfaphenazole for 8 weeks. The impaired dilation to ACh was associated with decreased endothelial [Ca(2+)]i and smooth muscle hyperpolarization. Sulfaphenazole applied in vitro improved endothelial mediated dilation of arteries from db/db mice both in the absence and the presence of inhibitors of nitric oxide and cyclooxygenase. Sulfaphenazole also increased the percentage of endothelial cells with ACh induced increases of [Ca(2+)]i. The study shows that impaired endothelial [Ca(2+)]i control can explain the reduced endothelial function in arteries from diabetic mice and that sulfaphenazole treatment improves endothelial [Ca(2+)]i responses to ACh and consequently endothelium-dependent vasodilation. These observations provide mechanistic insight into endothelial dysfunction in diabetes.

  17. Aptamers for biosensors

    OpenAIRE

    Bini, A

    2009-01-01

    Aptamers are single-stranded DNA or RNA molecules isolated in vitro by a selection and amplification method. Aptamers bind with high specificity and affinity to a wide range of target molecules, with dissociation constant comparable to antibodies. In this work aptamers were employed as a new kind of bio-recognition element in affinity biosensors for the detection of clinically relevant proteins in heterogeneous assay, using Piezoelectric Quartz Crystal Microbalance and Surface ...

  18. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available BACKGROUND: Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice. METHODS AND RESULTS: Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. CONCLUSIONS: Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  19. In vivo SELEX for Identification of Brain-penetrating Aptamers

    Directory of Open Access Journals (Sweden)

    Congsheng Cheng

    2013-01-01

    Full Text Available The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be modified to carry payloads. We developed a library of aptamers and an in vivo evolution protocol to determine whether specific aptamers could be identified that would home to the brain after injection into the peripheral vasculature. Unlike biopanning with recombinant bacteriophage libraries, we found that the aptamer library employed here required more than 15 rounds of in vivo selection for convergence to specific sequences. The aptamer species identified through this approach bound to brain capillary endothelia and penetrated into the parenchyma. The methods described may find general utility for targeting various payloads to the brain.

  20. Role of carbon monoxide in impaired endothelial function mediated by acute second-hand tobacco, incense, and candle smoke exposures.

    Science.gov (United States)

    Weber, Lynn P; Al-Dissi, Ahmad; Marit, Jordan S; German, Timothy N; Terletski, Sharilyn D

    2011-05-01

    The aim of this study was to determine if carbon monoxide (CO) is responsible for acute adverse cardiovascular effects of different sources of smoke: second-hand tobacco smoke (SHS), incense and candle smoke. Endothelial function was tested using flow-mediated dilation (FMD) in pigs and was shown to be sensitive to nitric oxide synthase blockade. Subsequent experiments showed that FMD was significantly impaired compared to sham-exposed pigs at 30 min after a 30-min exposure to all three sources of smoke. In contrast, SHS significantly increased systolic, diastolic and pulse pressures compared to sham-exposure, while both incense and candle smoke exposure had no effect. The FMD impairment correlated well with CO levels in the exposure chamber, but not total particulates or venous CO-hemoglobin. Therefore, this study suggests a gas phase component of smoke that accompanies CO, but not CO itself, is responsible for acute endothelial dysfunction after SHS, incense or candle smoke exposure.

  1. Probing the coagulation pathway with aptamers identifies combinations that synergistically inhibit blood clot formation.

    Science.gov (United States)

    Bompiani, Kristin M; Lohrmann, Jens L; Pitoc, George A; Frederiksen, James W; Mackensen, George B; Sullenger, Bruce A

    2014-08-14

    Coordinated enzymatic reactions regulate blood clot generation. To explore the contributions of various coagulation enzymes in this process, we utilized a panel of aptamers against factors VIIa, IXa, Xa, and prothrombin. Each aptamer dose-dependently inhibited clot formation, yet none was able to completely impede this process in highly procoagulant settings. However, several combinations of two aptamers synergistically impaired clot formation. One extremely potent aptamer combination was able to maintain human blood fluidity even during extracorporeal circulation, a highly procoagulant setting encountered during cardiopulmonary bypass surgery. Moreover, this aptamer cocktail could be rapidly reversed with antidotes to restore normal hemostasis, indicating that even highly potent aptamer combinations can be rapidly controlled. These studies highlight the potential utility of using sets of aptamers to probe the functions of proteins in molecular pathways for research and therapeutic ends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis

    Science.gov (United States)

    Fortenberry, Yolanda M.; Brandal, Stephanie M.; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P.

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential. PMID:27755560

  3. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis.

    Science.gov (United States)

    Fortenberry, Yolanda M; Brandal, Stephanie M; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.

  4. Rapid One-Step Selection Method for Generating Nucleic Acid Aptamers: Development of a DNA Aptamer against alpha-Bungarotoxin

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Shamaileh, Hadi A.; Edwards, Stacey L.

    2012-01-01

    Background: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen (R), an inhibitor of vascular endothelial growth factor (VEGF...... by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 mu M. Conclusion: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low...... micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way...

  5. Impaired function of bone marrow-derived endothelial progenitor cells in murine liver fibrosis.

    Science.gov (United States)

    Shirakura, Katsuya; Masuda, Haruchika; Kwon, Sang-Mo; Obi, Syotaro; Ito, Rie; Shizuno, Tomoko; Kurihara, Yusuke; Mine, Tetsuya; Asahara, Takayuki

    2011-01-01

    Liver fibrosis (LF) caused by chronic liver damage has been considered as an irreversible disease. As alternative therapy for liver transplantation, there are high expectations for regenerative medicine of the liver. Bone marrow (BM)- or peripheral blood-derived stem cells, including endothelial progenitor cells (EPCs), have recently been used to treat liver cirrhosis. We investigated the biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were subcutaneously injected with carbon tetrachloride (CCl(4)) every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical examination. Assessments of EPC in the peripheral blood and BM were performed by flow cytometry and EPC colony-forming assay, respectively, using purified MNCs and BM c-KIT(+), Sca-1(+), and Lin(-) (KSL) cells. Liver tissues underwent histological analysis with hematoxylin/eosin/Azan staining, and spleens were excised and weighed. CCl(4)-treated mice exhibited histologically bridging fibrosis, pseudolobular formation, and splenomegaly, indicating successful induction of LF. The frequency of definitive EPC-colony-forming-units (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells decreased significantly (p changes in primitive EPC-CFU occurred in LF mice. The frequency of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF mice compared with control mice. Together, these findings indicated the existence of impaired EPC function and differentiation in BM-derived EPCs in LF mice and might be related to clinical LF.

  6. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  7. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification

    Institute of Scientific and Technical Information of China (English)

    Clara Bueno; Agustin F Femández; Mario F Fraga; Inmaculada Moreno-Gimeno; Deborah Burks; Maria del Carmen Plaza-Calonge; Juan C Rodríguez-Manzaneque; Pablo Menendez; Rosa Montes; Gustavo J Melen; Verónica Ramos-Mejia; Pedro J Real; Verónica Ayllón; Laura Sanchez; Gertrudis Ligero; Iván Gutierrez-Aranda

    2012-01-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in inants.Although it is well established that MLL-AF4 arises prenatally during human development,its effects on hematopoieric development in utero remain unexplored.We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs).Functional studies,clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic,functional and gene expression impact.MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs.Functionally,MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate.MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation,as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis.Furthermore,we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells.This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes,known to arise prenatally,regulate human embryonic hematopoietic specification.

  8. Aptamer-based nanobiosensors.

    Science.gov (United States)

    Kim, Yeon Seok; Raston, Nurul Hanun Ahmad; Gu, Man Bock

    2016-02-15

    It has been more than two decades since aptamer and the systematic evolution of ligands by exponential enrichment (SELEX) method were discovered by Larry Gold and Andrew Ellington in 1990, respectively. Based on the various advantages of aptamers, they have become a potent rival of antibodies in therapeutics and bio-analysis. Especially, the recent advances in aptamer biosensor application are remarkable due to its intrinsic properties of aptamers as nucleic acids and target induced conformational changes, in addition to the introduction of graphene oxide-based easy and simple immobilization-free screening method even for dual aptamers. In addition, the incorporation of various nanomaterials such as metallic nanoparticles, carbon materials, and functional nanospheres in aptasensors has facilitated the improvement of analytical performance and commercial application of aptasensors. In this review, recent prominent reports on aptasensors utilizing nanomaterials were introduced to understand the principle of aptamer-based biosensors and provide an insight for new strategies of aptasensors and the application of various nanomaterials. The perspective on aptamer-based biosensors and diagnostics was also discussed in view of technology and market.

  9. Impaired endothelial function in pediatric patients with turner syndrome and healthy controls: a case-control study

    Directory of Open Access Journals (Sweden)

    O'Gorman Clodagh S

    2012-04-01

    Full Text Available Abstract Background Turner Syndrome women are at high risk of vascular disease and the assessment of early risk factors in Turner Syndrome girls is an emerging focus of research. Our objective was to evaluate endothelial function (EF, a preclinical measure of atherosclerosis, in Turner Syndrome girls compared with controls. Methods A cross-sectional case-control study of Turner Syndrome girls and healthy controls. Subjects underwent fasting insulin and glucose with calculation of HOMA-IR, fasting lipid profile, anthropometrics, and EF testing using peripheral arterial tonometry (PAT. Subjects, aged 10-18 years, had karyotype-confirmed Turner Syndrome; growth hormone (GH, thyroxine and estrogen use were not exclusion criteria. Controls were age- and BMI-matched healthy girls. Fifteen Turner Syndrome and 15 controls were recruited. Results Turner Syndrome girls had lower height, higher HDL and higher waist:height ratio than controls. PAT-hyperemia ratio (RH-PAT scores were lower in Turner Syndrome (1.64 ± 0.34 vs. 2.08 ± 0.32, p = 0.002 indicating impaired EF. Among Turner Syndrome, RH-PAT did not vary with estrogen therapy or with karyotype 45,XO compared with other karyotypes. However, endothelial function was better in GH-treated compared with GH-untreated Turner Syndrome (1.80 ± 0.36 vs. 1.4 + 0.22, p = 0.02 although there were no differences in HOMA-IR, adiponectin or IGF-1. Conclusion Girls with Turner Syndrome exhibit impaired endothelial function compared with controls, which may explain higher risk for vascular disease. GH may protect endothelial function in Turner Syndrome.

  10. Impaired endothelial function after aneurysmal subarachnoid haemorrhage correlates with arginine:asymmetric dimethylarginine ratio

    DEFF Research Database (Denmark)

    Bergström, A; Staalsø, J M; Romner, B

    2014-01-01

    BACKGROUND: Endothelial dysfunction might be involved in the development of cerebral vasospasm after aneurysmal subarachnoid haemorrhage (SAH). METHODS: This prospective observational study of 48 SAH subjects and 23 control subjects examined associations between reactive hyperaemia index (RHI...

  11. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors.

    Science.gov (United States)

    Yagi, Hideki; Sumino, Hiroyuki; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Kimura, Takao; Nara, Makoto; Ogiwara, Takayuki; Murakami, Masami

    2016-01-01

    To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.

  12. Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins.

    Science.gov (United States)

    Tabarzad, Maryam; Jafari, Marzieh

    2016-04-01

    Aptamers are single stranded oligonucleotides, comparable to monoclonal antibodies (mAbs) in selectivity and affinity and have significant strategic properties in design, development and applications more than mAbs. Ease of design and development, simple chemical modification and the attachment of functional groups, easily handling and more adaptability with analytical methods, small size and adaptation with nanostructures are the valuable characteristics of aptamers in comparison to large protein based ligands. Among a broad range of targets that their specific aptamers developed, proteins and peptides have significant position according to the number of related studies performed so far. Since proteins control many of important physiological and pathological incidents in the living organisms, particularly human beings and because of the benefits of aptamers in clinical and analytical applications, aptamer related technologies in the field of proteins and peptides are under progress, exclusively. Currently, there is only one FDA approved therapeutic aptamer in the pharmaceutical market, which is specific to vascular endothelial growth factor and is prescribed for age related macular degenerative disease. Additionally, there are several aptamers in the different phases of clinical trials. Almost all of these aptamers are specific to clinically important peptide or protein targets. In addition, the application of protein specific aptamers in the design and development of targeted drug delivery systems and diagnostic biosensors is another interesting field of aptamer technology. In this review, significant efforts related to development and applications of aptamer technologies in proteins and peptides sciences were considered to emphasis on the importance of aptamers in medicinal and clinical applications.

  13. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Filipa L Cardoso

    Full Text Available BACKGROUND: Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS is known to alter the integrity of the blood-brain barrier (BBB, little is known on the effects of unconjugated bilirubin (UCB and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC. METHODOLOGY/PRINCIPAL FINDINGS: Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. CONCLUSIONS: LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.

  14. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration.

    Science.gov (United States)

    Endtmann, Cathleen; Ebrahimian, Talin; Czech, Thomas; Arfa, Omar; Laufs, Ulrich; Fritz, Mathias; Wassmann, Kerstin; Werner, Nikos; Petoumenos, Vasileios; Nickenig, Georg; Wassmann, Sven

    2011-09-01

    Endothelial progenitor cells (EPCs) contribute to endothelial regeneration. Angiotensin II (Ang II) through Ang II type 1 receptor (AT(1)-R) activation plays an important role in vascular damage. The effect of Ang II on EPCs and the involved molecular mechanisms are incompletely understood. Stimulation with Ang II decreased the number of cultured human early outgrowth EPCs, which express both AT(1)-R and Ang II type 2 receptor, mediated through AT(1)-R activation and induction of oxidative stress. Ang II redox-dependently induced EPC apoptosis through increased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase phosphorylation; decreased Bcl-2 and increased Bax expression; and activation of caspase 3 but had no effect on the low cell proliferation. In addition, Ang II impaired colony-forming and migratory capacities of early outgrowth EPCs. Ang II infusion diminished numbers and functional capacities of EPCs in wild-type (WT) but not AT(1)a-R knockout mice (AT(1)a(-/-)). Reendothelialization after focal carotid endothelial injury was decreased during Ang II infusion. Salvage of reendothelialization by intravenous application of spleen-derived progenitor cells into Ang II-treated WT mice was pronounced with AT(1)a(-/-) cells compared with WT cells, and transfusion of Ang II-pretreated WT cells into WT mice without Ang II infusion was associated with less reendothelialization. Transplantation of AT(1)a(-/-) bone marrow reduced atherosclerosis development in cholesterol-fed apolipoprotein E-deficient mice compared with transplantation of apolipoprotein E-deficient or WT bone marrow. Randomized treatment of patients with stable coronary artery disease with the AT(1)-R blocker telmisartan significantly increased the number of circulating CD34/KDR-positive EPCs. Ang II through AT(1)-R activation, oxidative stress, and redox-sensitive apoptosis signal-regulating kinase 1-dependent proapoptotic pathways impairs EPCs in

  15. Targeting of Antibodies using Aptamers

    OpenAIRE

    2003-01-01

    The chapter presents a methodology for the rapid selection of aptamers against antibody targets. It is a detailed account of the various methodological steps that describe the selection of aptamers, including PCR steps, buffers to be used, target immobilisation, partitioning and amplification of aptamers, clonning and sequencing, to results in high affinity and specificity ligands for the chosen target antibody.

  16. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available The number and function of endothelial progenitor cells (EPCs are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4 mutation mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  17. Endothelial function impairment in chronic venous insufficiency: effect of some cardiovascular protectant agents.

    Science.gov (United States)

    Carrasco, Omar F; Ranero, Alejandra; Hong, Enrique; Vidrio, Horacio

    In segments of human varicose veins, endothelial function was assessed by measuring relaxation induced by acetylcholine in noradrenaline-precontracted preparations. In addition, concentration-response curves to acetylcholine were obtained before and after incubation with the arterial endothelium protectant agents captopril, losartan, troglitazone, pravastatin, or simvastatin. The antivaricose agent escin was also tested. Mean acetylcholine-induced relaxation of varicose venous rings was about 13%, approximately one third of that reported for control saphenous veins. Concentration-response curves to acetylcholine were ''u'' shaped, the result of endothelium-mediated relaxation at low concentrations, superseded by subsequent smooth muscle contractile responses. Relaxation was enhanced by the endothelium-protecting agents and by escin, troglitazone being the least, and simvastatin the most effective. It was concluded that endothelial dysfunction is present in varicose veins, that this anomaly can be reverted by cardiovascular protecting agents, and that it can play a role in the pathogenesis and treatment of chronic venous insufficiency.

  18. Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ron Balczon

    Full Text Available Pseudomonas aeruginosa uses a type III secretion system to introduce the adenylyl and guanylyl cyclase exotoxin Y (ExoY into the cytoplasm of endothelial cells. ExoY induces Tau hyperphosphorylation and insolubility, microtubule breakdown, barrier disruption and edema, although the mechanism(s responsible for microtubule breakdown remain poorly understood. Here we investigated both microtubule behavior and centrosome activity to test the hypothesis that ExoY disrupts microtubule dynamics. Fluorescence microscopy determined that infected pulmonary microvascular endothelial cells contained fewer microtubules than control cells, and further studies demonstrated that the microtubule-associated protein Tau was hyperphosphorylated following infection and dissociated from microtubules. Disassembly/reassembly studies determined that microtubule assembly was disrupted in infected cells, with no detectable effects on either microtubule disassembly or microtubule nucleation by centrosomes. This effect of ExoY on microtubules was abolished when the cAMP-dependent kinase phosphorylation site (Ser-214 on Tau was mutated to a non-phosphorylatable form. These studies identify Tau in microvascular endothelial cells as the target of ExoY in control of microtubule architecture following pulmonary infection by Pseudomonas aeruginosa and demonstrate that phosphorylation of tau following infection decreases microtubule assembly.

  19. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Walpen, Thomas; Kalus, Ina [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Schwaller, Juerg [Department of Biomedicine, University of Basel, 4031 Basel (Switzerland); Peier, Martin A. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Battegay, Edouard J. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland); Humar, Rok, E-mail: Rok.Humar@usz.ch [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  20. Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells.

    Science.gov (United States)

    Montenegro, Cyntia F; Salla-Pontes, Carmen L; Ribeiro, Juliana U; Machado, Aline Z; Ramos, Rafael F; Figueiredo, Camila C; Morandi, Verônica; Selistre-de-Araujo, Heloisa S

    2012-08-01

    Vascular endothelial growth factor (VEGF) and αvβ3 integrin are key molecules that actively participate in tumor angiogenesis and metastasis. Some integrin-blocking molecules are currently under clinical trials for cancer and metastasis treatment. However, the mechanism of action of such inhibitors is not completely understood. We have previously demonstrated the anti-angiogenic and anti-metastatic properties of DisBa-01, a recombinant His-tag RGD-disintegrin from Bothrops alternatus snake venom in some experimental models. DisBa-01 blocks αvβ3 integrin binding to vitronectin and inhibits integrin-mediated downstream signaling cascades and cell migration. Here we add some new information on the mechanism of action of DisBa-01 in the tumor microenvironment. DisBa-01 supports the adhesion of fibroblasts and MDA-MB-231 breast cancer cells but it inhibits the adhesion of these cells to type I collagen under flow in high shear conditions, as a simulation of the blood stream. DisBa-01 does not affect the release of VEGF by fibroblasts or breast cancer cells but it strongly decreases the expression of VEGF mRNA and of its receptors, vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2) in endothelial cells. DisBa-01 at nanomolar concentrations also modulates metalloprotease 2 (MMP-2) and 9 (MMP-9) activity, the latter being decreased in fibroblasts and increased in MDA-MB-231 cells. In conclusion, these results demonstrate that αvβ3 integrin inhibitors may induce distinct effects in the cells of the tumor microenvironment, resulting in blockade of angiogenesis by impairing of VEGF signaling and in inhibition of tumor cell motility.

  1. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  2. Discovery and development of anticancer aptamers.

    Science.gov (United States)

    Ireson, Christopher R; Kelland, Lloyd R

    2006-12-01

    Aptamers, also termed as decoys or "chemical antibodies," represent an emerging class of therapeutics. They are short DNA or RNA oligonucleotides or peptides that assume a specific and stable three-dimensional shape in vivo, thereby providing specific tight binding to protein targets. In some cases and as opposed to antisense oligonucleotides, effects can be mediated against extracellular targets, thereby preventing a need for intracellular transportation. The first aptamer approved for use in man is a RNA-based molecule (Macugen, pegaptanib) that is administered locally (intravitreally) to treat age-related macular degeneration by targeting vascular endothelial growth factor. The most advanced aptamer in the cancer setting is AS1411, formerly known as AGRO100, which is being administered systemically in clinical trials. AS1411 is a 26-mer unmodified guanosine-rich oligonucleotide, which induces growth inhibition in vitro, and has shown activity against human tumor xenografts in vivo. The mechanism underlying its antiproliferative effects in cancer cells seems to involve initial binding to cell surface nucleolin and internalization, leading to an inhibition of DNA replication. In contrast to other unmodified oligonucleotides, AS1411 is relatively stable in serum-containing medium, probably as a result of the formation of dimers and a quartet structure. In a dose escalation phase I study in patients with advanced solid tumors, doses up to 10 mg/kg/d (using a four or seven continuous infusion regime) have been studied. Promising signs of activity have been reported (multiple cases of stable disease and one near complete response in a patient with renal cancer) in the absence of any significant adverse effects. Further trials are ongoing in renal and non-small cell lung cancers. In preclinical studies, additional aptamers have been described against several cancer targets, such as tenascin-C, the transcription factor signal transducer and activator of transcription 3

  3. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Cheng-Jui Lin

    2016-12-01

    Full Text Available Background/Aims: Indoxyl sulfate (IS is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease (CKD. We explored the effect of IS on human early endothelial progenitor cells (EPCs and analyzed the correlation between serum IS levels and parameters of vascular function, including endothelial function in a CKD-based cohort. Methods: A cross-sectional study with 128 stable CKD patients was conducted. Flow-mediated dilation (FMD, pulse wave velocity (PWV, ankle brachial index, serum IS and other biochemical parameters were measured and analyzed. In parallel, the activity of early EPCs was also evaluated after exposure to IS. Results: In human EPCs, a concentration-dependent inhibitory effect of IS on chemotactic motility and colony formation was observed. Additionally, serum IS levels were significantly correlated with CKD stages. The total IS (T-IS and free IS (F-IS were strongly associated with age, hypertension, cardiovascular disease, blood pressure, PWV, blood urea nitrogen, creatine and phosphate but negatively correlated with FMD, the estimated glomerular filtration rate (eGFR, hemoglobin, hematocrit, and calcium. A multivariate linear regression analysis also showed that FMD was significantly associated with IS after adjusting for other confounding factors. Conclusions: In humans, IS impairs early EPCs and was strongly correlated with vascular dysfunction. Thus, we speculate that this adverse effect of IS may partly result from the inhibition of early EPCs.

  4. Circulating vascular endothelial growth factor and its soluble receptors in patients with liver cirrhosis: possible association with hepatic function impairment.

    Science.gov (United States)

    Jaroszewicz, Jerzy; Januszkiewicz, Marcin; Flisiak, Robert; Rogalska, Magdalena; Kalinowska, Alicja; Wierzbicka, Iwona

    2008-10-01

    Recent studies provided in vivo evidences of an increased angiogenesis in animal model of portal hypertension and cirrhosis which was linked to increased expression of vascular endothelial growth factor. The aim of study was to evaluate the plasma concentration of VEGF and its receptors in liver cirrhosis and the possible association with the degree of liver insufficiency. Methods. Vascular endothelial growth factor (VEGF) and its soluble receptors: sVEGF-R1, sVEGF-R2 were measured in plasma of 78 patients with liver cirrhosis by ELISA. Results. The significant increase of plasma VEGF and sVEGF-R1 was observed in liver cirrhosis compared to healthy individuals (153.1+/-51.9 vs. 46.8+/-4.1pg/mL, P<0.05; 279.8+/-34.3 vs. 105.1+/-5.9pg/mL, P<0.001, respectively). Plasma VEGF and foremost sVEGF R1 showed significant associations with biochemical indices of liver function. Among clinical parameters, only ascites revealed significant association with plasma VEGR and sVEGF-R1. VEGF and sVEGF-R1 were increased respectively to the degree of liver insufficiency. It was demonstrated through a significant positive correlation with Child-Pugh score and MELD classification. In conclusion, our study suggests that serum VEGF and VEGF-R1 may reflect the hepatic function impairment in liver cirrhosis and seems to be associated with portal hypertension symptoms.

  5. Excessive dietary phosphorus intake impairs endothelial function in young healthy men: a time- and dose-dependent study.

    Science.gov (United States)

    Nishi, Tamae; Shuto, Emi; Ogawa, Mariko; Ohya, Miho; Nakanishi, Misaki; Masuda, Masashi; Katsumoto, Misaki; Yamanaka-Okumura, Hisami; Sakai, Tohru; Takeda, Eiji; Sakaue, Hiroshi; Taketani, Yutaka

    2015-01-01

    Excessive dietary phosphorus (P) has been speculated to be a risk factor for cardiovascular disease (CVD). Here, we performed a double-blinded crossover study to investigate the time- and dose-dependent effects of dietary P intake on endothelial function in healthy subjects. Sixteen healthy male volunteers were given meals containing 400, 800, and 1,200 mg P (P400, P800, and P1200 meals, respectively) with at least 7 days between doses. There were no differences in nutritional composition among the experimental diets except for P content. Blood biochemistry data and flow-mediated dilation (%FMD) of the brachial artery were measured while fasted, at 0 h, 1 h, 2 h, and 4 h after meal ingestion, and the next morning while fasted. The P800 and P1200 meals significantly increased serum P levels at 1-4 h after ingestion. A significant decrease in %FMD was observed between 1-4 h,while the P400 meal did not affect %FMD. We observed no differences among meals in serum P levels or %FMD the next morning. A significant negative correlation was observed between %FMD and serum P. These results indicate that excessive dietary P intake can acutely impair endothelial function in healthy people.

  6. Impairment of the endothelial glycocalyx in cardiogenic shock and its prognostic relevance.

    Science.gov (United States)

    Jung, Christian; Fuernau, Georg; Muench, Phillip; Desch, Steffen; Eitel, Ingo; Schuler, Gerhard; Adams, Volker; Figulla, Hans R; Thiele, Holger

    2015-05-01

    In cardiogenic shock (CS), pathophysiological changes include microcirculatory dysfunction, vascular leakage, and an increase in platelet and leukocyte adhesion to the endothelium, as well as endothelial activation and dysfunction. The endothelial glycocalyx has been recognized as a central modulator of these processes. Glycosaminoglycan heparan sulfate is a major component of the glycocalyx of endothelial cells, and syndecan-1 (S1) represents the most prevalent proteoglycan. The aim of the current study was to investigate circulating levels of the glycocalyx components in patients with infarct-related CS. In 184 patients with CS complicating acute myocardial infarction, blood samples were collected at admission and after one day. Intra-aortic balloon pumping was used in 94 patients (51%). Glycosaminoglycan heparan sulfate and S1 were measured using standard enzyme-linked immunosorbent assay kits. All-cause mortality at 30 days was used for outcome assessment. Levels of S1 decreased between days 1 and 2 (339 [interquartile range [QR], 109-852] vs. 220 [IQR, 57-606] ng/mL; P = 0.01). In contrast, glycosaminoglycan heparan sulfate increased over time (1.9 [IQR, 0.3-6.4] vs. 7.1 [IQR, 3.7-11.7] mg/mL; P < 0.001). Survivors at 30 days had lower admission S1 levels (P < 0.001). In multivariable analysis, S1 remained an independent predictor of 30-day mortality (odds ratio per μg/mL, 2.2 [95% confidence interval, 1.30-3.58]; P = 0.003) together with serum lactate, age, and ejection fraction. Increased levels of S1 are an independent predictor of short-term mortality in patients with acute myocardial infarction and CS.ClinicalTrials.gov Identifier: NCT00491036.

  7. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis is a Non- invasive Measure for Early Detection of Endothelial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tao Jun; Wang Yan; Yang Zhen; Tu Chang; Xu Mingguo; Wang Jiemei

    2004-01-01

    Objectives Endothelial dysfunction is the earliest marker for atherosclerosis and plays key role in the pathogenesis of cardiovascular diseases. The present study was performed to evaluate effect of aging on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a non - invasive measure for early detection of endothelial dysfunction.Methods Using modified Windkessel model of the circulation and pulse waveform analysis, C1 large artery and C2 small artery elasticity indices of 204 normal healthy subjects ( age 15 -80 years) were measured.Among them twenty - four male healthy subjects were divided into both the young (age 20 -30 years, n =12) and elderly (age 60 - 70 years, n = 12) groups.We delivered acethycholine (Ach), an endotheliumdependent vasodilator, and sodium nitroprusside(SNP), an endothelium- independent vasodilator, to dermal vessels of the forearm using iontophoresis, respectively, and measured basal and peak blood flow using laser doppler fluximetry. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age. C 1 large artery and C2 small artery elasticity indices were negatively correlated with age (r= -0.628, p<0.001; r= -0.595, p <0.001).Basal blood flow was similar between the young and elderly groups ( 14.58 ± 3.4 vs 13.52 ± 3.41 PU, p =NS). Peak blood flow induced by Ach was significantly reduced in the elderly group compared with the young group (83.4 ± 11.9 vs 93.75 ± 10. 87 PU, p < 0. 05 ).However, peak blood flow induced by SNP was similar in the two groups ( 119. 17 ± 16.76 vs 128.33 ± 21.29 PU,p = NS). Ach - induced peak blood flow correlated positively with C1 large artery and C2 small artery elasticity indices( r=0.56, p <0.01; r =0.53, p <0.01).Conclusions Advancing age leads to impaired artery elasticity and endothelial dysfun ction. Reduced arterial elasticity is, in parallel, associated with diminished

  8. Sympathetic predominance is associated with impaired endothelial progenitor cells and tunneling nanotubes in controlled-hypertensive patients.

    Science.gov (United States)

    de Cavanagh, Elena M V; González, Sergio A; Inserra, Felipe; Forcada, Pedro; Castellaro, Carlos; Chiabaut-Svane, Jorge; Obregón, Sebastián; Casarini, María Jesús; Kempny, Pablo; Kotliar, Carol

    2014-07-15

    Early endothelial progenitor cells (early EPC) and late EPC are involved in endothelial repair and can rescue damaged endothelial cells by transferring organelles through tunneling nanotubes (TNT). In rodents, EPC mobilization from the bone marrow depends on sympathetic nervous system activity. Indirect evidence suggests a relation between autonomic derangements and human EPC mobilization. We aimed at testing whether hypertension-related autonomic imbalances are associated with EPC impairment. Thirty controlled-essential hypertensive patients [systolic blood pressure/diastolic blood pressure = 130(120-137)/85(61-88) mmHg; 81.8% male] and 20 healthy normotensive subjects [114(107-119)/75(64-79) mmHg; 80% male] were studied. Mononuclear cells were cultured on fibronectin- and collagen-coated dishes for early EPC and late EPC, respectively. Low (LF)- and high (HF)-frequency components of short-term heart rate variability were analyzed during a 5-min rest, an expiration/inspiration maneuver, and a Stroop color-word test. Modulations of cardiac sympathetic and parasympathetic activities were evaluated by LF/HF (%) and HF power (ms(2)), respectively. In controlled-hypertensive patients, the numbers of early EPC, early EPC that emitted TNT, late EPC, and late EPC that emitted TNT were 41, 77, 50, and 88% lower than in normotensive subjects (P hypertensive patients, late EPC number was positively associated with cardiac parasympathetic reserve during the expiration/inspiration maneuver (rho = 0.45, P = 0.031) and early EPC with brachial flow-mediated dilation (rho = 0.655; P = 0.049); also, late TNT number was inversely related to cardiac sympathetic response during the stress test (rho = -0.426, P = 0.045). EPC exposure to epinephrine or norepinephrine showed negative dose-response relationships on cell adhesion to fibronectin and collagen; both catecholamines stimulated early EPC growth, but epinephrine inhibited late EPC growth. In controlled-hypertensive patients

  9. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults.

    Science.gov (United States)

    Jokura, Hiroko; Watanabe, Isamu; Umeda, Mika; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    Epidemiological studies indicate that habitual coffee consumption lowers the risk of diabetes and cardiovascular diseases. Postprandial hyperglycemia is a direct and independent risk factor for cardiovascular diseases. We previously demonstrated that coffee polyphenol ingestion increased secretion of Glucagon-like peptide 1 (GLP-1), which has been shown to exhibit anti-diabetic and cardiovascular effects. We hypothesized coffee polyphenol consumption may improve postprandial hyperglycemia and vascular endothelial function by increasing GLP-1 release and/or reducing oxidative stress. To examine this hypothesis, we conducted a randomized, acute, crossover, intervention study in healthy male adults, measuring blood parameters and flow-mediated dilation (FMD) after ingestion of a meal with or without coffee polyphenol extract (CPE). Nineteen subjects consumed a test meal with either a placebo- or CPE-containing beverage. Blood biomarkers and FMD were measured at fasting and up to 180 minutes postprandially. The CPE beverage led to a significantly lower peak postprandial increase in blood glucose and diacron-reactive oxygen metabolite, and significantly higher postprandial FMD than the placebo beverage. Postprandial blood GLP-1 increase tended to be higher after ingestion of the CPE beverage, compared with placebo. Subclass analysis revealed that the CPE beverage significantly improved postprandial blood GLP-1 response and reduced blood glucose increase in the subjects with a lower insulinogenic index. Correlation analysis showed postprandial FMD was negatively associated with blood glucose increase after ingestion of the CPE beverage. In conclusion, these results suggest that coffee polyphenol consumption improves postprandial hyperglycemia and vascular endothelial function, which is associated with increased GLP-1 secretion and decreased oxidative stress in healthy humans.

  10. Recent advances of aptamer sensors

    Institute of Scientific and Technical Information of China (English)

    LI YiLin; GUO Lei; ZHANG ZhaoYang; TANG JiJun; XIE JianWei

    2008-01-01

    Aptamers are a series of high-affinity and high-specificity oligoneucleotides (single-stranded DNA or RNA) to the target, usually selected by the combinatorial chemistry SELEX technique (systematic evolution of ligands by exponential enrichment). Aptamers have proved to be one kind of novel func-tional molecules in life science and chemistry. After being labeled by signaling groups, the aptamer probe can conveniently transfer the characteristics of aptamer-target recognition to a form of high-sensitive signal, and the high-affinity, high-specificity measurements of metal ion, organic mole-cules, nucleic acid, proteins, or cells become possible. This article summarizes the recent advances of aptamer probes in different sensing fields, with special emphasis on aptamer probes as fluorescent sensors.

  11. Recent advances of aptamer sensors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aptamers are a series of high-affinity and high-specificity oligoneucleotides (single-stranded DNA or RNA) to the target, usually selected by the combinatorial chemistry SELEX technique (systematic evolution of ligands by exponential enrichment). Aptamers have proved to be one kind of novel functional molecules in life science and chemistry. After being labeled by signaling groups, the aptamer probe can conveniently transfer the characteristics of aptamer-target recognition to a form of high-sensitive signal, and the high-affinity, high-specificity measurements of metal ion, organic molecules, nucleic acid, proteins, or cells become possible. This article summarizes the recent advances of aptamer probes in different sensing fields, with special emphasis on aptamer probes as fluorescent sensors.

  12. The Toolbox for Modified Aptamers.

    Science.gov (United States)

    Lapa, Sergey A; Chudinov, Alexander V; Timofeev, Edward N

    2016-02-01

    Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.

  13. Aptamers: The "evolution" of SELEX.

    Science.gov (United States)

    Wu, Yi Xi; Kwon, Young Jik

    2016-08-15

    It has been more than two decades since the first aptamer molecule was discovered. Since then, aptamer molecules have gain much attention in the scientific field. This increasing traction can be attributed to their many desirable traits, such as 1) their potentials to bind a wide range of molecules, 2) their malleability, and 3) their low cost of production. These traits have made aptamer molecules an ideal platform to pursue in the realm of pharmaceuticals and bio-sensors. Despite the broad applications of aptamers, tedious procedure, high resource consumption, and limited nucleobase repertoire have hindered aptamer in application usage. To address these issues, new innovative methodologies, such as automation and single round SELEX, are being developed to improve the outcomes and rates in which aptamers are discovered. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Aptamers and Their Biological Applications

    Directory of Open Access Journals (Sweden)

    Changill Ban

    2012-01-01

    Full Text Available Recently, aptamers have attracted the attention of many scientists, because they not only have all of the advantages of antibodies, but also have unique merits, such as thermal stability, low cost, and unlimited applications. In this review, we present the reasons why aptamers are known as alternatives to antibodies. Furthermore, several types of in vitro selection processes, including nitrocellulose membrane filtration, affinity chromatography, magnetic bead, and capillary electrophoresis-based selection methods, are explained in detail. We also introduce various applications of aptamers for the diagnosis of diseases and detection of small molecules. Numerous analytical techniques, such as electrochemical, colorimetric, optical, and mass-sensitive methods, can be utilized to detect targets, due to convenient modifications and the stability of aptamers. Finally, several medical and analytical applications of aptamers are presented. In summary, aptamers are promising materials for diverse areas, not just as alternatives to antibodies, but as the core components of medical and analytical equipment.

  15. Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats.

    Science.gov (United States)

    Romanko, Olga P; Ali, M Irfan; Mintz, James D; Stepp, David W

    2009-07-01

    Obesity and diabetes are major risk factors for the development of vascular disease in the lower limbs. Previous studies have demonstrated reduced nitric oxide (NO)-mediated vasodilation, increased adrenergic constriction, and inward, atrophic remodeling in the limb circulation of obese Zucker rats, but the component of the "metabolic syndrome" driving these changes is unclear. Because insulin resistance precedes the state of frank diabetes, the current study hypothesized that insulin resistance independent of obesity induced by fructose feeding would impair microvascular function in the skeletal muscle circulation in lean Zucker rats (LZR). A 66% fructose diet impaired glucose tolerance and induced moderate insulin resistance with no changes in whole-body hemodynamics of anesthetized rats (FF-LZR), compared to control LZR. NO-mediated vasodilation of isolated gracilis arteries, assessed in vitro with acetylcholine and sodium nitroprusside, was reduced approximately 20% in FF-LZR vs. LZR. NO-independent cGMP-mediated vasodilation was unimpaired. Pretreatment of isolated vessels with the superoxide scavenger, tempol, improved responses to both vasodilators. Reactivity to adrenergic stimulation was unaltered in FF-LZR vs. LZR, although constriction to endothelin was increased. Structural and passive mechanical characteristics of isolated gracilis arteries were similar in both LZR and FF-LZR. Taken together, these findings indicate that moderate insulin resistance is sufficient to impair endothelial function in an oxidant-dependent manner in the rat hindlimb circulation. Other aspects of skeletal muscle vascular function documented in obese models, specifically adrenergic tone and inward remodeling, must reflect either severe insulin resistance or other aspects of obesity. The factors accounting for nonendothelial vasculopathies remain unknown.

  16. Use of aptamers in immunoassays.

    Science.gov (United States)

    Nezlin, Roald

    2016-02-01

    Aptamers, short single-chain DNA or RNA oligonucleotides, react specifically with small molecules, as well as with proteins. Unlike antibodies, they may be obtained relatively easily. Aptamers are now widely employed in immunological studies and could replace antibodies in immunoassays. In this short review, methods for immobilizing aptamers on various insoluble materials (so-called apta-sorbents) are described. Recent findings on their use in the detection and isolation of immunoglobulins and their application in various immunoassays are also discussed.

  17. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... strategies and of new principles for regulating the activity of the inhibitory action of aptamers of general interest to researchers working with nucleic acid aptamers...

  18. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO, a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2 protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(- generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-dependent and autophagy-induced VEGFR2 degradation, which

  19. GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1.

    Science.gov (United States)

    Tie, Lu; Chen, Lu-Yuan; Chen, Dan-Dan; Xie, He-Hui; Channon, Keith M; Chen, Alex F

    2014-05-15

    Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic refractory wounds. Endothelial nitric oxide synthase (eNOS), which critically regulates the mobilization and function of EPCs, is uncoupled in diabetes due to decreased cofactor tetrahydrobiopterin (BH4). We tested whether GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 synthesis, preserves EPC function in type 1 diabetic mice. Type 1 diabetes was induced in wild-type (WT) and GTPCH I transgenic (Tg-GCH) mice by intraperitoneal injection of streptozotocin (STZ). EPCs were isolated from the peripheral blood and bone marrow of WT, Tg-GCH, and GTPCH I-deficient hph-1 mice. The number of EPCs was significantly lower in STZ-WT mice and hph-1 mice and was rescued in STZ Tg-GCH mice. Furthermore, GTPCH I overexpression improved impaired diabetic EPC migration and tube formation. EPCs from WT, Tg-GCH, and STZ-Tg-GCH mice were administered to diabetic excisional wounds and accelerated wound healing significantly, with a concomitant augmentation of angiogenesis. Flow cytometry measurements showed that intracellular nitric oxide (NO) levels were reduced significantly in STZ-WT and hph-1 mice, paralleled by increased superoxide anion levels; both were rescued in STZ-Tg-GCH mice. Western blot analysis revealed that thrombospondin-1 (TSP-1) was significantly upregulated in the EPCs of STZ-WT mice and hph-1 mice and suppressed in STZ-treated Tg-GCH mice. Our results demonstrate that the GTPCH I/BH4 pathway is critical to preserve EPC quantity, function, and regenerative capacity during wound healing in type 1 diabetic mice at least partly through the attenuation of superoxide and TSP-1 levels and augmentation of NO level.

  20. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1.

    Science.gov (United States)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L; Obinata, Hideru; Qvortrup, Klaus; Nielsen, Lars B; Hla, Timothy; Di Lorenzo, Annarita; Christoffersen, Christina

    2016-06-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom(-/-) mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom(-/-) mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.-Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. © FASEB.

  1. Impaired endothelial barrier function in apolipoprotein M–deficient mice is dependent on sphingosine-1-phosphate receptor 1

    Science.gov (United States)

    Christensen, Pernille M.; Liu, Catherine H.; Swendeman, Steven L.; Obinata, Hideru; Qvortrup, Klaus; Nielsen, Lars B.; Hla, Timothy; Christoffersen, Christina

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom−/−) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom−/− mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom−/− mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom−/− mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.—Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. PMID:26956418

  2. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    -specifically, for instance with vastly different affinities to zymogen and active enzyme forms. Furthermore, aptamers can be selected to inhibit the enzyme activity of the target proteases, but also to inhibit functionally important exosite interactions, for instance cofactor binding. Several protease-inhibiting aptamers......, directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection...

  3. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats.

    Science.gov (United States)

    Li, Ping; Liu, Huaipu; Sun, Peng; Wang, Xiaoyu; Wang, Chen; Wang, Ling; Wang, Tinghuai

    2016-02-01

    Vagus nerve stimulation (VNS), a method for activating cholinergic anti-inflammatory pathways, could suppress endothelial activation and minimize tissue injury during inflammation. The aim of this study was to investigate the effects of chronic VNS on endothelial impairments and the inflammatory profile in ovariectomized (OVX) rats. Sprague-Dawley rats (7-8 months old) were randomly assigned to the following four groups: sham-OVX, OVX, OVX+sham-VNS, and OVX+VNS. Throughout the experimental period, the OVX+VNS group received VNS for 3h (20.0 Hz, 1.0 mA, and 10.00 ms pulse width) at the same time every other day. After 12 weeks of VNS, blood samples and thoracic aortas were collected for further analyses. Light microscopy and electron microscopy analyses showed that chronic VNS prevented endothelial swelling, desquamation and even necrosis in the OVX rats. In addition, it obviously improved endothelial function in the OVX rats by restoring the endothelial nitric oxide synthase (e-NOS) and serum endothelin-1 level. Increased expression of cell adhesion molecules (VCAM-1, ICAM-1 and E-selectin) in the thoracic aortas and increases in the levels of circulating cytokines (TNF-α, IL-6, MCP-1, and CINC/KC) were also observed in the OVX rats. Chronic VNS significantly restored these detrimental changes partly by increasing the ACh concentrations in vascular walls and blocking NF-κB pathway activity. The results of this in vivo study have shown that the administration of chronic VNS during, in the early stage of estrogen deficiency, protects OVX rats from endothelial impairments and the inflammatory profile. These findings indicate that activation of the vagus nerve could be a promising supplemental therapy for reducing the risks of suffering from further CVDs in postmenopausal women.

  4. Aptamer-Drug Conjugates.

    Science.gov (United States)

    Zhu, Guizhi; Niu, Gang; Chen, Xiaoyuan

    2015-11-18

    Western medicine often aims to specifically treat diseased tissues or organs. However, the majority of current therapeutics failed to do so owing to their limited selectivity and the consequent "off-target" side effects. Targeted therapy aims to enhance the selectivity of therapeutic effects and reduce adverse side effects. One approach toward this goal is to utilize disease-specific ligands to guide the delivery of less-specific therapeutics, such that the therapeutic effects can be guided specifically to diseased tissues or organs. Among these ligands, aptamers, also known as chemical antibodies, have emerged over the past decades as a novel class of targeting ligands that are capable of specific binding to disease biomarkers. Compared with other types of targeting ligands, aptamers have an array of unique advantageous features, which make them promising for developing aptamer-drug conjugates (ApDCs) for targeted therapy. In this Review, we will discuss ApDCs for targeted drug delivery in chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and photothermal therapy, primarily of cancer.

  5. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  6. Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin.

    Science.gov (United States)

    Arunachalam, Gnanapragasam; Lakshmanan, Arun Prasath; Samuel, Samson Mathews; Triggle, Chris R; Ding, Hong

    2016-02-01

    Impaired angiogenesis is a prominent risk factor that contributes to the development of diabetes-associated cardiovascular disease. MicroRNAs (miRNAs), small noncoding RNAs, are implicated as important regulators of vascular function, including endothelial cell differentiation, proliferation, and angiogenesis. In silico analysis and in vitro studies indicate that silent information regulator 1 (SIRT1) is a potential target for endothelial cell-specific miRNAs. In this study, we investigated the molecular crosstalk between miR-34a, the protein product of SIRT1 (sirtuin1), and the antidiabetic drug, metformin, in hyperglycemia-mediated impaired angiogenesis in mouse microvascular endothelial cells (MMECs). MMECs were cultured, transfected with either a miR-34a inhibitor or mimic in normal glucose (11 mM) or high glucose (HG, 40 mM) in the presence or absence of metformin. The expression of miR-34a, sirtuin1, and their signaling targets was evaluated. miR-34a expression is upregulated in a hyperglycemic milieu and parallels changes in the expression of sirtuin1, post-translational modification of endothelial nitric oxide synthase (phospho/acetylation), as well as an impairment in angiogenesis. The presence of metformin, or the inhibition of miR-34a using an anti-miR-34a inhibitor, increases the expression of sirtuin1 and attenuates the impairment in angiogenesis in HG-exposed MMECs. In contrast, overexpression of a miR-34a mimic prevents metformin-mediated protection. These data indicate that miR-34a, via the regulation of sirtuin1 expression, has an anti-angiogenic action in MMECs, which can be modulated by metformin. In summary, miR-34a represents both a target whereby metformin mediates its vasculoprotective actions and also a potential therapeutic target for the prevention/treatment of diabetic vascular disease.

  7. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice

    Science.gov (United States)

    Talukder, M. A. Hassan; Johnson, Wesley M.; Varadharaj, Saradhadevi; Lian, Jiarui; Kearns, Patrick N.; El-Mahdy, Mohamed A.; Liu, Xiaoping

    2011-01-01

    Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ “InExpose” smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases. PMID:21057039

  8. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    Science.gov (United States)

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  9. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  10. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.

    Science.gov (United States)

    Seki, Takunori; Goto, Kenichi; Kiyohara, Kanako; Kansui, Yasuo; Murakami, Noboru; Haga, Yoshie; Ohtsubo, Toshio; Matsumura, Kiyoshi; Kitazono, Takanari

    2017-01-01

    Endothelium-dependent hyperpolarization (EDH)-mediated responses are impaired in hypertension, but the underlying mechanisms have not yet been determined. The activation of small- and intermediate-conductance of Ca(2+)-activated K(+) channels (SKCa and IKCa) underpins EDH-mediated responses. It was recently reported that Ca(2+) influx through endothelial transient receptor potential vanilloid type 4 channel (TRPV4) is a prerequisite for the activation of SKCa/IKCa in endothelial cells in specific beds. Here, we attempted to determine whether the impairment of EDH in hypertension is attributable to the dysfunction of TRPV4 and S/IKCa, using isolated superior mesenteric arteries of 20-week-old stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wistar-Kyoto (WKY) rats. In the WKY arteries, EDH-mediated responses were reduced by a combination of SKCa/IKCa blockers (apamin plus TRAM-34; 1-[(2-chlorophenyl)diphenylmethl]-1H-pyrazole) and by the blockade of TRPV4 with the selective antagonist RN-1734 or HC-067047. In the SHRSP arteries, EDH-mediated hyperpolarization and relaxation were significantly impaired when compared with WKY. GSK1016790A, a selective TRPV4 activator, evoked robust hyperpolarization and relaxation in WKY arteries. In contrast, in SHRSP arteries, the GSK1016790A-evoked hyperpolarization was small and relaxation was absent. Hyperpolarization and relaxation to cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine, a selective SKCa activator, were marginally decreased in SHRSP arteries compared with WKY arteries. The expression of endothelial TRPV4 and SKCa protein was significantly decreased in the SHRSP mesenteric arteries compared with those of WKY, whereas function and expression of IKCa were preserved in SHRSP arteries. These findings suggest that EDH-mediated responses are impaired in superior mesenteric arteries of SHRSP because of a reduction in both TRPV4 and SKCa input to EDH. © 2016 American Heart

  11. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    Science.gov (United States)

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  12. Glutamate Receptor Aptamers and ALS

    Science.gov (United States)

    2009-01-01

    proposed, including oxidative stress, excitotoxicity, mitochondrial dysfunction, etc., the cause(s) of the disease, including the pathogenesis of the...GluR6-Selective Aptamers for Potential Autism Therapy This project is to develop RNA aptamers against a GluR6 kainate receptor mutant thought to be...involved in autism . Role: PI Department of Defense (PI: Niu) 4/1/09-3/30/14 Advanced Tech./Therapeutic Develop. Grant Developing Biostable

  13. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  14. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production.

    Science.gov (United States)

    Zhu, Jili; Chaki, Moumita; Lu, Dongmei; Ren, Chongyu; Wang, Shan-Shan; Rauhauser, Alysha; Li, Binghua; Zimmerman, Susan; Jun, Bokkyoo; Du, Yong; Vadnagara, Komal; Wang, Hanquin; Elhadi, Sarah; Quigg, Richard J; Topham, Matthew K; Mohan, Chandra; Ozaltin, Fatih; Zhou, Xin J; Marciano, Denise K; Bazan, Nicolas G; Attanasio, Massimo

    2016-05-01

    Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the

  15. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Milad S. Bitar

    2015-01-01

    Full Text Available Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could

  16. Aptamers in Virology: Recent Advances and Challenges

    OpenAIRE

    Binning, Jennifer M.; Leung, Daisy W.; Amarasinghe, Gaya K.

    2012-01-01

    Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are int...

  17. Discovering aptamers by cell-SELEX against human soluble growth factors ectopically expressed on yeast cell surface.

    Science.gov (United States)

    Meng, Hsien-Wei; Pagano, John M; White, Brian S; Toyoda, Yoshiko; Min, Irene M; Craighead, Harold G; Shalloway, David; Lis, John T; Xiao, Kai; Jin, Moonsoo M

    2014-01-01

    SELEX, the process of selecting aptamers, is often hampered by the difficulty of preparing target molecules in their native forms and by a lack of a simple yet quantitative assay for monitoring enrichment and affinity of reactive aptamers. In this study, we sought to discover DNA aptamers against human serum markers for potential therapeutic and diagnostic applications. To circumvent soluble expression and immobilization for performing SELEX, we ectopically expressed soluble growth factors on the surface of yeast cells to enable cell-SELEX and devised a flow cytometry-based method to quantitatively monitor progressive enrichment of specific aptamers. High-throughput sequencing of selected pools revealed that the emergence of highly enriched sequences concurred with the increase in the percentage of reactive aptamers shown by flow cytometry. Particularly, selected DNA aptamers against VEGF were specific and of high affinity (K(D)  = ∼ 1 nM) and demonstrated a potent inhibition of capillary tube formation of endothelial cells, comparable to the effect of a clinically approved anti-VEGF antibody drug, bevacizumab. Considering the fact that many mammalian secretory proteins have been functionally expressed in yeast, the strategy of implementing cell-SELEX and quantitative binding assay can be extended to discover aptamers against a broad array of soluble antigens.

  18. Discovering aptamers by cell-SELEX against human soluble growth factors ectopically expressed on yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Hsien-Wei Meng

    Full Text Available SELEX, the process of selecting aptamers, is often hampered by the difficulty of preparing target molecules in their native forms and by a lack of a simple yet quantitative assay for monitoring enrichment and affinity of reactive aptamers. In this study, we sought to discover DNA aptamers against human serum markers for potential therapeutic and diagnostic applications. To circumvent soluble expression and immobilization for performing SELEX, we ectopically expressed soluble growth factors on the surface of yeast cells to enable cell-SELEX and devised a flow cytometry-based method to quantitatively monitor progressive enrichment of specific aptamers. High-throughput sequencing of selected pools revealed that the emergence of highly enriched sequences concurred with the increase in the percentage of reactive aptamers shown by flow cytometry. Particularly, selected DNA aptamers against VEGF were specific and of high affinity (K(D  = ∼ 1 nM and demonstrated a potent inhibition of capillary tube formation of endothelial cells, comparable to the effect of a clinically approved anti-VEGF antibody drug, bevacizumab. Considering the fact that many mammalian secretory proteins have been functionally expressed in yeast, the strategy of implementing cell-SELEX and quantitative binding assay can be extended to discover aptamers against a broad array of soluble antigens.

  19. A simple method for eliminating fixed-region interference of aptamer binding during SELEX.

    Science.gov (United States)

    Ouellet, Eric; Lagally, Eric T; Cheung, Karen C; Haynes, Charles A

    2014-11-01

    Standard libraries for systematic evolution of ligands by exponential enrichment (SELEX) typically utilize flanking regions that facilitate amplification of aptamers recovered from each selection round. Here, we show that these flanking sequences can bias the selection process, due in part to their ability to interfere with the fold or function of aptamers localized within the random region of the library sequence. We then address this problem by investigating the use of complementary oligonucleotides as a means to block aptamer interference by each flanking region. Isothermal titration calorimetry (ITC) studies are combined with fold predictions to both define the various interference mechanisms and assess the ability of added complementary oligonucleotides to ameliorate them. The proposed blocking strategy is thereby refined and then applied to standard library forms of benchmark aptamers against human α-thrombin, streptavidin, and vascular endothelial growth factor (VEGF). In each case, ITC data show that the new method effectively removes fixed-region mediated interference effects so that the natural binding affinity of the benchmark aptamer is completely restored. We further show that the binding affinities of properly functioning aptamers within a selection library are not affected by the blocking protocol, and that the method can be applied to various common library formats comprised of different flanking region sequences. Finally, we present a rapid and inexpensive qPCR-based method for determining the mean binding affinity of retained aptamer pools and use it to show that introduction of the pre-blocking method into the standard SELEX protocol results in retention of high-affinity aptamers that would otherwise be lost during the first round of selection. Significant enrichment of the available pool of high-affinity aptamers is thereby achieved in the first few rounds of selection. By eliminating single-strand (aptamer-like) structures within or involving

  20. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... and endothelium dysfunction markers. In fully differentiated cultured podocytes incubation with MGO resulted in apoptosis. CONCLUSIONS/INTERPRETATION: This study shows that effective regulation of the GLO-I enzyme is important in the prevention of vascular intracellular glycation, endothelial dysfunction...

  1. Aptamers: Biomedical Interest and Applications

    Directory of Open Access Journals (Sweden)

    Cristina Romero-López

    2017-03-01

    Full Text Available Aptamers are short DNA or RNA oligonucleotides specialized in the specific and efficient binding to a target molecule. They are obtained by in vitro selection or evolution processes. It was in 1990 that two independent research groups described the bases of a new in vitro technology for the identification of RNA molecules able to specifically bind to a target [1,2]. Tuerk and Gold established the principals of the in vitro selection process that was named SELEX (Systematic Evolution of Ligands by Exponential enrichment, which is based on iterative cycles of binding, partitioning, and amplification of oligonucleotides from a pool of variant sequences [2]. Ellington and Szostak coined the term aptamer to define the selected molecules by the application of this method [1]. To date, numerous reports have described the isolation of aptamers directed against a great variety of targets covering a wide diversity of molecules varying in nature, size, and complexity ranging from ions to whole cells, including small molecules (e.g., aminoacids, nucleotides, antibiotics, peptides, proteins, nucleic acids, and viruses, among others (for example, see [3–6]. Modifications and optimization of the SELEX procedure aimed to get newly modified aptamers has also attracted much interest (examples can be found in [7,8]. These advances along with the parallel progresses in the nucleic acids chemistry and cellular delivery fields have allowed for the rise of a new hope in developing aptamers as efficient molecular tools for diagnostics and therapeutics (for recent comprehensive reviews, see [9–11].

  2. Early atherosclerosis and cardiac autonomic responses to mental stress: a population-based study of the moderating influence of impaired endothelial function.

    Science.gov (United States)

    Chumaeva, Nadja; Hintsanen, Mirka; Hintsa, Taina; Ravaja, Niklas; Juonala, Markus; Raitakari, Olli T; Keltikangas-Järvinen, Liisa

    2010-03-29

    Acute mental stress may contribute to the cardiovascular disease progression via autonomic nervous system controlled negative effects on the endothelium. The joint effects of stress-induced sympathetic or parasympathetic activity and endothelial function on atherosclerosis development have not been investigated. The present study aims to examine the interactive effect of acute mental stress-induced cardiac reactivity/recovery and endothelial function on the prevalence of carotid atherosclerosis. Participants were 81 healthy young adults aged 24-39 years. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT) and endothelial function was measured as flow-mediated dilatation (FMD) using ultrasound techniques. We also measured heart rate, respiratory sinus arrhythmia (RSA), and pre-ejection period (PEP) in response to the mental arithmetic and speech tasks. We found a significant interaction of FMD and cardiac RSA recovery for IMT (p = 0.037), and a significant interaction of FMD and PEP recovery for IMT (p = 0.006). Among participants with low FMD, slower PEP recovery was related to higher IMT. Among individuals with high FMD, slow RSA recovery predicted higher IMT. No significant interactions of FMD and cardiac reactivity for IMT were found. Cardiac recovery plays a role in atherosclerosis development in persons with high and low FMD. The role of sympathetically mediated cardiac activity seems to be more important in those with impaired FMD, and parasympathetically mediated in those with relatively high FMD. The development of endothelial dysfunction may be one possible mechanism linking slow cardiac recovery and atherosclerosis via autonomic nervous system mediated effect.

  3. Developing aptamers into tumor diagnostics and therapeutics

    Institute of Scientific and Technical Information of China (English)

    Jing Mi; Bryan M. Clary; Bruce A. Sullenger

    2008-01-01

    Aptamers are small single-stranded nucleic acid molecules that bind a target protein with high affinity and specificity. Due to their stability, low toxicity and immunogenicity, as well as improved safety, aptamers are attractive alternatives to antibody and are therefore suitable for in vivo applications. Aptamers are typically isolated, through a process termed SELEX (systematic evolution of ligands by exponential enrichment), from combinatorial libraries with desired proteins. In the present review, the recent non-conventional aptamer selection process will be discussed together with an overview on the aptamer application in cancer diagnosis and therapy.

  4. G4 Aptamers: Trends in Structural Design.

    Science.gov (United States)

    Varizhuk, Anna; Ilyinsky, Nikolay; Smirnov, Igor; Pozmogova, Galina

    2016-01-01

    Many potent DNA aptamers are known to contain a G-quadruplex (G4) core. Structures and applications of the majority of such aptamers have been reviewed previously. The present review focuses on the design and optimization of G4 aptamers. General features of bioactive G4s are analyzed, and the main strategies for construction of aptamers with desired properties and topologies, including modular assembly, control of an aptamer folding and some others, are outlined. Chemical modification as a method for post-SELEX G4 aptamer optimization is also discussed, and the effects of loop and core modifications are compared. Particular attention is paid to the emerging trends, such as the development of genomic G4- inspired aptamers and the combinatorial approaches which aim to find a balance between rational design and selection.

  5. Increased brachial-ankle pulse wave velocity is associated with impaired endothelial function in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-hong; TAO Jun; WANG Yan; LIAO Xin-xue; XU Ming-guo; WANG Jie-mei; YANG Zhen; CHEN Long; L(U) Ming-de; LU Kun

    2006-01-01

    Background Pulse wave velocity and flow-mediated vasodilation (FMD) are widely used as noninvasive modalities for evaluating atherosclerosis. However, it is not known whether pulse wave velocity is related to FMD in patients with coronary artery disease (CAD). Therefore, the present study was designed to investigate the alteration in brachial-ankle pulse wave velocity (baPWV) and endothelial function in CAD patients.Methods Thirty-three patients with CAD and thirty control subjects were recruited for this study. baPWV was measured non-invasively using a VP 1000 automated PWV/ABI analyzer (PWV/ABI, Colin Co. Ltd., Komaki,Japan). Endothelial function as reflected by FMD in the brachial artery was assessed with a high-resolution ultrasound device.Results baPWV was increased in CAD patients compared with control subjects [(1756.1±253.1) cm/s vs(1495.3 ± 202.3) cm/s, P<0.01]. FMD was significantly reduced in CAD patients compared with control subjects[(5.2±2.1) % vs (11.1 ±4.4) %, P<0.01]. baPWV correlated with FMD (r =-0.68, P<0.001). The endothelium-independent vasodilation induced by sublingual nitroglycerin in the brachial artery was similar in the CAD group compared with the control group.Conclusions CAD is associated with increased baPWV and endothelial dysfunction. Increased baPWV parallels diminished endothelial function. Our data therefore suggest that baPWV can be used as a noninvasive surrogate index in clinical evaluation of endothelial function.

  6. Strategies for the discovery of therapeutic Aptamers

    Science.gov (United States)

    Yang, Xianbin; Li, Na; Gorenstein, David G.

    2010-01-01

    Importance of the field Therapeutic aptamers are synthetic, structured oligonucleotides that bind to a very broad range of targets with high affinity and specificity. They are an emerging class of targeting ligand that show great promise for treating a number of diseases. A series of aptamers currently in various stages of clinical development highlights the potential of aptamers for therapeutic applications. Area covered in this review This review will cover in vitro selection of oligonucleotide ligands, called aptamers, from a combinatorial library using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process as well as the other known strategies for finding aptamers against various targets. What the reader will gain Readers will gain an understanding of the highly useful strategies for successful aptamer discovery. They may also be able combine two or more of the presented strategies for their aptamer discovery projects. Take home message Although many processes are available for discovering aptamers, it is not trivial to discover an aptamer candidate that is ready to move toward pharmaceutical drug development. It is also apparent that there have been relatively few therapeutic advances and clinical trials undertaken due to the small number of companies that participate in aptamer development. PMID:21359096

  7. Cerebral hemodynamics and systemic endothelial function are already impaired in well-controlled type 2 diabetic patients, with short-term disease.

    Directory of Open Access Journals (Sweden)

    Paola Palazzo

    Full Text Available OBJECTIVE: Impaired cerebral vasomotor reactivity (VMR and flow-mediated dilation (FMD were found in selected subgroups of type 2 diabetes mellitus (T2DM patients with long-term disease. Our study aimed to evaluate cerebral hemodynamics, systemic endothelial function and sympatho-vagal balance in a selected population of well-controlled T2DM patients with short-term disease and without cardiac autonomic neuropathy (CAN. RESEARCH DESIGN AND METHODS: Twenty-six T2DM patients with short-term (4.40±4.80 years and well-controlled (HbA1C = 6.71±1.29% disease, without any complications, treated with diet and/or metformin, were consecutively recruited. Eighteen controls, comparable by sex and age, were enrolled also. RESULTS: FMD and shear rate FMD were found to be reduced in T2DM subjects with short-term disease (8.5% SD 3.5 and 2.5 SD 1.3, respectively compared to controls (15.4% SD 4.1 and 3.5 SD 1.4; p.05. CONCLUSIONS: In well-controlled T2DM patients with short-term disease cerebral hemodynamics and systemic endothelial function are altered while autonomic balance appeared to be preserved.

  8. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration - effects of α-linolenic acid and N-acetylcysteine.

    Science.gov (United States)

    Steinritz, Dirk; Schmidt, Annette; Simons, Thilo; Ibrahim, Marwa; Morguet, Christian; Balszuweit, Frank; Thiermann, Horst; Kehe, Kai; Bloch, Wilhelm; Bölck, Birgit

    2014-08-05

    Alkylating agents (e.g. sulfur and nitrogen mustards) cause a variety of cell and tissue damage including wound healing disorder. Migration of endothelial cells is of utmost importance for effective wound healing. In this study we investigated the effects of chlorambucil (a nitrogen mustard) on early endothelial cells (EEC) with special focus on cell migration. Chlorambucil significantly inhibited migration of EEC in Boyden chamber and wound healing experiments. Cell migration is linked to cytoskeletal organization. We therefore investigated the distribution pattern of the Golgi apparatus as a marker of cell polarity. Cells are polarized under control conditions, whereas chlorambucil caused an encircling perinuclear position of the Golgi apparatus, indicating non-polarized cells. ROS are discussed to be involved in the pathophysiology of alkylating substances and are linked to cell migration and cell polarity. Therefore we investigated the influence of ROS-scavengers (α-linolenic acid (ALA) and N-acetylcysteine (NAC)) on the impaired EEC migration. Both substances, in particular ALA, improved EEC migration. Notably ALA restored cell polarity. Remarkably, investigations of ROS and RNS biomarkers (8-isoprostane and nitrotyrosine) did not reveal a significant increase after chlorambucil exposure when assessed 24h post exposure. A distinct breakdown of mitochondrial membrane potential (measured by TMRM) that recovered under ALA treatment was observed. In conclusion our results provide compelling evidence that the alkylating agent chlorambucil dramatically impairs directed cellular migration, which is accompanied by perturbations of cell polarity and mitochondrial membrane potential. ALA treatment was able to reconstitute cell polarity and to stabilize mitochondrial potential resulting in improved cell migration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Aptamers in Virology: Recent advances and challenges

    Directory of Open Access Journals (Sweden)

    Jennifer M. Binning

    2012-02-01

    Full Text Available Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are intended for use as therapeutic and diagnostic agents, use of aptamers for basic research, including target validation remains an active area with high potential to impact our understanding of molecular mechanisms and for drug discovery. In this brief review, we will discuss recent aptamer discoveries, their potential role in structural virology as well as challenges and future prospects.

  10. Array-Based Discovery of Aptamer Pairs

    Science.gov (United States)

    2014-12-11

    18460−18465. (25) Liu, Y.; Adams, J. D.; Turner, K.; Cochran, F. V.; Gambhir, S. S.; Soh, H. T. Lab Chip 2009, 9, 1033−1036. (26) Katilius, E.; Flores, C...discovery of aptamer pairs. We use microfluidic selection and high-throughput sequencing to obtain an enriched pool of aptamer sequences. Next, we...overcomes this problem to achieve efficient discovery of aptamer pairs. We use microfluidic selection and high- throughput sequencing to obtain an

  11. Functional detection of proteins by caged aptamers.

    Science.gov (United States)

    Pinto, Alessandro; Lennarz, Sabine; Rodrigues-Correia, Alexandre; Heckel, Alexander; O'Sullivan, Ciara K; Mayer, Günter

    2012-02-17

    While many diagnostic assay platforms enable the measurement of analytes with high sensitivity, most of them result in a disruption of the analyte's native structure and, thus, in loss of function. Consequently, the analyte can be used neither for further analytical assessment nor functional analysis. Herein we report the use of caged aptamers as templates during apta-PCR analysis of targets. Aptamers are short nucleic acids that fold into a well-defined three-dimensional structure in which they interact with target molecules with high affinity and specificity. Nucleic acid aptamers can also serve as templates for qPCR approaches and, thus, have been used as high affinity ligands to bind to target molecules and subsequently for quantification by qPCR, an assay format coined apta-PCR. Caged aptamers in turn refer to variants that bear one or more photolabile groups at strategic positions. The activity of caged aptamers can thus be turned on or off by light irradiation. The latter allows the mild elution of target-bound aptamers while the target's native structure and function remain intact. We demonstrate that this approach allows the quantitative and subsequently the functional assessment of analytes. Since caged aptamers can be generated emanating from virtually every available aptamer, the described approach can be generalized and adopted to any target-aptamer pair and, thus, have a broad applicability in proteomics and clinical diagnostics.

  12. Aptamers overview: selection, features and applications.

    Science.gov (United States)

    Hernandez, Luiza I; Machado, Isabel; Schafer, Thomas; Hernandez, Frank J

    2015-01-01

    Apatamer technology has been around for a quarter of a century and the field had matured enough to start seeing real applications, especially in the medical field. Since their discovery, aptamers rapidly emerged as key players in many fields, such as diagnostics, drug discovery, food science, drug delivery and therapeutics. Because of their synthetic nature, aptamers are evolving at an exponential rate gaining from the newest advances in chemistry, nanotechnology, biology and medicine. This review is meant to give an overview of the aptamer field, by including general aspects of aptamer identification and applications as well as highlighting certain features that contribute to their quick deployment in the biomedical field.

  13. Storage of factor VIII variants with impaired von Willebrand factor binding in Weibel-Palade bodies in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maartje van den Biggelaar

    Full Text Available BACKGROUND: Point mutations resulting in reduced factor VIII (FVIII binding to von Willebrand factor (VWF are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser to severe (Tyr1680Phe, Ser2119Tyr VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH. CONCLUSIONS: Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.

  14. Impaired vascular endothelial function in patients with restless legs syndrome: a new aspect of the vascular pathophysiology.

    Science.gov (United States)

    Koh, Seung Yon; Kim, Min Seung; Lee, Sun Min; Hong, Ji Man; Yoon, Jung Han

    2015-12-15

    Restless legs syndrome (RLS) is a common sleep disorder in which patients feel unpleasant leg sensations and the urge to move their legs during rest, particularly at night. Leg movement improves these symptoms. Although several studies have demonstrated an association between cardiovascular disease and RLS, the mechanisms underlying this relationship remain unclear. Recent studies have shown changes in the peripheral microvasculature, including altered blood flow and capillary tortuosity, and peripheral hypoxia. Vascular endothelial dysfunction can be assessed noninvasively with ultrasound measurements of brachial artery flow-mediated dilatation (FMD). Therefore, this study investigated FMD in RLS patients to determine the involvement of microvascular alterations in this disorder. The study enrolled 25 drug-naïve RLS patients and 25 sex- and age-matched controls and compared the FMD values of the two groups. RLS was diagnosed according to the criteria of the International Restless Legs Syndrome Study Group. FMD was significantly lower in the RLS patients (6.6 ± 1.2%) compared to the controls (8.4 ± 1.8%; p<0.05) and the RLS patients showed a weak, negative correlation between RLS severity and FMD (r=-0.419, p=0.04). Multivariate linear regression analysis revealed that RLS (B=-1.87, 95% confidence interval [CI] -2.72 to -1.02; p<0.001) and age (B=-0.06; 95% CI -0.12 to -0.02; p<0.001) were significantly and inversely correlated with FMD. This study demonstrated that RLS patients have poorer vascular endothelial function than normal healthy subjects and provides further evidence supporting the involvement of peripheral systems in the generation of RLS. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Antibodies against AT1 receptors are associated with vascular endothelial and smooth muscle function impairment: protective effects of hydroxysafflor yellow A.

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    Full Text Available Ample evidence has shown that autoantibodies against AT1 receptors (AT1-AA are closely associated with human cardiovascular disease. The aim of this study was to investigate mechanisms underlying AT1-AA-induced vascular structural and functional impairments in the formation of hypertension, and explore ways for preventive treatment. We used synthetic peptide corresponding to the sequence of the second extracellular loop of the AT1 receptor (165-191 to immunize rats and establish an active immunization model. Part of the model received preventive therapy by losartan (20 mg/kg/day and hyroxysafflor yellow A (HSYA (10 mg/kg/day. The result show that systolic blood pressure (SBP and heart rate (HR of immunized rats was significantly higher, and closely correlated with the plasma AT1-Ab titer. The systolic response of thoracic aortic was increased, but diastolic effects were attenuated markedly. Histological observation showed that the thoracic aortic endothelium of the immunized rats became thinner or ruptured, inflammatory cell infiltration, medial smooth muscle cell proliferation and migration, the vascular wall became thicker. There was no significant difference in serum antibody titer between losartan and HSYA groups and the immunized group. The vascular structure and function were reversed, and plasma biochemical parameters were also improved significantly in the two treatment groups. These results suggest that AT1-Ab could induce injury to vascular endothelial cells, and proliferation of smooth muscle cells. These changes were involved in the formation of hypertension. Treatment with AT1 receptor antagonists and anti oxidative therapy could block the pathogenic effect of AT1-Ab on vascular endothelial and smooth muscle cells.

  16. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  17. Selection and characterization of DNA aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.

    2013-01-01

    This thesis focusses on the selection and characterisation of DNA aptamers and the various aspects related to their selection from large pools of randomized oligonucleotides. Aptamers are affinity tools that can specifically recognize and bind predefined target molecules; this ability, however, is

  18. Post-SELEX optimization of aptamers.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Jiao, Binghua; Wang, Lianghua

    2016-07-01

    Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.

  19. Selection and characterization of DNA aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.

    2013-01-01

    This thesis focusses on the selection and characterisation of DNA aptamers and the various aspects related to their selection from large pools of randomized oligonucleotides. Aptamers are affinity tools that can specifically recognize and bind predefined target molecules; this ability, however, is n

  20. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  1. Aptamer Selection Technology and Recent Advances

    Directory of Open Access Journals (Sweden)

    Michael Blind

    2015-01-01

    Full Text Available Over the last decade, aptamers have begun to find their way from basic research to diverse commercial applications. The development of diagnostics is even more widespread than clinical applications because aptamers do not have to be extensively modified to enhance their in vivo stability and pharmacokinetics in diagnostic assays. The increasing attention has propelled the technical progress of the in vitro selection technology (SELEX to enhance the efficiency of developing aptamers for commercially interesting targets. This review highlights recent progress in the technical steps of a SELEX experiment with a focus on high-throughput next-generation sequencing and bioinformatics. Achievements have been made in the optimization of aptamer libraries, separation schemes, amplification of the selected libraries and the identification of aptamer sequences from enriched libraries.

  2. RNA and DNA aptamers in cytomics analysis.

    Science.gov (United States)

    Ulrich, Henning; Martins, Antonio Henrique B; Pesquero, João Bosco

    2005-08-01

    Using systematic evolution of ligands by exponential enrichment (SELEX), RNA or DNA molecules are selected from a combinatorial oligonucleotide library by their ability to bind their targets, i.e., cell surface antigens, with affinity and specificity similar to that of monoclonal antibodies. The generation of these high-affinity binders, also denominated aptamers, is carried out in vitro and does not involve animals. Therefore, aptamers can be developed against almost every molecule of biological importance, including toxins and nonimmunogenic targets, against which antibodies cannot be raised. The incorporation of modified pyrimidines resulting in nuclease-resistant RNA aptamers makes them promising candidates for studying protein interactions in vitro and in vivo. DNA aptamers do not need modifications for most applications. The protocols in this unit can be used for the development of fluorescent-tagged RNA or DNA aptamers for any cell surface protein in cytomics analysis.

  3. Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography

    Science.gov (United States)

    Kuehne, Christian; Wedepohl, Stefanie; Dernedde, Jens

    2017-01-01

    l-selectin is a transmembrane receptor expressed on the surface of white blood cells and responsible for the tethering of leukocytes to vascular endothelial cells. This initial intercellular contact is the first step of the complex leukocyte adhesion cascade that ultimately permits extravasation of leukocytes into the surrounding tissue in case of inflammation. Here we show the binding of a soluble histidine tagged l-selectin to a recently described shortened variant of an l-selectin specific DNA aptamer with surface plasmon resonance. The high specificity of this aptamer in combination with its high binding affinity of ~12 nM, allows for a single-step protein purification from cell culture supernatants. In comparison to the well-established Ni-NTA based technology, aptamer affinity chromatography (AAC) was easier to establish, resulted in a 3.6-fold higher protein yield, and increased protein purity. Moreover, due to target specificity, the DNA aptamer facilitated binding studies directly from cell culture supernatant, a helpful characteristic to quickly monitor successful expression of biological active l-selectin. PMID:28125045

  4. Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria: association with disease severity, impaired microvascular function and increased endothelial activation.

    Directory of Open Access Journals (Sweden)

    Tsin W Yeo

    2015-03-01

    Full Text Available Tetrahydrobiopterin (BH₄ is a co-factor required for catalytic activity of nitric oxide synthase (NOS and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH₂, which inhibits NOS. Depending on BH₄ availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH₄/BH₂ ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH₄ deficiency. The primary three biopterin metabolites (BH₄, BH₂ and B₀ [biopterin] and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12, moderately-severe malaria (MSM, n=17, severe sepsis (SS; n=5 and healthy subjects (HC; n=20 as controls. In SM, urinary BH₄ was decreased (median 0.16 ¼mol/mmol creatinine compared to MSM (median 0.27, SS (median 0.54, and HC (median 0.34]; p<0.001. Conversely, BH₂ was increased in SM (median 0.91 ¼mol/mmol creatinine, compared to MSM (median 0.67, SS (median 0.39, and HC (median 0.52; p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH₄/BH₂ ratio was lowest in SM [0.18 (IQR: 0.04-0.32] compared to MSM (0.45, IQR 0.27-61, SS (1.03; IQR 0.54-2.38 and controls (0.66; IQR 0.43-1.07; p<0.001. In malaria, a lower BH₄/BH₂ ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03 and increased ICAM-1 (r=-0.52; p=0.005. Decreased BH4 and increased BH₂ in severe malaria (but not in severe sepsis uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO

  5. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Andrade, A.S.R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Augusto-Pinto, L. [BioAptus, Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Departamento de Imunologia e Bioquimica. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais. Belo Horizonte, MG (Brazil)

    2011-07-01

    Colorectal cancer is among the top four causes of cancer deaths worldwide. Carcinoembryonic antigen (CEA) is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. CEA has been identified as an attractive target for cancer research because of its pattern of expression in the surface cell and its likely functional role in tumorigenesis. Research on the rapid selection of ligands based on the SELEX (systematic evolution of ligands by exponential enrichment) forms the basis for the development of high affinity and high specificity molecules, which can bind to surface determinants of tumour cells, like CEA. The oligonucleotides ligands generated in this technique are called aptamers. Aptamers can potentially find applications as therapeutic or diagnostic tools for many kind of diseases, like a tumor. Aptamers offer low immunogenicity, good tumour penetration, rapid uptake and fast systemic clearance, which favour their application as effective vehicles for radiotherapy. In addition aptamers can be labeled with different radioactive isotopes. The aim of this work was select aptamers binding to the CEA tumor marker. The aptamers are obtained through by SELEX, in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule (CEA). Analyses of the secondary structure of the aptamers were determined using the m fold toll. Three aptamers were selected to binding assay with target cells. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by confocal imaging. We are currently studying the potential efficacy of these aptamers as targeted radiopharmaceuticals, for use as imaging agents or therapeutic applications. The development of aptamers specific to CEA open new perspectives for colorectal cancer diagnosis and treatment. Acknowledgments: This investigation was supported by the Centro de Desenvolvimento da

  6. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    Science.gov (United States)

    2008-12-01

    aptamers of Bacillus anthracis (Ba), Shiga toxin , botulinum neurotoxin (BoNT), and Francisella tularensis bacteria (all selected by SELEX) have been...This process has been used to select aptamers against different types of targets ( Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2...studied by reselecting aptamers against different targets, Ba spores, Shiga toxin , and F. tularensis bacteria. In contrast to SELEX, the use of

  7. Future of aptamers in medicine

    CSIR Research Space (South Africa)

    Khati, M

    2010-06-01

    Full Text Available stream_source_info Khati_2010.pdf.txt stream_content_type text/plain stream_size 59703 Content-Encoding ISO-8859-1 stream_name Khati_2010.pdf.txt Content-Type text/plain; charset=ISO-8859-1 doi: 10.1136/jcp.2008....062786 2010 63: 480-487 originally published online April 1, 2010J Clin Pathol Makobetsa Khati The future of aptamers in medicine http://jcp.bmj.com/content/63/6/480.full.html Updated information and services can be found at: These include...

  8. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay.

    Science.gov (United States)

    Shan, Siwen; He, Ziyi; Mao, Sifeng; Jie, Mingsha; Yi, Linglu; Lin, Jin-Ming

    2017-08-15

    In this work, we have developed a sensitive and selective chemiluminescence (CL) assay for vascular endothelial growth factor (VEGF165) quantitative detection based on two specific VEGF165 binding aptamers (Apt). VEGF is a predominant biomarker in cancer angiogenesis, and sensitive detection method of VEGF are highly demanded for both academic study and clinical diagnosis of multiple cancers. In our experiment, VEGF165 was captured in a sandwich structure assembled by two binding aptamers, one capture aptamer was immobilized on streptavidin-coated magnetic beads (MBs) and another VEGF-binding aptamer was labeled by biotin for further phosphatase conjunction. After Apt-VEGF-Apt sandwich was formed on MBs surface, alkaline phosphatase (ALP) was modified to the second aptamer to catalyze CL reaction. By applying 4-methoxy-4-(3-phosphatephenyl)-spiro-(1,2-dioxetane-3,2-adamantane) (AMPPD) as CL substrate, strong signal intensity was achieved. VEGF165 content as low as 1ng/mL was detected in standard spiked samples by our assay, and linear range of working curve was confirmed from 1 to 20ng/mL. Then our method was successfully applied for cell culture medium analysis and on-chip hypoxic HepG2-HUVEC co-culture model study with excellent accuracy equal to ELISA Kit. Our developed assay demonstrated an outstanding performance in VEGF165 quantification and may be further extended to clinical testing of important biomarkers as well as probing microchip cell culture model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DNA Aptamers in the Diagnosis and Treatment of Human Diseases

    Directory of Open Access Journals (Sweden)

    Qinchang Zhu

    2015-11-01

    Full Text Available Aptamers have a promising role in the field of life science and have been extensively researched for application as analytical tools, therapeutic agents and as vehicles for targeted drug delivery. Compared with RNA aptamers, DNA aptamers have inherent advantages in stability and facility of generation and synthesis. To better understand the specific potential of DNA aptamers, an overview of the progress in the generation and application of DNA aptamers in human disease diagnosis and therapy are presented in this review. Special attention is given to researches that are relatively close to practical application. DNA aptamers are expected to have great potential in the diagnosis and treatment of human diseases.

  10. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  11. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    M. M. Soldevilla

    2016-01-01

    Full Text Available Aptamers are single-chained RNA or DNA oligonucleotides (ODNs with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  12. Aptamers: A Feasible Technology in Cancer Immunotherapy.

    Science.gov (United States)

    Soldevilla, M M; Villanueva, H; Pastor, F

    2016-01-01

    Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  13. The dual aptamer approach: rational design of a high-affinity FAD aptamer.

    Science.gov (United States)

    Merkle, T; Holder, I T; Hartig, J S

    2016-01-14

    A design strategy for high-affinity aptamers of complex biomolecules is presented. We developed an RNA with FAD-binding properties by combining known ATP- and FMN-aptamers. Cooperative binding of FAD was shown by SPR spectroscopy and fluorescence assays. The strategy should be transferable to several other biomolecules.

  14. From selection hits to clinical leads: progress in aptamer discovery

    Directory of Open Access Journals (Sweden)

    Keith E Maier

    2016-01-01

    Full Text Available Aptamers were discovered more than 25 years ago, yet only one has been approved by the US Food and Drug Administration to date. With some noteworthy advances in their chemical design and the enzymes we use to make them, aptamers and aptamer-based therapeutics have seen a resurgence in interest. New aptamer drugs are being approved for clinical evaluation, and it is certain that we will see increasingly more aptamers and aptamer-like drugs in the future. In this review, we will discuss the production of aptamers with an emphasis on the advances and modifications that enabled early aptamers to succeed in clinical trials as well as those that are likely to be important for future generations of these drugs.

  15. Cell-SELEX Identifies a "Sticky" RNA Aptamer Sequence.

    Science.gov (United States)

    Ray, Partha; White, Rebekah R

    2017-01-01

    Cell-SELEX is performed to select for cell binding aptamers. We employed an additional selection pressure by using RNAse to remove surface-binding aptamers and select for cell-internalizing aptamers. A common RNA sequence was identified from independent cell-SELEX procedures against two different pancreatic cancer cell lines, indicating a strong selection pressure towards this sequence from the large pool of other available sequences present in the aptamer library. The aptamer is not specific for the pancreatic cancer cell lines, and a similar sequence motif is present in previously published internalizing aptamers. The identified sequence forms a structural motif that binds to a surface protein, which either is highly abundant or has strong affinity for the selected aptamer sequence. Deselecting (removing) this sequence during cell-SELEX may increase the probability of identifying aptamers against cell type-specific targets on the cell surface.

  16. Screening of Aptamers on Microfluidic Systems for Clinical Applications

    OpenAIRE

    Gwo-Bin Lee; Chao-Jyun Huang; Chen-Hsun Weng

    2012-01-01

    The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening...

  17. Development of RNA aptamers for detection of Salmonella Enteritidis.

    Science.gov (United States)

    Hyeon, Ji-Yeon; Chon, Jung-Whan; Choi, In-Soo; Park, Chankyu; Kim, Dong-Eun; Seo, Kun-Ho

    2012-04-01

    We developed and evaluated RNA aptamers to analyze their potential for use in detecting Salmonella Enteritidis. The selected aptamer was observed to specifically bind to Salmonella Enteritidis without any cross-reactivity to other Salmonella serovars. Thus, this study suggests that aptamers specific to Salmonella Enteritidis have a high potential for use in presumptive presumptive screening methods or alternative serotyping methods.

  18. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hongguang Sun

    2014-01-01

    Full Text Available Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.

  19. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Directory of Open Access Journals (Sweden)

    Hart Meaghan

    2009-11-01

    Full Text Available Abstract Background Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC, to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments. Methods/Design The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control" for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP 20 and without clinical diagnosis of dementia or Alzheimer's disease. Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives, 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory, cerebral blood flow, and carbon dioxide cerebral vasoreactivity. Discussion The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the

  20. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  1. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Science.gov (United States)

    Holahan, Matthew R; Madularu, Dan; McConnell, Erin M; Walsh, Ryan; DeRosa, Maria C

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  2. Inhibition of neutrophil-mediated production of reactive oxygen species (ROS) by endothelial cells is not impaired in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis patients

    NARCIS (Netherlands)

    Al Laham, F.; Kaelsch, A. -I.; Heinrich, L.; Birck, R.; Kallenberg, C. G. M.; Heeringa, P.; Yard, B.

    2010-01-01

    P>Leucocyte transendothelial migration is strictly regulated to prevent undesired inflammation and collateral damage of endothelial cells by activated neutrophils/monocytes. We hypothesized that in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis (AAV) patients' dysregulation

  3. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model.

    Science.gov (United States)

    Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B

    2016-11-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were

  4. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  5. Nucleic acid aptamers: an emerging frontier in cancer therapy.

    Science.gov (United States)

    Zhu, Guizhi; Ye, Mao; Donovan, Michael J; Song, Erqun; Zhao, Zilong; Tan, Weihong

    2012-11-04

    The last two decades have witnessed the development and application of nucleic acid aptamers in a variety of fields, including target analysis, disease therapy, and molecular and cellular engineering. The efficient and widely applicable aptamer selection, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, relatively rapid tissue penetration, low immunogenicity, and rapid systemic clearance make aptamers ideal recognition elements for use as therapeutics or for in vivo delivery of therapeutics. In this feature article, we discuss the development and biomedical application of nucleic acid aptamers, with emphasis on cancer cell aptamer isolation, targeted cancer therapy, oncology biomarker identification and drug discovery.

  6. Function and dynamics of aptamers: A case study on the malachite green aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH- is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD

  7. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    Science.gov (United States)

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  8. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Generation of aptamer for biosensing applications

    Science.gov (United States)

    Gopinath, Subash C. B.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.

    2016-07-01

    Systematic evolution of ligands by exponential enrichment (SELEX), an in vitro strategy which involves generation of aptamer. Aptamer is an artificial antibody, behave very similar to antibody and several instances reported to be better than antibodies. In this study, an attempt has been made to generate aptamer against factor IX, a potential candidate involve in human blood coagulation cascade. Totally, 10 selection cycles have been performed and molecules from 10th cycle have shown higher binding affinity with factor IX as 56 and 68% against the factor IX concentrations of 100 and 200 nM, respectively. With these higher binding affinities, it is clear that these molecules have higher potential for sensing applications.

  10. Developing Aptamers by Cell-Based SELEX.

    Science.gov (United States)

    Catuogno, Silvia; Esposito, Carla Lucia; de Franciscis, Vittorio

    2016-01-01

    The reliable targeting of cell surface disease-associated proteins is a major challenge in chemical biology and molecular medicine. In this regard, aptamers represent a very attractive and innovative class of ligand molecules. Aptamers are generated by a reiterated in vitro procedure, named SELEX (Systematic Evolution of Ligands by Exponential enrichment). In order to generate aptamers for heavily modified cell surface-bound proteins and transmembrane receptors, the SELEX procedure has been recently adapted to the use of living cells as complex targets (referred as "cell-SELEX"). Here we give an overview on the most recent advances in the field of cell-SELEX technology, providing a detailed description of the differential cell-SELEX approach that has been developed in our laboratory to identify specific signatures for human malignant glioma and non-small-cell lung cancer. The procedures used for the evaluation of binding specificity and for the preliminary identification of potential target receptors will be also described.

  11. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  12. An aptamer beacon responsive to botulinum toxins.

    Science.gov (United States)

    Bruno, John G; Richarte, Alicia M; Carrillo, Maria P; Edge, Allison

    2012-01-15

    Sixty candidate DNA aptamers were developed against botulinum neurotoxin (BoNT) type A light chain (LC) from ten rounds of selection, resulting in several identical sequences. Secondary structures of the identical aptamers were compared to structures of previously reported BoNT A DNA aptamers. A series of ten candidate loop structures were selected from this comparison as potential binding pockets and aptamer beacons. These candidate beacons were synthesized with 5'-TYE 665 and 3'-Iowa Black quencher labels for comparison of fluorescence levels as a function of BoNT A LC concentration. Only three of the ten candidates exhibited any fluorescence response to increasing levels of BoNT A LC. However, of the two most responsive candidates, one represented a subset loop of the larger more intensely fluorescent double-looped structure, designated Beacon 10. This beacon yielded a lower limit of detection of 1 ng/mL in buffer using a spectrofluorometer and a portable handheld fluorometer, but also responded substantially to BoNT A, B, E holotoxins and heavy or light chain components even in a dilute soil suspension, but not in 50% human serum. Beacon 10 did not respond strongly to a variety of other divergent peptides, suggesting that it is relatively specific to the level of botulinum toxins and is only useful for environmental testing. Beacon 10 also shared short sequence segments with other published BoNT aptamer DNA sequences, suggesting that these may be points of physical contact between the aptamers and BoNTs.

  13. RNA fluorescence with light-up aptamers

    Science.gov (United States)

    Ouellet, Jonathan

    2016-06-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way.

  14. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of a microprocessing-assisted cell-systematic evolution of ligands by exponential enrichment method for human umbilical vein endothelial cells

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji

    2016-06-01

    We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.

  16. Method for Confirming Cytoplasmic Delivery of RNA Aptamers

    Science.gov (United States)

    Dickey, David D; Dassie, Justin P; Giangrande, Paloma H

    2016-01-01

    RNA aptamers are single-stranded RNA oligos that represent a powerful emerging technology with potential for treating numerous diseases. More recently, cell-targeted RNA aptamers have been developed for delivering RNA interference (RNAi) modulators (siRNAs and miRNAs) to specific diseased cells (e.g., cancer cells or HIV infected cells) in vitro and in vivo. However, despite initial promising reports, the broad application of this aptamer delivery technology awaits the development of methods that can verify and confirm delivery of aptamers to the cytoplasm of target cells where the RNAi machinery resides. We recently developed a functional assay (RIP assay) to confirm cellular uptake and subsequent cytoplasmic release of an RNA aptamer which binds to a cell surface receptor expressed on prostate cancer cells (PSMA). To assess cytoplasmic delivery, the aptamer was chemically conjugated to saporin, a ribosome inactivating protein toxin that is toxic to cells only when delivered to the cytoplasm (where it inhibits the ribosome) by a cell-targeting ligand (e.g., aptamer). Here, we describe the chemistry used to conjugate the aptamer to saporin and discuss a gel-based method to verify conjugation efficiency. We also detail an in vitro functional assay to confirm that the aptamer retains function following conjugation to saporin and describe a cellular assay to measure aptamer-mediated saporin-induced cytotoxicity. PMID:26472453

  17. Nucleic acid-based aptamers: applications, development and clinical trials.

    Science.gov (United States)

    Kanwar, Jagat R; Roy, Kislay; Maremanda, Nihal G; Subramanian, Krishnakumar; Veedu, Rakesh N; Bawa, Raj; Kanwar, Rupinder K

    2015-01-01

    Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient

  18. Diagnosis of active TB using aptamers

    CSIR Research Space (South Africa)

    Khati, M

    2013-08-01

    Full Text Available ) and the 6-kDa early secreted antigen target (ESAT-6), which are potent T-cell antigens that are recognised by over 70% of TB patients. We then used these aptamers to develop a TB diagnostic tool that can be used at point-of-care for early and rapid detection...

  19. RAPID-SELEX for RNA Aptamers

    Science.gov (United States)

    Ozer, Abdullah; Pagano, John M.; White, Brian S.; Shalloway, David; Lis, John T.; Craighead, Harold G.

    2013-01-01

    Aptamers are high-affinity ligands selected from DNA or RNA libraries via SELEX, a repetitive in vitro process of sequential selection and amplification steps. RNA SELEX is more complicated than DNA SELEX because of the additional transcription and reverse transcription steps. Here, we report a new selection scheme, RAPID-SELEX (RNA Aptamer Isolation via Dual-cycles SELEX), that simplifies this process by systematically skipping unnecessary amplification steps. Using affinity microcolumns, we were able to complete a multiplex selection for protein targets, CHK2 and UBLCP1, in a third of the time required for analogous selections using a conventional SELEX approach. High-throughput sequencing of the enriched pools from both RAPID and SELEX revealed many identical candidate aptamers from the starting pool of 5×1015 sequences. For CHK2, the same sequence was preferentially enriched in both selections as the top candidate and was found to bind to its respective target. These results demonstrate the efficiency and, most importantly, the robustness of our selection scheme. RAPID provides a generalized approach that can be used with any selection technology to accelerate the rate of aptamer discovery, without compromising selection performance. PMID:24376564

  20. RAPID-SELEX for RNA aptamers.

    Science.gov (United States)

    Szeto, Kylan; Latulippe, David R; Ozer, Abdullah; Pagano, John M; White, Brian S; Shalloway, David; Lis, John T; Craighead, Harold G

    2013-01-01

    Aptamers are high-affinity ligands selected from DNA or RNA libraries via SELEX, a repetitive in vitro process of sequential selection and amplification steps. RNA SELEX is more complicated than DNA SELEX because of the additional transcription and reverse transcription steps. Here, we report a new selection scheme, RAPID-SELEX (RNA Aptamer Isolation via Dual-cycles SELEX), that simplifies this process by systematically skipping unnecessary amplification steps. Using affinity microcolumns, we were able to complete a multiplex selection for protein targets, CHK2 and UBLCP1, in a third of the time required for analogous selections using a conventional SELEX approach. High-throughput sequencing of the enriched pools from both RAPID and SELEX revealed many identical candidate aptamers from the starting pool of 5 × 10(15) sequences. For CHK2, the same sequence was preferentially enriched in both selections as the top candidate and was found to bind to its respective target. These results demonstrate the efficiency and, most importantly, the robustness of our selection scheme. RAPID provides a generalized approach that can be used with any selection technology to accelerate the rate of aptamer discovery, without compromising selection performance.

  1. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice.

    Science.gov (United States)

    McBride-Gagyi, Sarah Howe; McKenzie, Jennifer A; Buettmann, Evan G; Gardner, Michael J; Silva, Matthew J

    2015-12-01

    Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10-24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2.

  2. Nucleic acid aptamers: research tools in disease diagnostics and therapeutics.

    Science.gov (United States)

    Santosh, Baby; Yadava, Pramod K

    2014-01-01

    Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug "Macugen" is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions.

  3. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Science.gov (United States)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  4. Aptamers in Bordeaux, 24-25 June 2016.

    Science.gov (United States)

    Toulmé, Jean-Jacques; Giangrande, Paloma H; Mayer, Günter; Suess, Beatrix; Ducongé, Frédéric; Sullenger, Bruce; de Franciscis, Vittorio; Darfeuille, Fabien; Peyrin, Eric

    2017-01-20

    The symposium covered the many different aspects of the selection and the characterization of aptamers as well as their application in analytical, diagnostic and therapeutic areas. Natural and artificial riboswitches were discussed. Recent advances for the design of mutated polymerases and of chemically modified nucleic acid bases that provide aptamers with new properties were presented. The power of aptamer platforms for multiplex analysis of biomarkers of major human diseases was described. The potential of aptamers for the treatment of cancer or cardiovascular diseases was also presented. Brief summaries of the lectures presented during the symposium are given in this report. A second edition of "Aptamers in Bordeaux" will take place on September 2017 (http://www.aptamers-in-bordeaux.com/).

  5. Aptamers in Bordeaux, 24–25 June 2016

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Toulmé

    2017-01-01

    Full Text Available The symposium covered the many different aspects of the selection and the characterization of aptamers as well as their application in analytical, diagnostic and therapeutic areas. Natural and artificial riboswitches were discussed. Recent advances for the design of mutated polymerases and of chemically modified nucleic acid bases that provide aptamers with new properties were presented. The power of aptamer platforms for multiplex analysis of biomarkers of major human diseases was described. The potential of aptamers for the treatment of cancer or cardiovascular diseases was also presented. Brief summaries of the lectures presented during the symposium are given in this report. A second edition of “Aptamers in Bordeaux” will take place on September 2017 (http://www.aptamers-in-bordeaux.com/.

  6. Development of universal antidotes to control aptamer activity.

    Science.gov (United States)

    Oney, Sabah; Lam, Ruby T S; Bompiani, Kristin M; Blake, Charlene M; Quick, George; Heidel, Jeremy D; Liu, Joanna Yi-Ching; Mack, Brendan C; Davis, Mark E; Leong, Kam W; Sullenger, Bruce A

    2009-10-01

    With an ever increasing number of people taking numerous medications, the need to safely administer drugs and limit unintended side effects has never been greater. Antidote control remains the most direct means to counteract acute side effects of drugs, but, unfortunately, it has been challenging and cost prohibitive to generate antidotes for most therapeutic agents. Here we describe the development of a set of antidote molecules that are capable of counteracting the effects of an entire class of therapeutic agents based upon aptamers. These universal antidotes exploit the fact that, when systemically administered, aptamers are the only free extracellular oligonucleotides found in circulation. We show that protein- and polymer-based molecules that capture oligonucleotides can reverse the activity of several aptamers in vitro and counteract aptamer activity in vivo. The availability of universal antidotes to control the activity of any aptamer suggests that aptamers may be a particularly safe class of therapeutics.

  7. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  8. Aptamers Against Viral Hepatitis: from Rational Design to Practical Application

    Institute of Scientific and Technical Information of China (English)

    Hui FENG; Kang-hong HU

    2008-01-01

    Aptamers are short nucleic acids or peptides that strongly bind to a protein of interest and functionally inhibit a given target protein at the intracellular level. Besides high affinity and specificity, aptamers have several advantages over traditional antibodies. Hence, they have been broadly selected to develop antiviral agents for therapeutic applications against hepatitis B and C viruses (HBV, HCV). This review provides a summary of in vitro selection and characterization of aptamers against viral hepatitis, which is of practical significance in drug discovery.

  9. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoping; Mao, Haian [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Chen, Jin-yuan [Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001 (China); Wen, Shengjun [Department of Anatomy and neurobiology, School of Medicine, Tongji University, Shanghai 200072 (China); Li, Dan; Ye, Meng [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Lv, Zhongwei, E-mail: zhongweilv126@126.com [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2013-02-15

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.

  10. Cell-targeting aptamers act as intracellular delivery vehicles.

    Science.gov (United States)

    Gopinath, Subash C B; Lakshmipriya, Thangavel; Chen, Yeng; Arshad, M K Md; Kerishnan, Jesinda P; Ruslinda, A R; Al-Douri, Yarub; Voon, C H; Hashim, Uda

    2016-08-01

    Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.

  11. Endothelial Dysfunction in Renal Failure: Current Update.

    Science.gov (United States)

    Radenkovic, Miroslav; Stojanovic, Marko; Prostran, Milica

    2016-01-01

    Endothelial dysfunction is principally characterized by impaired endothelium- dependent transduction mechanisms related to vascular relaxation, as an outcome of decreased release of endothelium-derived relaxing factors, mainly nitric oxide, as well as augmented oxidative stress, increased inflammation and predominance of vascular action produced by endothelium-derived contracting factors. Current data strongly suggest that pathological development of different types of kidney impairment with further progression to renal failure includes notable vascular changes associated with endothelial dysfunction. In accordance, this scientific field represents an advancing area of investigation, involving different biomarkers of endothelial dysfunction linked to renal impairment, as well as clinical findings with new information that can provide a more comprehensive understanding of the role of endothelial dysfunction in kidney disease. With regards to quoted facts, the aim of this article was to review the latest data related to endothelial dysfunction and renal failure by selection of relevant articles released from 2010 to 2015.

  12. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection

    Science.gov (United States)

    Tsao, Shih-Ming; Lai, Ji-Ching; Horng, Horng-Er; Liu, Tu-Chen; Hong, Chin-Yih

    2017-04-01

    Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5‧ and 3‧ termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.

  13. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Yun-Ching Huang

    Full Text Available Cigarette use is an independent risk factor for the development of erectile dysfunction (ED. While the association between chronic smoking and ED is well established, the fundamental mechanism(s of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS for 4 weeks (n = 10, 12 weeks (n = 10, and 24 weeks (n = 10. At the 24-week time point all rats were assessed with intracavernous pressure (ICP during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS. Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED.

  14. Modern affinity reagents: Recombinant antibodies and aptamers.

    Science.gov (United States)

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Aptamer Stainings for Super-resolution Microscopy.

    Science.gov (United States)

    de Castro, Maria Angela Gomes; Rammner, Burkhard; Opazo, Felipe

    2016-01-01

    Fluorescence microscopy is an invaluable tool to visualize molecules in their biological context with ease and flexibility. However, studies using conventional light microscopy have been limited to the resolution that light diffraction allows (i.e., ~200 nm). This limitation has been recently circumvented by several types of advanced fluorescence microscopy techniques, which have achieved resolutions of up to ~10 nm. The resulting enhanced imaging precision has helped to find important cellular details that were not visible using diffraction-limited instruments. However, it has also revealed that conventional stainings using large affinity tags, such as antibodies, are not accurate enough for these imaging techniques. Since aptamers are substantially smaller than antibodies, they could provide a real advantage in super-resolution imaging. Here we compare the live staining of transferrin receptors (TfnR) obtained with different fluorescently labeled affinity probes: aptamers, specific monoclonal antibodies, or the natural receptor ligand transferrin. We observed negligible differences between these staining strategies when imaging is performed with conventional light microscopy (i.e., laser scanning confocal microscopy). However, a clear superiority of the aptamer tag over antibodies became apparent in super-resolved images obtained with stimulated emission depletion (STED) microscopy.

  16. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  17. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    CHETAN CHANDOLA; SHEETAL KALME; MARCO G CASTELEIJN; ARTO URTTI; MUNIASAMY NEERATHILINGAM

    2016-09-01

    Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity andaffinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety ofapplications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class ofbiomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. Inthis review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging.We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makesthem a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potentialdrug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs,nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable forRNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior overprotein-based binding molecules in terms of labelling and conjugation strategies.

  18. Screening of aptamers on microfluidic systems for clinical applications.

    Science.gov (United States)

    Weng, Chen-Hsun; Huang, Chao-Jyun; Lee, Gwo-Bin

    2012-01-01

    The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening by a microfluidic-based method has demonstrated remarkable advantages over competing traditional methods. In this paper, we first reviewed microfluidic systems which demonstrated efficient and rapid screening of a specific aptamer. Then, the clinical applications of screened aptamers, also performed by microfluidic systems, are further reviewed. These automated microfluidic systems can provide advantages over their conventional counterparts including more compactness, faster analysis, less sample/reagent consumption and automation. An aptamer-based compact microfluidic system for diagnosis may even lead to a point-of-care device. The use of microfluidic systems for aptamer screening and diagnosis is expected to continue growing in the near future and may make a substantial impact on biomedical applications.

  19. Screening of Aptamers on Microfluidic Systems for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Lee

    2012-07-01

    Full Text Available The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening by a microfluidic-based method has demonstrated remarkable advantages over competing traditional methods. In this paper, we first reviewed microfluidic systems which demonstrated efficient and rapid screening of a specific aptamer. Then, the clinical applications of screened aptamers, also performed by microfluidic systems, are further reviewed. These automated microfluidic systems can provide advantages over their conventional counterparts including more compactness, faster analysis, less sample/reagent consumption and automation. An aptamer-based compact microfluidic system for diagnosis may even lead to a point-of-care device. The use of microfluidic systems for aptamer screening and diagnosis is expected to continue growing in the near future and may make a substantial impact on biomedical applications.

  20. Optimized light-directed synthesis of aptamer microarrays.

    Science.gov (United States)

    Franssen-van Hal, Nicole L W; van der Putte, Pepijn; Hellmuth, Klaus; Matysiak, Stefan; Kretschy, Nicole; Somoza, Mark M

    2013-06-18

    Aptamer microarrays are a promising high-throughput method for ultrasensitive detection of multiple analytes, but although much is known about the optimal synthesis of oligonucleotide microarrays used in hybridization-based genomics applications, the bioaffinity interactions between aptamers and their targets is qualitatively different and requires significant changes to synthesis parameters. Focusing on streptavidin-binding DNA aptamers, we employed light-directed in situ synthesis of microarrays to analyze the effects of sequence fidelity, linker length, surface probe density, and substrate functionalization on detection sensitivity. Direct comparison with oligonucleotide hybridization experiments indicates that aptamer microarrays are significantly more sensitive to sequence fidelity and substrate functionalization and have different optimal linker length and surface probe density requirements. Whereas microarray hybridization probes generate maximum signal with multiple deletions, aptamer sequences with the same deletion rate result in a 3-fold binding signal reduction compared with the same sequences synthesized for maximized sequence fidelity. The highest hybridization signal was obtained with dT 5mer linkers, and the highest aptamer signal was obtained with dT 11mers, with shorter aptamer linkers significantly reducing the binding signal. The probe hybridization signal was found to be more sensitive to molecular crowding, whereas the aptamer probe signal does not appear to be constrained within the density of functional surface groups commonly used to synthesize microarrays.

  1. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, Hayes E-mail: dougan@triumf.ca; Lyster, Donald M.; Vo, Can V.; Stafford, Alan; Weitz, Jeffrey I.; Hobbs, John B

    2000-04-01

    We have investigated {sup 123}I and {sup 125}I DNA aptamer analogs of anticoagulant DNA aptamers to thrombin exosite 1 and exosite 2 for thrombus imaging potential. Two severe problems are rapid clearance from circulating blood and blood nuclease. With aptamers (unlike antisense) the nucleotide analogs used in polymerase chain reaction-selection cycles also must be used in the radiotracer. We investigated 3'-biotin-streptavidin (SA) bioconjugates of the aptamers to alleviate these problems. Blood nuclease assays and biodistribution analysis were used in the mouse and rabbit. We found that 3'-biotin protected the aptamers significantly from blood nuclease in vitro, but it did not slow in vivo clearance. In contrast, the 3'-biotin-SA bioconjugates were resistant to blood nuclease in vitro and were also longer-lived (10-20 times) in vivo. Bioconjugate aptamers retained affinity for thrombin. Two solutions emerge: 1) In noncirculating blood (within a thrombus) 3'-biotin extends aptamer lifetime, whereas 2) in circulating blood (the transport medium), where more aggressive clearance is encountered, 3'-SA extends aptamer lifetime.

  2. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy.

    Science.gov (United States)

    Tang, Li; Tong, Rong; Coyle, Virginia J; Yin, Qian; Pondenis, Holly; Borst, Luke B; Cheng, Jianjun; Fan, Timothy M

    2015-05-26

    An A10 aptamer (Apt)-functionalized, sub-100 nm doxorubicin-polylactide (Doxo-PLA) nanoconjugate (NC) with controlled release profile was developed as an intravenous therapeutic strategy to effectively target and cytoreduce canine hemangiosarcoma (cHSA), a naturally occurring solid tumor malignancy composed solely of tumor-associated endothelium. cHSA consists of a pure population of malignant endothelial cells expressing prostate-specific membrane antigen (PSMA) and is an ideal comparative tumor model system for evaluating the specificity and feasibility of tumor-associated endothelial cell targeting by A10 Apt-functionalized NC (A10 NC). In vitro, A10 NCs were selectively internalized across a panel of PSMA-expressing cancer cell lines, and when incorporating Doxo, A10 Doxo-PLA NCs exerted greater cytotoxic effects compared to nonfunctionalized Doxo-PLA NCs and free Doxo. Importantly, intravenously delivered A10 NCs selectively targeted PSMA-expressing tumor-associated endothelial cells at a cellular level in tumor-bearing mice and dramatically increased the uptake of NCs by endothelial cells within the local tumor microenvironment. By virtue of controlled drug release kinetics and selective tumor-associated endothelial cell targeting, A10 Doxo-PLA NCs possess a desirable safety profile in vivo, being well-tolerated following high-dose intravenous infusion in mice, as supported by the absence of any histologic organ toxicity. In cHSA-implanted mice, two consecutive intravenous infusions of A10 Doxo-PLA NCs exerted rapid and substantial cytoreductive activities within a period of 7 days, resulting in greater than 70% reduction in macroscopic tumor-associated endothelial cell burden as a consequence of enhanced cell death and necrosis.

  3. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Directory of Open Access Journals (Sweden)

    Lu Danqing

    2017-01-01

    Full Text Available Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX, represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  4. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX.

    Science.gov (United States)

    Lyu, Yifan; Chen, Guang; Shangguan, Dihua; Zhang, Liqin; Wan, Shuo; Wu, Yuan; Zhang, Hui; Duan, Lian; Liu, Chao; You, Mingxu; Wang, Jie; Tan, Weihong

    2016-01-01

    Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed.

  5. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  6. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  7. Aptamers Against Immunologic Targets: Diagnostic and Therapeutic Prospects.

    Science.gov (United States)

    Vorobyeva, Mariya; Timoshenko, Valentina; Vorobjev, Pavel; Venyaminova, Alya

    2016-02-01

    The concept of in vitro selection of nucleic acid aptamers emerged 25 years ago, and since then tremendous progress has been achieved in the development of different aptamers and their applications for various bioanalytical and therapeutic purposes. Among other protein targets of aptamers, immune system proteins are of particular interest both as diagnostic markers and therapeutic targets. The present review summarizes up-to-date articles concerning the selection and design of DNA and RNA aptamers against immunologic targets such as antibodies, cytokines, and T-cell and B-cell receptors. We also discuss the prospects of employing aptamers as recognizing modules of diagnostic aptasensors, potential therapeutic candidates for the treatment of autoimmune diseases and cancer, and specific tools for functional studies of immune system proteins.

  8. In vitro evaluation of radiolabeled aptamers for colon carcinoma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Ferreira, I.M; Santos, S.R.; Faria, L.S.; Andrade, A.S.R., E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Imunologia e Bioquimica

    2013-07-01

    Cancer is a leading cause of death worldwide, representing a major public health problem worldwide. Colorectal cancers accounts around 8% of all deaths for cancer in 2008, is the fourth most lethal. Many colorectal cancer markers, such as carcinoembryonic antigen (CEA), A33, and CSA-p, have been studied as the therapeutic targets in preclinical or clinical settings. CEA is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. Since its discovery in 1965, a very large number of studies have been carried out to determine the effectiveness of CEA as clinically useful tumor markers. Aptamers are short single-stranded nucleic acid oligomers (DNA or RNA) that can form specific and complex three-dimensional structures which can bind with high affinity to specific targets, they are functionally equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small size, and non-immunogenic. The aim of this study was develop anti-CEA aptamers for use as imaging agents. The aptamers are obtained through by SELEX (systematic evolution of ligands by exponential enrichment), in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by fluorescence microscopic images. Individual aptamers sequences that bound T84 cells were {sup 32}P-radiolabeled and incubated at different concentrations on cell monolayers, to monitor the aptamers affinity binding. The selected aptamers can identify colon cancer cell line. This aptamers could be further developed for early disease detection as radiopharmaceuticals, as well as prognostic markers, of colorectal cancers. (author)

  9. Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX.

    Science.gov (United States)

    Chen, Zhijin; Liu, Hao; Jain, Akshay; Zhang, Li; Liu, Chang; Cheng, Kun

    2017-01-01

    Insulin like growth factor II receptor (IGFIIR) is a transmembrane protein overexpressed in activated hepatic stellate cells (HSCs), which are the major target for the treatment of liver fibrosis. In this study, we aim to discover an IGFIIR-specific aptamer that can be potentially used as a targeting ligand for the treatment and diagnosis of liver fibrosis. Systematic evolution of ligands by exponential enrichment (SELEX) was conducted on recombinant human IGFIIR to identify IGFIIR-specific aptamers. The binding affinity and specificity of the discovered aptamers to IGFIIR and hepatic stellate cells were studied using flow cytometry and Surface Plasmon Resonance (SPR). Aptamer-20 showed the highest affinity to recombinant human IGFIIR protein with a Kd of 35.5 nM, as determined by SPR. Aptamer-20 also has a high affinity (apparent Kd 45.12 nM) to LX-2 human hepatic stellate cells. Binding of aptamer-20 to hepatic stellate cells could be inhibited by knockdown of IGFIIR using siRNA, indicating a high specificity of the aptamer. The aptamer formed a chimera with an anti-fibrotic PCBP2 siRNA and delivered the siRNA to HSC-T6 cells to trigger silencing activity. In Vivo biodistribution study of the siRNA-aptamer chimera also demonstrated a high and specific uptake in the liver of the rats with CCl4-induced liver fibrosis. These data suggest that aptamer-20 is a high-affinity ligand for antifibrotic and diagnostic agents for liver fibrosis.

  10. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay.

    Science.gov (United States)

    Benson, Barbara A; Vercellotti, Gregory M; Dalmasso, Agustin P

    2015-01-01

    Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin.

  11. Endothelial dysfunction in morbid obesity.

    Science.gov (United States)

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  12. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J;

    1997-01-01

    of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer......) inhibitor of elastase, in an animal model of acute lung inflammatory disease [11-14]. This inhibitor was previously selected from a hybrid library of randomized DNA and a small-molecule irreversible inhibitor of elastase (a valine diphenyl ester phosphonate, Fig. 1), by the blended SELEX process [15]. We...

  13. Efficient suppression of biofilm formation by a nucleic acid aptamer.

    Science.gov (United States)

    Ning, Yi; Cheng, Lijuan; Ling, Min; Feng, Xinru; Chen, Lingli; Wu, Minxi; Deng, Le

    2015-08-01

    Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2 nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation.

  14. Aptamers: active targeting ligands for cancer diagnosis and therapy.

    Science.gov (United States)

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment.

  15. Nanostructure shape effects on response of plasmonic aptamer sensors.

    Science.gov (United States)

    Balamurugan, Subramanian; Mayer, Kathryn M; Lee, Seunghyun; Soper, Steven A; Hafner, Jason H; Spivak, David A

    2013-09-01

    A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6-nm λ(max) shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity. XPS analysis showed that this is due to the low surface density of aptamers on the gold bipyramid compared with gold nanorods. The low surface density of the aptamers on the gold bipyramid surface may be due to the effect of shape of the nanostructure on the kinetics of aptamer monolayer formation. The small size of aptamers relative to other bioreceptors is the key to achieving high sensitivity by biosensors on the basis of LSPR, demonstrated here for protein binding. The generality of aptamer sensors for protein detection using gold nanorod and gold nanobipyramid substrates is anticipated to have a large impact in the important development of sensors toward biomarkers, environmental toxins, and warfare agents.

  16. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  17. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    Science.gov (United States)

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.

  18. [Endothelial dysfunction in hypertension--clinical implications].

    Science.gov (United States)

    Kosmala, Wojciech

    2002-04-01

    Endothelial cells produce both vasodilatating compounds as nitric oxide, prostacycline, endothelial derived hyperpolarising factor and counteracting substances known as endothelial derived contracting factors: endothelin, tromboxan A2, prostaglandin H2, free oxygen radicals. Natural balance between both groups affects blood perfusion of various tissues and constitutes important element in blood pressure control. More and more attention is paid to endothelial dysfunction in patogenesis of hypertension. In a number of studies endothelial dysfunction in hypertensive patients was found out as decreased release of nitric oxide or increased production of endothelin. Principle mechanism of impaired function of endothelium in hypertension seems to be decreased production and increased degradation of nitric oxide mainly due to free oxygen radicals. Favorable effects in improvement of endothelial function were achieved by using ACE inhibitors, AT1 receptor blockers and calcium channel antagonists.

  19. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

    Science.gov (United States)

    Ruff, Karen M; Strobel, Scott A

    2014-11-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.

  20. Aptamer-targeted DNA nanostructures for therapeutic delivery.

    Science.gov (United States)

    Charoenphol, Phapanin; Bermudez, Harry

    2014-05-05

    DNA-based nanostructures have been widely used in various applications due to their structural diversity, programmability, and uniform structures. Their intrinsic biocompatibility and biodegradability further motivates the investigation of DNA-based nanostructures as delivery vehicles. Incorporating AS1411 aptamers into DNA pyramids leads to enhanced intracellular uptake and selectively inhibits the growth of cancer cells, achieved without the use of transfection reagents. Furthermore, aptamer-displaying pyramids are found to be substantially more resistant to nuclease degradation than single-stranded aptamers. These findings, along with their modularity, reinforce the potential of DNA-based nanostructures for therapeutic applications.

  1. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Hans P. Wendel

    2008-04-01

    Full Text Available Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers.

  2. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    Science.gov (United States)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  3. Aptamer-Based Electrochemical Sensing of Lysozyme

    Directory of Open Access Journals (Sweden)

    Alina Vasilescu

    2016-06-01

    Full Text Available Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples.

  4. Graphene- and aptamer-based electrochemical biosensor.

    Science.gov (United States)

    Xu, Ke; Meshik, Xenia; Nichols, Barbara M; Zakar, Eugene; Dutta, Mitra; Stroscio, Michael A

    2014-05-23

    This study investigated the effectiveness of a graphene- and aptamer-based field-effect-transistor-like (FET-like) sensor in detecting lead and potassium ions. The sensor consists of a graphene-covered Si/SiO2 wafer with thrombin binding aptamer (TBA) attached to the graphene layer and terminated by a methylene blue (MB) molecule. K(+) and Pb(2+) both bind to TBA and cause a conformational change, which results in MB moving closer to the graphene surface and donating an electron. Thus, the abundance of K(+) and Pb(2+) can be determined by monitoring the current across the source and drain channel. Device transfer curves were obtained with ambipolar field effect observed. Current readings were taken for K(+) concentrations of 100 μM to 50 mM and Pb(2+) concentrations of 10 μM to 10 mM. As expected, I d decreased as ion concentration increased. In addition, there was a negative shift in V Dirac in response to increased ion concentration.

  5. Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight

    DEFF Research Database (Denmark)

    Hermann, T S; Rask-Madsen, C; Ihlemann, N

    2003-01-01

    Low birth weight has been linked to insulin resistance and cardiovascular disease. We hypothesized that insulin sensitivity of both muscle and vascular tissues were impaired in young men with low birth weight. Blood flow was measured by venous occlusion plethysmography during dose-response studies...... infusion increased glucose uptake significantly in the normal birth weight group, compared with the low birth weight group: 0.40 +/- 0.09 to 1.00 +/- 0.16 vs. 0.44 +/- 0.09 to 0.59 +/- 0.1 [ micro mol glucose x (100 ml forearm)(-1) x min(-1)], P = 0.04. Young men with low birth weight have normal insulin...

  6. Aptamer Binding Studies Using MicroScale Thermophoresis.

    Science.gov (United States)

    Breitsprecher, Dennis; Schlinck, Nina; Witte, David; Duhr, Stefan; Baaske, Philipp; Schubert, Thomas

    2016-01-01

    The characterization and development of highly specific aptamers requires the analysis of the interaction strength between aptamer and target. MicroScale Thermophoresis (MST) is a rapid and precise method to quantify biomolecular interactions in solution at microliter scale. The basis of this technology is a physical effect referred to as thermophoresis, which describes the directed movement of molecules through temperature gradients. The thermophoretic properties of a molecule depend on its size, charge, and hydration shell. Since at least one of these parameters is altered upon binding of a ligand, this method can be used to analyze virtually any biomolecular interaction in any buffer or complex bioliquid. This section provides a detailed protocol describing how MST is used to obtain quantitative binding parameters for aptamer-target interactions. The two DNA-aptamers HD1 and HD22, which are targeted against human thrombin, are used as model systems to demonstrate a rapid and straightforward screening approach to determine optimal buffer conditions.

  7. Aptamer based electrochemical sensors for emerging environmental pollutants

    Directory of Open Access Journals (Sweden)

    Akhtar eHAYAT

    2014-06-01

    Full Text Available Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  8. Aptamer based electrochemical sensors for emerging environmental pollutants

    Science.gov (United States)

    Hayat, Akhtar; Marty, Jean Louis

    2014-06-01

    Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  9. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    BACKGROUND: More than 50% of patients with increased troponin levels after non-cardiac surgery have an impaired endothelial function pre-operatively. Non-invasive markers of endothelial function have been developed for the assessment of endothelial dysfunction. The aim of this paper was to system......BACKGROUND: More than 50% of patients with increased troponin levels after non-cardiac surgery have an impaired endothelial function pre-operatively. Non-invasive markers of endothelial function have been developed for the assessment of endothelial dysfunction. The aim of this paper...... was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... with non-invasive measurements done both pre- and post-operatively and published in English. All types of non-cardiac surgery and both men and women of all ages were included. RESULTS: We found 1722 eligible studies in our search, and of these, five studies fulfilled our inclusion and exclusion criteria...

  10. Probing the Structure of DNA Aptamers with a Classic Heterocycle.

    Directory of Open Access Journals (Sweden)

    G. Reid Bishop

    2004-02-01

    Full Text Available DNA aptamers are synthetic, single-stranded DNA oligonucleotides selectedby SELEX methods for their binding with specific ligands. Here we present ethidiumbinding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARGthat bind L-argininamide (L-Arm. The ligand bound form of each aptamer's structurehas been reported and each are found to be composed primarily of two domainsconsisting of a stem helical region and a loop domain that forms a binding pocket for thecognate ligand. Previous thermodynamic experiments demonstrated that the DNAaptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Herewe extend those linkage binding studies by examining the binding of the heterocyclicintercalator ethidium to each of the three aptamers by fluorescence and absorptionspectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with∆Go's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for eachaptamer and is quantitatively diminished in the presence of L-Arm as is the overallfluorescence intensity of ethidium. Together, these results demonstrate that a portion ofthe bound ethidium is excluded from the aptamer in the presence of a saturating amountof L-Arm. These results demonstrate the utility of ethidium and related compounds forthe probing of non-conventional DNA structures and reveal an interesting fundamentalthermodynamic linkage in DNA aptamers. Results are discussed in the context of thethermodynamic stability and structure of each of the aptamers examined.

  11. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  12. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    Science.gov (United States)

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-05-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours.

  13. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  14. Aptamer-targeted RNAi for HIV-1 therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2011-01-01

    The highly specific mechanism of RNA (RNAi) that inhibits the expression of disease genes is increasingly being harnessed to develop a new class of therapeutics for a wide variety of human maladies. The successful use of small interfering RNAs (siRNAs) for therapeutic purposes requires safe and efficient delivery to specific cells and tissues. Herein, we demonstrate novel cell type-specific dual inhibitory function anti-gp120 aptamer-siRNA delivery systems for HIV-1 therapy, in which both the aptamer and the siRNA portions have potent anti-HIV activities. The envelope glycoprotein is expressed on the surface of HIV-1 infected cells, allowing binding and internalization of the aptamer-siRNA chimeric molecules. The Dicer substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells. Our results provide a set of novel aptamer-targeted RNAi therapeutics to combat HIV and further validate the use of anti-gp120 aptamers for delivery of Dicer substrate siRNAs.

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  17. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  18. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  19. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  20. Peptide aptamers as new tools to modulate clathrin-mediated internalisation — inhibition of MT1-MMP internalisation

    Directory of Open Access Journals (Sweden)

    Ferrigno Paul

    2010-07-01

    Full Text Available Abstract Background Peptide aptamers are combinatorial protein reagents that bind to targets with a high specificity and a strong affinity thus providing a molecular tool kit for modulating the function of their targets in vivo. Results Here we report the isolation of a peptide aptamer named swiggle that interacts with the very short (21 amino acid long intracellular domain of membrane type 1-metalloproteinase (MT1-MMP, a key cell surface protease involved in numerous and crucial physiological and pathological cellular events. Expression of swiggle in mammalian cells was found to increase the cell surface expression of MT1-MMP by impairing its internalisation. Swiggle interacts with the LLY573 internalisation motif of MT1-MMP intracellular domain, thus disrupting the interaction with the μ2 subunit of the AP-2 internalisation complex required for endocytosis of the protease. Interestingly, swiggle-mediated inhibition of MT1-MMP clathrin-mediated internalisation was also found to promote MT1-MMP-mediated cell migration. Conclusions Taken together, our results provide further evidence that peptide aptamers can be used to dissect molecular events mediated by individual protein domains, in contrast to the pleiotropic effects of RNA interference techniques.

  1. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Fen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Environmental Science and Engineering College, Hubei Polytechnic University, Huangshi 435003 (China); Lian, Yan; Li, Jishan; Zheng, Jing; Hu, Yaping; Liu, Jinhua; Huang, Jin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yang, Ronghua, E-mail: Yangrh@pku.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-10-17

    Graphical abstract: Adenosine-binding aptamer was splitted into two fragments P2 and P3 which labeled pyrene molecules, mainly produce monomer signal. γ-CD cavity brings P2 and P3 in close proximity, allowing for weak excimer emission. In the presence of target, P2 and P3 are expected to bind ATP and form an aptamer/target complex, leads to large increase of the pyrene excimer fluorescence. -- Highlights: •We assembled split aptamer and γ-cyclodextrin fluorescence biosensors for ATP detection. •The biosensor increased quantum yield and emission lifetime of the excimer. •Time-resolved fluorescence is effective for ATP assay in complicated environment. -- Abstract: A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively.

  2. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  3. Cell-SELEX Identifies a “Sticky” RNA Aptamer Sequence

    Science.gov (United States)

    2017-01-01

    Cell-SELEX is performed to select for cell binding aptamers. We employed an additional selection pressure by using RNAse to remove surface-binding aptamers and select for cell-internalizing aptamers. A common RNA sequence was identified from independent cell-SELEX procedures against two different pancreatic cancer cell lines, indicating a strong selection pressure towards this sequence from the large pool of other available sequences present in the aptamer library. The aptamer is not specific for the pancreatic cancer cell lines, and a similar sequence motif is present in previously published internalizing aptamers. The identified sequence forms a structural motif that binds to a surface protein, which either is highly abundant or has strong affinity for the selected aptamer sequence. Deselecting (removing) this sequence during cell-SELEX may increase the probability of identifying aptamers against cell type-specific targets on the cell surface. PMID:28194280

  4. Cell-SELEX Identifies a “Sticky” RNA Aptamer Sequence

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2017-01-01

    Full Text Available Cell-SELEX is performed to select for cell binding aptamers. We employed an additional selection pressure by using RNAse to remove surface-binding aptamers and select for cell-internalizing aptamers. A common RNA sequence was identified from independent cell-SELEX procedures against two different pancreatic cancer cell lines, indicating a strong selection pressure towards this sequence from the large pool of other available sequences present in the aptamer library. The aptamer is not specific for the pancreatic cancer cell lines, and a similar sequence motif is present in previously published internalizing aptamers. The identified sequence forms a structural motif that binds to a surface protein, which either is highly abundant or has strong affinity for the selected aptamer sequence. Deselecting (removing this sequence during cell-SELEX may increase the probability of identifying aptamers against cell type-specific targets on the cell surface.

  5. Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers.

    Science.gov (United States)

    Wang, Pengjuan; Wan, Ying; Deng, Shengyuan; Yang, Shulin; Su, Yan; Fan, Chunhai; Aldalbahi, Ali; Zuo, Xiaolei

    2016-12-15

    Herein, an aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) strategy for electrochemical aptasensor (E-aptasensor) is developed for analysis of cancer biomarker carcino-embryonic antigen (CEA). A pair of DNA aptamers is employed which can be specifically bond with CEA simultaneously. One of the aptamer is thiolated at 3'-terminal and immobilized onto the gold electrode as a capture probe, while the other one has a thiol group at its 5'-terminal and is modified onto the gold nanoparticles surface to form a nanoprobe. In the present of target, the two aptamers can "sandwich" the target, thus the nanoprobe is attached to the electrode. Then terminal deoxynucleotidyl transferase (TdT) is employed to catalyze the incorporation of biotin labeled dNTPs into the 3'-OH terminals of the DNA aptamer on the nanoprobe. The as-generated long DNA oligo tentacles allow specific binding of numerous avidin modified horseradish peroxidase (Av-HRP), resulting in tens of thousands of HRP catalyzed reduction of hydrogen peroxide and sharply increasing electrochemical signals. Taking advantage of the enzyme based nucleic acid amplification and nanoprobe, this strategy is demonstrated to possess the outstanding amplification efficiency.

  6. tPA-binding RNA Aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils

    2015-01-01

    The serine protease Tissue-type Plasminogen Activator (tPA) is the principal initiator of fibrinolysis in mammalian physiology. Recombinant tPA is employed in the pharmacological resolution of vessel occlusions caused by pathological thrombosis, the originating cause of cerebral ischaemic strokes....... Globally, stroke is the leading cause of disability and the third leading cause of mortality. Fibrinolytic therapy with recombinant tPA rescues suboptimally perfused penumbral nervous tissue, but has also been implicated in detrimental neurotoxic effects, which are chiefly mediated by the Low......, and upon conjugation to serum albumin. K18v2 was able to inhibit tPA-induced fibrinogen depletion in vitro, which may provide additional benefits in stroke treatment. A conjugate of both aptamers separated by a linker encompassed the activities of both constituent sequences, and additionally possessed...

  7. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14

    OpenAIRE

    Cho, Yuri; Lee, Yun Bin; Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS...

  8. General approach for engineering small-molecule-binding DNA split aptamers.

    Science.gov (United States)

    Kent, Alexandra D; Spiropulos, Nicholas G; Heemstra, Jennifer M

    2013-10-15

    Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.

  9. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods.

    Science.gov (United States)

    Bruno, John G; Kiel, Johnathan L

    2002-01-01

    Systematic evolution of ligands by exponential enrichment (SELEX) was used to develop DNA ligands (aptamers) to cholera whole toxin and staphylococcal enterotoxin B (SEB). Affinity selection of aptamers was accomplished by conjugating the biotoxins to tosyl-activated magnetic beads. The use of magnetic beads reduces the volumes needed to perform aptamer selection, thus obviating alcohol precipitation and allowing direct PCR amplification from the bead surface. Following five rounds of SELEX, 5'-biotinylated aptamers were bound to streptavidin-coated magnetic beads and used for the detection of ruthenium trisbypyridine [Ru(bpy)3(2+)]-labeled cholera toxin and SEB by an electrochemiluminescence methodology. A comparison of control (double-stranded) aptamer binding was made with aptamers that were heat denatured at 96 degrees C (single-stranded) and allowed to cool (conform) in the presence of biotoxin-conjugated magnetic beads. Results suggest that control aptamers performed equally well when compared to heat-denatured DNA aptamers in the cholera toxin electrochemiluminescence assay and a colorimetric microplate assay employing peroxidase-labeled cholera toxin and 5'-amino terminated aptamers conjugated to N-oxysuccinimide-activated microtiter wells. Interestingly, however, in the SEB electrochemiluminescence assay, double-stranded aptamers exceeded the performance of single-stranded aptamers. The detection limits of all aptamer assays were in the low nanogram to low picogram ranges.

  10. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan;

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  11. Osteomyelitis diagnosis by {sup 99m}Tc radiolabeled aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.R.; Ferreira, I.M.; Andrade, A.S.R., E-mail: sararoberta7@hotmail.com, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, A.L.B.; Cardoso, V.N.; Diniz, O.F., E-mail: brancodebarros@yahoo.com.br, E-mail: valbertcardoso@yahoo.com.br, E-mail: simoneodilia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    Osteomyelitis, which is characterized by progressive inflammatory destruction and new opposition of bone, is still a difficult infection to treat. The clinical diagnosis in late stages is achieved easily, but an early diagnosis is more challenging. Staphylococcus aureus is a common agent found in osteomyelitis and bone prostheses infection. Diagnosis by scintigraphy has advantages because it is a non-invasive procedure and is able to perform an early diagnosis even before anatomic changes. Thus, nuclear medicine could contribute to an accurate diagnosis since specific radiopharmaceuticals were developed. In this study, aptamers selected to Staphylococcus aureus were labeled with {sup 99m}Tc and used for bacteria identification in an osteomyelitis experimental model. The aptamers selected to S. aureus were directly labelled with {sup 99m}Tc and were evaluated by biodistribution studies. Wistar rats with intraosseous infection in the right paw were used. A random aptamer labelled with {sup 99m}Tc was as control. Six animals were used in each group. The aptamers labeled with {sup 99m}Tc were able to identify the infection foci caused by S. aureus displaying a target/non-target ratio of 2,23 ± 0,20, after 3 h. The control group presented a target/non-target ratio 1,08 ± 0.23. The results indicated that the radiolabeled aptamers were able to identify specifically the infection foci and they should be further explored for infection diagnosis by scintigraphy. (author)

  12. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    Science.gov (United States)

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-07-18

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  13. Aptamers in Diagnostics and Treatment of Viral Infections

    Directory of Open Access Journals (Sweden)

    Tomasz Wandtke

    2015-02-01

    Full Text Available Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment. It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus, HBV (Hepatitis B Virus, HCV (Hepatitis C Virus, SARS (Severe Acute Respiratory Syndrome, H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.

  14. Label-free selection of RNA aptamers for metabolic engineering.

    Science.gov (United States)

    Hwang, Chuhern; Carothers, James M

    2016-08-15

    RNA aptamers can be assembled into genetic regulatory devices that sense and respond to levels of specific cellular metabolites and thus serve an integral part of designing dynamic control into engineered metabolic pathways. Here, we describe a practical method for generating specific and high affinity aptamers to enable the wider use of in vitro selection and a broader application of aptamers for metabolic engineering. Conventional selection methods involving either radioactive labeling of RNA or the use of label-free methods such as SPR to track aptamer enrichment require resources that are not widely accessible to research groups. We present a label-free selection method that uses small volume spectrophotometers to track RNA enrichment paired with previously characterized affinity chromatography methods. Borrowing techniques used in solid phase peptide synthesis, we present an approach for immobilizing a wide range of metabolites to an amino PEGA matrix. As an illustration, we detail laboratory techniques employed to generate aptamers that bind p-aminophenylalanine, a metabolic precursor for bio-based production of plastics and the pristinamycin family of antibiotics. We focused on the development of methods for ligand immobilization, selection via affinity chromatography, and nucleic acid quantification that can be performed with common laboratory equipment.

  15. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    Science.gov (United States)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  16. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  17. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors.

    Science.gov (United States)

    Schoukroun-Barnes, Lauren R; Macazo, Florika C; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J

    2016-06-12

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ∼10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  18. DNA aptamers as molecular probes for colorectal cancer study.

    Directory of Open Access Journals (Sweden)

    Kwame Sefah

    Full Text Available BACKGROUND: Understanding the molecular features of specific tumors can increase our knowledge about the mechanism(s underlying disease development and progression. This is particularly significant for colorectal cancer, which is a heterogeneous complex of diseases developed in a sequential manner through a multistep carcinogenic process. As such, it is likely that tumors with similar characteristics might originate in the same manner and have a similar molecular behavior. Therefore, specific mapping of the molecular features can be potentially useful for both tumor classification and the development of appropriate therapeutic regimens. However, this can only be accomplished by developing high-affinity molecular probes with the ability to recognize specific markers associated with different tumors. Aptamers can most easily meet this challenge based on their target diversity, flexible manipulation and ease of development. METHODOLOGY AND RESULTS: Using a method known as cell-based Systematic Evolution of Ligands by Exponential enrichment (cell-SELEX and colorectal cancer cultured cell lines DLD-1 and HCT 116, we selected a panel of target-specific aptamers. Binding studies by flow cytometry and confocal microscopy showed that these aptamers have high affinity and selectivity. Our data further show that these aptamers neither recognize normal colon cells (cultured and fresh, nor do they recognize most other cancer cell lines tested. CONCLUSION/SIGNIFICANCE: The selected aptamers can identify specific biomarkers associated with colorectal cancers. We believe that these probes could be further developed for early disease detection, as well as prognostic markers, of colorectal cancers.

  19. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface.

    Science.gov (United States)

    Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E; Mallikaratchy, Prabodhika

    2017-08-29

    Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics.

  20. Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics

    Science.gov (United States)

    2012-01-01

    Small organic molecules are challenging targets for an aptamer selection using the SELEX technology (SELEX—Systematic Evolution of Ligans by EXponential enrichment). Often they are not suitable for immobilization on solid surfaces, which is a common procedure in known aptamer selection methods. The Capture-SELEX procedure allows the selection of DNA aptamers for solute targets. A special SELEX library was constructed with the aim to immobilize this library on magnetic beads or other surfaces. For this purpose a docking sequence was incorporated into the random region of the library enabling hybridization to a complementary oligo fixed on magnetic beads. Oligonucleotides of the library which exhibit high affinity to the target and a secondary structure fitting to the target are released from the beads for binding to the target during the aptamer selection process. The oligonucleotides of these binding complexes were amplified, purified, and immobilized via the docking sequence to the magnetic beads as the starting point of the following selection round. Based on this Capture-SELEX procedure, the successful DNA aptamer selection for the aminoglycoside antibiotic kanamycin A as a small molecule target is described. PMID:23326761

  1. Targeting Insulin Receptor with a Novel Internalizing Aptamer

    Directory of Open Access Journals (Sweden)

    Margherita Iaboni

    2016-01-01

    Full Text Available Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX, and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR. Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers.

  2. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome. PMID:27672383

  3. Development of a Sphingosylphosphorylcholine Detection System Using RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Iwao Waga

    2010-08-01

    Full Text Available Sphingosylphosphorylcholine (SPC is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS is used for the quantitation of SPC. However, because of the complicated procedures required it may not be cost effective, hampering its regular usage in a routine practical SPC monitoring. In this report, we have generated RNA aptamers that bind to SPC with high affinity using an in vitro selection procedure and developed an enzyme-linked aptamer assay system using the minimized SPC aptamer that can successfully distinguish SPC from the structurally related sphingosine 1-phosphate (S1P. This is the first case of the Systematic Evolution of Ligands by EXponential enrichment (SELEX process being performed with a lysosphingolipid. The SPC aptamers would be valuable tools for the development of aptamer-based medical diagnosis and for elucidating the biological role of SPC.

  4. Aptamers: An in vitro Evolution of Therapeutic and Diagnostic Applications in Medicine

    Directory of Open Access Journals (Sweden)

    Basak KAYHAN

    2013-06-01

    Full Text Available Aptamers are nucleic acid oligomers with distinct conformational shapes that allow binding targets with high affinity and specificity. Selective Evolution of Ligands by Exponential Enrichment (SELEX; an in vitro selection process to develop aptamers, has been invented in 1990. Despite more than 20 years have passed after its discovery, products of SELEX technology are in use in medicine. In this review we discuss why we need aptamers not only in therapeutic but also in diagnostic applications; and also critical points in SELEX technology. Finally; we present the aptamers in use and some patented aptamers awaiting approval. [Dis Mol Med 2013; 1(3.000: 54-60

  5. Vascular endothelial dysfunction and pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Jin; Bo; Su

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.

  6. Endothelial dysfunction: EDCF revisited

    Institute of Scientific and Technical Information of China (English)

    PAUL M Vanhoutte

    2008-01-01

    Endothelial cells can initiate contraction (constriction) of the vascular smooth muscle cells that surround them. Such endothelium-dependent, acute increases in contractile tone can be due to the withdrawal of the production of nitric oxide, to the production of vasoconstrictor peptides (angiotensin Ⅱ, endothelin-1), to the formation of oxygen-derived free radicals(superoxide anions) and/or the release of vasoconstrictor metabolites of arachidonic acid. The latter have been termed endothelium-derived contracting factor (EDCF) as they can contribute to moment-to-moment changes in contractile activity of the underlying vascular smooth muscle cells. To judge from animal experiments, EDCF-mediated responses are exacerbated when the production of nitric oxide is impaired as well as by aging, spontaneous hypertension and diabetes. To judge from human studies, they contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. Since EDCF causes vasoconstriction by activation of the TP-receptors on the vascular smooth muscle cells, selective antagonists at these receptors prevent endothelium-dependent contractions, and curtail the endothelial dysfunction in hypertension and diabetes.

  7. Aptamer-Based Therapeutics: New Approaches to Combat Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Ka-To Shum

    2013-11-01

    Full Text Available Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.

  8. Aptamer-based therapeutics: new approaches to combat human viral diseases.

    Science.gov (United States)

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J

    2013-11-25

    Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.

  9. In vitro Selection of DNA Aptamers and Fluorescence-Based Recognition for Rapid Detection Listeria monocytogenes

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-qing; LIAN Ying-qi; GAO Chao; YU Xiao-feng; ZHU Ming; ZONG Kai; CHEN Xue-jiao; YAN Yi

    2014-01-01

    Aptamers are speciifc nucleic acid sequences that can bind to a wide range of nucleic acid and non-nucleic acid targets with high afifnity and speciifcity. Nucleic acid aptamers are selected in vitro from single stranded DNA or RNA ligands containing random sequences of up to a few hundred nucleotides. Systematic evolution of ligands by exponential enrichment (SELEX) was used to select and PCR amplify DNA sequences (aptamers) capable of binding to and detecting Listeria monocytogenes, one of the major food-borne pathogens. A simpliifed afifnity separation approach was employed, in which L. monocytogenes in exponential (log) phase of growth was used as the separation target. A lfuorescently-labeled aptamer assay scheme was devised for detecting L. monocytogenes. This report described a novel approach to the detection of L. monocytogenes using DNA aptamers. Aptamers were developed by nine rounds of SELEX. A high afifnity aptamer was successfully selected from the initial random DNA pool, and its secondary structure was also investigated. One of aptamers named e01 with the highest afifnity was further tested in aptamer-peroxidase and aptamer-lfuorescence staining protocols. This study has proved the principle that the whole-cell SELEX could be a promising technique to design aptamer-based molecular probes for dectection of pathogenic microorganisms without tedious isolation and puriifcation of complex markers or targets.

  10. A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length.

    Science.gov (United States)

    Tian, Yu; Wang, Yuan; Sheng, Zhi; Li, Tingting; Li, Xu

    2016-11-15

    This work investigates the effect of shortening aptamer sequences on the colorimetric detection of acetamiprid using aptamer-wrapped gold nanoparticles (AuNPs). Truncated 37-mer and 25-mer aptamers were generated by deleting excess flanking nucleotides from parental 49-mer acetamiprid-target aptamer. In comparing the responses of the three sequences, truncated aptamers did not improve the ability to discriminate against other tested pesticides. However, comparison between 49-mer and other shorter aptamers showed that shortening aptamer sequences through removing excess flanking nucleotides outsides of binding region improved colorimetric sensitivity for acetamiprid by 3.3 fold. Due to excess bases, the target-bound aptamer might still adhere to AuNPs, resulting in incomplete dissociation of aptamer from AuNPs and therefore the suppression of aggregation responses. This work provides further insight to the effects of aptamer structure on detection of the target, as well as a method by fine-tuning aptamer length for rapid detection of pesticide residues in environments or food.

  11. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  12. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems.

    Science.gov (United States)

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Badshah, Shaikh Atik; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  13. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Zhou, Jing; Snipes, Matthew P; Battig, Mark R; Wang, Yong

    2011-10-01

    Biomaterials for the precise control of protein release are important to the development of new strategies for treating human diseases. This study aimed to fundamentally understand aptamer--protein dissociation triggered by complementary oligonucleotides, and to apply this understanding to develop affinity hydrogels for controlled protein release. The results showed that the oligonucleotide tails of the aptamers played a critical role in inducing intermolecular hybridization and triggering aptamer--protein dissociation. In addition, the attachment of the oligonucleotide tails to the aptamers and the increase of hybridizing length could produce a synergistic effect on the dissociation of bound proteins from their aptamers. More importantly, pegylated complementary oligonucleotides could successfully trigger protein release from the aptamer-functionalized hydrogels at multiple time points. Based on these results, it is believed that aptamer-functionalized hydrogels and complementary oligonucleotides hold great potential of controlling the release of protein drugs to treat human diseases.

  14. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer

    Directory of Open Access Journals (Sweden)

    Marlies Gijs

    2016-05-01

    Full Text Available Aptamers provide a potential source of alternative targeting molecules for existing antibody diagnostics and therapeutics. In this work, we selected novel DNA aptamers targeting the HER2 receptor by an adherent whole-cell SELEX approach. Individual aptamers were identified by next generation sequencing and bioinformatics analysis. Two aptamers, HeA2_1 and HeA2_3, were shown to bind the HER2 protein with affinities in the nanomolar range. In addition, both aptamers were able to bind with high specificity to HER2-overexpressing cells and HER2-positive tumor tissue samples. Furthermore, we demonstrated that aptamer HeA2_3 is being internalized into cancer cells and has an inhibitory effect on cancer cell growth and viability. In the end, we selected novel DNA aptamers with great potential for the diagnosis and possible treatment of HER2-positive cancer.

  15. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    Science.gov (United States)

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  16. 高血压、糖尿病联合作用加重血管舒张功能受损%Interaction of hypertension and diabetes on impairment of endothelial function

    Institute of Scientific and Technical Information of China (English)

    马立宁; 赵水平; 李江; 周启昌; 高梅

    2001-01-01

    .001). Conclusion Our results indicate that the interaction of 2-DM and hypertension aggravates endothelial dysfunction and further impairs the smooth muscle function.

  17. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  18. Selective Targeting to Glioma with Nucleic Acid Aptamers.

    Directory of Open Access Journals (Sweden)

    Shraddha Aptekar

    Full Text Available Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.

  19. Massively parallel interrogation of aptamer sequence, structure and function.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  20. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  1. Aptamer conjugated magnetic nanoparticles as nanosurgeons

    Science.gov (United States)

    Nair, Baiju G.; Nagaoka, Yutaka; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2010-11-01

    Magnetic nanoparticles have shown promise in the fields of targeted drug delivery, hyperthermia and magnetic resonance imaging (MRI) in cancer therapy. The ability of magnetic nanoparticles to undergo surface modification and the effect of external magnetic field in the dynamics of their movement make them an excellent nanoplatform for cancer destruction. Surgical removal of cancerous or unwanted cells selectively from the interior of an organ or tissue without any collateral damage is a serious problem due to the highly infiltrative nature of cancer. To address this problem in surgery, we have developed a nanosurgeon for the selective removal of target cells using aptamer conjugated magnetic nanoparticles controlled by an externally applied three-dimensional rotational magnetic field. With the help of the nanosurgeon, we were able to perform surgical actions on target cells in in vitro studies. LDH and intracellular calcium release assay confirmed the death of cancer cells due to the action of the nanosurgeon which in turn nullifies the possibility of proliferation by the removed cells. The nanosurgeon will be a useful tool in the medical field for selective surgery and cell manipulation studies. Additionally, this system could be upgraded for the selective removal of complex cancers from diverse tissues by incorporating various target specific ligands on magnetic nanoparticles.

  2. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411

    OpenAIRE

    Xinmeng Fan; Lidan Sun; Yun Wu; Lihe Zhang; Zhenjun Yang

    2016-01-01

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2′-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2′-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2′-deoxyinosine at positions 12 and 24 (FAN-1224dI),...

  3. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.

    Science.gov (United States)

    Yang, Jing; Jiang, Shuoxing; Liu, Xiangrong; Pan, Linqiang; Zhang, Cheng

    2016-12-14

    In this study, an aptamer-substrate strategy is introduced to control programmable DNA origami pattern. Combined with DNA aptamer-substrate binding and DNAzyme-cutting, small DNA tiles were specifically controlled to fill into the predesigned DNA origami frame. Here, a set of DNA logic gates (OR, YES, and AND) are performed in response to the stimuli of adenosine triphosphate (ATP) and cocaine. The experimental results are confirmed by AFM imaging and time-dependent fluorescence changes, demonstrating that the geometric patterns are regulated in a controllable and programmable manner. Our approach provides a new platform for engineering programmable origami nanopatterns and constructing complex DNA nanodevices.

  4. G-rich VEGF aptamer with locked and unlocked nucleic acid modifications exhibits a unique G-quadruplex fold

    DEFF Research Database (Denmark)

    Marusic, Maja; Veedu, Rakesh N; Wengel, Jesper

    2013-01-01

    The formation of a single G-quadruplex structure adopted by a promising 25 nt G-rich vascular endothelial growth factor aptamer in a K(+) rich environment was facilitated by locked nucleic acid modifications. An unprecedented all parallel-stranded monomeric G-quadruplex with three G-quartet planes...... residues contribute to thermal stabilization of the adopted structure and formation of structurally pre-organized intermediates that facilitate folding into a single G-quadruplex. Understanding the impact of chemical modifications on folding, thermal stability and structural polymorphism of G...... exhibits several unique structural features. Five consecutive guanine residues are all involved in G-quartet formation and occupy positions in adjacent DNA strands, which are bridged with a no-residue propeller-type loop. A two-residue D-shaped loop facilitates inclusion of an isolated guanine residue...

  5. RNA aptamers inhibit the growth of the fish pathogen viral hemorrhagic septicemia virus (VHSV).

    Science.gov (United States)

    Punnarak, Porntep; Santos, Mudjekeewis D; Hwang, Seong Don; Kondo, Hidehiro; Hirono, Ikuo; Kikuchi, Yo; Aoki, Takashi

    2012-12-01

    Viral hemorrhagic septicemia virus (VHSV) is a serious disease impacting wild and cultured fish worldwide. Hence, an effective therapeutic method against VHSV infection needs to be developed. Aptamer technology is a new and promising method for diagnostics and therapeutics. It revolves around the use of an aptamer molecule, an artificial ligand (nucleic acid or protein), which has the capacity to recognize target molecules with high affinity and specificity. Here, we aimed at selecting RNA aptamers that can specifically bind to and inhibit the growth of a strain of fish VHSV both in vitro and in vivo. Three VHSV-specific RNA aptamers (F1, F2, and C6) were selected from a pool of artificially and randomly produced oligonucleotides using systematic evolution of ligands by exponential enrichment. The three RNA aptamers showed obvious binding to VHSV in an electrophoretic mobility shift assay but not to other tested viruses. The RNA aptamers were tested for their ability to inhibit VHSV in vitro using hirame natural embryo (HINAE) cells. Cytopathic effect and plaque assays showed that all aptamers inhibited the growth of VHSV in HINAE cells. In vivo tests using RNA aptamers produced by Rhodovulum sulfidophilum showed that extracellular RNA aptamers inhibited VHSV infection in Japanese flounder. These results suggest that the RNA aptamers are a useful tool for protection against VHSV infection in Japanese flounder.

  6. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14.

    Science.gov (United States)

    Cho, Yuri; Lee, Yun Bin; Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.

  7. Electrochemical biosensors and logic devices based on aptamers

    Institute of Scientific and Technical Information of China (English)

    Zuo Xiaolei; Lin Meihua; Fan Chunhai

    2013-01-01

    Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library.Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification.In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability,fast response and easy miniaturization.Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized.Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy.We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates.Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence.We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection.In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.

  8. Immobilized aptamer paper spray ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T

    2017-01-05

    A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Regulation of photosensitisation processes by an RNA aptamer

    Science.gov (United States)

    Thoa, Tran Thi Thanh; Minagawa, Noriko; Aigaki, Toshiro; Ito, Yoshihiro; Uzawa, Takanori

    2017-02-01

    One of the most powerful attributes of proteins is their ability to bind to and modulate the chemistry of cofactors and prosthetic groups. Here, we demonstrated the ability of an artificial nucleic acid (an aptamer) to similarly control the functionality of a non-biological element. Specifically, we selected an RNA aptamer that binds tris(bipyridine) ruthenium (II), Ru(bpy)32+, an inorganic complex that has attracted intense interest due to its photoredox chemistry, including its ability to split water by visible light. We found that a newly discovered aptamer strongly and enantioselectively binds Λ-Ru(bpy)32+ (Kd = 65 nM) and, in doing so, selectively suppresses deactivation via energy transfer, thereby elongating the lifetime of its photo-excited state by four-fold. The ability of the aptamer to enhance this important aspect of Ru(bpy)32+ chemistry illustrates a broader point concerning the potential power of combining in vitro-created biomolecules with non-biological reactants to perform enhanced chemical reactions.

  10. Single-Round Patterned DNA Library Microarray Aptamer Lead Identification

    Directory of Open Access Journals (Sweden)

    Jennifer A. Martin

    2015-01-01

    Full Text Available A method for identifying an aptamer in a single round was developed using custom DNA microarrays containing computationally derived patterned libraries incorporating no information on the sequences of previously reported thrombin binding aptamers. The DNA library was specifically designed to increase the probability of binding by enhancing structural complexity in a sequence-space confined environment, much like generating lead compounds in a combinatorial drug screening library. The sequence demonstrating the highest fluorescence intensity upon target addition was confirmed to bind the target molecule thrombin with specificity by surface plasmon resonance, and a novel imino proton NMR/2D NOESY combination was used to screen the structure for G-quartet formation. We propose that the lack of G-quartet structure in microarray-derived aptamers may highlight differences in binding mechanisms between surface-immobilized and solution based strategies. This proof-of-principle study highlights the use of a computational driven methodology to create a DNA library rather than a SELEX based approach. This work is beneficial to the biosensor field where aptamers selected by solution based evolution have proven challenging to retain binding function when immobilized on a surface.

  11. Aptamer-based Field-Effect Biosensor for Tenofovir Detection

    Science.gov (United States)

    Aliakbarinodehi, N.; Jolly, P.; Bhalla, N.; Miodek, A.; De Micheli, G.; Estrela, P.; Carrara, S.

    2017-01-01

    During medical treatment it is critical to maintain the circulatory concentration of drugs within their therapeutic range. A novel biosensor is presented in this work to address the lack of a reliable point-of-care drug monitoring system in the market. The biosensor incorporates high selectivity and sensitivity by integrating aptamers as the recognition element and field-effect transistors as the signal transducer. The drug tenofovir was used as a model small molecule. The biointerface of the sensor is a binary self-assembled monolayer of specific thiolated aptamer and 6-mercapto-1-hexanol (MCH), whose ratio was optimized by electrochemical impedance spectroscopy measurements to enhance the sensitivity towards the specific target. Surface plasmon resonance, performed under different buffer conditions, shows optimum specific and little non-specific binding in phosphate buffered saline. The dose-response behavior of the field-effect biosensor presents a linear range between 1 nM and 100 nM of tenofovir and a limit of detection of 1.2 nM. Two non-specific drugs and one non-specific aptamer, tested as stringent control candidates, caused negligible responses. The applications were successfully extended to the detection of the drug in human serum. As demonstrated by impedance measurements, the aptamer-based sensors can be used for real-time drug monitoring. PMID:28294122

  12. Long Shelf Life of a Lyophilized DNA Aptamer Beacon Assay.

    Science.gov (United States)

    Bruno, John G

    2017-03-01

    An aptamer beacon previously developed to detect C-telopeptide (CTx) from human bone collagen breakdown was lyophilized and shown to give a "lights on" concentration-dependent spectral fluorescence response essentially identical to that of the fresh reagent despite storage in a dark dry environment for the past 5.5 years.

  13. Aptamer conjugated silver nanoparticles for the detection of interleukin 6

    Science.gov (United States)

    Locke, Andrea K.; Norwood, Nicole; Marks, Haley L.; Schechinger, Monika; Jackson, George W.; Graham, Duncan; Coté, Gerard L.

    2016-03-01

    The controlled assembly of plasmonic nanoparticles by a molecular binding event has emerged as a simple yet sensitive methodology for protein detection. Metallic nanoparticles (NPs) coated with functionalized aptamers can be utilized as biosensors by monitoring changes in particle optical properties, such as the LSPR shift and enhancement of the SERS spectra, in the presence of a target protein. Herein we test this method using two modified aptamers selected for the protein biomarker interleukin 6, an indicator of the dengue fever virus and other diseases including certain types of cancers, diabetes, and even arthritis. IL6 works by inducing an immunological response within the body that can be either anti-inflammatory or pro-inflammatory. The results show that the average hydrodynamic diameter of the NPs as measured by Dynamic Light Scattering was ~42 nm. After conjugation of the aptamers, the peak absorbance of the AgNPs shifted from 404 to 408 nm indicating a surface modification of the NPs due to the presence of the aptamer. Lastly, preliminary results were obtained showing an increase in SERS intensity occurs when the IL-6 protein was introduced to the conjugate solution but the assay will still need to be optimized in order for it to be able to monitor varying concentration changes within and across the desired range.

  14. Development of aptamer based HIV-1 entry inhibitor prophylactic drugs

    CSIR Research Space (South Africa)

    London, G

    2013-08-01

    Full Text Available AIDS remains a major public health problem globally, especially in Southern Africa where over 6.4 million people are infected by the most prevalent HIV-1 subtype C. To help stop the spread of HIV-1 subtype C, we isolated 2ʹ-F-RNA aptamers against gp...

  15. Is reversal of endothelial dysfunction still an attractive target in modern cardiology?

    Institute of Scientific and Technical Information of China (English)

    Ify; Mordi; Nikolaos; Tzemos

    2014-01-01

    Although the endothelium has a number of important functions, the term endothelial dysfunction is commonly used to describe impairment in its vasodilatory capacity. There have been numerous studies evaluating the relationship between endothelial dysfunction and cardiovascular disease, however assessment of endothelial function is perhaps still primarily thought of as a research tool and has not reached widespread clinical acceptance. In this review we explore the relationship between endothelial dysfunction and cardiovascular disease, its prognostic significance, methods of pharmacological reversal of endothelial dysfunction, and ask the question, is reversal of endothelial dysfunction still an attractive target in modern cardiology?

  16. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes.

    Science.gov (United States)

    Lee, Sang-Hee; Ahn, Ji-Young; Lee, Kyeong-Ah; Um, Hyun-Ju; Sekhon, Simranjeet Singh; Sun Park, Tae; Min, Jiho; Kim, Yang-Hoon

    2015-06-15

    As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    Full Text Available BACKGROUND: The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. METHODOLOGY/PRINCIPAL FINDINGS: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. CONCLUSIONS/SIGNIFICANCE: We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next

  18. Physiological hydrostatic pressure protects endothelial monolayer integrity.

    Science.gov (United States)

    Müller-Marschhausen, K; Waschke, J; Drenckhahn, D

    2008-01-01

    Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.

  19. Novel protein detection method based on proximity-dependent polymerase reaction and aptamers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In recent years, specific detection of proteins is one of the hot issues about aptamers in proteomics.Here we reported a simple, sensitive and specific proximity-dependent protein assay with dual DNA aptamers. Thrombin was used as the model protein, and two aptamer probes with complementary sequence at 3'-end were designed for the two distinct epitopes of the protein. Association of the two aptamers with thrombin resulted in stable hybrids due to the proximity of 3'-end, then polymerase reaction was induced. The amount of obtained dsDNA was indicated using the fluorescence dye Sybr Green 1. The results showed that the initial velocity of polymerase reaction had a positive correlation with concentration of thrombin. The advantages of this dual-aptamer-based approach included simple and flexible design of aptamer probes, high selectivity and high sensitivity. The detection limit was 6.9pmol/L.

  20. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  1. Comparison of In-Solution Biorecognition Properties of Aptamers against Ochratoxin A

    Science.gov (United States)

    McKeague, Maureen; Velu, Ranganathan; De Girolamo, Annalisa; Valenzano, Stefania; Pascale, Michelangelo; Smith, McKenzie; DeRosa, Maria C.

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by several species of Aspergillus and Penicillium and frequently found as a natural contaminant in a wide range of food commodities. Novel and robust biorecognition agents for detecting this molecule are required. Aptamers are artificial nucleic acid ligands able to bind with high affinity and specificity to a given target molecule. In the last few years, three separate research groups have selected aptamers for ochratoxin A. While each of these three families of aptamers have been incorporated into various methods for detecting OTA, it is unclear if each aptamer candidate is better suited for a particular application. Here, we perform the first head-to-head comparison of solution-based binding parameters for these groups of aptamers. Based on our results, we provide recommendations for the appropriate choice of aptamer for incorporation into solution-based biorecognition assays and applications. PMID:27854269

  2. Comparison of the 'chemical' and 'structural' approaches to the optimization of the thrombin-binding aptamer.

    Directory of Open Access Journals (Sweden)

    Olga Tatarinova

    Full Text Available Noncanonically structured DNA aptamers to thrombin were examined. Two different approaches were used to improve stability, binding affinity and biological activity of a known thrombin-binding aptamer. These approaches are chemical modification and the addition of a duplex module to the aptamer core structure. Several chemically modified aptamers and the duplex-bearing ones were all studied under the same conditions by a set of widely known and some relatively new methods. A number of the thrombin-binding aptamer analogs have demonstrated improved characteristics. Most importantly, the study allowed us to compare directly the two approaches to aptamer optimization and to analyze their relative advantages and disadvantages as well as their potential in drug design and fundamental studies.

  3. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    CERN Document Server

    Alfinito, Eleonora; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2016-01-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors, with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer thrombin-binding aptamer (TBA), has been widely explored concerning both its structure, which was resolved with different techniques, and its function, especially about the possibility of using it as the active part of biosensors. This paper proposes a microscopic model of the electrical properties of TBA and the aptamer-thrombin complex, combining information from both structure and function. The novelty consists in describing both the aptamer alone and the complex as an impedance network, thus going deeper inside the issues...

  4. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization.

    Science.gov (United States)

    Tan, Sze Y; Acquah, Caleb; Sidhu, Amandeep; Ongkudon, Clarence M; Yon, L S; Danquah, Michael K

    2016-11-01

    The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.

  5. A general double library SELEX strategy for aptamer selection using unmodified nonimmobilized targets.

    Science.gov (United States)

    Lee, Kyung Hyun; Zeng, Huaqiang

    2017-08-01

    Aptamer discovery for unmodified nonimmobilized targets has been constantly presenting itself as a significant challenge to the research community. We demonstrate here a novel double library (DL) SELEX strategy and its usefulness and generality toward discovering both ssDNA- and RNA-based aptamers with nanomolar binding affinities toward unmodified targets of both small (e.g., doxycycline) and large (e.g., VEGF165) sizes. The same selection strategy further allows for concurrent selection of an aptamer pair, recognizing discrete epitopes on the same protein, from the same selection cycles for the sandwich aptamer pair-based biosensor development (e.g., one aptamer for the recognition and the other for the signal transduction). These results establish the DL-SELEX method developed here as a valuable and highly accessible selection strategy for aptamer discovery, especially when chemical modifications of target molecules are not preferred or simply impossible.

  6. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  7. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    Science.gov (United States)

    2009-11-01

    Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria by Dimitra N. Stratis-Cullum, Sun...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters, and Paul M. Pellegrino Sensors and Electron Devices...To) 2007–2008 4. TITLE AND SUBTITLE Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria 5a

  8. Aptamer-gelatin composite for a trigger release system mediated by oligonucleotide hybridization.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Srakaew, Prangkamol; Naramitpanich, Pajaree

    2014-01-01

    Nucleic acid aptamers not only specifically bind to their target proteins with high affinity but also form intermolecular hybridization with their complementary oligonucleotides (CO). The hybridization can interrupt aptamer/protein interaction due to the changes of aptamer secondary structure which rely on hybridization length and base-pairing positions. Herein we aim to use this unique property of the aptamers, when combined with gelatin to develop a novel composite with desirable protein release profiles. Platelet-derived growth factor-BB (PDGF-BB) and its aptamer were used as target molecules. Prior to performing the release study, the effects of CO on aptamer-protein interaction were observed by surface plasmon resonance (SPR). The SPR sensorgram indicated that the aptamer dissociated from the bounded proteins when it hybridized with the CO. The aptamer was then immobilized onto streptavidin coated polystyrene particles via biotin/streptavidin interaction. Then, PDGF-BB and aptamer functionalized particles were mixed with gelatin solution and cast as small pieces of composite. The success of the composite preparation was confirmed by flow cytometry and microscopy. PDGF-BB release at several time points was quantified by ELISA. The results showed that the aptamer-gelatin composite could slow the release rate of the proteins from the composite due to strong binding of proteins and aptamers. Once the CO was added to the system, the release rate was significantly enhanced because the aptamer hybridized with the CO and lost its active secondary structure. Therefore, the proteins were triggered to release out from the composite. This work suggests a promising strategy for controlling the release of bioactive molecules in medical treatments.

  9. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)-paclitaxel nanoconjugates.

    Science.gov (United States)

    Luo, Zimiao; Yan, Zhiqiang; Jin, Kai; Pang, Qiang; Jiang, Ting; Lu, Heng; Liu, Xianping; Pang, Zhiqing; Yu, Lei; Jiang, Xinguo

    2017-03-15

    Chemotherapy is still the main adjuvant strategy after surgery in glioblastoma therapy. As the main obstacles of chemotherapeutic drugs for glioblastoma treatment, the blood brain barrier (BBB) and non-specific delivery to non-tumor tissues greatly limit the accumulation of drugs into tumor tissues and simultaneously cause serious toxicity to nearby normal tissues which altogether compromised the chemotherapeutic effect. In the present study, we established an aptamer AS1411-functionalized poly (l-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX) nanoconjugates drug delivery system (AS1411-PGG-PTX), providing an advantageous solution of combining the precisely active targeting and the optimized solubilization of paclitaxel. The receptor nucleolin, highly expressed in glioblastoma U87 MG cells as well as neo-vascular endothelial cells, mediated the binding and endocytosis of AS1411-PGG-PTX nanoconjugates, leading to significantly enhanced uptake of AS1411-PGG-PTX nanoconjugates by tumor cells and three-dimension tumor spheroids, and intensive pro-apoptosis effect of AS1411-PGG-PTX nanoconjugates. In vivo fluorescence imaging and tissue distribution further demonstrated the higher tumor distribution of AS1411-PGG-PTX as compared with PGG-PTX. As a result, the AS1411-PGG-PTX nanoconjugates presented the best anti-glioblastoma effect with prolonged median survival time and most tumor cell apoptosis in vivo as compared with other groups. In conclusion, the AS1411-PGG-PTX nanoconjugates exhibited a promising targeting delivery strategy for glioblastoma therapy.

  10. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    Science.gov (United States)

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas.

  11. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress

    Science.gov (United States)

    Kassan, M.; Vikram, A.; Kim, Y. R.; Li, Q.; Kassan, A.; Patel, H. H.; Kumar, S.; Gabani, M.; Liu, J.; Jacobs, J. S.; Irani, K.

    2017-01-01

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress. PMID:28181559

  12. Development of a Quartz Crystal Microbalance Biosensor with Aptamers as Bio-recognition Element

    Directory of Open Access Journals (Sweden)

    Chunyan Yao

    2010-06-01

    Full Text Available The ultimate goal in any biosensor development project is its use for actual sample detection. Recently, there has been an interest in biosensors with aptamers as bio-recognition elements, but reported examples all deal with standards, not human serum. In order to verify the differences of aptamer-based biosensor and antibody-based biosensor in clinical detection, a comparison of the performance of aptamer-based and antibody-based quartz crystal microbalance (QCM biosensors for the detection of immunoglobulin E (IgE in human serum was carried out. Aptamers (or antibodies specific to IgE were immobilized on the gold surface of a quartz crystal. The frequency shifts of the QCM were measured. The linear range with the antibody (10–240 μg/L compared to that of the aptamer (2.5–200 μg/L, but a lower detection limit could be observed in the aptamer-based biosensor. The reproducibility of the two biosensors was comparable. The aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity. In addition, the aptamer receptors could tolerate repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. When stored for three weeks, the frequency shifts of the aptamer-coated crystals were all greater than 90% of those on the response at the first day.

  13. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    Science.gov (United States)

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  14. Inhibition of HCV NS3 protease by RNA aptamers in cells.

    Science.gov (United States)

    Nishikawa, Fumiko; Kakiuchi, Nobuko; Funaji, Kohei; Fukuda, Kotaro; Sekiya, Satoru; Nishikawa, Satoshi

    2003-04-01

    Non-structural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct activities, protease and helicase, which are essential for HCV proliferation. In previous work, we obtained RNA aptamers (G9-I, II and III) which specifically bound the NS3 protease domain (DeltaNS3), efficiently inhibiting protease activity in vitro. To utilize these aptamers in vivo, we constructed a G9 aptamer expression system in cultured cells, using the cytomegarovirus enhancer + chicken beta-actin globin (CAG) promoter. By conjugating the cis-acting genomic human hepatitis delta virus (HDV) ribozyme and G9-II aptamer, a chimeric HDV ribozyme-G9-II aptamer (HA) was constructed, which was used to produce stable RNA in vivo and to create tandem repeats of the functional unit. To target the transcribed RNA aptamers to the cytoplasm, the minimal mutant of constitutive transport element (CTE), derived from type D retroviruses, was conjugated at the 3' end of HA (HAC). Transcript RNAs from (HA)(n) and (HAC)(n) were processed into the G9-II aptamer unit by the cis-acting HDV ribozyme, both in vitro and in vivo. Efficient protease inhibition activity of HDV ribozyme-G9-II aptamer expression plasmid was demonstrated in HeLa cells. Protease inhibition activity level of tandem chimeric aptamers, (HA)(n) and (HAC)(n), rose with the increase of n from 1 to 4.

  15. A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP

    Science.gov (United States)

    Sazani, Peter L.; Larralde, Rosa

    2004-01-01

    We report the in vitro selection of an RNA-based ATP aptamer with the ability to discriminate between adenosine ligands based on their 5‘ phosphorylation state. Previous selection of ATP aptamers yielded molecules that do not significantly discriminate between ligands at the 5‘ position. By applying a selective pressure that demands recognition of the 5‘ triphosphate, we obtained an aptamer that binds to ATP with a Kd of approximately 5 μM, and to AMP with a Kd of approximately 5.5 mM, a difference of 1100-fold. This aptamer demonstrates the ability of small RNAs to interact with negatively charged moieties. PMID:15237981

  16. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    Directory of Open Access Journals (Sweden)

    Stöcklein Walter

    2007-08-01

    Full Text Available Abstract Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.

  17. Selection and Identification of Chloramphenicol-Specific DNA Aptamers by Mag-SELEX.

    Science.gov (United States)

    Duan, Ye; Gao, Zhiqiang; Wang, Lihui; Wang, Huishan; Zhang, Hexiao; Li, Hao

    2016-12-01

    Chloramphenicol (CAP) has been widely used to treat bacterial infections in livestock and aquatic animals. To reduce the risk of CAP residues, an efficient technology to rapidly detect CAP residues in animal-sourced food is expressly needed. In this study, magnetic bead-based systematic evolution of ligands by exponential enrichment (Mag-SELEX) strategy was performed to select and identify CAP-specific single-stranded DNA (ssDNA) aptamers from a random oligonucleotide library. After nine rounds of selection, five potential ssDNA aptamers were selected. Low homology indicated that they might belong to different families. To identify an aptamer with the highest affinity for CAP, the dissociation constant (K d) values of these selected aptamers were determined. The lowest K d values of two potential aptamers (i.e., No. 4 and No. 5) were, respectively, 0.10162 ± 0.0111 and 0.03224 ± 0.00819 μM, which were much lower than previously reported lowest K d value (i.e., 0.766 μM) of CAP aptamer. Moreover, compared with No. 4, aptamer No. 5 had higher binding rate, which is quite different among those with CAP and with CAP's structural analogs (i.e., thiamphenicol (TAP) and florfenicol (FF)). These results indicated that the potential aptamer No. 5 with highest specificity and affinity for CAP would be an ideal aptamer for future detection of residual CAP in animal-sourced food.

  18. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    Directory of Open Access Journals (Sweden)

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  19. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  20. Endothelial Dysfunction in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Curtis M. Steyers

    2014-06-01

    Full Text Available Chronic inflammatory diseases are associated with accelerated atherosclerosis and increased risk of cardiovascular diseases (CVD. As the pathogenesis of atherosclerosis is increasingly recognized as an inflammatory process, similarities between atherosclerosis and systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel diseases, lupus, psoriasis, spondyloarthritis and others have become a topic of interest. Endothelial dysfunction represents a key step in the initiation and maintenance of atherosclerosis and may serve as a marker for future risk of cardiovascular events. Patients with chronic inflammatory diseases manifest endothelial dysfunction, often early in the course of the disease. Therefore, mechanisms linking systemic inflammatory diseases and atherosclerosis may be best understood at the level of the endothelium. Multiple factors, including circulating inflammatory cytokines, TNF-α (tumor necrosis factor-α, reactive oxygen species, oxidized LDL (low density lipoprotein, autoantibodies and traditional risk factors directly and indirectly activate endothelial cells, leading to impaired vascular relaxation, increased leukocyte adhesion, increased endothelial permeability and generation of a pro-thrombotic state. Pharmacologic agents directed against TNF-α-mediated inflammation may decrease the risk of endothelial dysfunction and cardiovascular disease in these patients. Understanding the precise mechanisms driving endothelial dysfunction in patients with systemic inflammatory diseases may help elucidate the pathogenesis of atherosclerosis in the general population.

  1. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  2. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity

    Science.gov (United States)

    Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena

    2012-01-01

    The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K+ ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin–TBA complex formed in the presence of Na+ or K+ and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na+ and K+ on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein–aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement. PMID:22669903

  3. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.

    2015-08-18

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  4. Rupture of DNA aptamer: New insights from simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rakesh Kumar; Nath, Shesh; Kumar, Sanjay [Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)

    2015-10-28

    Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as “binding-pockets,” which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single molecule experiments.

  5. Current approaches in SELEX: An update to aptamer selection technology.

    Science.gov (United States)

    Darmostuk, Mariia; Rimpelova, Silvie; Gbelcova, Helena; Ruml, Tomas

    2015-11-01

    Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established and efficient technology for the generation of oligonucleotides with a high target affinity. These SELEX-derived single stranded DNA and RNA molecules, called aptamers, were selected against various targets, such as proteins, cells, microorganisms, chemical compounds etc. They have a great potential in the use as novel antibodies, in cancer theragnostics and in biomedical research. Vast interest in aptamers stimulated continuous development of SELEX, which underwent numerous modifications since its first application in 1990. Novel modifications made the selection process more efficient, cost-effective and significantly less time-consuming. This article brings a comprehensive and up-to-date review of recent advances in SELEX methods and pinpoints advantages, main obstacles and limitations. The post-SELEX strategies and examples of application are also briefly outlined in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy.

    Science.gov (United States)

    Li, Xin; Zhao, Qinghe; Qiu, Liyan

    2013-10-28

    Aptamers are a class of oligonucleotides that can specifically bind to different targets with high affinity. Since their discovery in 1980s, aptamers have attracted considerable interests in medical applications. So far, initial research using aptamers as delivery systems has produced exciting results. In this review, we summarize recent progress in aptamer-mediated chemotherapeutic drug and siRNA delivery systems in tumor treatment. With regard to chemotherapeutic drugs, the 2 main methods for targeted delivery using aptamers are as follows: aptamer-drug systems (in which aptamers directly deliver the drug both as a carrier and as a ligand) and aptamer-nanoparticles systems (in which nanoparticles function together with aptamers for targeted delivery of drugs). For delivery of siRNA, aptamers can be utilized by the following ways to facilitate targeting: (1) linked by a connector; (2) form a chimera; and (3) combined with nanoparticles. In co-delivery system, the advantages associated with the use of aptamers are beginning to become apparent also. Here, the challenges and new perspectives in the field of aptamer-mediated delivery have been discussed.

  7. Using atomic force microscopy and surface plasmon resonance to detect specific interactions between ricin and anti-ricin aptamers

    Science.gov (United States)

    Nucleic acid aptamers have been widely used as binding reagents for the label free detections of biomolecules. Compare to antibodies, aptamers have demonstrated advantages such as easy synthesis, low cost, and better stability. Therefore, aptamers can be integrated into various detection platforms ...

  8. Selection of an aptamer antidote to the anticoagulant drug bivalirudin.

    Science.gov (United States)

    Martin, Jennifer A; Parekh, Parag; Kim, Youngmi; Morey, Timothy E; Sefah, Kwame; Gravenstein, Nikolaus; Dennis, Donn M; Tan, Weihong

    2013-01-01

    Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT). Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug), and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction) and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.

  9. Selection of an aptamer antidote to the anticoagulant drug bivalirudin.

    Directory of Open Access Journals (Sweden)

    Jennifer A Martin

    Full Text Available Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT. Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug, and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.

  10. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411

    Science.gov (United States)

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-01-01

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2′-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2′-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2′-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2′-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2′-deoxyinosine moieties in interactive binding processes. PMID:27194215

  11. Bioactivity of 2'-deoxyinosine-incorporated aptamer AS1411.

    Science.gov (United States)

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-05-19

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2'-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2'-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2'-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2'-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2'-deoxyinosine moieties in interactive binding processes.

  12. Development of a thermal-stable structure-switching cocaine-binding aptamer.

    Science.gov (United States)

    Shoara, Aron A; Reinstein, Oren; Borhani, Okty Abbasi; Martin, Taylor R; Slavkovic, Sladjana; Churcher, Zachary R; Johnson, Philip E

    2017-08-21

    We have developed a new cocaine-binding aptamer variant that has a significantly higher melt temperature when bound to a ligand than the currently used sequence. Retained in this new construct is the ligand-induced structure-switching binding mechanism that is important in biosensing applications of the cocaine-binding aptamer. Isothermal titration calorimetry methods show that the binding affinity of this new sequence is slightly tighter than the existing cocaine-binding aptamer. The improved thermal performance, a Tm increase of 4 °C for the cocaine-bound aptamer and 9 °C for the quinine-bound aptamer, was achieved by optimizing the DNA sequence in stem 2 of the aptamer to have the highest stability based on the nearest neighbor thermodynamic parameters and confirmed by UV and fluorescence spectroscopy. The sequences in stem 1 and stem 3 were unchanged in order to retain the structure switching and ligand binding functions. The more favorable thermal stability characteristics of the OR3 aptamer should make it a useful construct for sensing applications employing the cocaine-binding aptamer system. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  14. Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg(2+) in urine.

    Science.gov (United States)

    Li, Zhen; Muhandiramlage, Thusitha P; Keogh, John P; Hall, Henry K; Aspinwall, Craig A

    2015-01-01

    A porous phospholipid nanoshell (PPN) sensor functionalized with a specific aptamer sensor agent was prepared for rapid detection of Hg(2+) in human urine with minimal sample preparation. Aptamer sensors provide an important class of optical transducers that can be readily and reproducibly synthesized. A key limitation of aptamer sensors, and many other optical sensors, is the potential of biofouling or biodegradation when used in complex biological matrices such as serum or urine, particularly when high levels of nucleases are present. We prepared Hg(2+)-responsive, PPN-encapsulated aptamer sensors that overcome these limitations. PPNs provide a protective barrier to encapsulate the aptamer sensor in an aqueous environment free of diffusional restrictions encountered with many polymer nanomaterials. The unique porous properties of the PPN membrane enable ready and rapid transfer of small molecular weight ions and molecules into the sensor interior while minimizing the macromolecular interactions between the transducer and degradants or interferents in the exterior milieu. Using Hg(2+)-responsive, PPN-encapsulated aptamer sensors, we were able to detect sub-100 ppb (chronic threshold limit from urine test) Hg(2+) in human urine with no sample preparation, whereas free aptamer sensors yielded inaccurate results due to interferences from the matrix. The PPN architecture provides a new platform for construction of aptamer-functionalized sensors that target low molecular weight species in complex matrices, beyond the Hg(2+) demonstrated here.

  15. Potent Inhibition of HIV-1 Reverse Transcriptase and Replication by Nonpseudoknot, "UCAA-motif" RNA Aptamers.

    Science.gov (United States)

    Whatley, Angela S; Ditzler, Mark A; Lange, Margaret J; Biondi, Elisa; Sawyer, Andrew W; Chang, Jonathan L; Franken, Joshua D; Burke, Donald H

    2013-02-05

    RNA aptamers that bind the reverse transcriptase (RT) of human immunodeficiency virus (HIV) compete with nucleic acid primer/template for access to RT, inhibit RT enzymatic activity in vitro, and suppress viral replication when expressed in human cells. Numerous pseudoknot aptamers have been identified by sequence analysis, but relatively few have been confirmed experimentally. In this work, a screen of nearly 100 full-length and >60 truncated aptamer transcripts established the predictive value of the F1Pk and F2Pk pseudoknot signature motifs. The screen also identified a new, nonpseudoknot motif with a conserved unpaired UCAA element. High-throughput sequence (HTS) analysis identified 181 clusters capable of forming this novel element. Comparative sequence analysis, enzymatic probing and RT inhibition by aptamer variants established the essential requirements of the motif, which include two conserved base pairs (AC/GU) on the 5' side of the unpaired UCAA. Aptamers in this family inhibit RT in primer extension assays with IC(50) values in the low nmol/l range, and they suppress viral replication with a potency that is comparable with that of previously studied aptamers. All three known anti-RT aptamer families (pseudoknots, the UCAA element, and the recently described "(6/5)AL" motif) are therefore suitable for developing aptamer-based antiviral gene therapies.Molecular Therapy - Nucleic Acids (2013) 2, e71; doi:10.1038/mtna.2012.62; published online 5 February 2013.

  16. Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer

    DEFF Research Database (Denmark)

    Opazo, Felipe; Eiden, Laura; Hansen, Line

    2015-01-01

    Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma...

  17. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin

    Science.gov (United States)

    Sung, Tzu-Cheng; Chen, Wen-Yih; Shah, Pramod; Chen, Chien-Sheng

    2016-02-01

    Biotin is an essential vitamin which plays an important role for maintaining normal physiological function. A rapid, sensitive, and simple method is necessary to monitor the biotin level. Here, we reported a replacement assay for the detection of biotin using a replaceable liposomal aptamer. Replacement assay is a competitive assay where a sample analyte replaces the labeled competitor of analyte out of its biorecognition element on a surface. It is user friendly and time-saving because of washing free. We used aptamer as a competitor, not a biorecognition element as tradition. To label aptamers, we used cholesterol-conjugated aptamers to tag signal-amplifying-liposomes. Without the need of conjugation procedure, aptamers can be easily incorporated into the surface of dye-encapsulating liposomes. Two aptamers as competitors of biotin, ST-21 and ST-21M with different affinities to streptavidin, were studied in parallel for the detection of biotin using replacement assays. ST-21 and ST-21M aptamers reached to limits of detection of 1.32 pg/80 μl and 0.47 pg/80 μl, respectively. The dynamic ranges of our assays using ST-21 and ST-21M aptamers were seven and four orders of magnitude, respectively. This assay can be completed in 20 minutes without washing steps. These results were overall better than previous reported assays.

  18. DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption.

    Science.gov (United States)

    Bruno, John Gordon; Carrillo, Maria P; Phillips, Taylor; Hanson, Douglas; Bohmann, Jonathan A

    2011-09-01

    A novel DNA aptamer beacon is described for quantification of a 26-amino acid C-telopeptide (CTx) of human type I bone collagen. One aptamer sequence and its reverse complement dominated the aptamer pool (31.6% of sequenced clones). Secondary structures of these aptamers were examined for potential binding pockets. Three-dimensional computer models which analyzed docking topologies and binding energies were in agreement with empirical fluorescence experiments used to select one candidate loop for beacon assay development. All loop structures from the aptamer finalists were end-labeled with TYE 665 and Iowa Black quencher for comparison of beacon fluorescence levels as a function of CTx concentration. The optimal beacon, designated CTx 2R-2h yielded a low ng/ml limit of detection using a commercially available handheld fluorometer. The CTx aptamer beacon bound full-length 26-amino acid CTx peptide, but not a shorter 8-amino acid segment of CTx peptide which is a common target for commercial CTx ELISA kits. The prototype assay was shown to detect CTx peptide from human urine after creatinine and urea were removed by size-exclusion chromatography to prevent nonspecific denaturing of the aptamer beacon. This work demonstrates the potential of aptamer beacons to be utilized for rapid and sensitive bone health monitoring in a handheld or point-of-care format.

  19. Aptamers as a promising approach for the control of parasitic diseases

    Directory of Open Access Journals (Sweden)

    Juan David Ospina-Villa

    Full Text Available ABSTRACT Aptamers are short single-stranded RNA or DNA oligonucleotides that are capable of binding various biological targets with high affinity and specificity. Their identification initially relies on a molecular process named SELEX (Systematic Evolution of Ligands by EXponential enrichment that has been later modified in order to improve aptamer sensitivity, minimize duration and cost of the assay, as well as increase target types. Several biochemical modifications can help to enhance aptamer stability without affecting significantly target interaction. As a result, aptamers have generated a large interest as promising tools to compete with monoclonal antibodies for detection and inhibition of specific markers of human diseases. One aptamer-based drug is currently authorized and several others are being clinically evaluated. Despite advances in the knowledge of parasite biology and host-parasite interactions from "omics" data, protozoan parasites still affect millions of people around the world and there is an urgent need for drug target discovery and novel therapeutic concepts. In this context, aptamers represent promising tools for pathogen identification and control. Recent studies have reported the identification of "aptasensors" for parasite diagnosis, and "intramers" targeting intracellular proteins. Here we discuss various strategies that have been employed for intracellular expression of aptamers and expansion of their possible application, and propose that they may be suitable for the clinical use of aptamers in parasitic infections.

  20. DNA aptamer release from the DNA-SWNT hybrid by protein recognition.

    Science.gov (United States)

    Yoo, Chang-Hyuk; Jung, Seungwon; Bae, Jaehyun; Kim, Gunn; Ihm, Jisoon; Lee, Junghoon

    2016-02-14

    Here we show the formation of the complex between a DNA aptamer and a single-walled carbon nanotube (SWNT) and its reaction with its target protein. The aptamer, which is specifically bound with thrombin, the target protein in this study, easily wraps and disperses the SWNT by noncovalent π-π stacking.

  1. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine...

  2. Nucleic Acid Aptamers Against Biotoxins: A New Paradigm Toward the Treatment and Diagnostic Approach

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Veedu, Rakesh N.

    2012-01-01

    to combat these problems. Fully sequestered in vitro, aptamers eliminate the need for a living host. Furthermore, one of the key advantages of using aptamers instead of antibodies is that they can be selected against very weakly immunogenic and cytotoxic substances. In this review, we focus on nucleic acid...

  3. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  4. Shortening full-length aptamer by crawling base deletion – Assisted by Mfold web server application

    Directory of Open Access Journals (Sweden)

    Subash C.B. Gopinath

    2017-06-01

    Full Text Available Systematic Evolution of Ligands by EXponential enrichment (SELEX is the method to select the specific aptamer against a wide range of targets. For this process, the initial library usually has a length of random sequences from ∼25 and it reaches over 100 bases. The lengthy sequences have disadvantages such as difficult to prepare, less stable and expensive. It is wise to prefer shorter version of aptamer for a wide range of applications including drug delivery process. It is a common practice to shorten the full-length aptamer by mapping analyses and it is tedious. Here, we used a crawling method to shorten the aptamer by different sequential deletion of bases from both 5′ and 3′ ends, assisted by Mfold web server application. Two different kinds of aptamer with varied lengths (randomized region of 30 and 74 bases were desired for this study, generated against Influenza A/Panama/2007/1999 (H3N2 and gD protein of Herpes Simplex Virus-1. It was found that shortening the aptamer length by crawling pattern is possible with the assistance of Mfold web server application. The obtained results resemble the shortened aptamer derived by mapping analyses. The proposed strategy is recommended to predict the shorter aptamer without involving any wet experimental section.

  5. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells.

    Science.gov (United States)

    Li, Wan-Ming; Bing, Tao; Wei, Jia-Yi; Chen, Zhe-Zhou; Shangguan, Di-Hua; Fang, Jin

    2014-08-01

    The development of diagnostic/therapeutic strategies against metastasis-related molecular targets is critical for improving the survival rate of cancer patients. Subtractive Cell-SELEX was performed using highly metastatic colorectal cancer (CRC) LoVo cells and non-metastatic HCT-8 cells as the target and negative cells, respectively, for the selection of metastatic-specific aptamers. This process generated seven aptamers that displayed highly specific binding to the target cells with Kds in the nanomolar range. Based on the distinct chemical/biological properties of their individual cell surface targets, the aptamers were separately functionalized: the receptor-targeting aptamer W14 was used as a carrier for doxorubicin, resulting in the specific delivery of the drug to the target cells and a significant reduction of its cytotoxicity to non-target cells, and the non-receptor-binding aptamer W3 was used as a molecular probe conjugated to quantum dots for the targeted imaging of metastatic cancer cell lines, spontaneous lung metastasis murine tissue, and metastatic CRC patient tissues. In addition, these aptamers can be used in combination due to their lack of detectable mutual-binding interference. The study demonstrates that a panel of aptamers that recognize distinct features of target molecules can be obtained through single Cell-SELEX selection, and the selected aptamers may be individually functionalized for specific applications and/or utilized in combination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Selection and identification of DNA aptamers against okadaic acid for biosensing application.

    Science.gov (United States)

    Eissa, Shimaa; Ng, Andy; Siaj, Mohamed; Tavares, Ana C; Zourob, Mohammed

    2013-12-17

    This work describes the selection and identification of DNA aptamers that bind with high affinity and specificity to okadaic acid (OA), a lipophilic marine biotoxin that accumulates in shellfish. The aptamers selected using systematic evolution of ligands by exponential enrichment (SELEX) exhibited dissociation constants in the nanomolar range. The aptamer with the highest affinity was then used for the fabrication of a label-free electrochemical biosensor for okadaic acid detection. The aptamer was first immobilized on the gold electrode by a self-assembly approach through Au-S interaction. The binding of okadaic acid to the aptamer immobilized on the electrode surface induces an alteration of the aptamer conformation causing a significant decrease in the electron-transfer resistance monitored by electrochemical impedance spectroscopy. The aptasensor showed a linear range for the concentrations of OA between 100 pg/mL and 60 ng/mL with a detection limit of 70 pg/mL. The dissociation constant of okadaic acid with the aptamer immobilized on the electrode surface showed good agreement with that determined using fluorescence assay in solution. Moreover, the aptasensor did not show cross-reactivity toward toxins with structures similar to okadaic acid such as dinophysis toxin-1 and 2 (DTX-1, DTX-2). Further biosensing applications of the selected aptamers are expected to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  7. Selective Evolution of Ligands by Exponential Enrichment to Identify RNA Aptamers against Shiga Toxins.

    Science.gov (United States)

    Challa, Sreerupa; Tzipori, Saul; Sheoran, Abhineet

    2014-01-01

    Infection with Shiga toxin- (Stx-) producing E. coli causes life threatening hemolytic uremic syndrome (HUS), a leading cause of acute renal failure in children. Of the two antigenically distinct toxins, Stx1 and Stx2, Stx2 is more firmly linked with the development of HUS. In the present study, selective evolution of ligands by exponential enrichment (SELEX) was used in an attempt to identify RNA aptamers against Stx1 and Stx2. After 5 rounds of selection, significant enrichment of aptamer pool was obtained against Stx2, but not against Stx1, using a RNA aptamer library containing 56 random nucleotides (N56). Characterization of individual aptamer sequences revealed that six unique RNA aptamers (mA/pC, mB/pA, mC, mD, pB, and pD) recognized Stx2 in a filter binding assay. None of these aptamers bound Stx1. Aptamers mA/pC, mB/pA, mC, and mD, but not pB and pD, partially blocked binding of Alexa 488-labeled Stx2 with HeLa cells in a flow cytometry assay. However, none of the aptamers neutralized Stx2-mediated cytotoxicity and death of HeLa cells.

  8. Selective Evolution of Ligands by Exponential Enrichment to Identify RNA Aptamers against Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2014-01-01

    Full Text Available Infection with Shiga toxin- (Stx- producing E. coli causes life threatening hemolytic uremic syndrome (HUS, a leading cause of acute renal failure in children. Of the two antigenically distinct toxins, Stx1 and Stx2, Stx2 is more firmly linked with the development of HUS. In the present study, selective evolution of ligands by exponential enrichment (SELEX was used in an attempt to identify RNA aptamers against Stx1 and Stx2. After 5 rounds of selection, significant enrichment of aptamer pool was obtained against Stx2, but not against Stx1, using a RNA aptamer library containing 56 random nucleotides (N56. Characterization of individual aptamer sequences revealed that six unique RNA aptamers (mA/pC, mB/pA, mC, mD, pB, and pD recognized Stx2 in a filter binding assay. None of these aptamers bound Stx1. Aptamers mA/pC, mB/pA, mC, and mD, but not pB and pD, partially blocked binding of Alexa 488-labeled Stx2 with HeLa cells in a flow cytometry assay. However, none of the aptamers neutralized Stx2-mediated cytotoxicity and death of HeLa cells.

  9. Combining aptamers and in silico interaction studies to decipher the function of hypothetical proteins

    DEFF Research Database (Denmark)

    Suravajhala, Prashanth; Burri, Harsha Vardhan Reddy; Heiskanen, Arto

    2014-01-01

    We present the potential role of aptamers in elucidating the function of hypothetical proteins, as well as the possibilities provided by bioinformatics for establishing a benchmark for aptamer-protein prediction methods. With these future perspectives, the role of hypothetical proteins as target ...

  10. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel M; Thuesen, Cathrine K; Bøtkjær, Kenneth A;

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless...... potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area...... around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro...

  11. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1.

    Science.gov (United States)

    Huang, Yukun; Chen, Xiujuan; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Wei, Xinlin; Wang, Yuanfeng

    2015-01-01

    Enterotoxins from pathogenic bacteria are known as the main reason that can cause the bacterial foodborne diseases. In this study, aptamers that bound to Staphylococcus aureus enterotoxin C1 (SEC1) with high affinity and selectivity were generated in vitro by twelve rounds of selection based on magnetic separation technology, with a low-level dissociation constant (Kd) value of 65.14 ± 11.64 nmol/L of aptamer C10. Aptamer-based quantification of SEC1 in the food sample by a graphene oxide (GO)-based method was implemented to investigate the potential of the aptamer against SEC1 with a limit of detection of 6 ng/mL. On the basis of this work, biosensors using the selected SEC1 aptamers as new molecular recognition elements could be applied for innovative determinations of SEC1.

  12. IN VITRO SELECTION AND CHARACTERIZATION OF CELLULOSE-BINDING RNA APTAMERS USING ISOTHERMAL AMPLIFICATION

    Science.gov (United States)

    Boese, B. J.; Corbino, K.; Breaker, R. R.

    2017-01-01

    We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust affinity for cellulose in both the powdered and paper form, but did not show any significant affinity for closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using the glucosamine 6-phosphate to activate glmS ribozyme function. PMID:18696364

  13. Antidote control of aptamer therapeutics: the road to a safer class of drug agents.

    Science.gov (United States)

    Bompiani, K M; Woodruff, R S; Becker, R C; Nimjee, S M; Sullenger, B A

    2012-08-01

    Aptamers, or nucleic acid ligands, have gained clinical interest over the past 20 years due to their unique characteristics, which are a combination of the best facets of small molecules and antibodies. The high binding affinity and specificity of aptamers allows for isolation of an artificial ligand for theoretically any therapeutic target of interest. Chemical manipulations of aptamers also allow for fine-tuning of their bioavailability, and antidote control greatly expands their clinical use. Here we review the various methods of antidote control of aptamer therapeutics--matched oligonucleotide antidotes and universal antidotes. We also describe the development, recent progress, and potential future therapeutic applications of these types of aptamer-antidote pairs.

  14. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors.

    Science.gov (United States)

    Wen, Yanli; Pei, Hao; Wan, Ying; Su, Yan; Huang, Qing; Song, Shiping; Fan, Chunhai

    2011-10-01

    The sensitivity of aptamer-based electrochemical sensors is often limited by restricted target accessibility and surface-induced perturbation of the aptamer structure, which arise from imperfect packing of probes on the heterogeneous and locally crowded surface. In this study, we have developed an ultrasensitive and highly selective electrochemical aptamer-based cocaine sensor (EACS), based on a DNA nanotechnology-based sensing platform. We have found that the electrode surface decorated with an aptamer probe-pendant tetrahedral DNA nanostructure greatly facilitates cocaine-induced fusion of the split anticocaine aptamer. This novel design leads to a sensitive cocaine sensor with a remarkably low detection limit of 33 nM. It is also important that the tetrahedra-decorated surface is protein-resistant, which not only suits the enzyme-based signal amplification scheme employed in this work, but ensures high selectivity of this sensor when deployed in sera or other adulterated samples.

  15. Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers.

    Science.gov (United States)

    Quang, Nam Nguyen; Miodek, Anna; Cibiel, Agnes; Ducongé, Frédéric

    2017-01-01

    Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.

  16. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  17. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  18. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ardjomandi, N.; Huth, J. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Stamov, D.R. [JPK Instruments AG, Berlin (Germany); Henrich, A. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Klein, C. [Dental Practice Zahngesundheit Waiblingen, Waiblingen (Germany); Wendel, H.-P. [Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen (Germany); Reinert, S. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Alexander, D., E-mail: dorothea.alexander@med.uni-tuebingen.de [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany)

    2016-10-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. - Highlights: • Covalent binding of aptamer 74 on PLGA-coated β-tricalcium phosphate constructs. • AFM analysis of rupture forces between aptamer 74 and jaw periosteal cells. • Analysis of jaw periosteal cell functions on aptamer coated β-TCP constructs.

  19. Development of an aptamer beacon for detection of interferon-gamma.

    Science.gov (United States)

    Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander

    2010-03-01

    Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.

  20. Mechanisms of endothelial dysfunction in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Amy Atkeson

    2008-12-01

    Full Text Available Amy Atkeson, Sanja JelicDivision of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NYAbstract: Endothelial activation and inflammation are important mediators of accelerated atherogenesis and consequent increased cardiovascular morbidity in obstructive sleep apnea (OSA. Repetitive episodes of hypoxia/reoxygenation associated with transient cessation of breathing during sleep in OSA resemble ischemia/reperfusion injury and may be the main culprit underlying endothelial dysfunction in OSA. Additional factors such as repetitive arousals resulting in sleep fragmentation and deprivation and individual genetic suseptibility to vascular manifestations of OSA contribute to impaired endothelial function in OSA. The present review focuses on possible mechanisms that underlie endothelial activation and inflammation in OSA.Keywords: endothelial, obstructive sleep apnea, inflammation, dysfunction

  1. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    ShaoPeng Wang

    2016-01-01

    Full Text Available The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  2. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim;

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  3. Comparison of Flow Cytometry and ELASA for Screening of Proper Candidate Aptamer in Cell-SELEX Pool.

    Science.gov (United States)

    Nabavinia, Maryam Sadat; Charbgoo, Fahimeh; Alibolandi, Mona; Mosaffa, Fatemeh; Gholoobi, Aida; Ramezani, Mohammad; Abnous, Khalil

    2017-07-19

    Aptamers are single-stranded RNA or DNA, which bind to their target with high affinity and specificity. Method of isolating aptamers against cell surface protein is called cell-SELEX. Common approach for monitoring cell-SELEX developed aptamers is flow cytometry. Since flow cytometry is costly and requires sophisticated equipments, we suggested implementing easy access, high throughput enzyme-link apta-sorbent assay test (ELASA) to confirm the specificity of aptamers selected through cell-SELEX process. In this regard, we compared ELASA and flow cytometry techniques in order to screen potent candidate aptamers against A2780 Rcis cell line, which were selected by cell-SELEX. The obtained results demonstrated that both ELASA and flow cytometry are identical in terms of sensivity and precision for aptamers selection. Then it could be concluded that ELASA method could be used as a versatile, inexpensive procedure for in vito evaluation of isolated aptamers from cell-SELEX based process.

  4. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses

    Directory of Open Access Journals (Sweden)

    Bruno John G

    2012-11-01

    Full Text Available Abstract Background Nucleic acid aptamers have long demonstrated the capacity to bind viral envelope proteins and to inhibit the progression of pathogenic virus infections. Here we report on initial efforts to develop and screen DNA aptamers against recombinant envelope proteins or synthetic peptides and whole inactivated viruses from several virulent arboviruses including Chikungunya, Crimean-Congo hemorrhagic fever (CCHF, dengue, tickborne encephalitis and West Nile viruses. We also analyzed sequence data and secondary structures for commonalities that might reveal consensus binding sites among the various aptamers. Some of the highest affinity and most specific aptamers in the down-selected libraries were demonstrated to have diagnostic utility in lateral flow chromatographic assays and in a fluorescent aptamer-magnetic bead sandwich assay. Some of the reported aptamers may also be able to bind viral envelope proteins in vivo and therefore may have antiviral potential in passive immunity or prophylactic applications. Results Several arbovirus DNA aptamer sequences emerged multiple times in the various down selected aptamer libraries thereby suggesting some consensus sequences for binding arbovirus envelope proteins. Screening of aptamers by enzyme-linked aptamer sorbent assay (ELASA was useful for ranking relative aptamer affinities against their cognate viral targets. Additional study of the aptamer sequences and secondary structures of top-ranked anti-arboviral aptamers suggest potential virus binding motifs exist within some of the key aptamers and are highlighted in the supplemental figures for this article. One sequence segment (ACGGGTCCGGACA emerged 60 times in the anti-CCHF aptamer library, but nowhere else in the anti-arbovirus library and only a few other times in a larger library of aptamers known to bind bacteria and rickettsia or other targets. Diagnostic utility of some of the aptamers for arbovirus detection in lateral flow

  5. Neurogenesis, vascular endothelial growth factor and vascular cognitive impairment%神经发生、血管内皮生长因子与血管性认知损害

    Institute of Scientific and Technical Information of China (English)

    肖伊宁; 吕佩源

    2015-01-01

    神经发生是神经前体细胞自我增殖和分化产生新神经元的动态过程。研究证实,海马神经发生可改善认知功能,并且血管内皮生长因子(vascular endothelial growth factor, VEGF)在神经发生中发挥着重要的调控作用。文章就 VEGF 促进神经发生的机制以及神经发生改善血管性认知损害的作用进行了综述。%Neurogenesis is a dynamic process of neural precursor cel self-proliferation and differentiation into new neurons. Studies have confirmed that hippocampal neurogenesis may improve cognitive function, and vascular endothelial growth factor (VEGF) plays an important regulatory role in neurogenesis. This article reviews the mechanism of VEGF promoting neurogenesis and the role of neurogenesis in improving vascular cognitive impalrment.

  6. Visual Impairment

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Visual Impairment KidsHealth > For Teens > Visual Impairment Print A A ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual problem ...

  7. Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents.

    Directory of Open Access Journals (Sweden)

    Susanne Meyer

    Full Text Available BACKGROUND: DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification. METHODOLOGY: We modified the BJAB lymphoblastoma cell line to over-express the murine c-kit cell surface receptor. After six rounds of cell-SELEX, high-throughput sequencing and bioinformatics analysis, we identified aptamers that bound BJAB cells expressing c-kit but not wild-type BJAB controls. One of these aptamers also recognizes c-kit endogenously expressed by a mast cell line or hematopoietic progenitor cells, and specifically blocks binding of the c-kit ligand stem cell factor (SCF. This aptamer enables better separation by fluorescence-activated cell sorting (FACS of c-kit(+ hematopoietic progenitor cells from mixed bone marrow populations than a commercially available antibody, suggesting that this approach may be broadly useful for rapid isolation of affinity reagents suitable for purification of other specific cell types. CONCLUSIONS/SIGNIFICANCE: Here we describe a novel procedure for the efficient generation of DNA aptamers that bind to specific cell membrane proteins and can be used as high affinity reagents. We have named the procedure STACS (Specific TArget Cell-SELEX.

  8. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering.

    Science.gov (United States)

    Ardjomandi, N; Huth, J; Stamov, D R; Henrich, A; Klein, C; Wendel, H-P; Reinert, S; Alexander, D

    2016-10-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing.

    Science.gov (United States)

    Lange, Margaret J; Sharma, Tarun K; Whatley, Angela S; Landon, Linda A; Tempesta, Michael A; Johnson, Marc C; Burke, Donald H

    2012-12-01

    RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.

  10. Rationally Designing Aptamer Sequences with Reduced Affinity for Controlled Sensor Performance

    Directory of Open Access Journals (Sweden)

    Lauren R. Schoukroun-Barnes

    2015-03-01

    Full Text Available The relative ease of predicting the secondary structure of nucleic acid sequences lends itself to the design of sequences to perform desired functions. Here, we combine the utility of nucleic acid aptamers with predictable control over the secondary structure to rationally design sequences with controlled affinity towards a target analyte when employed as the recognition element in an electrochemical sensor. Specifically, we present a method to modify an existing high-gain aptamer sequence to create sequences that, when employed in an electrochemical, aptamer-based sensor, exhibit reduced affinity towards a small molecule analyte tobramycin. Sensors fabricated with the high-gain parent sequence saturate at concentrations much below the therapeutic window for tobramycin (7–18 µM. Accordingly, the rationale behind modifying this high-gain sequence to reduce binding affinity was to tune sensor performance for optimal sensitivity in the therapeutic window. Using secondary structure predictions and analysis of the NMR structure of an aminoglycoside RNA aptamer bound to tobramycin, we are able to successfully modify the aptamer sequence to tune the dissociation constants of electrochemical aptamer-based sensors between 0.17 and 3 µM. The guidelines we present represent a general strategy to lessening binding affinity of sensors employing aptamer-modified electrodes.

  11. Tumor targeting with a (99m)Tc-labeled AS1411 aptamer in prostate tumor cells.

    Science.gov (United States)

    Noaparast, Zohreh; Hosseinimehr, Seyed Jalal; Piramoon, Majid; Abedi, Seyed Mohammad

    2015-01-01

    AS1411, a 26-base guanine-rich oligonucleotide aptamer, has high affinity to nucleolin, mainly on tumor cell surfaces. In this study, a modified AS1411 was labeled with (99m)Tc and evaluated as a potential tumor-targeting agent for imaging. The AS1411 aptamer was conjugated with HYNIC and labeled with (99m)Tc in the presence a co-ligand. Radiochemical purity and stability testing of the (99m)Tc-HYNIC-AS1411 aptamer were carried out with thin layer chromatography and a size-exclusion column in normal saline and human serum. Cellular nucleolin-specific binding, cellular internalization in DU-145 cells, as high levels of nucleolin expression, were performed. Additionally, biodistribution in normal mice and DU-145 tumour-bearing mice was assessed. Radiolabeling of the aptamer resulted in a reasonable yield and radiochemical purity after purification. The aptamer was stable in normal saline and human serum, and cellular experiments demonstrated specific binding of the AS1411 aptamer to the nucleolin protein. Based on biodistribution assessment of (99m)Tc-HYNIC-AS1411, rapid blood clearance was seen after injection and it appears that the excretion route was via the urinary system at 1 h post-injection. Tumours also showed a higher accumulation of radioactivity with this labeled aptamer. (99m)Tc-AS1411 can be a potential tool for the molecular imaging of nucleolin-overexpressing cancers.

  12. Application of capillary electrophoresis to the development and evaluation of aptamer affinity probes

    Science.gov (United States)

    Sooter, Letha J.; McMasters, Sun; Stratis-Cullum, Dimitra N.

    2007-09-01

    Nucleic acid aptamers can exhibit high binding affinities for a wide variety of targets and have received much attention as molecular recognition elements for enhanced biosensor performance. These aptamers recognize target molecules through a combination of conformational dependent non-covalent interactions in aqueous media which can be investigated using capillary electrophoresis-based methods. In this paper we report on the results of our studies of the relative binding affinity of Campylobacter jejuni aptamers using a capillary electrophoretic immunoassay. Our results show preferential binding to C. jejuni over other common food pathogen bacteria. Capillary electrophoresis can also be used to develop new aptamer recognition elements using an in vitro selection process known as systematic evolution of ligand by exponential enrichment (SELEX). Recently, this process has been adapted to use capillary electrophoresis in an attempt to shorten the overall selection process. This smart selection of nucleic acid aptamers from a large diversity of a combinatorial DNA library is under optimization for the development of aptamers which bind to Army-relevant targets. This paper will include a discussion of the establishment of CE-SELEX methods for the future development of smart aptamer probes.

  13. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.

    Science.gov (United States)

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2015-01-12

    Riboswitch-mediated control of gene expression depends on ligand binding properties (kinetics and affinity) of its aptamer domain. A detailed analysis of interior regions of the aptamer, which affect the ligand binding properties, is important for both understanding natural riboswitch functions and for enabling rational design of tuneable artificial riboswitches. Kinetic analyses of binding reaction between flavin mononucleotide (FMN) and several natural and mutant aptamer domains of FMN-specific riboswitches were performed. The strong dependence of the dissociation rate (52.6-fold) and affinity (100-fold) on the identities of base pairs in the aptamer stem suggested that the stem region, which is conserved in length but variable in base-pair composition and context, is the tuning region of the FMN-specific aptamer. Synthetic riboswitches were constructed based on the same aptamer domain by rationally modifying the tuning regions. The observed 9.31-fold difference in the half-maximal effective concentration (EC50) corresponded to a 11.6-fold difference in the dissociation constant (K(D)) of the aptamer domains and suggested that the gene expression can be controlled by rationally adjusting the tuning regions.

  14. Inhibition of PAI-1 antiproteolytic activity against tPA by RNA aptamers.

    Science.gov (United States)

    Damare, Jared; Brandal, Stephanie; Fortenberry, Yolanda M

    2014-08-01

    Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) inhibits the plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Elevated levels of PAI-1 have been correlated with an increased risk for cardiovascular disease. Pharmacologically suppressing PAI-1 might prevent, or successfully treat PAI-1 related vascular diseases. This can potentially be accomplished by using small RNA molecules (aptamers). This study's goal is to develop RNA aptamers to a region of PAI-1 that will prevent the ability of PAI-1 to interact with the plasminogen activators. The aptamers were generated through a systematic evolution of ligands via exponential enrichment approach that ensures the creation of RNA molecules that bind to our target protein, PAI-1. In vitro assays were used to determine the effect of these aptamers on PAI-1's inhibitory activity. Three aptamers that bind to PAI-1 with affinities in the nanomolar range were isolated. The aptamer clones R10-4 and R10-2 inhibited PAI-1's antiproteolytic activity against tPA and disrupted PAI-1's ability to form a stable covalent complex with tPA. Increasing aptamer concentrations correlated positively with an increase in cleaved PAI-1. To the best of our knowledge, this is the first report of RNA molecules that inhibit the antiproteolytic activity of PAI-1.

  15. Aptamer-based surface plasmon resonance sensing of glycated human blood proteins

    Science.gov (United States)

    Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.

    2013-02-01

    The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.

  16. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy.

    Science.gov (United States)

    Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Nakamura, Nobutaka; Fukami, Kei; Yamagishi, Sho-Ichi

    2017-06-01

    The interaction of advanced glycation end products (AGEs) and their receptor (RAGE) plays a central role in diabetic nephropathy. We screened DNA aptamers directed against RAGE (RAGE-aptamers) in vitro and examined the effects on the development and progression of diabetic nephropathy in streptozotocin-induced diabetic rats. RAGE-aptamer bound to RAGE with a Kd of 5.68 nmol/L and resultantly blocked the binding of AGEs to RAGE. When diabetic rats received continuous intraperitoneal injection of RAGE-aptamer from week 7 to 11 of diabetes, the increases in renal NADPH oxidase activity, oxidative stress generation, AGE, RAGE, inflammatory and fibrotic gene and protein levels, macrophage and extracellular matrix accumulation, and albuminuria were significantly suppressed, which were associated with improvement of podocyte damage. Two-week infusion of RAGE-aptamer just after the induction of diabetes also inhibited the AGE-RAGE-oxidative stress system and MCP-1 levels in the kidneys of 8-week-old diabetic rats and simultaneously ameliorated podocyte injury and albuminuria. Moreover, RAGE-aptamer significantly suppressed the AGE-induced oxidative stress generation and inflammatory and fibrotic reactions in human cultured mesangial cells. The findings suggest that continuous infusion of RAGE-aptamer could attenuate the development and progression of experimental diabetic nephropathy by blocking the AGE-RAGE axis. © 2017 by the American Diabetes Association.

  17. Computational Selection of RNA Aptamer against Angiopoietin-2 and Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Wen-Pin Hu

    2015-01-01

    Full Text Available Angiogenesis plays a decisive role in the growth and spread of cancer and angiopoietin-2 (Ang2 is in the spotlight of studies for its unique role in modulating angiogenesis. The aim of this study was to introduce a computational simulation approach to screen aptamers with high binding ability for Ang2. We carried out computational simulations of aptamer-protein interactions by using ZDOCK and ZRANK functions in Discovery Studio 3.5 starting from the available information of aptamers generated through the systematic evolution of ligands by exponential enrichment (SELEX in the literature. From the best of three aptamers on the basis of ZRANK scores, 189 sequences with two-point mutations were created and simulated with Ang2. Then, we used a surface plasmon resonance (SPR biosensor to test 3 mutant sequences of high ZRANK scores along with a high and a low affinity binding sequence as reported in the literature. We found a selected RNA aptamer has a higher binding affinity and SPR response than a reported sequence with the highest affinity. This is the first study of in silico selection of aptamers against Ang2 by using the ZRANK scoring function, which should help to increase the efficiency of selecting aptamers with high target-binding ability.

  18. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.

    Science.gov (United States)

    Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun

    2015-04-21

    Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.

  19. Development of an Efficient Targeted Cell-SELEX Procedure for DNA Aptamer Reagents

    Science.gov (United States)

    Nie, Jeff; Stewart, Ron; McIntosh, Brian E.; Conti, Lisa R.; Ahmad, Kareem M.; Soh, H. Tom; Thomson, James A.

    2013-01-01

    Background DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification. Methodology We modified the BJAB lymphoblastoma cell line to over-express the murine c-kit cell surface receptor. After six rounds of cell-SELEX, high-throughput sequencing and bioinformatics analysis, we identified aptamers that bound BJAB cells expressing c-kit but not wild-type BJAB controls. One of these aptamers also recognizes c-kit endogenously expressed by a mast cell line or hematopoietic progenitor cells, and specifically blocks binding of the c-kit ligand stem cell factor (SCF). This aptamer enables better separation by fluorescence-activated cell sorting (FACS) of c-kit+ hematopoietic progenitor cells from mixed bone marrow populations than a commercially available antibody, suggesting that this approach may be broadly useful for rapid isolation of affinity reagents suitable for purification of other specific cell types. Conclusions/Significance Here we describe a novel procedure for the efficient generation of DNA aptamers that bind to specific cell membrane proteins and can be used as high affinity reagents. We have named the procedure STACS (Specific TArget Cell-SELEX). PMID:23967247

  20. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide.

    Science.gov (United States)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Zhu, Changqing; Jiang, Yuan; Wang, Zhouping

    2014-10-22

    A high-affinity ssDNA aptamer that specifically binds to T-2 toxin was generated by the systemic evolution of ligands by exponential enrichment (SELEX) procedure assisted by graphene oxide (GO). After 10 rounds of selection against T-2 toxin, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. Circular dichroism spectroscopy was also used to study the inherent interaction of T-2 toxin and the preferred aptamer Seq.16, which demonstrated a low dissociation constant (Kd) of 20.8 ± 3.1 nM and excellent selectivity for T-2 toxin. Using the selected aptamer Seq.16 as the recognition element, an aptamer-based fluorescent bioassay was developed for the measurement of T-2 in beer samples with a linear range from 0.5 to 37.5 μM (R(2) = 0.988) and a limit of detection (LOD) of 0.4 μM. The results indicate that GO-SELEX technology is appropriate for the screening of aptamers against small-molecule toxins, offering a promising application for aptamer-based biosensors.

  1. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  2. Isolation and Characterization of 2'-amino-modified RNA Aptamers for Human TNFα

    Institute of Scientific and Technical Information of China (English)

    Xinrui Yan; Xuwen Gao; Zhiqing Zhang

    2004-01-01

    Human tumor necrosis factor α (hTNFα), a pleiotropic cytokine with activities ranging from host defense mechanisms in infection and injury to severe toxicity in septic shock or other related diseases, is a promising target for drug screening. Using the SELEX (systematic evolution of ligands by exponential enrichment) process, we isolated oligonucleotide ligands (aptamers) with high affinities for hTNFα. Aptamers were selected from a starting pool of 40 randomized sequences composed of about 1015 RNA molecules. Representative aptamers were truncated to the minimal length with high affinity for hTNFα and were further modified by replacement of 2'-OH with 2'-F and 2'-NH2 at all ribopurine positions. These modified RNA aptamers were resistant to nuclease. The specificity of these aptamers for hTNFαwas confirmed, and their activity to inhibit the cytotoxicity of hTNFα on mouse L929 cells was determined. Results demonstrated that four 2'-NH2-modified aptamers bound to hTNFα with high affinity and blocked the binding of hTNFα to its receptor, thus protecting the L929 cells from the cytotoxicity of hTNFα. Oligonucleotide aptamers described here are potential therapeutics and diagnostics for hTNFc-related diseases.

  3. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Il Chung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  4. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  5. Recognition of Bungarus multicinctus venom by a DNA aptamer against β-bungarotoxin.

    Directory of Open Access Journals (Sweden)

    Fengping Ye

    Full Text Available Antibody-based technology is the main method for diagnosis and treatment of snake bite envenoming currently. However, the development of an antibody, polyclonal or monoclonal, is a complicated and costly procedure. Aptamers are single stranded oligonucleotides that recognize specific targets such as proteins and have shown great potential over the years as diagnostic and therapeutic agents. In contrast to antibodies, aptamers can be selected in vitro without immunization of animals, and synthesized chemically with extreme accuracy, low cost and high degree of purity. In this study we firstly report on the identification of DNA aptamers that bind to β-bungarotoxin (β-BuTx, a neurotoxin from the venom of Bungarus multicinctus. A plate-SELEX method was used for the selection of β-BuTx specific aptamers. After 10 rounds of selection, four aptamer candidates were obtained, with the dissociation constant ranged from 65.9 nM to 995 nM measured by fluorescence spectroscopy. Competitive binding assays using both the fluorescently labeled and unlabeled aptamers revealed that the four aptamers bound to the same binding site of β-BuTx. The best binder, βB-1, bound specifically to β-BuTx, but not to BSA, casein or α-Bungarotoxin. Moreover, electrophoretic mobility shift assay and enzyme-linked aptamer assay demonstrated that βB-1 could discriminate B. multicinctus venom from other snake venoms tested. The results suggest that aptamer βB-1 can serve as a useful tool for the design and development of drugs and diagnostic tests for β-BuTx poisoning and B. multicinctus bites.

  6. Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model.

    Directory of Open Access Journals (Sweden)

    Elena Zavyalova

    Full Text Available Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4-7.1 µmol/kg (14-70 mg/kg. A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.

  7. Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model.

    Science.gov (United States)

    Zavyalova, Elena; Samoylenkova, Nadezhda; Revishchin, Alexander; Golovin, Andrey; Pavlova, Galina; Kopylov, Alexey

    2014-01-01

    Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4-7.1 µmol/kg (14-70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.

  8. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule.

  9. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.

    Science.gov (United States)

    Elshafey, Reda; Siaj, Mohamed; Zourob, Mohammed

    2014-09-16

    Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.

  10. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform

    Directory of Open Access Journals (Sweden)

    Myeong-Sub Song

    2017-05-01

    Full Text Available In this paper, a Whole-Bacteria SELEX (WB-SELEX strategy was adopted to isolate specific aptamers against Shigella sonnei. Real-time PCR amplification and post-SELEX experiment revealed that the selected aptmers possessed a high binding affinity and specificity for S. sonnei. Of the 21 aptamers tested, the C(t values of the SS-3 and SS-4 aptamers (Ct = 13.89 and Ct = 12.23, respectively had the lowest value compared to other aptamer candidates. The SS-3 and SS-4 aptamers also displayed a binding affinity (KD of 39.32 ± 5.02 nM and 15.89 ± 1.77 nM, respectively. An aptamer-based fluorescent biosensor assay was designed to detect and discriminate S. sonnei cells using a sandwich complex pair of SS-3 and SS-4. The detection of S. sonnei by the aptamer based fluorescent biosensor platform consisted of three elements: (1 5’amine-SS-4 modification in a 96-well type microtiter plate surface (N-oxysuccinimide, NOS as capture probes; (2 the incubation with S. sonnei and test microbes in functionalized 96 assay wells in parallel; (3 the readout of fluorescent activity using a Cy5-labeled SS-3 aptamer as the detector. Our platform showed a significant ability to detect and discriminate S. sonnei from other enteric species such as E. coli, Salmonella typhimurium and other Shigella species (S. flexneri, S. boydii. In this study, we demonstrated the feasibility of an aptamer sensor platform to detect S. sonnei in a variety of foods and pave the way for its use in diagnosing shigellosis through multiple, portable designs.

  11. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid.

    Science.gov (United States)

    Liu, Xin; Li, Ying; Liang, Jing; Zhu, Wenyue; Xu, Jingyue; Su, Ruifang; Yuan, Lei; Sun, Chunyan

    2016-11-01

    In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.

  12. DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX.

    Science.gov (United States)

    Bitaraf, F S; Rasooli, I; Mousavi Gargari, S L

    2016-03-01

    Haemophilus influenzae type b (Hib) causes acute bacterial meningitis (ABM) in children, with a mortality rate of about 3-6 % of the affected patients. ABM can lead to death during a period of hours to several days and, hence, rapid and early detection of the infection is crucial. Aptamers, the short single-stranded DNA or RNA with high affinity to target molecules, are selected by a high-flux screening technique known as in vitro screening and systematic evolution of ligands by exponential enrichment technology (SELEX). In this study, whole-cell SELEX was applied for the selection of target-specific aptamers with high affinity to Hib. ssDNA aptamers prepared by lambda exonuclease were incubated with the target cells (Hib). The aptameric binding rate to Hib was characterized for binding affinity after seven SELEX rounds by flow cytometry. The aptamers with higher binding affinity were cloned. Four of 68 aptamer clones were selected for sequencing. The dissociation constant (Kd) of the high-affinity aptamer clones 45 and 63 were 47.10 and 28.46 pM, respectively. These aptamers did not bind to other bacterial species, including the seven meningitis-causing bacteria. They showed distinct affinity to various H. influenzae strains only. These aptamers showed the highest affinity to Hib and the lowest affinity to H. influenzae type c and to other meningitis-causing bacteria. Clone 63 could detect Hib in patients' cerebrospinal fluid (CSF) samples at 60 colony-forming units (CFU)/mL. The results indicate applicability of the aptamers for rapid and early detection of infections brought about by Hib.

  13. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    Science.gov (United States)

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  14. Molecular Diagnostic and Drug Delivery Agents based on Aptamer-Nanomaterial Conjugates

    Science.gov (United States)

    Lee, Jung Heon; Yigit, Mehmet V.; Mazumdar, Debapriya; Lu, Yi

    2010-01-01

    Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents. PMID:20338204

  15. Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant.

    Science.gov (United States)

    Soule, Erin E; Bompiani, Kristin M; Woodruff, Rebecca S; Sullenger, Bruce A

    2016-02-01

    Potent and rapid-onset anticoagulation is required for several clinical settings, including cardiopulmonary bypass surgery. In addition, because anticoagulation is associated with increased bleeding following surgery, the ability to rapidly reverse such robust anticoagulation is also important. Previously, we observed that no single aptamer was as potent as heparin for anticoagulating blood. However, we discovered that combinations of two aptamers were as potent as heparin. Herein, we sought to combine two individual anticoagulant aptamers into a single bivalent RNA molecule in an effort to generate a single molecule that retained the potent anticoagulant activity of the combination of individual aptamers. We created four bivalent aptamers that can inhibit Factor X/Xa and prothrombin/thrombin and anticoagulate plasma, as well as the combination of individual aptamers. Detailed characterization of the shortest bivalent aptamer indicates that each aptamer retains full binding and functional activity when presented in the bivalent context. Finally, reversal of this bivalent aptamer with a single antidote was explored, and anticoagulant activity could be rapidly turned off in a dose-dependent manner. These studies demonstrate that bivalent anticoagulant aptamers represent a novel and potent approach to actively and reversibly control coagulation.

  16. RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity.

    Directory of Open Access Journals (Sweden)

    Farid Rahimi

    Full Text Available Aptamers are useful molecular recognition tools in research, diagnostics, and therapy. Despite promising results in other fields, aptamer use has remained scarce in amyloid research, including Alzheimer's disease (AD. AD is a progressive neurodegenerative disease believed to be caused by neurotoxic amyloid beta-protein (Abeta oligomers. Abeta oligomers therefore are an attractive target for development of diagnostic and therapeutic reagents. We used covalently-stabilized oligomers of the 40-residue form of Abeta (Abeta40 for aptamer selection. Despite gradually increasing the stringency of selection conditions, the selected aptamers did not recognize Abeta40 oligomers but reacted with fibrils of Abeta40, Abeta42, and several other amyloidogenic proteins. Aptamer reactivity with amyloid fibrils showed some degree of protein-sequence dependency. Significant fibril binding also was found for the naïve library and could not be eliminated by counter-selection using Abeta40 fibrils, suggesting that aptamer binding to amyloid fibrils was RNA-sequence-independent. Aptamer binding depended on fibrillogenesis and showed a lag phase. Interestingly, aptamers detected fibril formation with > or =15-fold higher sensitivity than thioflavin T (ThT, revealing substantial beta-sheet and fibril formation undetected by ThT. The data suggest that under physiologic conditions, aptamers for oligomeric forms of amyloidogenic proteins cannot be selected due to high, non-specific affinity of oligonucleotides for amyloid fibrils. Nevertheless, the high sensitivity, whereby aptamers detect beta-sheet formation, suggests that they can serve as superior amyloid recognition tools.

  17. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  18. The effect of homocysteine reduction by B-vitamin supplementation on markers of endothelial dysfunction.

    NARCIS (Netherlands)

    Peeters, A.C.T.; Molen, E.F. van der; Blom, H.J.; Heijer, M. den

    2004-01-01

    Hyperhomocysteinemia is a risk factor for arterial vascular disease and venous thrombosis. The pathophysiology of this relation is unclear, but several studies suggest that hyperhomocysteinemia impairs endothelial function. We examined the effect of homocysteine lowering by B-vitamin supplementation

  19. Electrochemical Impedance Spectroscopic Sensing of Methamphetamine by a Specific Aptamer

    Directory of Open Access Journals (Sweden)

    Omid Mashinchian

    2012-05-01

    Full Text Available Introduction: Electrochemical impedance spectroscopy (EIS is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. Methods: To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH (i.e., aptaMETH were evaluated in the presence of METH and amphetamine (Amph. Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. Results: The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. Conclusion: Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH.

  20. Harnessing Aptamers to Overcome Challenges in Gluten Detection.

    Science.gov (United States)

    Miranda-Castro, Rebeca; de-los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2016-04-20

    Celiac disease is a lifelong autoimmune disorder triggered by foods containing gluten, the storage protein in wheat, rye, and barley. The rapidly escalating number of patients diagnosed with this disease poses a great challenge to both food industry and authorities to guarantee food safety for all. Therefore, intensive efforts are being made to establish minimal disease-eliciting doses of gluten and consequently to improve gluten-free labeling. These efforts depend to a high degree on the availability of methods capable of detecting the protein in food samples at levels as low as possible. Current analytical approaches rely on the use of antibodies as selective recognition elements. With limited sensitivity, these methods exhibit some deficiencies that compromise the accuracy of the obtained results. Aptamers provide an ideal alternative for designing biosensors for fast and selective measurement of gluten in foods. This article highlights the challenges in gluten detection, the current status of the use of aptamers for solving this problem, and what remains to be done to move these systems into commercial applications.

  1. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  2. Screening and Initial Binding Assessment of Fumonisin B1 Aptamers

    Directory of Open Access Journals (Sweden)

    Maria C. DeRosa

    2010-11-01

    Full Text Available Fumonisins are mycotoxins produced by Fusarium verticillioides and F. proliferatum, fungi that are ubiquitous in corn (maize. Insect damage and some other environmental conditions result in the accumulation of fumonisins in corn-based products worldwide. Current methods of fumonisin detection rely on the use of immunoaffinity columns and high-performance liquid chromatography (HPLC. The use of aptamers offers a good alternative to the use of antibodies in fumonisin cleanup and detection due to lower costs and improved stability. Aptamers are single-stranded oligonucleotides that are selected using Systematic Evolution of Ligands by EXponential enrichment (SELEX for their ability to bind to targets with high affinity and specificity. Sequences obtained after 18 rounds of SELEX were screened for their ability to bind to fumonisin B1. Six unique sequences were obtained, each showing improved binding to fumonisin B1 compared to controls. Sequence FB1 39 binds to fumonisin with a dissociation constant of 100 ± 30 nM and shows potential for use in fumonisin biosensors and solid phase extraction columns.

  3. Screening and initial binding assessment of fumonisin b(1) aptamers.

    Science.gov (United States)

    McKeague, Maureen; Bradley, Charlotte R; De Girolamo, Annalisa; Visconti, Angelo; Miller, J David; Derosa, Maria C

    2010-01-01

    Fumonisins are mycotoxins produced by Fusarium verticillioides and F. proliferatum, fungi that are ubiquitous in corn (maize). Insect damage and some other environmental conditions result in the accumulation of fumonisins in corn-based products worldwide. Current methods of fumonisin detection rely on the use of immunoaffinity columns and high-performance liquid chromatography (HPLC). The use of aptamers offers a good alternative to the use of antibodies in fumonisin cleanup and detection due to lower costs and improved stability. Aptamers are single-stranded oligonucleotides that are selected using Systematic Evolution of Ligands by EXponential enrichment (SELEX) for their ability to bind to targets with high affinity and specificity. Sequences obtained after 18 rounds of SELEX were screened for their ability to bind to fumonisin B(1). Six unique sequences were obtained, each showing improved binding to fumonisin B(1) compared to controls. Sequence FB(1) 39 binds to fumonisin with a dissociation constant of 100 ± 30 nM and shows potential for use in fumonisin biosensors and solid phase extraction columns.

  4. Genomic SELEX: a discovery tool for genomic aptamers.

    Science.gov (United States)

    Zimmermann, Bob; Bilusic, Ivana; Lorenz, Christina; Schroeder, Renée

    2010-10-01

    Genomic SELEX is a discovery tool for genomic aptamers, which are genomically encoded functional domains in nucleic acid molecules that recognize and bind specific ligands. When combined with genomic libraries and using RNA-binding proteins as baits, Genomic SELEX used with high-throughput sequencing enables the discovery of genomic RNA aptamers and the identification of RNA-protein interaction networks. Here we describe how to construct and analyze genomic libraries, how to choose baits for selections, how to perform the selection procedure and finally how to analyze the enriched sequences derived from deep sequencing. As a control procedure, we recommend performing a "Neutral" SELEX experiment in parallel to the selection, omitting the selection step. This control experiment provides a background signal for comparison with the positively selected pool. We also recommend deep sequencing the initial library in order to facilitate the final in silico analysis of enrichment with respect to the initial levels. Counter selection procedures, using modified or inactive baits, allow strengthening the binding specificity of the winning selected sequences.

  5. Electrochemical Impedance Spectroscopic Sensing of Methamphetamine by a Specific Aptamer

    Science.gov (United States)

    Ebrahimi, Mohsen; Johari-Ahar, Mohammad; Hamzeiy, Hossein; Barar, Jaleh; Mashinchian, Omid; Omidi, Yadollah

    2012-01-01

    Introduction Electrochemical impedance spectroscopy (EIS) is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. Methods To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH) (i.e., aptaMETH) were evaluated in the presence of METH and amphetamine (Amph). Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. Results The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. Conclusion Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH. PMID:23678446

  6. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry

    DEFF Research Database (Denmark)

    Trelle, Morten B; Dupont, Daniel Miotto; Madsen, Jeppe Buur

    2014-01-01

    , about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects...... of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection...

  7. Modifications of the chromophore of Spinach aptamer based on QM:MM calculations.

    Science.gov (United States)

    Skúpa, Katarína; Urban, Ján

    2017-02-01

    Spinach aptamer was developed as an RNA analog of the green fluorescent protein. The aptamer interacts with its ligand and modifies its electronic spectrum so that it fluoresces brightly at the wavelength of 501 nm. Song et al. investigated modifications of the ligand in their experimental study and found a molecule emitting at 523 nm upon creating a complex with the Spinach aptamer. The crystal structure of the aptamer in complex with its original ligand has been published, which enabled us to study the system computationally. In this article, we suggest several new modifications of the ligand that shift the emission maximum of the complex to even longer wavelengths. Our results are based on combined quantum mechanical/molecular mechanical calculations with DFT method used for geometry optimization and TD-DFT for calculations of absorption and emission energies.

  8. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay.

    Science.gov (United States)

    Kim, Kiseok; Lee, SeungJin; Ryu, Sungho; Han, Dongil

    2014-05-23

    Protein precipitation is one of the most widely used methods for antigen detection and purification in biological research. We developed a reproducible aptamer-mediated magnetic protein precipitation method that is able to efficiently capture, purify and isolate the target proteins. We discovered DNA aptamers having individually high affinity and specificity against human epidermal growth factor receptor (EGFR) and human insulin receptor (INSR). Using aptamers and magnetic beads, we showed it is highly efficient technique to enrich endogenous proteins complex and is applicable to identify physiologically relevant protein-protein interactions with minimized nonspecific binding of proteins. The results presented here indicate that aptamers would be applicable as a useful and cost-effective tool to identify the presence of the particular target protein with their specific protein partners.

  9. Biomedical Applications of Quantum Dots, Nucleic Acid-Based Aptamers, and Nanostructures in Biosensors.

    Science.gov (United States)

    Meshik, Xenia; Farid, Sidra; Choi, Min; Lan, Yi; Mukherjee, Souvik; Datta, Debopam; Dutta, Mitra; Stroscio, Michael A

    2015-01-01

    This review is a survey of the biomedical applications of semiconductor quantum dots, nucleic acid-based aptamers, and nanosensors as molecular biosensors. It focuses on the detection of analytes in biomedical applications using (1) advances in molecular beacons incorporating semiconductor quantum dots and nanoscale quenching elements; (2) aptamer-based nanosensors on a variety of platforms, including graphene; (3) Raman scattering and surface-enhanced Raman scattering (SERS) using nanostructures for enhanced SERS spectra of biomolecules, including aptamers; and (4) the electrical and optical properties of nanostructures incorporated into molecular beacons and aptamer-based nanosensors. Research done at the University of Illinois at Chicago (UIC) is highlighted throughout since it emphasizes the specific approaches taken by the bioengineering department at UIC.

  10. Rational design of a structure-switching DNA aptamer for potassium ions

    Science.gov (United States)

    Catherine, Andrew T.; Shishido, Stephanie N.; Robbins-Welty, Gregg A.; Diegelman-Parente, Amy

    2014-01-01

    Structure-switching molecules provide a unique means for analyte detection, generating a response to analyte concentration through a binding-specific conformational change between non-binding and binding-competent states. While most ligand-binding molecules are not structure switching by default, many can be engineered to be so through the introduction of an alternative non-binding (and thus non-signalling) conformation. This population-shift mechanism is particularly effective with oligonucleotides and has led to the creation of structure-switching aptamers for many target ligands. Here, we report the rational design of structure-switching DNA aptamers, based on the thrombin binding aptamer (TBA), that bind potassium with affinities that bridge the gap between previously reported weak-binding and strong-binding aptamers. We also demonstrate a correlation between the free energy of the experimentally determined binding affinity for potassium and the computationally estimated free energy of the alternative (non-binding) structure. PMID:25352996

  11. Selection of DMA aptamer that specific binding human carcinoembryonic antigen in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To select the specific aptamer of carcinoembryonic antigen (CEA), one of the most attractive molecule for cancer target therapy and imaging. Methods: Seven rounds in vitro selection were performed against the purified CEA protein. Ligand-mediated target purification and Co-immunoprecipitation were adopted to verify the specific binding of the aptamer to the purified and native protein separately. Results:The CEA-specific aptamer which can bind both the purified and native protein with the high specificity was obtained. Conclusion:This is the first time the CEA specific apatmer was produced. The results in this study provides the preliminary evidence for further investigation and application of CEA-aptamer in the future.

  12. Generating aptamers by cell-SELEX for applications in molecular medicine.

    Science.gov (United States)

    Ye, Mao; Hu, Jun; Peng, Minyuan; Liu, Jing; Liu, Jun; Liu, Huixia; Zhao, Xielan; Tan, Weihong

    2012-01-01

    Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX). Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX) can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  13. Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2012-03-01

    Full Text Available Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX. Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  14. Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX.

    Science.gov (United States)

    Kim, Ji Won; Kim, Eun Young; Kim, Sun Young; Byun, Sang Kyung; Lee, Dasom; Oh, Kyoung-Jin; Kim, Won Kon; Han, Baek Soo; Chi, Seung-Wook; Lee, Sang Chul; Bae, Kwang-Hee

    2014-10-31

    The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies.

  15. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  16. Preparation of a Specific ssDNA Aptamer for Brevetoxin-2 Using SELEX

    National Research Council Canada - National Science Library

    Tian, Rui-Yun; Lin, Chao; Yu, Shi-Yu; Gong, Sheng; Hu, Pan; Li, Yan-Song; Wu, Zong-Cheng; Gao, Yang; Zhou, Yu; Liu, Zeng-Shan; Ren, Hong-Lin; Lu, Shi-Ying

    2016-01-01

    .... The development of an alternative detection probe is another promising research direction. This paper reports the use of aptamers binding to BTX-2 in an analytical assay using the systematic evolution of ligands by exponential enrichment (SELEX...

  17. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers....

  18. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers

    Science.gov (United States)

    Pica, Andrea; Russo Krauss, Irene; Parente, Valeria; Tateishi-Karimata, Hisae; Nagatoishi, Satoru; Tsumoto, Kouhei; Sugimoto, Naoki; Sica, Filomena

    2017-01-01

    Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed. PMID:27899589

  19. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  20. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers.

    Science.gov (United States)

    Pica, Andrea; Russo Krauss, Irene; Parente, Valeria; Tateishi-Karimata, Hisae; Nagatoishi, Satoru; Tsumoto, Kouhei; Sugimoto, Naoki; Sica, Filomena

    2017-01-09

    Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents.

    Science.gov (United States)

    Graziani, Ana Cláudia; Stets, Maria Isabel; Lopes, Ana Luisa Kalb; Schluga, Pedro Henrique Caires; Marton, Soledad; Mendes, Ieda Ferreira; Andrade, Antero Silva Ribeiro de; Krieger, Marco Aurélio; Cardoso, Josiane

    2017-04-28

    Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.

  2. [Atomic force microscopy fishing of gp120 on immobilized aptamer and its mass spectrometry identification].

    Science.gov (United States)

    Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I

    2015-01-01

    A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.

  3. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    Science.gov (United States)

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  4. Development of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX

    Directory of Open Access Journals (Sweden)

    Seyedeh Alia Moosavian

    2015-06-01

    Full Text Available Objective(s: Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2 is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressing TUBO cell line. Materials and Methods: Panel of aptamers was selected using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX. Results: Binding studies showed that selected aptamers can identify TUBO cell line with high affinity and selectivity. Our preliminary investigation of the target of aptamers suggested that aptamers bind with HER2 proteins on the surface of TUBO cells. Conclusion: We believe the selected aptamers could be useful ligands for targeted breast cancer therapy.

  5. Aptamer-based label-free impedimetric biosensor for detection of progesterone.

    Science.gov (United States)

    Contreras Jiménez, Gastón; Eissa, Shimaa; Ng, Andy; Alhadrami, Hani; Zourob, Mohammed; Siaj, Mohamed

    2015-01-20

    Rising progesterone (P4) levels in humans due to its overconsumption through hormonal therapy, food products, or drinking water can lead to many negative health effects. Thus, the simple and accurate assessment of P4 in both environmental and clinical samples is highly important to protect public health. In this work, we present the selection, identification, and characterization of ssDNA aptamers with high binding affinity to P4. The aptamers were selected in vitro from a single-stranded DNA library of 1.8 × 10(15) oligonucleotides showing dissociation constants (KD) in the low nanomolar range. The dissociation constant of the best aptamer, designated as P4G13, was estimated to be 17 nM by electrochemical impedance spectroscopy (EIS) as well as fluorometric assay. Moreover, the aptamer P4G13 did not show cross-reactivity to analogues similar to progesterone such as 17β-estradiol (E2) and norethisterone (NET). An impedimetric aptasensor for progesterone was then fabricated based on the conformational change of P4G13 aptamer, immobilized on the gold electrode by self-assembly, upon binding to P4, which results in an increase in electron transfer resistance. Aptamer-complementary DNA (cDNA) oligonucleotides were tested to maximize the signal gain of the aptasensor after binding with progesterone. Significant signal enhancement was observed when the aptamer hybridized with a short complementary sequence at specific site was used instead of pure aptamer. This signal gain is likely due to the more significant conformational change of the aptamer-cDNA than the pure aptamer upon binding with P4, as confirmed by circular dichroism (CD) spectroscopy. The developed aptasensor exhibited a linear range for concentrations of P4 from 10 to 60 ng/mL with a detection limit of 0.90 ng/mL. Moreover, the aptasensor was applied in spiked tap water samples and showed good recovery percentages. The new selected progesterone aptamers can be exploited in further biosensing applications

  6. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  7. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

    Science.gov (United States)

    Fang, Xiaohong; Tan, Weihong

    2010-01-19

    Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the

  8. Endothelial nitric oxide: protector of a healthy mind.

    Science.gov (United States)

    Katusic, Zvonimir S; Austin, Susan A

    2014-04-01

    Endothelial nitric oxide (NO) is generated by constitutively active endothelial nitric oxide synthase (eNOS), an essential enzyme responsible for cardiovascular homeostasis. Historically, endothelial NO was first recognized as a major vasodilator involved in control of vasomotor function and local blood flow. In this review, our attention is focused on the emerging role of endothelial NO in linking cerebrovascular function with cognition. We will discuss the recognized ability of endothelial NO to modulate processing of amyloid precursor protein (APP), influence functional status of microglia, and affect cognitive function. Existing evidence suggests that the loss of NO in cultured human cerebrovascular endothelium causes increased expression of APP and β-site APP-cleaving enzyme 1 (BACE1) thereby resulting in increased secretion of amyloid β peptides (Aβ1-40 and Aβ1-42). Furthermore, increased expression of APP and BACE1 as well as increased production of Aβ peptides was detected in the cerebral microvasculature and brain tissue of eNOS-deficient mice. Since Aβ peptides are considered major cytotoxic molecules responsible for the pathogenesis of Alzheimer's disease, these observations support the concept that a loss of endothelial NO might significantly contribute to the initiation and progression of cognitive decline. In addition, genetic inactivation of eNOS causes activation of microglia and promotes a pro-inflammatory phenotype in the brain. Behavioural analysis revealed that eNOS-deficient mice exhibit impaired cognitive performance thereby indicating that selective loss of endothelial NO has a detrimental effect on the function of neuronal cells. Together with findings from prior studies demonstrating the ability of endothelial NO to affect synaptic plasticity, mitochondrial biogenesis, and function of neuronal progenitor cells, it is becoming apparent that the role of endothelial NO in the control of central nervous system function is very complex. We

  9. Selection and application of ssDNA aptamers to detect active TB from sputum samples

    CSIR Research Space (South Africa)

    Rotherham, LS

    2012-10-01

    Full Text Available be circum- vented by aptamers. Aptamers, by virtue of their high specificity and high sensitivity, could serve as tools for the early and specific detection of active TB and meet the ASSURED (Affordable, Sensitive, Specific, User- friendly, Rapid... with culture-proven tuberculosis. Materials and Methods Ethics Statement Approval for the use of sputum samples for this study was obtained from the University of Cape Town, Health Science Faculty Research Ethics Committee (Ethics number: REC REF: 421...

  10. A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery

    DEFF Research Database (Denmark)

    Bentin, Thomas

    2012-01-01

    A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces.......A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces....

  11. Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Ti-Hsuan Ku

    2015-07-01

    Full Text Available Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.

  12. In vitro selection of a peptide aptamer that changes fluorescence in response to verotoxin.

    Science.gov (United States)

    Manandhar, Yasodha; Bahadur, K C Tara; Wang, Wei; Uzawa, Takanori; Aigaki, Toshiro; Ito, Yoshihiro

    2015-03-01

    A peptide aptamer that changes fluorescence upon binding to verotoxin was selected in vitro using ribosome display with a tRNA carrying an environment-sensitive fluorescent probe. The aptamer specifically bound to verotoxin with a dissociation constant (K d) of 3.94 ± 1.6 µM, and the fluorescence decreased by 78% as the verotoxin concentration was increased. The selected peptide can be used for detection of verotoxin.

  13. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Science.gov (United States)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  14. Detection of human immunodeficiency virus type 1 (HIV-1) Tat protein by aptamer-based biosensors

    Science.gov (United States)

    Hashim, Uda; Fatin, M. F.; Ruslinda, A. R.; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    A study was conducted to detect the human immunodeficiency virus (HIV-1) Tat protein using interdigitated electrodes. The measurements and images of the IDEs' finger gaps and the images of chitosan-carbon nanotubes deposited on top of the interdigitated electrodes were taken using the Scanning Electron Microscope. The detection of HIV-1 Tat protein was done using split aptamers and aptamer tail. Biosensors were chosen as diagnostic equipment due to their rapid diagnostic capabilities.

  15. Selection, Characterization and Interaction Studies of a DNA Aptamer for the Detection of Bifidobacterium bifidum

    Directory of Open Access Journals (Sweden)

    Lujun Hu

    2017-04-01

    Full Text Available A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5′-primer and 3′-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 104 to 107 cfu/mL (R2 = 0.9834. Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5.

  16. Stepping Library-Based Post-SELEX Strategy Approaching to the Minimized Aptamer in SPR.

    Science.gov (United States)

    He, Xiaoqin; Guo, Lei; He, Junlin; Xu, Hua; Xie, Jianwei

    2017-06-20

    When evolved from SELEX (systematic evolution of ligands by exponential enrichment), aptamers are generally about 70-130 nucleotides in length and needed to be effectively truncated for further diagnosis or therapeutic uses. Post-SELEX optimization is then aroused to simplify the aptamer sequence and improve the affinity property. In this work, we report a new post-SELEX strategy based on a stepping library for the first time. With a hypothesis that one nucleobase can influence the whole binding affinity through its adjacent base stacking and potential steric hydrogen bonding interaction, we designed a stepping library composed of all probable nucleotide truncation directions. We employed an aptamer 807-39nt toward EPO-α as a model, and surface plasmon resonance (SPR) as an efficient screening and evaluation method to optimize all label-free sequences in the library. We have successfully picked out In27 as the minimized aptamer from a mini library of only 35 sequences. Aptamer In27 has a sole loop, without the original stem portion of the initial aptamer, but retains the whole binding affinity. We have also defined the key nucleotide contribution by site mutagenesis with natural bases, and finally produced a degenerated sequence with higher or the same good affinities. Furthermore, we explored different binding behaviors between aptamer In27 and other recognition molecule such as agglutinin, monoclonal antibody, or receptor by competition or binding assays. Our work provides a new and efficient post-SELEX optimization strategy, as well as a minimized aptamer In27 with an explicit degenerated sequence and a defined binding behavior. That would enhance their great potential in future diagnosis and therapy.

  17. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX.

    Science.gov (United States)

    Savory, Nasa; Nzakizwanayo, Jonathan; Abe, Koichi; Yoshida, Wataru; Ferri, Stefano; Dedi, Cinzia; Jones, Brian V; Ikebukuro, Kazunori

    2014-09-01

    In order to better control nosocomial infections, and facilitate the most prudent and effective use of antibiotics, improved strategies for the rapid detection and identification of problematic bacterial pathogens are required. DNA aptamers have much potential in the development of diagnostic assays and biosensors to address this important healthcare need, but further development of aptamers targeting common pathogens, and the strategies used to obtain specific aptamers are required. Here we demonstrate the application of a quantitative PCR (qPCR) controlled Cell-SELEX process, coupled with downstream secondary-conformation-based aptamer profiling. We used this approach to identify and select DNA aptamers targeted against uropathogenic Escherichia coli, for which specific aptamers are currently lacking, despite the prevalence of these infections. The use of qPCR to monitor the Cell-SELEX process permitted a minimal number of SELEX cycles to be employed, as well as the cycle-by-cycle optimisation of standard PCR amplification of recovered aptamer pools at each round. Identification of useful aptamer candidates was also facilitated by profiling of secondary conformations and selection based on putative aptamer secondary structure. One aptamer selected this way (designated EcA5-27), displaying a guanine-quadruplex sequence motif, was shown to have high affinity and specificity for target cells, and the potential to discriminate between distinct strains of E. coli, highlighting the possibility for development of aptamers selectively recognising pathogenic strains. Overall, the identified aptamers hold much potential for the development of rapid diagnostic assays for nosocomial urinary tract infections caused by E. coli. Copyright © 2014. Published by Elsevier B.V.

  18. In vitro selection of G-rich RNA aptamers that target HIV-1 integrase

    Institute of Scientific and Technical Information of China (English)

    LIU YingChun; ZHANG Yan; YE GuoZhu; YANG ZhenJun; ZHANG LiangRen; ZHANG LiHe

    2008-01-01

    Aptamers that interact with various HIV-1 proteins, such as reverse transcriptase, Rev, Tat protein, and nuclear capsule protein, have been prepared through SELEX (systematic evolution of ligands by ex-ponential enrichment) technique. However, there are few reports about the DNA or RNA aptamers that target HIV-1 integrase. In this investigation, we selected alternative RNA aptamers specific for the HIV-1 Aptamer IN1, IN2, IN3 had similar and the highest Kd values from 145 to 239 nmol. L-1. Structural studies showed that they formed similar stem-loop structure. Deletion of any stem structure resulted in diminished affinity. In addition, structure probing study with antisense DNA indicated that the stem-loop structure in the random region was critical for integrase binding. Although aptamer IN1 failed to form G-quartet structure, it might directly interact with the DDE motif of integrase, which is the virus DNA-binding site, because G-quadruplex T40214 competitively inhibited the interaction between IN1 and integrase. Together, this study generated a novel RNA aptamer IN1, which could be useful in basic research and anti-HIV drug screening.

  19. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.

    Science.gov (United States)

    Slavkovic, Sladjana; Altunisik, Merve; Reinstein, Oren; Johnson, Philip E

    2015-05-15

    In addition to binding its target molecule, cocaine, the cocaine-binding aptamer tightly binds the alkaloid quinine. In order to understand better how the cocaine-binding aptamer interacts with quinine we have used isothermal titration calorimetry-based binding experiments to study the interaction of the cocaine-binding aptamer to a series of structural analogs of quinine. As a basis for comparison we also investigated the binding of the cocaine-binding aptamer to a set of cocaine metabolites. The bicyclic aromatic ring on quinine is essential for tight affinity by the cocaine-binding aptamer with 6-methoxyquinoline alone being sufficient for tight binding while the aliphatic portion of quinine, quinuclidine, does not show detectable binding. Compounds with three fused aromatic rings are not bound by the aptamer. Having a methoxy group at the 6-position of the bicyclic ring is important for binding as substituting it with a hydrogen, an alcohol or an amino group all result in lower binding affinity. For all ligands that bind, association is driven by a negative enthalpy compensated by unfavorable binding entropy.

  20. Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; Brennan, John D; Li, Yingfu

    2017-09-04

    Rapid and accurate diagnosis of Clostridium difficile infections (CDI) is crucial for patient treatment, infection control and epidemiological monitoring. As an important antigen, glutamate dehydrogenase (GDH) has been proposed as a preliminary screening test target for CDI. However, current assays based on GDH activity or GDH immunoassays have suboptimal sensitivity and specificity. Herein, we described the selection and characterization of single-stranded DNA aptamers that specifically targeted GDH. After 10 rounds of selection, high-throughput sequencing was used to identify enriched aptamer candidates. Of 10 candidates, three aptamers for GDH were identified. Gel shift assays showed that these aptamers exhibited low nanomolar affinities. One aptamer was optimized based on structural analysis and further engineered into a structure-switching fluorescence signaling aptamer, wherein desorption from reduced graphene oxide (RGO) upon binding of GDH led to an increase in fluorescence emission. This method allowed for quantitative detection of GDH with a detection limit of 1 nM, providing great potential for its further application in CDI diagnosis. Copyright © 2017. Published by Elsevier B.V.

  1. The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Su; Lee, Hyun-Seung; Yang, Jeong-A; Jo, Moon-Ho; Hahn, Sei Kwang [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784 (Korea, Republic of)], E-mail: skhanb@postech.ac.kr

    2009-06-10

    An aptamer-functionalized silicon-nanowire (Si-NW) field effect transistor (FET) biosensor was successfully fabricated, characterized and applied to real-time electrical detection of binding with the target protein for biomedical applications. Surface modifications were carried out using 3-aminopropyl diethoxysilane and succinic anhydride to introduce amine and carboxyl groups onto Si substrates. Anti-thrombin aptamers with 5{sup '}-end amine groups were chemically grafted onto the surface-modified Si substrates through amide bond formation. Atomic force microscopic (AFM) analyses confirmed the successful immobilization of anti-thrombin aptamers on Si-NWs and their binding with thrombin samples. The anti-thrombin aptamers bound to Si-NWs through the linker appeared to have a mean height of approx. 4 nm and the thrombin/aptamer complex to have a mean height of approx. 8 nm. Fluorescence micrographs visualized the FITC-labeled thrombin after binding to anti-thrombin aptamers immobilized on Si-NWs. Furthermore, the anti-thrombin Si-NW FET biosensor was successfully applied to the real-time detection of electronic signals during and after binding with a thrombin sample at a concentration of approx. 330 pmol l{sup -1} and the thrombin in blood samples.

  2. DNA aptamers for selective identification and separation of flame retardant chemicals.

    Science.gov (United States)

    Kim, Un-Jung; Kim, Byoung Chan

    2016-09-14

    Polybrominated diphenyl ethers (PBDEs) are group of chemicals which are representative persistent organic pollutants (POPs) and used as brominated flame retardants for many consumer products. PBDEs were phased out since 2009 but are still frequently observed in various environmental matrices and human body. Here, we report ssDNA aptamers which bind to BDE47, one of the PBDE congeners commonly found in various environmental matrices, and show affinity to other major tri-to hepta- BDE congeners. The PBDE specific aptamers were isolated from random library of ssDNA using Mag-SELEX. Two out of 15 sequences, based on their alignment and hairpin loop structures, were chosen to determine dissociation constant with BDE47 and showed from picomolar to nanomolar affinities (200 pM and 1.53 nM). The aptamers displayed high selectivity to the original target, BDE47, and implying general specificity to PBDE backbone with varying affinities to other congeners. Further, we showed that the use of two aptamers together could enhance the separation efficiency of BDE47 and other BDE congeners when dissolved in a solvent compared to use of single aptamer. These aptamers are expected to provide a tool for preliminary screening or quick separation of PBDEs in environmental samples prior to trace quantitative analysis.

  3. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections.

  4. Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays

    Directory of Open Access Journals (Sweden)

    Yingfu Li

    2008-11-01

    Full Text Available As the key constituents of the genetic code, the importance of nucleic acids to life has long been appreciated. Despite being composed of only four structurally similar nucleotides, single-stranded nucleic acids, as in single-stranded DNAs and RNAs, can fold into distinct three-dimensional shapes due to specific intramolecular interactions and carry out functions beyond serving as templates for protein synthesis. These functional nucleic acids (FNAs can catalyze chemical reactions, regulate gene expression, and recognize target molecules. Aptamers, whose name is derived from the Latin word aptus meaning “to fit”, are oligonucleotides that can bind their target ligands with high affinity and specificity. Since aptamers exist in nature but can also be artificially isolated from pools of random nucleic acids through a process called in vitro selection, they can potentially bind a diverse array of compounds. In this review, we will discuss the research that is being done to develop aptamers against various biomolecules, the progress in engineering biosensors by coupling aptamers to signal transducers, and the prospect of employing these sensors for a range of chemical and biological applications. Advances in aptamer technology emphasizes that nucleic acids are not only the fundamental molecules of life, they can also serve as research tools to enhance our understanding of life. The possibility of using aptamer-based tools in drug discovery and the identification of infectious agents can ultimately augment our quality of life.

  5. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates.

    Science.gov (United States)

    Chávez, Jorge L; Lyon, Wanda; Kelley-Loughnane, Nancy; Stone, Morley O

    2010-09-15

    A detection system for theophylline that combined the recognition properties of an aptamer and the plasmonic response of gold nanoparticles (AuNPs) is presented. The aptamer was used as a linker for AuNPs functionalized with complementary sequences to the aptamer (DNA-AuNPs), producing supramolecular complexes that disassemble when exposed to theophylline due to aptamer binding. The detection event was reported as a change in the AuNPs plasmonic peak and intensity. Addition of a spacer on the DNA immobilized on the AuNPs facing the aptamer binding site improved the aggregates' response, doubling the detection range of system response to theophylline. Modification of the oligonucleotides immobilized on the AuNPs that reduced the interparticle distance in the aggregated state suppressed their response to theophylline and addition of the spacer recovered it. This work demonstrated that the design of oligonucleotides immobilized on the AuNPs could be used to improve their plasmonic response without affecting aptamer performance.

  6. Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip.

    Science.gov (United States)

    Kim, Yeon Seok; Jung, Ho Sup; Matsuura, Toshihiko; Lee, Hea Yeon; Kawai, Tomoji; Gu, Man Bock

    2007-05-15

    An electrochemical detection method for chemical sensing has been developed using a DNA aptamer immobilized gold electrode chip. DNA aptamers specifically binding to 17beta-estradiol were selected by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) process from a random ssDNA library, composed of approximately 7.2 x 10(14) DNA molecules. Gold electrode chips were employed to evaluate the electrochemical signals generated from interactions between the aptamers and the target molecules. The DNA aptamer immobilization on the gold electrode was based on the avidin-biotin interaction. The cyclic voltametry (CV) and square wave voltametry (SWV) values were measured to evaluate the chemical binding to aptamer. When 17beta-estradiol interacted with the DNA aptamer, the current decreased due to the interference of bound 17beta-estradiol with the electron flow produced by a redox reaction between ferrocyanide and ferricyanide. In the negative control experiments, the current decreased only mildly due to the presence of other chemicals.

  7. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring.

    Science.gov (United States)

    Reinemann, C; Freiin von Fritsch, U; Rudolph, S; Strehlitz, B

    2016-03-15

    Quinolones are antibiotics that are accredited in human and veterinary medicine but are regularly used in high quantities also in industrial livestock farming. Since these compounds are often only incompletely metabolized, significant amounts contaminate the aquatic environment and negatively impact on a variety of different ecosystems. Although there is increasing awareness of problems caused by pharmaceutical pollution, available methods for the detection and elimination of numerous pharmaceutical residues are currently inefficient or expensive. While this also applies to antibiotics that may lead to multi-drug resistance in pathogenic bacteria, aptamer-based technologies potentially offer alternative approaches for sensitive and efficient monitoring of pharmaceutical micropollutants. Using the Capture-SELEX procedure, we here describe the selection of an aptamer pool with enhanced binding qualities for fluoroquinolones, a widely used group of antibiotics in both human and veterinary medicine. The selected aptamers were shown to detect various quinolones with high specificity, while specific binding activities to structurally unrelated drugs were not detectable. The quinolone-specific aptamers bound to ofloxacin, one of the most frequently prescribed fluoroquinolone, with high affinity (KD=0.1-56.9 nM). The functionality of quinolone-specific aptamers in real water samples was demonstrated in local tap water and in effluents of sewage plants. Together, our data suggest that these aptamers may be applicable as molecular receptors in biosensors or as catcher molecules in filter systems for improved monitoring and treatment of polluted water.

  8. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.

    Directory of Open Access Journals (Sweden)

    Asma Iqbal

    Full Text Available There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment. Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.

  9. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase.

    Science.gov (United States)

    Miropolskaya, Nataliya; Kulbachinskiy, Andrey

    2016-01-08

    Promoter recognition by bacterial RNA polymerase (RNAP) is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates which remain only partially characterized. We used single-stranded DNA aptamers containing specific promoter motifs to probe the interactions of the Thermus aquaticus RNAP σ(A) subunit with the -10 promoter element in the absence of other parts of the promoter complex. The aptamer binding decreased intrinsic fluorescence of the σ subunit, likely as a result of interactions between the -10 element and conserved tryptophan residues of the σ DNA-binding region 2. By monitoring these changes, we demonstrated that DNA binding proceeds through a single rate-limiting step resulting in formation of very stable complexes. Deletion of the N-terminal domain of the σ(A) subunit increased the rate of aptamer binding while replacement of this domain with an unrelated N-terminal region 1.1 from the Escherichia coli σ(70) subunit restored the original kinetics of σ-aptamer interactions. The results demonstrate that the key step in promoter recognition can be modelled in a simple σ-aptamer system and reveal that highly divergent N-terminal domains similarly modulate the DNA-binding properties of the σ subunit. The aptamers efficiently suppressed promoter-dependent transcription initiation by the holoenzyme of RNA polymerase, suggesting that they may be used for development of novel transcription inhibitors.

  10. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Zhou Gong

    Full Text Available Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Bacillus subtilis is studied by overall 1.5 μs all-atom molecular dynamics simulations We found that the ligand-free aptamer has a stable state with a folded P1-L3 and open binding pocket. The latter forms a cytosine-rich pool in which the nucleotide C19 oscillates between close and open positions, making it a potential conformation for preQ1 entrance. The dynamic picture further suggests that the specific recognition of preQ1 by the aptamer domain is not only facilitated by the key nucleotide C19 but also aided and enhanced by other cytosines around the binding pocket. These results should help to understand the details of preQ1 binding.

  11. In vitro selection of G-rich RNA aptamers that target HIV-1 integrase

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aptamers that interact with various HIV-1 proteins,such as reverse transcriptase,Rev,Tat protein,and nuclear capsule protein,have been prepared through SELEX (systematic evolution of ligands by ex-ponential enrichment) technique. However,there are few reports about the DNA or RNA aptamers that target HIV-1 integrase. In this investigation,we selected alternative RNA aptamers specific for the HIV-1 integrase by using a different binding buffer containing 10 mmol·L-1 MgCl2 and 100 mmol·L-1 KCl. Aptamer IN1,IN2,IN3 had similar and the highest Kd values from 145 to 239 nmol·L-1. Structural studies showed that they formed similar stem-loop structure. Deletion of any stem structure resulted in diminished affinity. In addition,structure probing study with antisense DNA indicated that the stem-loop structure in the random region was critical for integrase binding. Although aptamer IN1 failed to form G-quartet structure,it might directly interact with the DDE motif of integrase,which is the virus DNA-binding site,because G-quadruplex T40214 competitively inhibited the interaction between IN1 and integrase. Together,this study generated a novel RNA aptamer IN1,which could be useful in basic research and anti-HIV drug screening.

  12. Screening and Identification of ssDNA Aptamer for Human GP73

    Directory of Open Access Journals (Sweden)

    Jingchun Du

    2015-01-01

    Full Text Available As one tumor marker of HCC, Golgi Protein 73 (GP73 is given more promise in the early diagnosis of HCC, and aptamers have been developed to compete with antibodies as biorecognition probes in different detection system. In this study, we utilized GP73 to screen specific ssDNA aptamers by SELEX technique. First, GP73 proteins were expressed and purified by prokaryotic expression system and Nickle ion affinity chromatography, respectively. At the same time, the immunogenicity of purified GP73 was confirmed by Western blotting. The enriched ssDNA library with high binding capacity for GP73 was obtained after ten rounds of SELEX. Then, thirty ssDNA aptamers were sequenced, in which two ssDNA aptamers with identical DNA sequence were confirmed, based on the alignment results, and designated as A10-2. Furthermore, the specific antibody could block the binding of A10-2 to GP73, and the specific binding of A10-2 to GP73 was also supported by the observation that several tumor cell lines exhibited variable expression level of GP73. Significantly, the identified aptamer A10-2 could distinguish normal and cancerous liver tissues. So, our results indicate that the aptamer A10-2 might be developed into one molecular probe to detect HCC from normal liver specimens.

  13. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery.

    Science.gov (United States)

    Hoinka, Jan; Berezhnoy, Alexey; Dao, Phuong; Sauna, Zuben E; Gilboa, Eli; Przytycka, Teresa M

    2015-07-13

    High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut-a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the 'parent' sequence and AptaCluster-an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine.

    Science.gov (United States)

    Duan, Nuo; Gong, Wenhui; Wu, Shijia; Wang, Zhouping

    2017-04-08

    An improved SELEX technique was developed for selecting aptamers against ractopamine (RAC) by immobilizing ssDNA library on the magnetic beads. After sixteen selection rounds, a highly enriched ssDNA pool was sequenced and nine families were grouped according to their homology and secondary structures analysis. One representative aptamer candidate from each family was picked out for binding affinity identification by graphene oxide (GO) adsorption platform. The aptamer RAC-6 was demonstrated as the optimal aptamer with high specificity and dissociation constant (Kd) value of 54.22 ± 8.02 nM. To prove the potential application of aptamer RAC-6 in the quantitative determination of RAC, a fluorescent bioassay with aptamer RAC-6 was developed. The linear range for RAC was from 0.10 ng/mL to 100 ng/mL and the limit of detection was as low as 0.04 ng/mL. Furthermore, the method was validated for the analysis of RAC spiked real samples, and the recoveries were between 82.57% and 104.65%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [DNA aptamer selection in vitro for determining ketamine by FluMag-SELEX].

    Science.gov (United States)

    Sun, Mei-Qi; Cao, Fang-Qi; Hu, Xiao-Long; Zhang, Yu-Rong; Lu, Xin-Wei; Zeng, Li-Bo

    2014-10-01

    To select specific DNA aptamer for determining ketamine by FluMag-SELEX. Based on magnetic beads with tosyl surface modification as solid carrier and ketamine as target, a random ssDNA library with total length of 78 bp in vitro was compounded. After 13 rounds screening, DNA cloning and sequencing were done. Primary and secondary, structures were analyzed. The affinity, specificity and Kd values of selected aptamer were measured by monitoring the fluorescence intensity. Two ssDNA aptamers (Apt#4 and Apt#8) were successfully selected with high and specific abilities to bind ketamine as target with Kd value of 0.59 and 0.66 μmol/L. The prediction of secondary structure was main stem-loop and G-tetramer. The stem was the basis of stability of aptamer's structure. And loop and G-tetramer was the key of specific binding of ketamine. FluMag-SELEX can greatly improve the selection efficiency of the aptamer, obtain the ketamine-binding DNA aptamer, and develop a new method for rapid detection of ketamine.

  16. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.

    Science.gov (United States)

    Zhou, Qingtong; Xia, Xiaole; Luo, Zhaofeng; Liang, Haojun; Shakhnovich, Eugene

    2015-12-08

    To isolate functional nucleic acids that bind to defined targets with high affinity and specificity, which are known as aptamers, the systematic evolution of ligands by exponential enrichment (SELEX) methodology has emerged as the preferred approach. Here, we propose a computational approach, SELEX in silico, that allows the sequence space to be more thoroughly explored regarding binding of a certain target. Our approach consists of two steps: (i) secondary structure-based sequence screening, which aims to collect the sequences that can form a desired RNA motif as an enhanced initial library, followed by (ii) sequence enrichment regarding target binding by molecular dynamics simulation-based virtual screening. Our SELEX in silico method provided a practical computational solution to three key problems in aptamer sequence searching: design of nucleic acid libraries, knowledge of sequence enrichment, and identification of potent aptamers. Six potent theophylline-binding aptamers, which were isolated by SELEX in silico from a sequence space containing 4(13) sequences, were experimentally verified to bind theophylline with high affinity: Kd ranging from 0.16 to 0.52 μM, compared with the dissociation constant of the original aptamer-theophylline, 0.32 μM. These results demonstrate the significant potential of SELEX in silico as a new method for aptamer discovery and optimization.

  17. Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science

    Science.gov (United States)

    Kong, Hoon Young; Byun, Jonghoe

    2013-01-01

    The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex threedimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging. PMID:24404332

  18. Selection of LNA-containing DNA aptamers against recombinant human CD73.

    Science.gov (United States)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G; Larsen, Niels; Nielsen, Ronni; Derbyshire, Nicola; Mandrup, Susanne; Ditzel, Henrik J; Wengel, Jesper

    2015-05-01

    LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several steps including sequence unification, clustering and alignment to identify enriched sequences. Three enriched sequences were synthesised for further analysis, two of which showed sequence similarities. These sequences exhibited binding to the recombinant CD73 with KD values of 10 nM and 3.5 nM when tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences were able to decrease the activity of the protein. However, the aptamers exhibited no binding to cellular CD73 by flow cytometry analysis likely since the epitope recognised by the aptamer was not available for binding on the cellular protein.

  19. Plasmonic aptamer-gold nanoparticle sensors for small molecule fingerprint identification.

    Science.gov (United States)

    Chávez, Jorge L; Leny, Juliann K; Witt, Suzanne; Slusher, Grant M; Hagen, Joshua A; Kelley-Loughnane, Nancy

    2014-12-07

    The utilization of the plasmonic response of aptamer-gold nanoparticle conjugates (Apt-AuNPs) to design cross-reactive arrays for fingerprint identification of small molecular targets was demonstrated for the first time. Four aptamers with different structural features previously selected to bind different targets were used in combination with AuNPs by adsorbing the DNA on the AuNPs surface. The optimized response of the Apt-AuNPs to the analytes showed that, depending on the specific aptamer used, target binding by the aptamer could result in an increase or decrease of Apt-AuNPs stability. These Apt-AuNPs showed the ability to recognize different analytes with different affinities, generating fingerprints that allowed unambiguous analyte identification with response times in less than fifteen minutes. Importantly, it was observed that it was not necessary to select an aptamer per analyte of interest to generate differentiable signatures, but a subset of aptamers could be used to identify a larger number of analytes. The data was analyzed using principal component analysis, showing efficient clustering of the different datasets for qualitative and quantitative identification. This work opens the door to using these Apt-AuNPs in point of care diagnostics applications where fast sensors with easy to read outputs are needed.

  20. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    Science.gov (United States)

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  1. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    Science.gov (United States)

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  2. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2015-06-01

    Full Text Available A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT, gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS microfluidic channels. DNA aptamer, or “artificial antibody”, was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the “aptamer beacon”, highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  3. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model.

    Directory of Open Access Journals (Sweden)

    Huiyu Liang

    Full Text Available An initial step in amyloid-β (Aβ production includes amyloid precursor protein (APP cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1. Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD. Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX. A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.

  4. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model.

    Science.gov (United States)

    Liang, Huiyu; Shi, Yusheng; Kou, Zhewen; Peng, Yonghua; Chen, Wenjun; Li, Xiaowen; Li, Shuji; Wang, Ying; Wang, Fang; Zhang, Xingmei

    2015-01-01

    An initial step in amyloid-β (Aβ) production includes amyloid precursor protein (APP) cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD). Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX). A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.

  5. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses

    Directory of Open Access Journals (Sweden)

    Víctor M. González

    2016-12-01

    Full Text Available Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers’ properties as a real tool for viral infection detection and treatment.

  6. Endothelial and platelet markers in diabetes mellitus type 2

    Institute of Scientific and Technical Information of China (English)

    Peter Kubisz; Lucia Stanciaková; Ján Stasko; Peter Galajda; Marián Mokáň

    2015-01-01

    Diabetes mellitus (DM) is an extremely common disorder which carries a risk of vascular impairment. DM type2 (DM2) can be characterized by the dysfunction ofhaemostasis manifesting by stimulated coagulation process,disorder of platelet function and decreased fibrinolyticactivity. These all are the reasons why DM2 is the mostcommon acquired thrombophilia. Endothelial dysfunctionalong with platelet hyperactivity are unquestionablyinvolved in the hyperactivation of platelets and clottingfactors in DM. As a natural consequence of continuousinvestigation, many markers of endothelial dysfunctionand diabetic thrombocytopathy have been identifiedand considered for implementation in clinical practice.Endothelial function can be assessed by the evaluationof endothelial markers, circulating molecules synthesisedin various amounts by the endothelium. These markersprecede the signs of evident microangiopathy. Plateletshave an ethiopathogenic relation to the microangiopathy inDM. Their increased activity was confirmed in both typesof DM. Predictors of endothelial and platelet disorder couldimprove the screening of individuals at increased risk, thusleading to the early diagnosis, appropriate treatment, aswell as to the effective prevention of the complications ofDM2. In the article we deal with the mechanisms involvedin the pathogenesis of endothelial and platelet functionalabnormalities, endothelial and platelet markers of DM2considered for implementation in clinical practice andpossibilities of their detection.

  7. Novel application of fluorescence coupled capillary electrophoresis to resolve the interaction between the G-quadruplex aptamer and thrombin.

    Science.gov (United States)

    Wang, Jianhao; Gu, Yaqin; Liu, Li; Wang, Cheli; Wang, Jianpeng; Ding, Shumin; Li, Jinping; Qiu, Lin; Jiang, Pengju

    2017-08-01

    The dynamic binding status between the thrombin and its G-quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence-coupled capillary electrophoresis method. A 29-nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the effects of the cations on the formation of G-quadruplex from unstructured 29-nucleic acid thrombin binding aptamer were examined. Second, the rapid binding kinetics between the thrombin and 6-carboxyfluorescein labeled G-quadruplex aptamer was measured. Third, the stability of G-quadruplex aptamer-thrombin complex was also examined in the presence of the interfering species. Remarkably, it was found that the complementary strand of 29-nucleic acid thrombin binding aptamer could compete with G-quadruplex aptamer and thus disassociated the G-quadruplex structure into an unstructured aptamer. These data suggest that our in-house established fluorescence-coupled capillary electrophoresis assay could be applied to binding studies of the G-quadruplex aptamers, thrombin, and their ligands, while overcoming the complicated and costly approaches currently available. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing.

    Science.gov (United States)

    Valenzano, Stefania; De Girolamo, Annalisa; DeRosa, Maria C; McKeague, Maureen; Schena, Roberto; Catucci, Lucia; Pascale, Michelangelo

    2016-06-13

    Aptamers are synthetic single-stranded DNA or RNA sequences that can fold into tertiary structures allowing them to interact with and bind to targets with high affinity and specificity. This paper describes the first selection and identification of DNA aptamers able to recognize the biogenic amine tyramine. To successfully isolate aptamers to this challenging small molecule target, the SELEX methodology was adapted by combining a systematic strategy to increase the selection stringency and monitor enrichment success. As the benefits of applying high-throughput sequencing (HTS) in SELEX experiments is becoming more clear, this method was employed in combination with bioinformatics analysis to evaluate the utility of the selection strategy and to uncover new potential high affinity sequences. On the basis of the presence of consensus regions (sequence families) and family similarities (clusters), 15 putative aptamers to tyramine were identified. A recently described workflow approach to perform a primary screening and characterization of the aptamer candidates by microequilibrium dialysis and by microscale thermophoresis was next leveraged. These candidate aptamers exhibited dissociation constant (Kd) values in the range of 0.2-152 μM with aptamer Tyr_10 as the most promising one followed by aptamer Tyr_14. These aptamers could be used as promising molecular recognition tools for the development of inexpensive, robust and innovative biosensor platforms for the detection of tyramine in food and beverages.

  9. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis.

    Science.gov (United States)

    Davlieva, Milya; Donarski, James; Wang, Jiachen; Shamoo, Yousif; Nikonowicz, Edward P

    2014-01-01

    Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure.

  10. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eva M García-Recio

    2016-01-01

    Full Text Available Elevated expression levels of eukaryotic initiation factor 4E (eIF4E promote cancer development and progression. MAP kinase interacting kinases (MNKs modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA, and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.

  11. Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers

    Directory of Open Access Journals (Sweden)

    Walter Johanna G

    2010-08-01

    Full Text Available Abstract Background Bio-conjugated nanoparticles are important analytical tools with emerging biological and medical applications. In this context, in situ conjugation of nanoparticles with biomolecules via laser ablation in an aqueous media is a highly promising one-step method for the production of functional nanoparticles resulting in highly efficient conjugation. Increased yields are required, particularly considering the conjugation of cost-intensive biomolecules like RNA aptamers. Results Using a DNA aptamer directed against streptavidin, in situ conjugation results in nanoparticles with diameters of approximately 9 nm exhibiting a high aptamer surface density (98 aptamers per nanoparticle and a maximal conjugation efficiency of 40.3%. We have demonstrated the functionality of the aptamer-conjugated nanoparticles using three independent analytical methods, including an agglomeration-based colorimetric assay, and solid-phase assays proving high aptamer activity. To demonstrate the general applicability of the in situ conjugation of gold nanoparticles with aptamers, we have transferred the method to an RNA aptamer directed against prostate-specific membrane antigen (PSMA. Successful detection of PSMA in human prostate cancer tissue was achieved utilizing tissue microarrays. Conclusions In comparison to the conventional generation of bio-conjugated gold nanoparticles using chemical synthesis and subsequent bio-functionalization, the laser-ablation-based in situ conjugation is a rapid, one-step production method. Due to high conjugation efficiency and productivity, in situ conjugation can be easily used for high throughput generation of gold nanoparticles conjugated with valuable biomolecules like aptamers.

  12. A Novel PEGylation Method for Improving the Pharmacokinetic Properties of Anti-Interleukin-17A RNA Aptamers.

    Science.gov (United States)

    Haruta, Kazuhiko; Otaki, Natsuki; Nagamine, Masakazu; Kayo, Tomoyoshi; Sasaki, Asako; Hiramoto, Shinsuke; Takahashi, Masayuki; Hota, Kuniyoshi; Sato, Hideaki; Yamazaki, Hiroaki

    2017-02-01

    The obstacles to the development of therapeutic aptamers for systemic inflammatory diseases, such as nuclease degradation and renal clearance, have not been fully overcome. Here, we report a novel PEGylation method, sbC-PEGylation, which improves the pharmacokinetic properties of RNA aptamers that act against interleukin-17A (IL-17A) in mice and monkeys. sbC-PEGylated aptamers were synthesized by coupling the symmetrical branching molecule 2-cyanoethyl-N,N-diisopropyl phosphoroamidite to the 5' end of the aptamer, before conjugating two polyethylene glycol (PEG) molecules to the aptamer. Pharmacokinetic studies showed that compared with conventionally PEGylated aptamers, the sbC-PEGylated aptamer exhibited excellent stability in the blood circulation of mice and monkeys. In addition, one of the sbC-PEGylated aptamers, 17M-382, inhibited the interleukin-6 (IL-6) production induced by IL-17A in NIH3T3 cells in a concentration-dependent manner, and the half-maximal inhibitory concentration of sbC-PEGylated 17M-382 was two times lower than that of non-PEGylated 17M-382. Furthermore, the intraperitoneal administration of sbC-PEGylated 17M-382 significantly inhibited the IL-6 production induced by IL-17A in a mouse air pouch model. Our findings suggest that the novel PEGylation method described in this study, sbC-PEGylation, could be used to develop anti-IL-17A aptamers as a therapeutic option for systemic inflammatory disease.

  13. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor.

    Science.gov (United States)

    Lu, Taofeng; Ma, Qin; Yan, Wenzhuo; Wang, Yuanzhi; Zhang, Yuanyuan; Zhao, Lili; Chen, Hongyan

    2018-01-01

    Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in ducks. This study investigated a novel aptamer-based, label-free aptasensor detection of MDPV. In this study, we developed an ssDNA aptamer using the filtration partition and lambda exonuclease method with an affinity-based monitor and counter-screening process. After 15 rounds of SELEX (systematic evolution of ligands by exponential enrichment), the ssDNA aptamer Apt-10, which specifically bound to MDPV with high affinity (Kd = 467nM) was successfully screened, and the aptamer was also found to be good specific to MDPV. The selected Apt-10 aptamer can be used to distinguish MDPV and goose parvovirus (GPV). Three-dimensional structural analysis of the Apt-10 aptamer indicated that it folded into a compact stem-loop motif, which was related to its high affinity. Finally, a label-free detection method based on unmodified gold nanoparticles and Apt-10 aptamer was developed for MDPV determination. The concentration of Apt-10 aptamer at 5μM was optimal for MDPV determination in the label-free aptasensor. Excellent linearity was acquired and the lowest detection limit was 1.5 or 3 EID50 (50% egg infection dose) of MDPV, respectively, depending upon spectrophotometry or the naked eye were used. These results show the potential of the aptamer for the rapid detection of MDPV and antiviral research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells.

    Science.gov (United States)

    Li, Pengfei; Wei, Shina; Zhou, Lingli; Yang, Min; Yu, Yepin; Wei, Jingguang; Jiang, Guohua; Qin, Qiwei

    2015-11-01

    Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells, in particular the Q2 aptamer. Q2 had a binding affinity of 12.09 nM, the highest of the four aptamers. These aptamers also recognized SGIV-infected tissues with high levels of specificity. Protease treatment and flow cytometry analysis of SGIV-infected cells revealed that the target molecules of the Q3, Q4 and Q5 aptamers were trypsin-sensitive proteins, whilst the target molecules of Q2 might be membrane lipids or surface proteins that were not trypsin-sensitive. The generated aptamers appeared to inhibit SGIV infection in vitro. Aptamer Q2 conferred the highest levels of protection against SGIV and was able to inhibit SGIV infection in a dose-dependent manner. In addition, Q2 was efficiently internalized by SGIV-infected GS cells and localized at the viral assembly sites. Our results demonstrated that the four novel aptamers we generated were specific for SGIV-infected cells and could potentially be applied as rapid molecular diagnostic test reagents or therapeutic drugs targeting SGIV.

  15. Selecting Molecular Recognition. What Can Existing Aptamers Tell Us about Their Inherent Recognition Capabilities and Modes of Interaction?

    Directory of Open Access Journals (Sweden)

    Ralf Landgraf

    2012-05-01

    Full Text Available The use of nucleic acid derived aptamers has rapidly expanded since the introduction of SELEX in 1990. Nucleic acid aptamers have demonstrated their ability to target a broad range of molecules in ways that rival antibodies, but advances have been very uneven for different biochemical classes of targets, and clinical applications have been slow to emerge. What sets different aptamers apart from each other and from rivaling molecular recognition platforms, specifically proteins? What advantages do aptamers as a reagent class offer, and how do the chemical properties and selection procedures of aptamers influence their function? Do the building blocks of nucleic acid aptamers dictate inherent limitations in the nature of molecular targets, and do existing aptamers give us insight in how these challenges might be overcome? This review is written as an introduction for potential endusers of aptamer technology who are evaluating the advantages of aptamers as a versatile, affordable, yet highly expandable platform to target a broad range of biological processes or interactions.

  16. Single-Step Selection of Bivalent Aptamers Validated by Comparison with SELEX Using High-Throughput Sequencing

    Science.gov (United States)

    Wilson, Robert; Bourne, Christian; Chaudhuri, Roy R.; Gregory, Richard; Kenny, John; Cossins, Andrew

    2014-01-01

    The identification of nucleic acid aptamers would be advanced if they could be obtained after fewer rounds of selection and amplification. In this paper the identification of bivalent aptamers for thrombin by SELEX and single-step selection are compared using next generation sequencing and motif finding informatics. Results show that similar aptamers are identified by both methods. This is significant because it shows that next generation sequencing and motif finding informatics have the potential to simplify the selection of aptamers by avoiding multiple rounds of enzymatic transcription and amplification. PMID:24963654

  17. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.

    Science.gov (United States)

    Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun

    2015-04-15

    Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  18. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.

    Science.gov (United States)

    Dupont, Daniel M; Larsen, Niels; Jensen, Jan K; Andreasen, Peter A; Kjems, Jørgen

    2015-12-02

    Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 10(16) different RNA or DNA sequences by 5-10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2'-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method.

    Science.gov (United States)

    Amraee, Masoum; Oloomi, Mana; Yavari, Afsaneh; Bouzari, Saeid

    2017-08-14

    Escherichia coli (E. coli) O157:H7 is a foodborne pathogen that causes symptoms in humans. Its rapid identification should be considered to avoid toxic effects of the pathogen. In this study, systematic evolution of ligands by exponential enrichment using whole cells (Cell-SELEX) method was used for recognizing E. coli strain, O157 by single-stranded DNA library of aptamer. Nine rounds of cell-selex procedure were applied using O157, as a whole-cell target, with O42, K12, Top10, DH5α E. coli cells, Shigella flexneri and Salmonella typhi as counterparts. The specific interaction between selected DNA aptamers and targeted cell was assessed. After applying six rounds of SELEX for selection of DNA aptamers, the candidate sequences were obtained. Finally, specific aptamer was selected as an ideal aptamer for detection and capturing of E. coli O157. Dissociation constant of the selected aptamer were calculated (107.6 ± 67.8 pM). In addition, the secondary structure prediction and cross reactivity assays were performed. The isolated aptamer efficiency was confirmed and it was shown that the new DNA aptamer sequence has the ability to use for detection. This specific O157:H7 aptamer have the potential for application as a diagnostic ligand and could be used for detection of the related food borne diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization.

    Science.gov (United States)

    Ozer, Abdullah; Pagano, John M; Lis, John T

    2014-08-05

    Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.

  1. New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization

    Directory of Open Access Journals (Sweden)

    Abdullah Ozer

    2014-01-01

    Full Text Available Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.

  2. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  3. Modest Visceral Fat Gain Causes Endothelial Dysfunction In Healthy Humans

    Science.gov (United States)

    Romero-Corral, Abel; Sert-Kuniyoshi, Fatima H.; Sierra-Johnson, Justo; Orban, Marek; Gami, Apoor; Davison, Diane; Singh, Prachi; Pusalavidyasagar, Snigdha; Huyber, Christine; Votruba, Susanne; Lopez-Jimenez, Francisco; Jensen, Michael D.; Somers, Virend K.

    2014-01-01

    Objective This study sought to determine the impact of fat gain and its distribution on endothelial function in lean healthy humans. Background Endothelial dysfunction has been identified as an independent predictor of cardiovascular events. Whether fat gain impairs endothelial function is unknown. Methods A randomized controlled study to assess the effects of fat gain on endothelial function. We recruited 43 normal weight healthy volunteers (mean age 29 years; 18 women). Subjects were assigned to gain weight (approximately 4 kg) (n=35) or to maintain weight (n=8). Endothelial function (brachial artery flow mediated dilation -FMD) was measured at baseline, after fat gain (8 weeks) and after weight loss (16 weeks) for fat-gainers and at baseline and follow-up (8 weeks) for weight-maintainers. Body composition was measured by DXA and abdominal CT scans. Results After an average weight gain of 4.1 kg, fat-gainers significantly increased their total, visceral and subcutaneous fat. Blood pressure and overnight polysomnography did not change after fat gain or loss. FMD remained unchanged in weight-maintainers. FMD decreased in fat-gainers (9.1 ± 3% vs. 7.8 ± 3.2%, p =0.003), but recovered to baseline when subjects shed the gained weight. There was a significant correlation between the decrease in FMD and the increase in visceral fat gain (rho = −0.42, p=0.004), but not with subcutaneous fat gain (rho = −0.22, p=0.15). Conclusions In normal weight healthy young subjects, modest fat gain results in impaired endothelial function, even in the absence of changes in blood pressure. Endothelial function recovers after weight loss. Increased visceral rather than subcutaneous fat predicts endothelial dysfunction. PMID:20705223

  4. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function.

    Directory of Open Access Journals (Sweden)

    Erika Baldoli

    Full Text Available TRPM7, a cation channel of the transient receptor potential channel family, has been identified as a ubiquitous magnesium transporter. We here show that TRPM7 is expressed in endothelial cells isolated from the umbilical vein (HUVEC, widely used as a model of macrovascular endothelium. Quiescence and senescence do not modulate TRPM7 amounts, whereas oxidative stress generated by the addition of hydrogen peroxide increases TRPM7 levels. Moreover, high extracellular magnesium decreases the levels of TRPM7 by activating calpains, while low extracellular magnesium, known to promote endothelial dysfunction, stimulates TRPM7 accumulation partly through the action of free radicals. Indeed, the antioxidant trolox prevents TRPM7 increase by low magnesium. We also demonstrate the unique behaviour of HUVEC in responding to pharmacological and genetic inhibition of TRPM7 with an increase of cell growth and migration. Our results indicate that TRPM7 modulates endothelial behavior and that any condition leading to TRPM7 upregulation might impair endothelial function.

  5. Inhibition of Monocyte Adhesion to Brain-Derived Endothelial Cells by Dual Functional RNA Chimeras

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2014-01-01

    Full Text Available Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR on the murine brain-derived endothelial cells (bEND5 to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1. Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α–stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.

  6. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing

    KAUST Repository

    Fenzl, Christoph

    2017-04-25

    Graphene as a transducer material has produced some of the best performing sensing approaches to date opening the door toward integrated miniaturized all-carbon point-of-care devices. Addressing this opportunity, laser-scribed graphene(LSG) electrodes are demonstrated here as highly sensitive and reliable biosensor transducers in blood serum analysis. These flexible electrodes with large electrochemical surface areas were fabricated using a direct-write laser process on polyimide foils. A universal immobilization approach is established by anchoring 1-pyrenebutyric acid to the graphene and subsequently covalently attaching an aptamer against the coagulation factor thrombin as an exemplary bioreceptor to the carboxyl groups. The resulting biosensor displays extremely low detection limits of 1 pM in buffer and 5 pM in the complex matrix of serum.

  7. Thermophoresis in nanoliter droplets to quantify aptamer binding.

    Science.gov (United States)

    Seidel, Susanne A I; Markwardt, Niklas A; Lanzmich, Simon A; Braun, Dieter

    2014-07-21

    Biomolecule interactions are central to pharmacology and diagnostics. These interactions can be quantified by thermophoresis, the directed molecule movement along a temperature gradient. It is sensitive to binding induced changes in size, charge, or conformation. Established capillary measurements require at least 0.5 μL per sample. We cut down sample consumption by a factor of 50, using 10 nL droplets produced with acoustic droplet robotics (Labcyte). Droplets were stabilized in an oil-surfactant mix and locally heated with an IR laser. Temperature increase, Marangoni flow, and concentration distribution were analyzed by fluorescence microscopy and numerical simulation. In 10 nL droplets, we quantified AMP-aptamer affinity, cooperativity, and buffer dependence. Miniaturization and the 1536-well plate format make the method high-throughput and automation friendly. This promotes innovative applications for diagnostic assays in human serum or label-free drug discovery screening.

  8. Reversible thrombin detection by aptamer functionalized STING sensors.

    Science.gov (United States)

    Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R Adam; Jejelowo, Olufisayo; Pourmand, Nader

    2011-07-15

    Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution.

  9. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles

    Science.gov (United States)

    Shiang, Yen-Chun; Ou, Chung-Mao; Chen, Shih-Ju; Ou, Ting-Yu; Lin, Han-Jia; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-03-01

    We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45

  10. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracelluar Ligand Specific for Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0554 TITLE: Riboswitch- Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively...ADDRESS. 1. REPORT DATE December 2015 2. REPORT TYPE Final 3. DATES COVERED 15Sep2012 - 14Sep2015 4. TITLE AND SUBTITLE Riboswitch- Mediated Aptamer...As proof of concept that an aptamer can mediate cell uptake into cultured cells , ES2 ovarian cancer cells were exposed to a DNA EpCAM aptamer

  11. Genetic selection of peptide aptamers that interact and inhibit both Small protein B and alternative ribosome-rescue factor A of Aeromonas veronii C4

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-08-01

    Full Text Available Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB which acts as one of the key components in trans-translation, and alternative ribosome-rescue factor A (ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR when treating in 2.0% KCl. Thus,the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti

  12. Endothelial Repair in Childhood Arterial Ischaemic Stroke with Cerebral Arteriopathy

    Directory of Open Access Journals (Sweden)

    Despina Eleftheriou

    2015-06-01

    Full Text Available Background: We have previously shown that recurrent arterial ischaemic stroke (AIS in children with cerebral arteriopathy is associated with increased circulating endothelial cells and endothelial microparticles, consistent with ongoing endothelial injury. To date, however, little is known about endothelial repair responses in childhood AIS. We examined the relationship between the number and function of circulating endothelial progenitor cells (EPC, the levels of brain-derived neurotrophic factor (BDNF and AIS recurrence. Methods: Flow cytometry was used to identify peripheral blood mononuclear cells positive for CD34/kinase insert domain-containing receptor (KDR. In a subgroup of patients (5 in each group selected at random, monocytic EPC function was assessed by colony-forming unit (EPC-CFU capacity and incorporation into endothelial cell networks in Matrigel. BDNF was measured using ELISA. Results: Thirty-five children, aged 12 years (range: 5-16.5; 9 males, with AIS and cerebral arteriopathy were studied; 10 had recurrent AIS. CD34+/KDR+ cells were significantly higher in recurrent AIS compared to non-recurrent AIS patients (p = 0.005 and controls (p = 0.0002. EPC-CFU and EPC incorporation into endothelial cell networks were significantly reduced in recurrent compared to non-recurrent AIS patients (p = 0.04 and p = 0.01, respectively. Levels of BDNF were significantly higher in recurrent compared to non-recurrent AIS patients (p = 0.0008 and controls (p = 0.0002. Conclusions: Children with recurrent AIS and cerebral arteriopathy had increased circulating CD34+/KDR+ cells and BDNF consistent with an endothelial repair response. However, EPC function was impaired. Future studies are needed to examine whether suboptimal endothelial repair contributes to childhood AIS recurrence.

  13. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Science.gov (United States)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  14. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia

    Directory of Open Access Journals (Sweden)

    Young Ian S

    2001-06-01

    Full Text Available Abstract Background Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. Methods Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF in response to intra-arterial infusion of acetylcholine (endothelial-dependent and sodium nitroprusside (endothelial-independent. Subjects received methionine (100 mg/Kg plus placebo tablets, methionine plus vitamin C (2 g orally or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. Results Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p Conclusions This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress.

  15. SDA, a DNA aptamer inhibiting E- and P