Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Photonic Crystals Mathematical Analysis and Numerical Approximation
Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian
2011-01-01
This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin
Intelligent mathematics II applied mathematics and approximation theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Saff, Edward
1993-01-01
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...
On the mathematical treatment of the Born-Oppenheimer approximation
Energy Technology Data Exchange (ETDEWEB)
Jecko, Thierry, E-mail: thierry.jecko@u-cergy.fr [AGM, UMR 8088 du CNRS, Université de Cergy-Pontoise, Département de mathématiques, site de Saint Martin, 2 avenue Adolphe Chauvin, F-95000 Pontoise (France)
2014-05-15
Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common use of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.
Ten mathematical essays on approximation in analysis and topology
López-Gómez, J; Ruiz del Portal, F R
2005-01-01
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces
Purpura, David J.; Logan, Jessica A. R.
2015-01-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability.…
Purpura, David J; Logan, Jessica A R
2015-12-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities.
3rd International Conference on Applied Mathematics and Approximation Theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.
A New Mathematical Model for Coanda Effect Velocity Approximation
Directory of Open Access Journals (Sweden)
Valeriu DRĂGAN
2012-12-01
Full Text Available This paper addresses the problem of obtaining a set of mathematical equations that can accurately describe the velocity flow field near a cylindrical surface influenced by the Coandă effect. The work is relevant since the current state of the art Reynolds Averaged Navier Stokes models with curvature correction do not completely describe the properties of the flow in accordance with the experimental data. Semi-empirical equations are therefore deduced based on experimental and theoretical state of the art. The resulting model is validated over a wider range of geometric layouts than any other existing semi-empirical model of its kind. The applications of this model are numerous, from super circulation wing calculations to fluidic devices such as actuators or fluidic diodes.
Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2013-12-01
Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction.
Hyde, D C; Berteletti, I; Mou, Y
2016-01-01
Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. PMID:27339018
Hyde, D C; Berteletti, I; Mou, Y
2016-01-01
Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test.
Bardhan, Jaydeep P.; Knepley, Matthew G.
2011-01-01
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to Generalized Born models. First, our results suggest a new persp...
Norris, Jade Eloise; Castronovo, Julie
2016-01-01
Much research has investigated the relationship between the Approximate Number System (ANS) and mathematical achievement, with continued debate surrounding the existence of such a link. The use of different stimulus displays may account for discrepancies in the findings. Indeed, closer scrutiny of the literature suggests that studies supporting a link between ANS acuity and mathematical achievement in adults have mostly measured the ANS using spatially intermixed displays (e.g. of blue and yellow dots), whereas those failing to replicate a link have primarily used spatially separated dot displays. The current study directly compared ANS acuity when using intermixed or separate dots, investigating how such methodological variation mediated the relationship between ANS acuity and mathematical achievement. ANS acuity was poorer and less reliable when measured with intermixed displays, with performance during both conditions related to inhibitory control. Crucially, mathematical achievement was significantly related to ANS accuracy difference (accuracy on congruent trials minus accuracy on incongruent trials) when measured with intermixed displays, but not with separate displays. The findings indicate that methodological variation affects ANS acuity outcomes, as well as the apparent relationship between the ANS and mathematical achievement. Moreover, the current study highlights the problem of low reliabilities of ANS measures. Further research is required to construct ANS measures with improved reliability, and to understand which processes may be responsible for the increased likelihood of finding a correlation between the ANS and mathematical achievement when using intermixed displays. PMID:27195749
Bardhan, Jaydeep P
2011-01-01
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to Generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GB$\\epsilon$ theory suggests a modified BI...
Directory of Open Access Journals (Sweden)
Halim CEYLAN
2007-02-01
Full Text Available This study develops approximate mathematical expressions for delay components at signalized intersections. Delay components are solved with the coordinate transformation method. The performance indicators for the signalized intersection are determined as an oversaturated and under saturated cases. During the analysis, the steady-state and the deterministic queuing theory are investigated first, and then time-dependent transformation is made. Developed model, called YHM, is applied to an example signalized intersection. Results are compared with the current situation and the Webster method. YHM is improved the intersection performance by about 500 % for this example. Moreover, signal parameters are significantly differs from the current and Webster signal control.
Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations
Sazhin, Sergei S.; Qubeissi, Mansour Al
2016-06-01
New mathematical tools and approximations developed for the analysis of automotive fuel droplet heating and evaporation are summarised. The approach to modelling biodiesel fuel droplets is based on the application of the Discrete Component Model (DCM), while the approach to modelling Diesel fuel droplets is based on the application of the recently developed multi-dimensional quasi-discrete model. In both cases, the models are applied in combination with the Effective Thermal Conductivity/Effective Diffusivity model and the implementation in the numerical code of the analytical solutions to heat transfer and species diffusion equations inside droplets. It is shown that the approximation of biodiesel fuel by a single component leads to under-prediction of droplet evaporation time by up to 13% which can be acceptable as a crude approximation in some applications. The composition of Diesel fuel was simplified and reduced to only 98 components. The approximation of 98 components of Diesel fuel with 15 quasi-components/components leads to under-prediction of droplet evaporation time by about 3% which is acceptable in most engineering applications. At the same time, the approximation of Diesel fuel by a single component and 20 alkane components leads to a decrease in the evaporation time by about 19%, compared with the case of approximation of Diesel fuel with 98 components. The approximation of Diesel fuel with a single alkane quasi-component (C14.763H31.526) leads to under-prediction of the evaporation time by about 35% which is not acceptable even for qualitative analysis of the process. In the case when n-dodecane is chosen as the single alkane component, the above-mentioned under-prediction increases to about 44%.
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities.
Solis, Adriano O.; Schmidt, Charles P.; Conerly, Michael D.
2007-09-01
Graves (1996) developed a multi-echelon inventory model and used a negative binomial distribution to approximate the distribution of a random variable in the model. Two earlier multi-echelon inventory studies (Graves, 1985; Lee and Moinzadeh, 1987) have similarly used negative binomial approximations. Only computational evidence has been offered in support of the approximations. We provide, for the latest model (Graves, 1996), a mathematical analysis of the effectiveness of such an approximation.
A mathematical model of neuro-fuzzy approximation in image classification
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
A new mathematical approximation of sunlight attenuation in rocks for surface luminescence dating
Energy Technology Data Exchange (ETDEWEB)
Laskaris, Nikolaos, E-mail: nick.laskaris@gmail.com [University of the Aegean, Department of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Avenue, Rhodes 85100 (Greece); Liritzis, Ioannis, E-mail: liritzis@rhodes.aegean.gr [University of the Aegean, Department of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Avenue, Rhodes 85100 (Greece)
2011-09-15
The attenuation of sunlight through different rock surfaces and the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals clock resetting derived from sunlight induced eviction of electrons from electron traps, is a prerequisite criterion for potential dating. The modeling of change of residual luminescence as a function of two variables, the solar radiation path length (or depth) and exposure time offers further insight into the dating concept. The double exponential function modeling based on the Lambert-Beer law, valid under certain assumptions, constructed by a quasi-manual equation fails to offer a general and statistically sound expression of the best fit for most rock types. A cumulative log-normal distribution fitting provides a most satisfactory mathematical approximation for marbles, marble schists and granites, where absorption coefficient and residual luminescence parameters are defined per each type of rock or marble quarry. The new model is applied on available data and age determination tests. - Highlights: > Study of aattenuation of sunlight through different rock surfaces. > Study of the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals as a function of depth. > A Cumulative Log-Normal Distribution fitting provides the most satisfactory modeling for marbles, marble schists and granites. > The new model (Cummulative Log-Norm Fitting) is applied on available data and age determination tests.
Rousselle, Laurence; Noel, Marie-Pascale
2008-01-01
The adaptive use of approximate calculation was examined using a verification task with 18 third graders with mathematics learning disabilities, 22 typically achieving third graders, and 21 typically achieving second graders. Participants were asked to make true-false decisions on simple and complex addition problems while the distance between the…
Amore, Paolo; Fernández, Francisco M
2013-02-28
We analyze the Rayleigh equation for the collapse of an empty bubble and provide an explanation for some recent analytical approximations to the model. We derive the form of the singularity at the second boundary point and discuss the convergence of the approximants. We also give a rigorous proof of the asymptotic behavior of the coefficients of the power series that are the basis for the approximate expressions.
Multi-band effective mass approximations advanced mathematical models and numerical techniques
Koprucki, Thomas
2014-01-01
This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...
Mitchell, D. G.; Roelof, E. C.
1976-01-01
A simplified analytical technique is presented for modeling the interplanetary scintillation of radio sources of finite angular size with a power-law electron-density-fluctuation power spectrum. The simplification results from the representation of the scintillation spectrum in confluent hypergeometric functions. The approximations presented allow fast numerical evaluation of a spectrum for a weakly scattering but extended medium with less than 10% error over the entire spectrum. Parameters describing anisotropic electron irregularities as well as anisotropic source structure are included, and the dependence of the spectrum normalization on the scales of the medium is derived explicitly. The parametric description of the domains of convergence of the approximate expansions also provides a simple conceptualization of the relative contributions of the scattered radiation along the line of sight to the observed spectrum. This is particularly useful for sources of finite angular size. This technique is applied to previously published observations.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements.
Lamarche, Louis
2009-06-01
Hydro-Quebec optical network includes more than 5,000 km of optical ground wires [1] (OPGW) using dispersion shifted fibers (SMF-DSTM) [2]-[3]. This paper provides a model of the index profile for a typical reference fiber and the mathematical approximations of the amplitude of the LP01 mode at six important wavelengths (1.31, 1.41, 1.45, 1.48, 1.55, 1.625 μm). The fiber model has a triangular core and a quadratic ring shape. The weakly guided mode is obtained using the variational principle [4] implemented using an algorithm based on a Laguerre-Gauss-Bessel approximation of the field [5]. We modeled the wavelength dependence of the index of refraction of germanium doped silica using an experimental formula [6]. A comprehensive algorithm was developed to compute the normalized damping factor W and the normalized propagation constant U in the variational algorithm. The mode field diameter, group velocity and chromatic dispersion were also computed at the above wavelengths.
Eringen, A Cemal
2013-01-01
Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
International Nuclear Information System (INIS)
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed
2006-01-01
This interactive tutorial presents the following concepts of Approximation Techniques: Methods of Weighted Residual (MWR), Weak Formulatioin, Piecewise Continuous Function, Galerkin Finite Element FormulationExplanations especially for mathematical statements are provided using mouseover the highlight equations. ME4613 Finite Element Methods
Niven, Ivan
2008-01-01
This self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discuss
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Sarwar, S.; Rashidi, M. M.
2016-07-01
This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Legendre rational approximation on the whole line
Institute of Scientific and Technical Information of China (English)
GUO; Benyu; WANG; Zhongqing
2004-01-01
The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Chatterjee, Anindya
2005-01-01
I try to convey some of the variety and excitement involved in the application of mathematics to engineering problems; to provide a taste of some actual mathematical calculations that engineers do; and finally, to make clear the distinctions between the applied subject of engineering and its purer parents, which include mathematics and the physical sciences. Two main points of this article are that in engineering it is approximation, and not truth, that reigns; and that an engineer carries a ...
DEFF Research Database (Denmark)
Westphael, Henning; Mogensen, Arne
2013-01-01
In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....
Fifth International Conference on "Approximation and Optimization in the Caribbean"
Approximation, Optimization and Mathematical Economic
2001-01-01
The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Approximate maximizers of intricacy functionals
Buzzi, Jerome; Zambotti, Lorenzo
2009-01-01
G. Edelman, O. Sporns, and G. Tononi introduced in theoretical biology the neural complexity of a family of random variables. This functional is a special case of intricacy, i.e., an average of the mutual information of subsystems whose weights have good mathematical properties. Moreover, its maximum value grows at a definite speed with the size of the system. In this work, we compute exactly this speed of growth by building "approximate maximizers" subject to an entropy condition. These appr...
Approximate maximizers of intricacy functionals
Buzzi, Jerome
2009-01-01
G. Edelman, O. Sporns, and G. Tononi introduced in theoretical biology the neural complexity of a family of random variables. This functional is a special case of intricacy, i.e., an average of the mutual information of subsystems whose weights have good mathematical properties. Moreover, its maximum value grows at a definite speed with the size of the system. In this work, we compute exactly this speed of growth by building "approximate maximizers" subject to an entropy condition. These approximate maximizers work simultaneously for all intricacies. We also establish some properties of arbitrary approximate maximizers, in particular the existence of a threshold in the size of subsystems of approximate maximizers: most smaller subsystems are almost equidistributed, most larger subsystems determine the full system. The main ideas are a random construction of almost maximizers with a high statistical symmetry and the consideration of entropy profiles, i.e., the average entropies of sub-systems of a given size. ...
Mathematical Footprints Discovering Mathematics Everywhere
Pappas, Theoni
1999-01-01
MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent
Approximation concepts for efficient structural synthesis
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
Reys, Robert; Reys, Rustin
2011-01-01
In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension....... Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups)....
Approximate Bayesian inference for complex ecosystems
Michael P H Stumpf
2014-01-01
Mathematical models have been central to ecology for nearly a century. Simple models of population dynamics have allowed us to understand fundamental aspects underlying the dynamics and stability of ecological systems. What has remained a challenge, however, is to meaningfully interpret experimental or observational data in light of mathematical models. Here, we review recent developments, notably in the growing field of approximate Bayesian computation (ABC), that allow us to calibrate mathe...
... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...
Trinajstić, Nenad; Gutman, Ivan
2002-01-01
A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...
Kilpatrick, Jeremy
2014-01-01
This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…
Panza, Marco
2003-01-01
The aim I am pursuing here is to describe some general aspects of mathematical proofs. In my view, a mathematical proof is a warrant to assert a non-tautological statement which claims that certain objects (possibly a certain object) enjoy a certain property. Because it is proved, such a statement is a mathematical theorem. In my view, in order to understand the nature of a mathematical proof it is necessary to understand the nature of mathematical objects. If we understand them as external e...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility
Mostafazadeh, Ali
2014-01-01
arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...
A Ballistic Monte Carlo Approximation of {\\pi}
Dumoulin, Vincent
2014-01-01
We compute a Monte Carlo approximation of {\\pi} using importance sampling with shots coming out of a Mossberg 500 pump-action shotgun as the proposal distribution. An approximated value of 3.136 is obtained, corresponding to a 0.17% error on the exact value of {\\pi}. To our knowledge, this represents the first attempt at estimating {\\pi} using such method, thus opening up new perspectives towards computing mathematical constants using everyday tools.
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Leike, Reimar H
2016-01-01
In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...
Aigner, Martin; Spain, Philip G
2010-01-01
Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde
Jothi, A Lenin
2009-01-01
Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m
Pappas, Theoni
1997-01-01
In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions
Stroud, K A
2013-01-01
A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.
Bin Qin
2014-01-01
Relationships between fuzzy relations and fuzzy topologies are deeply researched. The concept of fuzzy approximating spaces is introduced and decision conditions that a fuzzy topological space is a fuzzy approximating space are obtained.
Rasin, A
1994-01-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Approximate iterative algorithms
Almudevar, Anthony Louis
2014-01-01
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a
Experimental Mathematics and Mathematical Physics
Energy Technology Data Exchange (ETDEWEB)
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Zudilin, Wadim
2009-06-26
One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.
Approximation of distributed delays
Lu, Hao; Eberard, Damien; Simon, Jean-Pierre
2010-01-01
We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.
Kleene, Stephen Cole
2002-01-01
Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.
Prochazka, Helen
2004-01-01
One section of this "scrapbook" section describes Pythagoras' belief in the connections between music and mathematics -- that everything in the universe was a series of harmonies and regulated by music. Another section explains why Phythagoras felt it important for women to be encouraged to learn mathematics. At least 28 women were involved in his…
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... framework, which has been used for designing modelling courses, analysing students’ modelling activities, identifying learning obstacles in the modelling process and to guide the teachers interaction with the students during their work. This will be illustrated with an example from a developmental project...
Principles of mathematical modeling
Dym, Clive
2004-01-01
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...
Institute of Scientific and Technical Information of China (English)
YueShihong; ZhangKecun
2002-01-01
In a dot product space with the reproducing kernel (r. k. S. ) ,a fuzzy system with the estimation approximation errors is proposed ,which overcomes the defect that the existing fuzzy control system is difficult to estimate the errors of approximation for a desired function,and keeps the characteristics of fuzzy system as an inference approach. The structure of the new fuzzy approximator benefits a course got by other means.
Topics in multivariate approximation and interpolation
Jetter, Kurt
2005-01-01
This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Polynomial Approximation of Functions: Historical Perspective and New Tools
Kidron, Ivy
2003-01-01
This paper examines the effect of applying symbolic computation and graphics to enhance students' ability to move from a visual interpretation of mathematical concepts to formal reasoning. The mathematics topics involved, Approximation and Interpolation, were taught according to their historical development, and the students tried to follow the…
Handley, Bill
2012-01-01
This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud
Geroch, Robert
1900-01-01
Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle
Logan, J David
2013-01-01
Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat
Virdi, Surinder
2006-01-01
Taking a starting point below that of GCSE level, by assuming no prior mathematical knowledge, Surinder Virdi and Roy Baker take the reader step by step through the mathematical requirements for Level 2 and 3 Building and Construction courses.Unlike the majority of basic level maths texts available, this book focuses exclusively on mathematics as it is applied in actual construction practice. As such, topics specific to the construction industry are presented, as well as essential areas for Level 2 craft NVQs - for example, costing calculations, labor costs, cost of materials and setting out o
Bird, John
2014-01-01
A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Approximate Modified Policy Iteration
Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu
2012-01-01
Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Sneyd, James
2009-01-01
There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Puzzles of purely logical nature are distinguished from most mathematical puzzles,in that thought rather than memory, that is,native mental ingenuity rather than a store of acquired information, is the key to their solution.
Berman, Elizabeth
1979-01-01
Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Institute of Scientific and Technical Information of China (English)
2005-01-01
<正>20051134 Chen Aibing (Faculty of Land Resource Engineering, Kunming University of Science and Technology) Kunming, Yunnan 650093, China); Qin Dexian MathematicEconomical Model of No. 5 Orebody in Gejiu Tin Mine, Yunnan Province (Acta Mineralogica Sinica, ISSN 1000 - 4734, CN 52 -1045/P, 24(2), 2004, p. 171-175, 5 illus. , 5 tables, 7 refs. ) Key words: tin deposits, mathematical models, Yunnan Province
BIOLUMINESCENCE TOMOGRAPHY: BIOMEDICAL BACKGROUND, MATHEMATICAL THEORY, AND NUMERICAL APPROXIMATION
Institute of Scientific and Technical Information of China (English)
Weimin Han; Ce Wang
2008-01-01
Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT.
Paepe, de, P.J.I.M.; Wiegerinck, J.J.O.O.
2007-01-01
Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra consists of all continuous functions on the disk. Keywords: 2000 Mathematics Subject Classifications: 46J10; 32E20
The Karlqvist approximation revisited
Tannous, C.
2015-01-01
The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.
Approximations in Inspection Planning
DEFF Research Database (Denmark)
Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.;
2000-01-01
Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....
Directory of Open Access Journals (Sweden)
Malvina Baica
1985-01-01
Full Text Available The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF, and defines it as Generalized Euclidean Algorithm (abbr. GEA to approximate irrationals.
Approximation Behooves Calibration
DEFF Research Database (Denmark)
da Silva Ribeiro, André Manuel; Poulsen, Rolf
2013-01-01
Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....
Approximating viability kernels with support vector machines
Deffuant, G.; Chapel, L.; Martin, S.
2007-01-01
We propose an algorithm which performs a progressive approximation of a viability kernel, iteratively using a classification method. We establish the mathematical conditions that the classification method should fulfill to guarantee the convergence to the actual viability kernel. We study more particularly the use of support vector machines (SVMs) as classification techniques. We show that they make possible to use gradient optimisation techniques to find a viable control at each time step, a...
Jost, Jürgen
2015-01-01
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...
Seismic wave extrapolation using lowrank symbol approximation
Fomel, Sergey
2012-04-30
We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.
Vivaldi, Franco
2014-01-01
This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student. The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition. Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...
Hiriart-Urruty, Jean-Baptiste
2016-01-01
This book contains a collection of exercises (called “tapas”) at undergraduate level, mainly from the fields of real analysis, calculus, matrices, convexity, and optimization. Most of the problems presented here are non-standard and some require broad knowledge of different mathematical subjects in order to be solved. The author provides some hints and (partial) answers and also puts these carefully chosen exercises into context, presents information on their origins, and comments on possible extensions. With stars marking the levels of difficulty, these tapas show or prove something interesting, challenge the reader to solve and learn, and may have surprising results. This first volume of Mathematical Tapas will appeal to mathematicians, motivated undergraduate students from science-based areas, and those generally interested in mathematics.
Rubin, Andrew
2014-01-01
This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...
Cahill, Kevin
2013-01-01
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.
Najman, Laurent
2013-01-01
Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foun
Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim
2011-01-01
Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci
The Association Between Higher Education and Approximate Number System Acuity
Directory of Open Access Journals (Sweden)
Marcus eLindskog
2014-05-01
Full Text Available Humans are equipped with an Approximate Number System (ANS supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities, measured either early (1th year or late (3rd year in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity.
The association between higher education and approximate number system acuity.
Lindskog, Marcus; Winman, Anders; Juslin, Peter
2014-01-01
Humans are equipped with an approximate number system (ANS) supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity) and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities), measured either early (First year) or late (Third year) in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity. PMID:24904478
The association between higher education and approximate number system acuity.
Lindskog, Marcus; Winman, Anders; Juslin, Peter
2014-01-01
Humans are equipped with an approximate number system (ANS) supporting non-symbolic numerosity representation. Studies indicate a relationship between ANS-precision (acuity) and math achievement. Whether the ANS is a prerequisite for learning mathematics or if mathematics education enhances the ANS remains an open question. We investigated the association between higher education and ANS acuity with university students majoring in subjects with varying amounts of mathematics (mathematics, business, and humanities), measured either early (First year) or late (Third year) in their studies. The results suggested a non-significant trend where students taking more mathematics had better ANS acuity and a significant improvement in ANS acuity as a function of study length that was mainly confined to the business students. The results provide partial support for the hypothesis that education in mathematics can enhance the ANS acuity.
Diophantine approximations on fractals
Einsiedler, Manfred; Shapira, Uri
2009-01-01
We exploit dynamical properties of diagonal actions to derive results in Diophantine approximations. In particular, we prove that the continued fraction expansion of almost any point on the middle third Cantor set (with respect to the natural measure) contains all finite patterns (hence is well approximable). Similarly, we show that for a variety of fractals in [0,1]^2, possessing some symmetry, almost any point is not Dirichlet improvable (hence is well approximable) and has property C (after Cassels). We then settle by similar methods a conjecture of M. Boshernitzan saying that there are no irrational numbers x in the unit interval such that the continued fraction expansions of {nx mod1 : n is a natural number} are uniformly eventually bounded.
An Analysis of the Morris Loe Angle Trisection Approximation.
Aslan, Farhad,; And Others
1992-01-01
Presents the Morris Loe Angle Trisection Approximation Method to introduce students to areas of mathematics where approximations are used when exact answers are difficult or impossible to obtain. Examines the accuracy of the method using the laws of sines and cosines and a BASIC computer program that is provided. (MDH)
Hadlock, Charles R
2013-01-01
The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…
Weaver, Nik
2001-01-01
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...
Fujita, Shinsaku
2015-01-01
Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.
Approximate and Incomplete Factorizations
Chan, T.F.; Vorst, H.A. van der
2001-01-01
In this chapter, we give a brief overview of a particular class of preconditioners known as incomplete factorizations. They can be thought of as approximating the exact LU factorization of a given matrix A (e.g. computed via Gaussian elimination) by disallowing certain ll-ins. As opposed to other PD
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
White, Martin
2014-01-01
This year marks the 100th anniversary of the birth of Yakov Zel'dovich. Amongst his many legacies is the Zel'dovich approximation for the growth of large-scale structure, which remains one of the most successful and insightful analytic models of structure formation. We use the Zel'dovich approximation to compute the two-point function of the matter and biased tracers, and compare to the results of N-body simulations and other Lagrangian perturbation theories. We show that Lagrangian perturbation theories converge well and that the Zel'dovich approximation provides a good fit to the N-body results except for the quadrupole moment of the halo correlation function. We extend the calculation of halo bias to 3rd order and also consider non-local biasing schemes, none of which remove the discrepancy. We argue that a part of the discrepancy owes to an incorrect prediction of inter-halo velocity correlations. We use the Zel'dovich approximation to compute the ingredients of the Gaussian streaming model and show that ...
DEFF Research Database (Denmark)
Madsen, Rasmus Elsborg
2005-01-01
The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM that...
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin
2016-01-01
What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. PMID:26587963
Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin
2016-01-01
What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics.
Numerical approximation of partial differential equations
Bartels, Sören
2016-01-01
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular ...
Ortiz, Enrique
2007-01-01
Your complete guide to a higher score on the CSET: Mathematics.Features information about certification requirements, an overview of the test - with a scoring scale, description of the test structure and format and proven test-taking strategies Approaches for answering the three types of questions: multiple-choiceenhanced multiple-choiceconstructed-response. Reviews and PracticeFocused reviews of all areas tested: algebra, number theory, geometry, probability, calculus, and history of mathematicsPractice problems for selected difficult areas and domains 2 Full-Length Practice Tests are structured like the actual exam and are complete with answers and explanationsThe Glossary of Terms has description of Key Formulas and PropertiesTest-Prep Essentials from the Experts at CliffsNotes
International Nuclear Information System (INIS)
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed
Driessche, Pauline; Wu, Jianhong
2008-01-01
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...
Sierpinska, Anna
1994-01-01
The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.
Mathematics Teaching with the Stars
McKinney, Sueanne E.; Bol, Linda; Berube, Clair
2010-01-01
The mathematics instructional approaches of effective elementary teachers in urban high- poverty schools were investigated. Approximately 99 urban elementary teachers were administered the Star Teacher Selection Interview; a total of 31 were identified as star teachers. These teachers were then administered the Instructional Practices…
Energy Technology Data Exchange (ETDEWEB)
Robinson, H.P.; Potter, Elinor
1971-03-01
This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.
Institute of Scientific and Technical Information of China (English)
2007-01-01
<正>20070721 Dong Yaosong (National Key La-boratory of Geological Process and Mineral resources, Institute of Mathematical Geology and Remote Sensing, China University of Geosciences, Wuhan 430074, China); Yang Yanchen Mutual Compensation of Nerval Net and Characteristic Analysis in Mineral Resources Exploration (Mineral Resources and Geology, ISSN1001-5663, CN45-1174/TD, 20(1), 2006, p.1-6, 3 illus., 6 tables, 5 refs.) Key words: prospecting and exploration of mineral, neural network systems
Energy Technology Data Exchange (ETDEWEB)
Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Approximations to Euler's constant
International Nuclear Information System (INIS)
We study a problem of finding good approximations to Euler's constant γ=lim→∞ Sn, where Sn = Σk=Ln (1)/k-log(n+1), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, considering more general linear transformations of the sequence Sn we establish new accelerating convergence formulae for γ. Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results. (author)
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Amador, Julie; Weston, Tracy; Estapa, Anne; Kosko, Karl; De Araujo, Zandra
2016-01-01
This paper explores the use of animations as an approximation of practice to provide a transformational technology experience for elementary mathematics preservice teachers. Preservice teachers in mathematics methods courses at six universities (n = 126) engaged in a practice of decomposing and approximating components of a fraction lesson. Data…
The Compact Approximation Property does not imply the Approximation Property
Willis, George A.
1992-01-01
It is shown how to construct, given a Banach space which does not have the approximation property, another Banach space which does not have the approximation property but which does have the compact approximation property.
Teaching Mathematical Modeling in Mathematics Education
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Gupta, CB; Kumar, V
2009-01-01
About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top
Approximate Equalities on Rough Intuitionistic Fuzzy Sets and an Analysis of Approximate Equalities
Directory of Open Access Journals (Sweden)
B. K. Tripathy
2012-03-01
Full Text Available In order to involve user knowledge in determining equality of sets, which may not be equal in the mathematical sense, three types of approximate (rough equalities were introduced by Novotny and Pawlak ([8, 9, 10]. These notions were generalized by Tripathy, Mitra and Ojha ([13], who introduced the concepts of approximate (rough equivalences of sets. Rough equivalences capture equality of sets at a higher level than rough equalities. More properties of these concepts were established in [14]. Combining the conditions for the two types of approximate equalities, two more approximate equalities were introduced by Tripathy [12] and a comparative analysis of their relative efficiency was provided. In [15], the four types of approximate equalities were extended by considering rough fuzzy sets instead of only rough sets. In fact the concepts of leveled approximate equalities were introduced and properties were studied. In this paper we proceed further by introducing and studying the approximate equalities based on rough intuitionistic fuzzy sets instead of rough fuzzy sets. That is we introduce the concepts of approximate (rough equalities of intuitionistic fuzzy sets and study their properties. We provide some real life examples to show the applications of rough equalities of fuzzy sets and rough equalities of intuitionistic fuzzy sets.
Shape theory categorical methods of approximation
Cordier, J M
2008-01-01
This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-10-01
The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.
Interacting boson approximation
International Nuclear Information System (INIS)
Lectures notes on the Interacting Boson Approximation are given. Topics include: angular momentum tensors; properties of T/sub i//sup (n)/ matrices; T/sub i//sup (n)/ matrices as Clebsch-Gordan coefficients; construction of higher rank tensors; normalization: trace of products of two s-rank tensors; completeness relation; algebra of U(N); eigenvalue of the quadratic Casimir operator for U(3); general result for U(N); angular momentum content of U(3) representation; p-Boson model; Hamiltonian; quadrupole transitions; S,P Boson model; expectation value of dipole operator; S-D model: U(6); quadratic Casimir operator; an O(5) subgroup; an O(6) subgroup; properties of O(5) representations; quadratic Casimir operator; quadratic Casimir operator for U(6); decomposition via SU(5) chain; a special O(3) decomposition of SU(3); useful identities; a useful property of D/sub αβγ/(α,β,γ = 4-8) as coupling coefficients; explicit construction of T/sub x//sup (2)/ and d/sub αβγ/; D-coefficients; eigenstates of T3; and summary of T = 2 states
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Rough Sets in Approximate Solution Space
Institute of Scientific and Technical Information of China (English)
Hui Sun; Wei Tian; Qing Liu
2006-01-01
As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and in complete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoretic tool to discretize the real function. As far as the real function research is concerned, the research to define rough sets in the real function is infrequent. In this paper, we exploit a new method to extend the rough set in normed linear space, in which we establish a rough set,put forward an upper and lower approximation definition, and make a preliminary research on the property of the rough set. A new tool is provided to study the approximation solutions of differential equation and functional variation in normed linear space. This research is significant in that it extends the application of rough sets to a new field.
DEFF Research Database (Denmark)
Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas;
To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...
Authenticity of Mathematical Modeling
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Donaldson, J. A.
1984-01-01
Simple continuum models used in the design, analysis, and control of large space structures are examined. Particular emphasis is placed on boundary value problems associated with the Load Correction Method and control problems involving partial differential equations for the large space structure models. Partial differential equations will be used to model a large space structure, base the design of an optimal controller on this model, approximate the resulting optimal control model, and compare the results with data from other methods.
A Multifaceted Mathematical Approach for Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.
Operators of Approximations and Approximate Power Set Spaces
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-yong; MO Zhi-wen; SHU Lan
2004-01-01
Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.
Robust Optimization for Radiosurgery under the Static Dose Cloud Approximation
Josefsson, Marcus
2014-01-01
This report investigates methods of optimization to make treatment plans in radiosurgery robust to spatial uncertainty, and attempts to determine whether they could be used with bene t in a Gamma Knife context. To make the problem mathematically feasible, regions of interest (ROIs) are approximated to move in a pre-computed static dose cloud, which in turn is estimated by methods of linear interpolation and linear approximation. The movements of ROIs are modeled by transforms, of which rigid,...
From Mathematics and Education, to Mathematics Education
Furinghetti, Fulvia; Matos, José Manuel; Menghini, Marta
2016-01-01
This chapter takes a historical view of the development of mathematics education, from its initial status as a business mostly managed by mathematicians to the birth of mathematics education as a scientific field of research. Starting from the acknowledgement that research in mathematics education demands more than the traditional focus on discussing curricular options at distinct grade levels, we identified several specialized clusters, debating specific issues related to mathematics educati...
Mathematics for Life: Sustainable Mathematics Education
Renert, Moshe
2011-01-01
Ecological sustainability has not been a major focus of mathematics education research, even though it has attracted considerable attention in other areas of educational research in the past decade. The connections between mathematics education and ecological sustainability are not readily apparent. This paper explores how mathematics educators…
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>20102798 Gao Shengxiang(School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Ye Rongzhang Establishment of Complex Geological Body FLAC3D Model by Using MATLAB Interface Program(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,37(5),2009,p.51-53,5 illus.,4 refs.,with English abstract)Key words:FLAC3D,computer programs20102799 Li Xiuzhen(Key Laboratory of Mountain Hazards and Surface Processes,Chinese Academy of Sciences,Chengdu 610041,China);Wang Chenghua Potential Landslide Identification Model Based on Fisher Discrimination Analysis Method and Its Application(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,20(4),2009,p.23-26,40,2 tables,11 refs.)Key words:mathematical models,landslidesAiming at ancient(old)landslides,four kinds of discrimination indexes which included nine secondary indexes for potential landslides,such as landform character,slip surface character,landslide body structure and recent activities characters,were presented.Then according to Fisher Discrimination theory,Fisher Discrimination model for the potential landslides was built.The re
Introducing philosophy of mathematics
Friend, Michele
2014-01-01
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc
Approximation algorithms and hardness of approximation for knapsack problems
Buhrman, H.; Loff, B.; Torenvliet, L.
2012-01-01
We show various hardness of approximation algorithms for knapsack and related problems; in particular we will show that unless the Exponential-Time Hypothesis is false, then subset-sum cannot be approximated any better than with an FPTAS. We also give a simple new algorithm for approximating knapsac
Nonlinear functional approximation with networks using adaptive neurons
Tawel, Raoul
1992-01-01
A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.
Mathematical classification and clustering
Mirkin, Boris
1996-01-01
I am very happy to have this opportunity to present the work of Boris Mirkin, a distinguished Russian scholar in the areas of data analysis and decision making methodologies. The monograph is devoted entirely to clustering, a discipline dispersed through many theoretical and application areas, from mathematical statistics and combina torial optimization to biology, sociology and organizational structures. It compiles an immense amount of research done to date, including many original Russian de velopments never presented to the international community before (for instance, cluster-by-cluster versions of the K-Means method in Chapter 4 or uniform par titioning in Chapter 5). The author's approach, approximation clustering, allows him both to systematize a great part of the discipline and to develop many in novative methods in the framework of optimization problems. The optimization methods considered are proved to be meaningful in the contexts of data analysis and clustering. The material presented in ...
Lloyd, Mary Elizabeth Riley; Veal, William; Howell, Malia
2016-01-01
This article describes the normative beliefs and the discursive claims related to mathematics and teaching mathematics made by approximately 50 middle-level and secondary mathematics teachers within four high-need local education associations participating in a Mathematics and Science Partnership with a southeastern college's Science and Math for…
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2015-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Approximate sine-Gordon solitons
Energy Technology Data Exchange (ETDEWEB)
Stratopoulos, G.N. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Zakrzewski, W.J. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom))
1993-08-01
We look at the recently proposed scheme of approximating a sine-Gordon soliton by an expression derived from two dimensional instantons. We point out that the scheme of Sutcliffe in which he uses two dimensional instantons can be generalised to higher dimensions and that these generalisations produce even better approximations than the original approximation. We also comment on generalisations to other models. (orig.)
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Transforming Primary Mathematics
Askew, Mike
2011-01-01
What is good mathematics teaching? What is mathematics teaching good for? Who is mathematics teaching for? These are just some of the questions addressed in "Transforming Primary Mathematics", a highly timely new resource for teachers which accessibly sets out the key theories and latest research in primary maths today. Under-pinned by findings…
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2005-01-01
A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....
Students as Mathematics Consultants
Jensen, Jennifer L.
2013-01-01
If students are going to develop reasoning and thinking skills, use their mathematical knowledge, and recognize the relevance of mathematics in their lives, they need to experience mathematics in meaningful ways. Only then will their mathematical skills be transferrable to all other parts of their lives. To promote such flexible mathematical…
Topics in mathematical analysis and applications
Tóth, László
2014-01-01
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
Directory of Open Access Journals (Sweden)
H Chris Ransford
2015-11-01
Full Text Available Scientists who approach questions related to faith and Godhood from their supposedly wholly objective angles routinely reach totally different conclusions. Therefore, a new approach using the most objective tool possible, that of pure mathematics, is attempted. The validity of using some mathematics in this context is briefly examined. Mathematical analysis leads to a number of counter-intuitive outcomes, such as the mathematical necessity of some measure of evil in a godlike universe, the mathematical illegitimacy of prescriptive religions, and more. This article is adapted from the forthcoming book ‘God and the Mathematics of Infinity: What Irreducible Mathematics Says About Godhood’.
Approximate *-derivations and approximate quadratic *-derivations on C*-algebras
Directory of Open Access Journals (Sweden)
Park Choonkil
2011-01-01
Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.
Lapses in Learning Mathematics
Prem Shankar Srivastava
2014-01-01
The present conceptual study deals about lapses in learning mathematics of students in schools are a problem of serious academic significance. The present day situation of teaching-learning of mathematics is unsatisfactory as the results of mathematics in different classes show. In our country, there are many school-going-students cut a sorry figure in learning mathematics. The present paper identifies lapses in learning mathematics on the part of the students, teachers, institutions, parents...
Mastering mathematics geometry & measures
Various
2014-01-01
Deliver outstanding lessons that build fluency, problem-solving and mathematical reasoning skills to enable sustained progress at Key Stage 3, in preparation for GCSE. Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics . Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or exte
Approximate solutions for the skyrmion
Ponciano, J A; Fanchiotti, H; Canal-Garcia, C A
2001-01-01
We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pade approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the 2-point Pade approximant procedure whereby the exact behaviour at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.
BDD Minimization for Approximate Computing
Soeken, Mathias; Grosse, Daniel; Chandrasekharan, Arun; Drechsler, Rolf
2016-01-01
We present Approximate BDD Minimization (ABM) as a problem that has application in approximate computing. Given a BDD representation of a multi-output Boolean function, ABM asks whether there exists another function that has a smaller BDD representation but meets a threshold w.r.t. an error metric. We present operators to derive approximated functions and present algorithms to exactly compute the error metrics directly on the BDD representation. An experimental evaluation demonstrates the app...
Mathematics without boundaries surveys in pure mathematics
Pardalos, Panos
2014-01-01
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
Approximating perfection a mathematician's journey into the world of mechanics
Lebedev, Leonid P
2004-01-01
This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools. Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications. Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of c
Generating the Patterns of Variation with GeoGebra: The Case of Polynomial Approximations
Attorps, Iiris; Björk, Kjell; Radic, Mirko
2016-01-01
In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of…
Topics in Physical Mathematics
Marathe, Kishore
2010-01-01
This title adopts the view that physics is the primary driving force behind a number of developments in mathematics. Previously, science and mathematics were part of natural philosophy and many mathematical theories arose as a result of trying to understand natural phenomena. This situation changed at the beginning of last century as science and mathematics diverged. These two fields are collaborating once again; 'Topics in Mathematical Physics' takes the reader through this journey. The author discusses topics where the interaction of physical and mathematical theories has led to new points o
Schleicher, Dierk
2011-01-01
This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is
Nonlinear approximation with redundant dictionaries
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, M.; Gribonval, R.
2005-01-01
In this paper we study nonlinear approximation and data representation with redundant function dictionaries. In particular, approximation with redundant wavelet bi-frame systems is studied in detail. Several results for orthonormal wavelets are generalized to the redundant case. In general...
Approximate Inference in Probabilistic Models
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2004-01-01
We present a framework for approximate inference in probabilistic data models which is based on free energies. The free energy is constructed from two approximating distributions which encode different aspects of the intractable model. Consistency between distributions is required on a chosen set...
The Logic of Approximate Dependence
Väänänen, Jouko
2014-01-01
We extend the treatment of functional dependence, the basic concept of dependence logic, to include the possibility of dependence with a limited number of exceptions. We call this approximate dependence. The main result of the paper is a Completeness Theorem for approximate dependence atoms. We point out some problematic features of this which suggests that we should consider multi-teams, not just teams.
Beyond the random phase approximation
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
N-variable rational approximants
International Nuclear Information System (INIS)
''Desirable properties'' of a two-variable generalization of Pade approximants are laid down. The ''Chisholm approximants'' are defined and are shown to obey nearly all of these properties; the alternative ways of completing a unique definition are discussed, and the ''prong structure'' of the defining equations is elucidated. Several generalizations and variants of Chisholm approximants are described: N-variable diagonal, 2-variable simple off-diagonal, N-variable simple and general off-diagonal, and rotationally covariant 2-variable approximants. All of the 2-variable approximants are capable of representing singularities of functions of two variables, and of analytically continuing beyond the polycylinder of convergence of the double series. 8 figures
Mathematics for Language, Language for Mathematics
Prochazkova, Lenka Tejkalova
2013-01-01
The author discusses the balance and mutual influence of the language of instruction and mathematics in the context of CLIL, Content and Language Integrated Learning. Different aspects of the relationship of language and Mathematics teaching and learning are discussed: the benefits of using a foreign language of instruction, as well as the…
Partial differential equations modeling, analysis and numerical approximation
Le Dret, Hervé
2016-01-01
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
Regularity and approximability of electronic wave functions
Yserentant, Harry
2010-01-01
The electronic Schrödinger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions is thus inordinately challenging, and it is generally believed that a reduction to simplified models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to show readers that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The text is accessible to a mathematical audience at the beginning graduate level as...
European Digital Mathematics Library
Rakosnik, Jiri; Pavlov, Radoslav
2013-01-01
The aim of this paper is to survey the European Digital Mathematics Library project goals and achievements as well as an outlook for sustainable development. “Making mathematics literature published in Europe available online” www.eudml.org
Semiotic Scaffolding in Mathematics
DEFF Research Database (Denmark)
Johansen, Mikkel Willum; Misfeldt, Morten
2015-01-01
This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....
Developing My Mathematics Identity
Gonzalez, Lidia
2016-01-01
Assuming the role of storyteller, the author uses her experiences as a graduate student and beginning teacher to reflect critically on issues related to mathematics, mathematics education, gender, and diversity.
Mathematics for the nonmathematician
Kline, Morris
1967-01-01
Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.
The efficiency of Flory approximation
International Nuclear Information System (INIS)
The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)
Modern mathematics made simple
Murphy, Patrick
1982-01-01
Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional
Mastering mathematics statistics & probability
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and eBooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions that develop fluen
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions tha
Galligan, Linda
2016-01-01
A "National Numeracy Report" and the Australian Curriculum (2014) have recognised the importance of language in mathematics. The general capabilities contained within the "Australian Curriculum: Mathematics" (2014) highlight literacy as an important tool in the teaching and learning of mathematics, from the interpretation of…
Saludes, Jordi; 10.4204/EPTCS.79.6
2012-01-01
This paper is devoted to present the Mathematics Grammar Library, a system for multilingual mathematical text processing. We explain the context in which it originated, its current design and functionality and the current development goals. We also present two prototype services and comment on possible future applications in the area of artificial mathematics assistants.
A "Mathematics Background Check"
Hubisz, John
2009-01-01
Early in my career someone else reported that the best indicator of success in calculus-based physics (CBP) at our school was whether students had taken mathematics in a certain region of New Brunswick. I sat down with a very longtime mathematics teacher and asked him what he thought students should know in mathematics after high school to succeed…
Abraham, Ralph
2015-12-01
Is there a world of mathematics above and beyond ordinary reality, as Plato proposed? Or is mathematics a cultural construct? In this short article we speculate on the place of mathematical reality from the perspective of the mystical cosmologies of the ancient traditions of meditation, psychedelics, and divination.
Mathematics a minimal introduction
Buium, Alexandru
2013-01-01
Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index
Mendick, Heather
2006-01-01
The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Reinforcement Learning via AIXI Approximation
Veness, Joel; Ng, Kee Siong; Hutter, Marcus; Silver, David
2010-01-01
This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To deve...
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...
Mathematics analysis of polymerase chain reaction kinetic curves.
Sochivko, D G; Fedorov, A A; Varlamov, D A; Kurochkin, V E; Petrov, R V
2016-01-01
The paper reviews different approaches to the mathematical analysis of polymerase chain reaction (PCR) kinetic curves. The basic principles of PCR mathematical analysis are presented. Approximation of PCR kinetic curves and PCR efficiency curves by various functions is described. Several PCR models based on chemical kinetics equations are suggested. Decision criteria for an optimal function to describe PCR efficiency are proposed.
Fast approximate delivery of fluence maps: the VMAT case
Balvert, Marleen; Craft, David
2016-01-01
In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for volumetric modulated arc therapy (VMAT). At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. This model was presented for the single map case in a companion paper (Fast approximate delivery of fluence maps: the ...
Twisted inhomogeneous Diophantine approximation and badly approximable sets
Harrap, Stephen
2010-01-01
For any real pair i, j geq 0 with i+j=1 let Bad(i, j) denote the set of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors x:=(x_1, x_2) in R^2 for which there exists a positive constant c(x) such that max {||qx_1||^(-i), ||qx_2||^(-j)} > c(x)/q for all q in N. Building on a result of Kurzweil, a new characterization of the set Bad(i, j) in terms of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine approximation is established. In addition, it is shown that Bad^x(i, j), the `twisted' inhomogeneous analogue of Bad(i, j), has full Hausdorff dimension 2 when x is chosen from the set Bad(i, j).
Numerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations
Adler, J H; Zikatanov, L T
2012-01-01
This work is on the numerical approximation of incoming solutions to Maxwell's equations with dissipative boundary conditions whose energy decays exponentially with time. Such solutions are called asymptotically disappearing (ADS) and they play an importarnt role in inverse back-scatering problems. The existence of ADS is a difficult mathematical problem. For the exterior of a sphere, such solutions have been constructed analytically by Colombini, Petkov and Rauch [7] by specifying appropriate initial conditions. However, for general domains of practical interest (such as Lipschitz polyhedra), the existence of such solutions is not evident. This paper considers a finite-element approximation of Maxwell's equations in the exterior of a polyhedron, whose boundary approximates the sphere. Standard Nedelec-Raviart-Thomas elements are used with a Crank-Nicholson scheme to approximate the electric and magnetic fields. Discrete initial conditions interpolating the ones chosen in [7] are modified so that they are (we...
Born approximation in linear-time invariant system
Gumjudpai, Burin
2015-01-01
Linear-time invariant (LTI) oscillation systems such as forced mechanical vibration, series RLC and parallel RLC circuits can be solved by using simplest initial conditions or employing of Green's function of which knowledge of initial condition of the force term is needed. Here we show a mathematical connection of the LTI system and the Helmholtz equation form of the time-independent Schr\\"{o}dinger equation in quantum mechanical scattering problem. We apply Born approximation in quantum mechanics to obtain LTI general solution in form of infinite Born series which can be expressed as a series of one-dimensional Feynman graphs. Conditions corresponding to the approximation are given for the case of harmonic driving force. The Born series of the harmonic forced oscillation case are derived by directly applying the approximation to the LTI system or by transforming the LTI system to Helmholtz equation prior to doing the approximation.
Jourdain, Philip E B
2007-01-01
Anyone with an interest in mathematics will welcome the republication of this little volume by a remarkable mathematician who was also a logician, a philosopher, and an occasional writer of fiction and poetry. Originally published in 1913, and later included in the acclaimed anthology The World of Mathematics, Jourdain's survey shows how and why the methods of mathematics were developed, traces the development of mathematical science from the earliest to modern times, and chronicles the application of mathematics to natural science.Starting with the ancient Egyptians and Greeks, the author p
Gabbay, Dov M; Woods, John
2009-01-01
One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat
The development of mathematics
Bell, E T
1992-01-01
""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from
Fundamental concepts of mathematics
Goodstein, R L
Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Dantzig, Tobias
2006-01-01
More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led
Crossley, J N; Brickhill, CJ; Stillwell, JC
2010-01-01
Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg
Mathematics for the imagination
Higgins, Peter
2002-01-01
Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun new book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind.This is a follow-up to the popular Mathematics for the Curious, Peter Higgins's first investigation into real-life mathematical problems.A highly involving book which encourages the reader to enter into the spirit of mathematical ex
Mathematics for physical chemistry
Mortimer, Robert G
2013-01-01
Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit
Leifer, M S
2015-01-01
In this essay, I argue that mathematics is a natural science---just like physics, chemistry, or biology---and that this can explain the alleged "unreasonable" effectiveness of mathematics in the physical sciences. The main challenge for this view is to explain how mathematical theories can become increasingly abstract and develop their own internal structure, whilst still maintaining an appropriate empirical tether that can explain their later use in physics. In order to address this, I offer a theory of mathematical theory-building based on the idea that human knowledge has the structure of a scale-free network and that abstract mathematical theories arise from a repeated process of replacing strong analogies with new hubs in this network. This allows mathematics to be seen as the study of regularities, within regularities, within ..., within regularities of the natural world. Since mathematical theories are derived from the natural world, albeit at a much higher level of abstraction than most other scientif...
Martin, B R
2015-01-01
Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will ...
The History of Mathematics and Mathematical Education
Grattan-Guinness, I.
1977-01-01
Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)
Wavelet Sparse Approximate Inverse Preconditioners
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
The structure of approximate groups
Breuillard, Emmanuel; Tao, Terence
2011-01-01
Let K >= 1 be a parameter. A K-approximate group is a finite set A in a (local) group which contains the identity, is symmetric, and such that A^2 is covered by K left translates of A. The main result of this paper is a qualitative description of approximate groups as being essentially finite-by-nilpotent, answering a conjecture of H. Helfgott and E. Lindenstrauss. This may be viewed as a generalisation of the Freiman-Ruzsa theorem on sets of small doubling in the integers to arbitrary groups. We begin by establishing a correspondence principle between approximate groups and locally compact (local) groups that allows us to recover many results recently established in a fundamental paper of Hrushovski. In particular we establish that approximate groups can be approximately modeled by Lie groups. To prove our main theorem we apply some additional arguments essentially due to Gleason. These arose in the solution of Hilbert's fifth problem in the 1950s. Applications of our main theorem include a finitary refineme...
Relativistic regular approximations revisited: An infinite-order relativistic approximation
International Nuclear Information System (INIS)
The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy - Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy - Wouthuysen transformation, which results in the ZORA Hamiltonian and a non-unit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E3/c4 for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the non-variational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. copyright 1999 American Institute of Physics
Approximating Graphic TSP by Matchings
Mömke, Tobias
2011-01-01
We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a decreased cost. For the TSP on graphic metrics (graph-TSP), the approach yields a 1.461-approximation algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of graphs that contains degree three bounded and claw-free graphs, we show that the integrality gap of the Held-Karp relaxation matches the conjectured ratio 4/3. The framework allows for generalizations in a natural way and also leads to a 1.586-approximation algorithm for the traveling salesman path problem on graphic metrics where the start and end vertices are prespecified.
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Reinforcement Learning via AIXI Approximation
Veness, Joel; Hutter, Marcus; Silver, David
2010-01-01
This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.
Concept Approximation between Fuzzy Ontologies
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Fuzzy ontologies are efficient tools to handle fuzzy and uncertain knowledge on the semantic web; but there are heterogeneity problems when gaining interoperability among different fuzzy ontologies. This paper uses concept approximation between fuzzy ontologies based on instances to solve the heterogeneity problems. It firstly proposes an instance selection technology based on instance clustering and weighting to unify the fuzzy interpretation of different ontologies and reduce the number of instances to increase the efficiency. Then the paper resolves the problem of computing the approximations of concepts into the problem of computing the least upper approximations of atom concepts. It optimizes the search strategies by extending atom concept sets and defining the least upper bounds of concepts to reduce the searching space of the problem. An efficient algorithm for searching the least upper bounds of concept is given.
An Approximation Ratio for Biclustering
Puolamäki, Kai; Hanhijärvi, Sami; Garriga, Gemma C
2007-01-01
The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying one-way clustering algorithms independently on the rows and on the columns of the input matrix. We show that such a solution yields a worst-case approximation ratio of 1+sqrt(2) under L1-norm for 0-1 valued matrices, and of 2...
An Approximation Ratio for Biclustering
Puolamäki, Kai; Garriga, Gemma C
2007-01-01
The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying one-way clustering algorithms independently on the rows and on the columns of the input matrix. We show that such a solution yields a worst-case approximation ratio of 1+sqrt(2) under L1-norm for 0-1 valued matrices, and of 2 under L2-norm for real valued matrices.
Tree wavelet approximations with applications
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
[1]Baraniuk, R. G., DeVore, R. A., Kyriazis, G., Yu, X. M., Near best tree approximation, Adv. Comput. Math.,2002, 16: 357-373.[2]Cohen, A., Dahmen, W., Daubechies, I., DeVore, R., Tree approximation and optimal encoding, Appl. Comput.Harmonic Anal., 2001, 11: 192-226.[3]Dahmen, W., Schneider, R., Xu, Y., Nonlinear functionals of wavelet expansions-adaptive reconstruction and fast evaluation, Numer. Math., 2000, 86: 49-101.[4]DeVore, R. A., Nonlinear approximation, Acta Numer., 1998, 7: 51-150.[5]Davis, G., Mallat, S., Avellaneda, M., Adaptive greedy approximations, Const. Approx., 1997, 13: 57-98.[6]DeVore, R. A., Temlyakov, V. N., Some remarks on greedy algorithms, Adv. Comput. Math., 1996, 5: 173-187.[7]Kashin, B. S., Temlyakov, V. N., Best m-term approximations and the entropy of sets in the space L1, Mat.Zametki (in Russian), 1994, 56: 57-86.[8]Temlyakov, V. N., The best m-term approximation and greedy algorithms, Adv. Comput. Math., 1998, 8:249-265.[9]Temlyakov, V. N., Greedy algorithm and m-term trigonometric approximation, Constr. Approx., 1998, 14:569-587.[10]Hutchinson, J. E., Fractals and self similarity, Indiana. Univ. Math. J., 1981, 30: 713-747.[11]Binev, P., Dahmen, W., DeVore, R. A., Petruchev, P., Approximation classes for adaptive methods, Serdica Math.J., 2002, 28: 1001-1026.[12]Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag,1983.[13]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, New York: North Holland, 1978.[14]Birman, M. S., Solomiak, M. Z., Piecewise polynomial approximation of functions of the class Wαp, Math. Sb.,1967, 73: 295-317.[15]DeVore, R. A., Lorentz, G. G., Constructive Approximation, New York: Springer-Verlag, 1993.[16]DeVore, R. A., Popov, V., Interpolation of Besov spaces, Trans. Amer. Math. Soc., 1988, 305: 397-414.[17]Devore, R., Jawerth, B., Popov, V., Compression of wavelet decompositions, Amer. J. Math., 1992, 114: 737-785.[18]Storozhenko, E
Truthful approximations to range voting
DEFF Research Database (Denmark)
Filos-Ratsika, Aris; Miltersen, Peter Bro
We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...
Shearlets and Optimally Sparse Approximations
DEFF Research Database (Denmark)
Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q
2012-01-01
Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...
Approximate Reasoning with Fuzzy Booleans
Broek, van den P.M.; Noppen, J.A.R.
2004-01-01
This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante
Analytical Approximations to Galaxy Clustering
Mo, H. J.
1997-01-01
We discuss some recent progress in constructing analytic approximations to the galaxy clustering. We show that successful models can be constructed for the clustering of both dark matter and dark matter haloes. Our understanding of galaxy clustering and galaxy biasing can be greatly enhanced by these models.
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
Ultrafast Approximation for Phylogenetic Bootstrap
Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt
2013-01-01
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and
Approximation by Penultimate Stable Laws
L.F.M. de Haan (Laurens); L. Peng (Liang); H. Iglesias Pereira
1997-01-01
textabstractIn certain cases partial sums of i.i.d. random variables with finite variance are better approximated by a sequence of stable distributions with indices \\\\alpha_n \\\\to 2 than by a normal distribution. We discuss when this happens and how much the convergence rate can be improved by using
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Low Rank Approximation in $G_0W_0$ Approximation
Shao, Meiyue; Yang, Chao; Liu, Fang; da Jornada, Felipe H; Deslippe, Jack; Louie, Steven G
2016-01-01
The single particle energies obtained in a Kohn--Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The $G_0W_0$ approximation is a widely used technique in which the self energy is expressed as the convolution of a non-interacting Green's function ($G_0$) and a screened Coulomb interaction ($W_0$) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating $W_0$ at multiple frequencies. In this paper, we discuss how the cos...
Mathematical Sciences Institute Workshop
Scott, Philip
1990-01-01
A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions ...
Nash, Jr, John Forbes
2016-01-01
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...
Easy mathematics for biologists
Foster, Peter C
2014-01-01
Because elementary mathematics is vital to be able to properly design biological experiments and interpret their results. As a student of the life sciences you will only make your life harder by ignoring mathematics entirely. Equally, you do not want to spend your time struggling with complex mathematics that you will never use. This book is the perfect answer to your problems. Inside, it explains the necessary mathematics in easy-to-follow steps, introducing the basics and showing you how to apply these to biological situations. Easy Mathematics for Biologists covers the basic mathematical ideas of fractions, decimals and percentages, through ratio and proportion, exponents and logarithms, to straight line graphs, graphs that are not straight lines, and their transformation. Direct application of each of these leads to a clear understanding of biological calculations such as those involving concentrations and dilutions, changing units, pH, and linear and non-linear rates of reaction. Each chapter contains wo...
Rader, Laura
2009-01-01
The reality is that approximately 5-8% of school-age students have memory or other cognitive deficits that interfere with their ability to acquire, master, and apply mathematical concepts and skills (Geary, 2004). These students with Mathematical Learning Disabilities (MLD) are at risk for failure in middle school mathematics because they…
Approximate bayesian parameter inference for dynamical systems in systems biology
International Nuclear Information System (INIS)
This paper proposes to use approximate instead of exact stochastic simulation algorithms for approximate Bayesian parameter inference of dynamical systems in systems biology. It first presents the mathematical framework for the description of systems biology models, especially from the aspect of a stochastic formulation as opposed to deterministic model formulations based on the law of mass action. In contrast to maximum likelihood methods for parameter inference, approximate inference method- share presented which are based on sampling parameters from a known prior probability distribution, which gradually evolves toward a posterior distribution, through the comparison of simulated data from the model to a given data set of measurements. The paper then discusses the simulation process, where an over- view is given of the different exact and approximate methods for stochastic simulation and their improvements that we propose. The exact and approximate simulators are implemented and used within approximate Bayesian parameter inference methods. Our evaluation of these methods on two tasks of parameter estimation in two different models shows that equally good results are obtained much faster when using approximate simulation as compared to using exact simulation. (Author)
Bundy, Alan
2006-01-01
The Annual Boole Lecture was established and is sponsored by the Boole Centre for Research in Informatics, the Cork Constraint Computation Centre, the Department of Computer Science, and the School of Mathematics, Applied Mathematics and Statistics, at University College Cork. The series in named in honour of George Boole, the first professor of Mathematics at UCC, whose seminal work on logic in the mid-1800s is central to modern digital computing. To mark this great contribution, leaders in ...
Computer assisted mathematical programming
Lucas, CA; Mitra, G
1987-01-01
A Computer Assisted Mathematical Programming (Modelling) System (CAMPS) is described in this paper. The system uses program generator techniques for model creation and contrasts with earlier approaches which use a special purpose language to construct models. Thus no programming skill is required to formulate a model. In designing the system we have first analysed the salient components of the mathematical programming activity. A mathematical programming model is usually constructed by progre...
Directory of Open Access Journals (Sweden)
Željka Tutek
2013-12-01
Full Text Available At the beginning of the December 2013, it was announced that the successful year-long world-wide project Mathematics of Planet Earth 2013 (MPE2013 under the patronage of UNESCO will continue as Mathematics of Planet Earth (MPE! The idea of Christiane Rousseau, the past president of the Canadian Mathematical Society, about uniting the world’s mathematicians in an effort to bring awareness to global issues has been worked out far beyond what she could have hoped.
Mathematical Thinking in Chemistry
José L. Villaveces; Guillermo Restrepo
2012-01-01
Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffro...
Advances in mathematical economics
Yamazaki, Akira
2006-01-01
A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.
Advances in mathematical economics
Maruyama, Toru
2015-01-01
The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.
Ideation in mathematical writing
DEFF Research Database (Denmark)
Misfeldt, Morten
2007-01-01
This paper considers idea generation during the mathematical writing process. Two contrasting explanations of the creative potential in connection to writing is presented; writing as a process of setting and obtaining rhetorical goals and writing as a process of discovery. These views...... are then related to two empirically found categories of functions that writing serves researchers in the field of mathematics, concluding that both views contributes to understanding the creative potential in relation to mathematical writing....
International Mathematical Internet Olympiad
Directory of Open Access Journals (Sweden)
Alexander Domoshnitsky
2012-10-01
Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.
Advances in mathematical economics
Yamazaki, Akira
2006-01-01
A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.
Željka Tutek
2013-01-01
At the beginning of the December 2013, it was announced that the successful year-long world-wide project Mathematics of Planet Earth 2013 (MPE2013) under the patronage of UNESCO will continue as Mathematics of Planet Earth (MPE)! The idea of Christiane Rousseau, the past president of the Canadian Mathematical Society, about uniting the world’s mathematicians in an effort to bring awareness to global issues has been worked out far beyond what she could have hoped.
Advances in mathematical economics
Maruyama, Toru
2014-01-01
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.
Advances in mathematical economics
Maruyama, Toru
2016-01-01
The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.
O'Briain, Dara
2014-01-01
Relax: no one understands technical mathematics without lengthy training but we all have an intuitive grasp of the ideas behind the symbols. To celebrate the 50th anniversary of the founding of the Institute of Mathematics and its Applications (IMA), this book is designed to showcase the beauty of mathematics - including images inspired by mathematical problems - together with its unreasonable effectiveness and applicability, without frying your brain. The book is a collection of 50 original essays contributed by a wide variety of authors. It contains articles by some of the best expositors of
Plofker, Kim
2009-01-01
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Butterfield, Jeremy
2014-01-01
This is a discussion of some themes in Max Tegmark's recent book, Our Mathematical Universe. It was written as a review for Plus Magazine, the online magazine of the UK's national mathematics education and outreach project, the Mathematics Millennium Project. Since some of the discussion (about symmetry breaking, and Pythagoreanism in the philosophy of mathematics) went beyond reviewing Tegmark's book, the material was divided into three online articles. This version combines those three articles, and adds some other material, in particular a brief defence of quidditism about properties. It also adds some references, to other Plus articles as well as academic articles. But it retains the informal style of Plus.
DEFF Research Database (Denmark)
Winsløw, Carl
2015-01-01
and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined......Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...
Resnikoff, Howard L
2015-01-01
Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co
Teaching secondary mathematics
Rock, David
2013-01-01
Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi
Winkler, Peter
2007-01-01
Peter Winkler is at it again. Following the enthusiastic reaction to Mathematical Puzzles: A Connoisseur's Collection, Peter has compiled a new collection of elegant mathematical puzzles to challenge and entertain the reader. The original puzzle connoisseur shares these puzzles, old and new, so that you can add them to your own anthology. This book is for lovers of mathematics, lovers of puzzles, lovers of a challenge. Most of all, it is for those who think that the world of mathematics is orderly, logical, and intuitive-and are ready to learn otherwise! A pdf with errata is updated by the aut
House, Peggy A.
1994-01-01
Describes some mathematical investigations of the necktie which includes applications of geometry, statistics, data analysis, sampling, probability, symmetry, proportion, problem solving, and business. (MKR)
Mathematical fallacies and paradoxes
Bunch, Bryan
1982-01-01
Stimulating, thought-provoking analysis of the most interesting intellectual inconsistencies in mathematics, physics, and language, including being led astray by algebra (De Morgan's paradox). 1982 edition.
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
2011-01-01
Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.
A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers
Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa
2012-01-01
This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…
Mathematics for Teaching: A Form of Applied Mathematics
Stylianides, Gabriel J.; Stylianides, Andreas J.
2010-01-01
In this article we elaborate a conceptualisation of "mathematics for teaching" as a form of applied mathematics (using Bass's idea of characterising mathematics education as a form of applied mathematics) and we examine implications of this conceptualisation for the mathematical preparation of teachers. Specifically, we focus on issues of design…
Using Mathematics Literature with Prospective Secondary Mathematics Teachers
Jett, Christopher C.
2014-01-01
Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
Hydrogen Beyond the Classic Approximation
Scivetti, I
2003-01-01
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Approximate Matching of Hierarchial Data
DEFF Research Database (Denmark)
Augsten, Nikolaus
formally proof that the pq-gram index can be incrementally updated based on the log of edit operations without reconstructing intermediate tree versions. The incremental update is independent of the data size and scales to a large number of changes in the data. We introduce windowed pq-grams for the......-gram based distance between streets, introduces a global greedy matching that guarantees stable pairs, and links addresses that are stored with different granularity. The connector has been successfully tested with public administration databases. Our extensive experiments on both synthetic and real world......The goal of this thesis is to design, develop, and evaluate new methods for the approximate matching of hierarchical data represented as labeled trees. In approximate matching scenarios two items should be matched if they are similar. Computing the similarity between labeled trees is hard as in...
Validity of the eikonal approximation
Kabat, D
1992-01-01
We summarize results on the reliability of the eikonal approximation in obtaining the high energy behavior of a two particle forward scattering amplitude. Reliability depends on the spin of the exchanged field. For scalar fields the eikonal fails at eighth order in perturbation theory, when it misses the leading behavior of the exchange-type diagrams. In a vector theory the eikonal gets the exchange diagrams correctly, but fails by ignoring certain non-exchange graphs which dominate the asymptotic behavior of the full amplitude. For spin--2 tensor fields the eikonal captures the leading behavior of each order in perturbation theory, but the sum of eikonal terms is subdominant to graphs neglected by the approximation. We also comment on the eikonal for Yang-Mills vector exchange, where the additional complexities of the non-abelian theory may be absorbed into Regge-type modifications of the gauge boson propagators.
Approximate Privacy: Foundations and Quantification
Feigenbaum, Joan; Schapira, Michael
2009-01-01
Increasing use of computers and networks in business, government, recreation, and almost all aspects of daily life has led to a proliferation of online sensitive data about individuals and organizations. Consequently, concern about the privacy of these data has become a top priority, particularly those data that are created and used in electronic commerce. There have been many formulations of privacy and, unfortunately, many negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environments. We formulate communication-complexity-based definitions, both worst-case and average-case, of a problem's privacy-approximation ratio. We use our definitions to investigate the extent to which approximate privacy is achievable in two standard problems: the second-price Vickrey auction and the millionaires problem of Yao. For both the second-price Vickrey auction and the millionaires problem, we show that not only is perfect privacy impossible or infeasibly costly to achieve...
Hydrogen: Beyond the Classic Approximation
International Nuclear Information System (INIS)
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Concentration Bounds for Stochastic Approximations
Frikha, Noufel
2012-01-01
We obtain non asymptotic concentration bounds for two kinds of stochastic approximations. We first consider the deviations between the expectation of a given function of the Euler scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure. We then give some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes. For the first case, as opposed to the previous work of Lemaire and Menozzi (EJP, 2010), we do not have any systematic bias in our estimates. Also, no specific non-degeneracy conditions are assumed.
Variance approximation under balanced sampling
Deville, Jean-Claude; Tillé, Yves
2016-01-01
A balanced sampling design has the interesting property that Horvitz–Thompson estimators of totals for a set of balancing variables are equal to the totals we want to estimate, therefore the variance of Horvitz–Thompson estimators of variables of interest are reduced in function of their correlations with the balancing variables. Since it is hard to derive an analytic expression for the joint inclusion probabilities, we derive a general approximation of variance based on a residual technique....
Approximating Metal-Insulator Transitions
Danieli, C.; Rayanov, K.; Pavlov, B.; Martin, G.; Flach, S
2014-01-01
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility ed...
Improved asymptotic approximations for transient conduction and diffusion processes
Energy Technology Data Exchange (ETDEWEB)
Martin, H. (Inst. fuer Thermische Verfahrenstechnik, Univ. Karlsruhe (T.H.), Karlsruhe (Germany) Univ. of Esfahan (Iran, Islamic Republic of)); Saberian, M. (Inst. fuer Thermische Verfahrenstechnik, Univ. Karlsruhe (T.H.), Karlsruhe (Germany) Univ. of Esfahan (Iran, Islamic Republic of))
1994-09-01
The well-known series solutions, developed in the early 19th century by Fourier (1822) in order to describe the transient process of heat conduction in a solid have since become standard tools of engineering science. Attempts have often been made to facilitate the practical use of that first mathematical theory of an irreversible process by the provision of charts and simpler approximate equations and thus avoid the cumbersome calculations involved in the series. Some of the more recent approaches to simplifying the application of Fourier's theory are briefly reviewed. Three degrees of approximation, essentially based on the same ideas have been developed by Hausen (1942) and Elgeti (1969), by Schluender (1972), and by the authors of this paper in 1992. Our own improved version of the approximate equations provides higher accuracy, and the additional possibility to obtain centre and surface temperatures (concentrations), not merely volumetric average values as in the earlier versions. (orig.)
Dual methods and approximation concepts in structural synthesis
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.
Product Approximation of Grade and Precision
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-yong; MO Zhi-wen
2005-01-01
The normal graded approximation and variable precision approximation are defined in approximate space. The relationship between graded approximation and variable precision approximation is studied, and an important formula of conversion between them is achieved. The product approximation of gradeand precision is defined and its basic properties are studied.
Proof and knowledge in mathematics
Detlefsen, Michael
2005-01-01
These questions arise from any attempt to discover an epistemology for mathematics. This collection of essays considers various questions concerning the nature of justification in mathematics and possible sources of that justification. Among these are the question of whether mathematical justification is a priori or a posteriori in character, whether logical and mathematical differ, and if formalization plays a significant role in mathematical justification,
Fennema, Elizabeth, Ed.; Leder, Gilah C., Ed.
This book reports on various studies that have increased our understanding of why females and males learn different kinds and amounts of mathematics. In particular, this book explicates the Autonomous Learning Behavior model, proposed by Fennema and Peterson, which is a possible explanation of the development of gender differences in mathematics.…
Issues in Teaching Mathematics
Ediger, Marlow
2013-01-01
In this article, the author states that there are selected issues in mathematics instruction that educators should be well aware of when planning lessons and units of study. These issues provide a basis for thought and discussion when assisting pupils to attain more optimally. Purposeful studying of issues guides mathematics teachers in…
Mathematics Teaching and Inclusion
DEFF Research Database (Denmark)
This volume contains the proceedings of the 3rd Nordic Research Conference on Special Needs Education in Mathematics, which took place in Rebild organised by Aalborg University in November 23-25, 2005. The theme of the conference was Mathematics Education and Inclusion. The conference theme was i...
DEFF Research Database (Denmark)
Sinclair, Robert
1998-01-01
Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++.......Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++....
Dodd, Jennifer
2010-01-01
In this article, the author reports on the findings of her research on what her Year 10 students consider to be "mathematical." The class contains thirteen students who will all sit the higher tier IGCSE next year. The author found out that the students considered things she told them to have a higher mathematical status than work they did…
Interactive Mathematics Textbooks
DEFF Research Database (Denmark)
Sinclair, Robert
1999-01-01
We claim that important considerations have been overlooked in designinginteractive mathematics educational software in the past.In particular,most previous work has concentrated on how to make use ofpre-existing software in mathematics education, rather than firstasking the more...
Mathematics Education in Argentina
Varsavsky, Cristina; Anaya, Marta
2009-01-01
This article gives an overview of the state of mathematics education in Argentina across all levels, in the regional and world contexts. Statistics are drawn from Mercosur and UNESCO data bases, World Education Indicators and various national time-series government reports. Mathematics results in national testing programmes, Programme for…
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard; Gray, Jeremy
Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....
Discrete Mathematics Re "Tooled."
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Educating mathematics teacher educators
DEFF Research Database (Denmark)
Højgaard, Tomas; Jankvist, Uffe Thomas
2014-01-01
The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension...
Mathematics: Content and Pedagogy
Ediger, Marlow
2009-01-01
The debate has gone on for some time in terms of which is more salient for the teacher to be well versed in, mathematical content versus methods and approaches in teaching. Both are salient. They cannot be separated from each other. The mathematics teacher must indeed have broad, in-depth knowledge of subject matter as well as in teaching and…
Stallings, L. Lynn
2007-01-01
This article proposes four strategies for posing mathematics problems that raise the cognitive demands of the tasks given to students. Each strategy is illustrated with three common middle school mathematics examples: finding the greatest common factor, finding area or perimeter, and finding the equation of a line. Posing these types of problems…
Experimenting with Mathematical Biology
Sanft, Rebecca; Walter, Anne
2016-01-01
St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…
Developing Mathematical Vocabulary.
Monroe, Eula Ewing; Orme, Michelle P.
2002-01-01
This article discusses the importance of mathematical vocabulary, difficulties students encounter in learning this vocabulary, and some instructional strategies. Two general methods for teaching vocabulary are discussed: context and explicit vocabulary instruction. The methods are summarized as they apply to mathematical vocabulary instruction and…
Business Mathematics Curriculum.
EASTCONN Regional Educational Services Center, North Windham, CT.
This curriculum guide for teaching business mathematics in the Connecticut Vocational-Technical School System is based on the latest thinking of instructors in the field, suggestions from mathematics authorities, and current instructional approaches in education. The curriculum guide consists of six sections: (1) career relationships and…
Reverse Mathematics in Bishop’s Constructive Mathematics
Ishihara, Hajime
2011-01-01
We will overview the results in an informal approach to constructive reverse mathematics, that is reverse mathematics in Bishop’s constructive mathematics, especially focusing on compactness properties and continuous properties.
The mathematics companion mathematical methods for physicists and engineers
Fischer-Cripps, Anthony C
2014-01-01
Part 1 Essential Mathematics: Basic mathematics. Differentiation. Integration. Exponentials and logarithms. Hyperbolic functions. Infinite series. Part 2 Advance Mathematics: Ordinary differential equations. Laplace transforms. Vector analysis. Partial derivatives. Multiple integrals. Fourier series. Special functions. Partial differential equations.
Victoria Education Dept. (Australia).
This document consists of test questions used in three state high schools teaching the new Matriculation pure mathematics course (approximately grade 12). This material was circulated to all schools teaching this course as a teacher resource. The questions are arranged in 14 papers of varying structure and length. Most questions are of the essay…
Haigh, John
2016-01-01
How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und...
Developing mathematical modelling competence
DEFF Research Database (Denmark)
Blomhøj, Morten; Jensen, Tomas Højgaard
2003-01-01
In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....
Advanced engineering mathematics
Jeffrey, Alan
2001-01-01
Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...
Mathematics of aperiodic order
Lenz, Daniel; Savinien, Jean
2015-01-01
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...
Canadian Mathematical Congress
1977-01-01
For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re searchers. To accomplish these objective the committee assembled a stim ulating programme of lectures and talks. Six ...
Rollout Sampling Approximate Policy Iteration
Dimitrakakis, Christos
2008-01-01
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.
Quantum Tunneling Beyond Semiclassical Approximation
Banerjee, Rabin
2008-01-01
Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.
Quantum tunneling beyond semiclassical approximation
Banerjee, Rabin; Ranjan Majhi, Bibhas
2008-06-01
Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.
Fermion Tunneling Beyond Semiclassical Approximation
Majhi, Bibhas Ranjan
2008-01-01
Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in \\cite{Majhi3} for the scalar particle, Hawking radiation as tunneling of Dirac particle through an event horizon is analysed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.
Fermion tunneling beyond semiclassical approximation
Majhi, Bibhas Ranjan
2009-02-01
Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.
The distorted wave Glauber approximation
International Nuclear Information System (INIS)
A solution of the Pauli equation with non-zero potentials defines quantum scalar and vector potentials and magnetic fields and quantum trajectories. If a line integral of perturbing potentials and fields along these quantum trajectories is added to the phase of this solution, an approximate solution of the perturbed equation is found. Glauber theory is a special case and the conditions of applicability are similar. Applications given start from the harmonic oscillator and from a homogeneous magnetic field and add a perturbation. (author)
Approximation of Surfaces by Cylinders
DEFF Research Database (Denmark)
Randrup, Thomas
1998-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points...
Hebert, Michael A.; Powell, Sarah R.
2016-01-01
Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…
Wavelet Approximation in Data Assimilation
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Plasma Physics Approximations in Ares
Energy Technology Data Exchange (ETDEWEB)
Managan, R. A.
2015-01-08
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F_{n}( μ/θ ), the chemical potential, μ or ζ = ln(1+e^{ μ/θ} ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A^{α} (ζ ),A^{β} (ζ ), ζ, f(ζ ) = (1 + e^{-μ/θ})F_{1/2}(μ/θ), F_{1/2}'/F_{1/2}, F_{c}^{α}, and F_{c}^{β}. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Mathematics as verbal behavior.
Marr, M Jackson
2015-04-01
"Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. PMID:25595115
Mathematics as verbal behavior.
Marr, M Jackson
2015-04-01
"Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk.
Simple approximations for condensational growth
Energy Technology Data Exchange (ETDEWEB)
Kostinski, A B [Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1200 (United States)], E-mail: alex.kostinski@mtu.edu
2009-01-15
A simple geometric argument relating to the liquid water content of clouds is given. The phase relaxation time and the nature of the quasi-steady approximation for the diffusional growth of cloud drops are elucidated directly in terms of water vapor concentration. Spatial gradients of vapor concentration, inherent in the notion of quasi-steady growth, are discussed and we argue for an occasional reversal of the traditional point of view: rather than a drop growing in response to a given supersaturation, the observed values of the supersaturation in clouds are the result of a vapor field adjusting to droplet growth. Our perspective is illustrated by comparing the exponential decay of condensation trails with a quasi-steady regime of cirrus clouds. The role of aerosol loading in decreasing relaxation times and increasing the rate of growth of the liquid water content is also discussed.
Strong shock implosion, approximate solution
Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.
1983-01-01
The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.
Diophantine approximations and Diophantine equations
Schmidt, Wolfgang M
1991-01-01
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
Stochastic Approximation with Averaging Innovation
Laruelle, Sophie
2010-01-01
The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic approximation in a setting with innovations satisfying some averaging properties and to study some applications. The averaging assumptions allow us to unify the framework where the innovations are generated (to solve problems from Numerical Probability) and the one with exogenous innovations (market data, output of "device" $e.g.$ an Euler scheme) with stationary or ergodic properties. We propose several fields of applications with random innovations or quasi-random numbers. In particular we provide in both setting a rule to tune the step of the algorithm. At last we illustrate our results on five examples notably in Finance.
Benchmarking Declarative Approximate Selection Predicates
Hassanzadeh, Oktie
2009-01-01
Declarative data quality has been an active research topic. The fundamental principle behind a declarative approach to data quality is the use of declarative statements to realize data quality primitives on top of any relational data source. A primary advantage of such an approach is the ease of use and integration with existing applications. Several similarity predicates have been proposed in the past for common quality primitives (approximate selections, joins, etc.) and have been fully expressed using declarative SQL statements. In this thesis, new similarity predicates are proposed along with their declarative realization, based on notions of probabilistic information retrieval. Then, full declarative specifications of previously proposed similarity predicates in the literature are presented, grouped into classes according to their primary characteristics. Finally, a thorough performance and accuracy study comparing a large number of similarity predicates for data cleaning operations is performed.
Approximating metal-insulator transitions
Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej
2015-12-01
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.
Mentoring in mathematics education
Hyde, Rosalyn
2013-01-01
Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:
Boyer, Carl B
2011-01-01
The updated new edition of the classic and comprehensive guide to the history of mathematics. For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind's relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat's Last Theorem and the Poincaré Conjecture , in addition to recent advances in areas such as finite group theory and computer-aided proofs.: Distills thousands of years of mathematics into a single, approachable volume; Cover
Constructing mathematical knowledge
Ernest, Paul
2012-01-01
This book provides a panorama of complimentary and forward looking perspectives on the learning of mathematics and epistemology from some of the leading contributors to the field. It explores constructivist and social theories of learning, and discusses the role of the computer in the light of these theories. It brings analyses from psychoanalysis, Hermeneutics and other perspectives to bear on the issues of mathematics and learning. It enquires into the nature of enquiry itself, and an important emergent theme is the role of language. Finally it relates the history of mathematics to its te
Mathematical modelling techniques
Aris, Rutherford
1995-01-01
""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode
Troelstra, AS
1988-01-01
Studies in Logic and the Foundations of Mathematics, Volume 123: Constructivism in Mathematics: An Introduction, Vol. II focuses on various studies in mathematics and logic, including metric spaces, polynomial rings, and Heyting algebras.The publication first takes a look at the topology of metric spaces, algebra, and finite-type arithmetic and theories of operators. Discussions focus on intuitionistic finite-type arithmetic, theories of operators and classes, rings and modules, linear algebra, polynomial rings, fields and local rings, complete separable metric spaces, and located sets. The te
Hollingdale, Stuart
2011-01-01
Fascinating and highly readable, this book recounts the history of mathematics as revealed in the lives and writings of the most distinguished practitioners of the art: Archimedes, Descartes, Fermat, Pascal, Newton, Leibniz, Euler, Gauss, Hamilton, Einstein, and many more. Author Stuart Hollingdale introduces and explains the roles of these gifted and often colorful figures in the development of mathematics as well as the ways in which their work relates to mathematics as a whole.Although the emphasis in this absorbing survey is primarily biographical, Hollingdale also discusses major historic
Sulley, Robert
2014-01-01
Achieve the best possible standard with this bestselling book of traditional practice and guidance - now in colour!. First Aid in Mathematics provides all the help and support needed for learning and practising Mathematics. It offers comprehensive coverage of core mathematical topics in clear and accessible language. It is suitable for both native English speakers and students of English as a second language and can be used in class, or as a reference and revision book. - Develops a strong basis of understanding with core topics covered in clear and accessible language. - Improves student's ab
Logic in elementary mathematics
Exner, Robert M
2011-01-01
This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and
International Nuclear Information System (INIS)
In India and in so many other countries, the science students are generally separated into two main streams: one opting mathematical sciences, the other studying biological sciences. As a result, medicos and biologists have no adequate knowledge of mathematical sciences. It causes a great drawback to them in order to be perfect and updated in their profession, due to the tremendous application of mathematics in bio-sciences, now-a-days. The main aim of this article is to emphasize on the need of the time to produce the mathematico-biologists in abundance for the better service of mankind. (author)
Dependencies in Formal Mathematics
Alama, Jesse; Urban, Josef
2011-01-01
Dependencies in formal mathematical texts, large coherent formal libraries and proof assistants are introduced as an emerging research topic, analyzed from foundational, semantic, computational, and pragmatic perspectives, and put to practical use in computer-assisted mathematics. Two different approaches to dependency computation are implemented over two major proof assistants with different type disciplines, and a large-scale experimental comparison is provided based on large Coq and Mizar formal libraries. Apart from theoretical discussions, importance of dependency analysis for advanced automation of computer-assisted reasoning, and for efficient proof analysis and theory refactoring in substantial mathematical domains are experimentally demonstrated.
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Higher engineering mathematics
John Bird
2014-01-01
A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in
Fundamentals of university mathematics
McGregor, C M; Stothers, W W
2010-01-01
The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the basic mathematics they require. It clearly and comprehensively covers much of the material that other textbooks tend to assume, assisting students in the transition to university-level mathematics.Expertly revised and updated, the chapters cover topics such as number systems, set and functions, differe
Mathematical introduction to logic
Enderton, Herbert
2001-01-01
A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets
Equations of mathematical physics
Tikhonov, A N
2011-01-01
Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri
Alexander, Serena; Poggo, Tammy
2014-01-01
Features the complete set of answers to the exercises in Mathematics Year 5, to save you time marking work and enable you to identify areas requiring further attention. The book includes diagrams and workings where necessary, to ensure pupils understand how to present their answers. Also available from Galore Park www.galorepark.co.uk :. - Mathematics Year 5. - Mathematics Year 6. - 11+ Maths Practice Exercises. - 11+ Maths Revision Guide. - 10-Minute Maths Tests Workbook Age 8-10. - 10-Minute Maths Tests Workbook Age 9-11. - Mental Arithmetic Workbook Age 8-10. - Mental Arithmetic Workbook Ag
Mathematical methods for physicists
Arfken, George B
1985-01-01
Mathematical Methods for Physicists, Third Edition provides an advanced undergraduate and beginning graduate study in physical science, focusing on the mathematics of theoretical physics. This edition includes sections on the non-Cartesian tensors, dispersion theory, first-order differential equations, numerical application of Chebyshev polynomials, the fast Fourier transform, and transfer functions. Many of the physical examples provided in this book, which are used to illustrate the applications of mathematics, are taken from the fields of electromagnetic theory and quantum mechanics. The He
Banagl, Markus
2011-01-01
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested
The Greatest Mathematical Discovery?
Energy Technology Data Exchange (ETDEWEB)
Bailey, David H.; Borwein, Jonathan M.
2010-05-12
What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.
A multilevel approximate projections for incompressible flow calculations
Energy Technology Data Exchange (ETDEWEB)
Howell, L.H. [Lawrence Livermore National Lab., CA (United States)
1994-12-31
An adaptive-mesh projection algorithm for unsteady, variable-density, incompressible flow at high Reynolds number has been developed in the Applied Mathematics Group at LLNL. A grid-based refinement scheme combines the theoretical efficiencies of adaptive methods with the computational advantages of uniform grids, while a second-order Godunov method provides a robust and accurate treatment of advection in the presence of discontinuities without excessive dissipation. This paper focuses on the work of the present author concerning the approximate projection itself, which involves the numerical inversion of the operator {del} {center_dot} (1/{rho}){del} on various subsets of the adaptive grid hierarchy.
The Padé approximant in theoretical physics
Baker, George Allen
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Mathematical Methods for Geophysics and Space Physics
Newman, William I.
2016-05-01
Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors
Mathematics for the liberal arts
Bindner, Donald; Hemmeter, Joe
2014-01-01
Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...
Canuto, Claudio
2015-01-01
The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...
Applied Mathematics Seminar 1982
International Nuclear Information System (INIS)
This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
@@ 1 Early Education in China I entered Fulun Middle School in Tientsin in January 1923. It was a four-year high school and I was admitted to the second semester of the first year. The mathematical curriculum consisted of:
Mathematical Thinking in Chemistry
Directory of Open Access Journals (Sweden)
José L. Villaveces
2012-05-01
Full Text Available Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffroy's affinity table, Lavoisier's classification of substances and their relationships, Mendeleev's periodic table, Cayley's enumeration of alkanes, Sylvester's association of algebra and chemistry, and Wiener's relationship between molecular structure and boiling points. These examples show that mathematical chemistry has much more than a century of history.
Mathematics for physical chemistry
Mortimer, Robert G
2005-01-01
Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...
Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner
2015-01-01
This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and new paragraphs, new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.
Visualization and mathematics III
Polthier, Konrad
2003-01-01
This research book on Mathematical Visualization contains state of the art presentations on visualization problems in mathematics, on fundamental mathematical research in computer graphics, and on software frameworks for the application of visualization to real-world problems. All contributions were written by leading experts in the field and peer-refereed by an international editorial team. The book grew out of the third international workshop "Visualization and Mathematics", which was held from May 22-25, 2002 in Berlin. The themes of the book cover important recent developments on - Geometry and Combinatorics of Meshes - Discrete Vector Fields and Topology - Geometric Modelling - Image Based Visualization - Software Environments and Applications - Education and Communication The variety of topics makes the book a suitable resource for researchers, lecturers, and practitioners; http://www-sfb288.math.tu-berlin.de/vismath/
Wickerhauser, Mladen Victor
2003-01-01
Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are `gems'' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors an...
Mathematical methods for physicists
Arfken, George B
2005-01-01
This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted
Prospective Mathematics Teachers' Attitudes Towards Learning Mathematics with Technology
Ipek, A. Sabri; Berigel, Muhammed; Albayrak, Mustafa
2007-01-01
Role of technology which is an important tool for new approaches in learning mathematics is rapidly increasing at focus point of learning mathematics with new designs. One of the biggest factors at learning and instructing technology based mathematic education is attitudes of mathematics teachers towards technology. At this study, attitudes of…
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
Schmit, L. A.; Miura, H.
1975-01-01
The creation of an efficient automated capability for minimum weight design of structures is reported. The ACCESS 1 computer program combines finite element analysis techniques and mathematical programming algorithms using an innovative collection of approximation concepts. Design variable linking, constraint deletion techniques and approximate analysis methods are used to generate a sequence of small explicit mathematical programming problems which retain the essential features of the design problem. Organization of the finite element analysis is carefully matched to the design optimization task. The efficiency of the ACCESS 1 program is demonstrated by giving results for several example problems.
Torberg Falch; Ole Henning Nyhus; Bjarne Strom
2013-01-01
This paper exploits that students at age 16 in Norway are randomly selected into one compulsory exit exam in either mathematics or languages. A few days before the actual exam day, the students are notified about exam subject. The students have an intensive preparation period, and preparation in mathematics relative to languages is found to decrease dropout from high school, increase enrollment in higher education, and increase enrollment in natural science and technology education programs. ...
Mathematical Optimiation in Economics
De Finetti, Bruno
2011-01-01
Preface by B. de Finetti.- G.Th. Guilbaud: Les equilibres dans les modeles economiques.-H.W. Kuhn: Locational problems and mathematical programming.- M. Morishima: The multi-sectoral theory of economic growth.- B. Martos, J. Kornai: Experiments in Hungary with industry-wide and economy wide programming.- A. Prekopa: Probability distribution problems concerning stochastic programming problems.- R. Frisch: General principles and mathematical techniques of macroeconomic programming.
Mathematical foundations of thermodynamics
Giles, R; Stark, M; Ulam, S
2013-01-01
Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn
Learning Mathematics through Programming
DEFF Research Database (Denmark)
Misfeldt, Morten; Ejsing-Duun, Stine
2015-01-01
as producers of knowledge and artifacts, (2) support abstraction and encapsulation, and (3) promote thinking in algorithms. Programming is a topic that has recently gained interest in primary and lower secondary education levels in various countries, and hence a specific analysis of the potentials in relation...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....
Proof Auditing Formalised Mathematics
Mark Miles Adams
2016-01-01
The first three formalisations of major mathematical proofs have heralded a new age in formalised mathematics, establishing that informal proofs at the limits of what can be understood by humans can be checked by machine. However, formalisation itself can be subject to error, and yet there is currently no accepted process in checking, or even much concern that such checks have not been performed. In this paper, we motivate why we should be concerned about correctness, and argue the need for p...
Energy Technology Data Exchange (ETDEWEB)
Landauer, C.; Bellman, K.L.
1996-12-31
In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.
Mathematics for theoretical physics
Dutailly, Jean Claude
2012-01-01
770 pages This book intends to give the main definitions and theorems in mathematics which could be useful for workers in theoretical physics. It gives an extensive and precise coverage of the subjects which are addressed, in a consistent and intelligible manner.The first part addresses the Foundations (mathematical logic, set theory, categories), the second Algebra (algebraic strucutes, groups, vector spaces tensors, matrices, Clifford algebra). The third Analysis (general topology, measu...
Mathematics for electronic technology
Howson, D P
1975-01-01
Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma
Understanding mathematical proof
Taylor, John
2014-01-01
Introduction The need for proof The language of mathematics Reasoning Deductive reasoning and truth Example proofs Logic and ReasoningIntroduction Propositions, connectives, and truth tables Logical equivalence and logical implication Predicates and quantification Logical reasoning Sets and Functions Introduction Sets and membership Operations on setsThe Cartesian product Functions and composite functions Properties of functions The Structure of Mathematical ProofsIntroduction Some proofs dissected An informal framework for proofs Direct proof A more formal framework Finding Proofs Direct proo
Halstadtrø, Ida
2013-01-01
Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...
Mathematical statistics with applications
Ramachandran, KM
2009-01-01
Mathematical Statistics with Applications provides a calculus-based theoretical introduction to mathematical statistics while emphasizing interdisciplinary applications as well as exposure to modern statistical computational and simulation concepts that are not covered in other textbooks. Includes the Jackknife, Bootstrap methods, the EM algorithms and Markov chain Monte Carlo methods. Prior probability or statistics knowledge is not required.* Step-by-step procedure to solve real problems, making the topic more accessible* Exercises blend theory and modern applications*
Randomized approximate nearest neighbors algorithm.
Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir
2011-09-20
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {x(j)} for an arbitrary point x ∈ R(d). The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme's behavior for certain types of distributions of {x(j)} and illustrate its performance via several numerical examples.
Boyer, Carl B
1989-01-01
"Boyer and Merzbach distill thousands of years of mathematics into this fascinating chronicle. From the Greeks to Godel, the mathematics is brilliant; the cast of characters is distinguished; the ebb and flow of ideas is everywhere evident. And, while tracing the development of European mathematics, the authors do not overlook the contributions of Chinese, Indian, and Arabic civilizations. Without doubt, this is--and will long remain--a classic one-volume history of mathematics and mathematicians who create it." --William Dunham Author, Journey Through Genius, The Great Theorems of Mathematics "When we read a book like A History of Mathematics, we get the picture of a mounting structure, ever taller and broader and more beautiful and magnificent--and with a foundation, moreover, that is as untainted and as functional now as it was when Thales worked out the first geometrical theorems nearly 26 centuries ago." --From the Foreword by Isaac Asimov "One of the most useful and comprehensive general introductions t...
Pontrjagin, Lev Semenovič
1984-01-01
Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refin...
Mathematical software production
Energy Technology Data Exchange (ETDEWEB)
Cowell, W. R.; Fosdick, L. D.
1977-01-01
Locally constructed collections of mathematical routines are gradually being replaced by mathematical software that has been produced for broad dissemination and use. The process of producing such software begins with algorithmic analysis, and proceeds through software construction and documentation to extensive testing and, finally, to distribution and support of the software products. These are demanding and costly activities which require such a range of skills that they are carried out in collaborative projects. The costs and effort are justified by the utility of high-quality software, the efficiency of producing it for general distribution, and the benefits of providing a conduit from research to applications. This paper first reviews certain of the early developments in the field of mathematical software. Then it examines the technical problems that distinguish software production as an intellectual activity, problems whose descriptions also serve to characterize ideal mathematical software. Next, three mathematical software projects are sketched with attention to their emphasis, accomplishments, organization, and costs. Finally, comments are offered on possible future directions for mathematical software production, as extrapolations of the present involvement of universities, government laboratories, and private industry. 48 references.
Predicting Success in College Mathematics from High School Mathematics Preparation
Shepley, Richard A.
1983-01-01
The purpose of this study was to develop a model to predict the college mathematics courses a freshman could expect to pass by considering their high school mathematics preparation. The high school information that was used consisted of the student's sex, the student's grade point average in mathematics, the highest level of high school mathematics courses taken, and the number of mathematics courses taken in high school. The high school sample was drawn from graduated Seniors in the State...
Intelligent systems II complete approximation by neural network operators
Anastassiou, George A
2016-01-01
This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book’s results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries. .
Probabilistic diophantine approximation randomness in lattice point counting
Beck, József
2014-01-01
This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals. It covers classical material on the subject as well as many new results developed by the author over the past decade. A range of ideas from other areas of mathematics are brought to bear with surprising connections to topics such as formulae for class numbers, special values of L-functions, and Dedekind sums. Care is taken to elaborate difficult proofs by motivating major steps and accompanying them with background explanations, enabling the reader to learn the theory and relevant techniques. Written by one of the acknowledged experts in the field, Probabilistic Diophantine Approximation is presented in a clear and informal style with sufficient detail to appeal to both advanced students and researchers in number theory.
5th International Conference on Algorithms for Approximation
Levesley, Jeremy
2007-01-01
Approximation methods are vital in many challenging applications of computational science and engineering. This is a collection of papers from world experts in a broad variety of relevant applications, including pattern recognition, machine learning, multiscale modelling of fluid flow, metrology, geometric modelling, tomography, signal and image processing. It documents recent theoretical developments which have lead to new trends in approximation, it gives important computational aspects and multidisciplinary applications, thus making it a perfect fit for graduate students and researchers in science and engineering who wish to understand and develop numerical algorithms for the solution of their specific problems. An important feature of the book is that it brings together modern methods from statistics, mathematical modelling and numerical simulation for the solution of relevant problems, with a wide range of inherent scales. Contributions of industrial mathematicians, including representatives from Microso...
Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables
Directory of Open Access Journals (Sweden)
Yaobing Zhao
2014-01-01
Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.
On Approximation and Computation of Navier-Stokes Flow
Institute of Scientific and Technical Information of China (English)
VARNHORN Werner; ZANGER Florian
2013-01-01
We present an approximation method for the non-stationary nonlinear incompressible Navier-Stokes equations in a cylindrical domain (0,T)×G,where G （C） IR3is a smoothly bounded domain.Our method is applicable to general three-dimensional flow without any symmetry restrictions and relies on existence,uniqueness and representation results from mathematical fluid dynamics.After a suitable time delay in the nonlinear convective term v·▽v we obtain globally (in time) uniquely solvable equations,which-by using semi-implicit time differences-can be transformed into a finite number of Stokes-type boundary value problems.For the latter a boundary element method based on a corresponding hydrodynamical potential theory is carried out.The method is reported in short outlines ranging from approximation theory up to numerical test calculations.
Invitation to critical mathematics education
Skovsmose, Ole
2012-01-01
Invitation to Critical Mathematics Education deals with a range of crucial topics. Among these are students' foreground, landscapes of investigation, and mathematics in actions. The book is intended for a broad audience: educators, students, teachers, policy makers, anybody interested in the further development of mathematics education. The book discusses concerns and preoccupation. This way it provides an invitation into critical mathematics education.
Mathematical points as didactical ideas
DEFF Research Database (Denmark)
Mogensen, Arne
2012-01-01
Mathematics teaching in Denmark was recently recommended better organized in sequences with clear mathematical pedagogical goals and a focus on mathematical points. In this paper I define a mathematical point and inform on coding of transcripts in a video based Danish research study on grade 8 te...
Motivating Students to Study Mathematics
Institute of Scientific and Technical Information of China (English)
田枫
2005-01-01
Teaching required mathematics courses poses a challenge to teachers at all levels. Many of these difficulties are the result of cultural attitudes that make it socially acceptable, even trendy, to lack mathematical knowledge. Most of our students are aware of the inherent value of mathematics; but because mathematics is a subject that requires hard work, they choose to deny its importance.
Truth & Beauty: Mathematics in Literature
Cohen, Marion D.
2013-01-01
Today there are many categories of mathematics literature, including fiction and poetry. Mathematics fiction appears in such anthologies as "Fantasia Mathematica" (Fadiman 1958, 1997) and "The Mathematical Magpie" (Fadiman 1962, 1997). In addition, mathematics fiction is featured at http://kasmana.people.cofc.edu/MATHFICT.…
Fuzzy Set Approximations in Fuzzy Formal Contexts
Institute of Scientific and Technical Information of China (English)
Mingwen Shao; Shiqing Fan
2006-01-01
In this paper, a kind of multi-level formal concept is introduced. Based on the proposed multi-level formal concept, we present a pair of rough fuzzy set approximations within fuzzy formal contexts. By the proposed rough fuzzy set approximations, we can approximate a fuzzy set according to different precision level. We discuss the properties of the proposed approximation operators in detail.
Obtaining exact value by approximate computations
Institute of Scientific and Technical Information of China (English)
2007-01-01
Numerical approximate computations can solve large and complex problems fast.They have the advantage of high efficiency.However they only give approximate results,whereas we need exact results in some fields.There is a gap between approximate computations and exact results. In this paper,we build a bridge by which exact results can be obtained by numerical approximate computations.
Heher, Rosemary Pataky
In an attempt to explore the prevalence, intensity and effects of mathematics anxiety at Salisbury State College (Maryland) approximately 350 student volunteers from two diverse introductory mathematics courses participated in this survey. The Fennema-Sherman Mathematics Anxiety and Confidence Scales and a portion of the Test Anxiety Profile were…
PANSYSTEMS ANALYSIS: MATHEMATICS, METHODOLOGY,RELATIVITY AND DIALECTICAL THINKING
Institute of Scientific and Technical Information of China (English)
郭定和; 吴学谋; 冯向军; 李永礼
2001-01-01
Based on new analysis modes and new definitions with relative mathematization and simplification or strengthening forms for concepts of generalized systems,panderivatives , pansymmetry , panbox principle, pansystems relativity, etc. , the framework and related principles of pansystems methodology and pansystems relativity are developed. Related contents include: pansystems with relatively universal mathematizing forns, 200 types of dualities, duality transformation, pansymmetry transformation,pansystems dialectics, the 8-domain method, pansystems mathematical methods,generalized quantification, the principles of approximation-transforming, pan-equivalence theorems , supply-demand analysis, thinking experiment, generalized gray systems, etc.
Mathematical structures for computer graphics
Janke, Steven J
2014-01-01
A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap
Mathematical problems for chemistry students
Pota, Gyorgy
2006-01-01
Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistry students in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialists of the chemistry-related fields (physicists, mathematicians, biologists, etc.) into the world of the chemical applications. Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, other
Finite mathematics models and applications
Morris, Carla C
2015-01-01
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.
Mathematical problems for chemistry students
Pota, Gyorgy
2011-01-01
Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we
Assessment and realistic mathematics education
Heuvel-Panhuizen, M.H.A.M. van den
1996-01-01
This book describes the consequences of Realistic Mathematics Education (RME) for assessing students’ understanding of mathematics in primary school. RME is the Dutch answer to the worldwide need to reform mathematics education. Changed ideas about mathematics as a school subject, its goals, ideas about teaching and learning mathematics, require new forms of assessment. Within RME this means a preference for observation and individual interviews. However, written tests have not been abandoned...
Thorndike-Christ, Tracy
The relationship of attitudes toward mathematics to mathematics performance, gender, mathematics course-taking plans, and career interests were investigated. Students enrolled in public middle and high school mathematics courses (722 male, 794 female) served as subjects. The Fennema-Sherman Math Attitude scales were used to measure attitudes…
Mathematical modeling of laser lipolysis
Directory of Open Access Journals (Sweden)
Reynaud Jean
2008-02-01
Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction
Gaber, David; Schlimm, Dirk
2015-01-01
Mathematics is a powerful tool for describing and developing our knowledge of the physical world. It informs our understanding of subjects as diverse as music, games, science, economics, communications protocols, and visual arts. Mathematical thinking has its roots in the adaptive behavior of living creatures: animals must employ judgments about quantities and magnitudes in the assessment of both threats (how many foes) and opportunities (how much food) in order to make effective decisions, and use geometric information in the environment for recognizing landmarks and navigating environments. Correspondingly, cognitive systems that are dedicated to the processing of distinctly mathematical information have developed. In particular, there is evidence that certain core systems for understanding different aspects of arithmetic as well as geometry are employed by humans and many other animals. They become active early in life and, particularly in the case of humans, develop through maturation. Although these core systems individually appear to be quite limited in application, in combination they allow for the recognition of mathematical properties and the formation of appropriate inferences based upon those properties. In this overview, the core systems, their roles, their limitations, and their interaction with external representations are discussed, as well as possibilities for how they can be employed together to allow us to reason about more complex mathematical domains. PMID:26263425
Preschool Acuity of the Approximate Number System Correlates with School Math Ability
Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin
2011-01-01
Previous research shows a correlation between individual differences in people’s school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depe...
Energy Technology Data Exchange (ETDEWEB)
Barlow, Nathaniel S., E-mail: nsbsma@rit.edu [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Schultz, Andrew J., E-mail: ajs42@buffalo.edu; Kofke, David A., E-mail: kofke@buffalo.edu [Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260 (United States); Weinstein, Steven J., E-mail: sjweme@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States)
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
International Nuclear Information System (INIS)
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone
Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
Weak approximation of stochastic differential equations and application to derivative pricing
Ninomiya, Syoiti; Victoir, Nicolas
2006-01-01
The authors present a new simple algorithm to approximate weakly stochastic differential equations in the spirit of [1] and [2]. They apply it to the problem of pricing Asian options under the Heston stochastic volatility model, and compare it with other known methods. It is shown that the combination of the suggested algorithm and quasi-Monte Carlo methods makes computations extremely fast. [1] Shigeo Kusuoka, ``Approximation of Expectation of Diffusion Process and Mathematical Finance,'' Ad...
Fourier Series Approximations to J2-Bounded Equatorial Orbits
Directory of Open Access Journals (Sweden)
Wei Wang
2014-01-01
Full Text Available The current paper offers a comprehensive dynamical analysis and Fourier series approximations of J2-bounded equatorial orbits. The initial conditions of heterogeneous families of J2-perturbed equatorial orbits are determined first. Then the characteristics of two types of J2-bounded orbits, namely, pseudo-elliptic orbit and critical circular orbit, are studied. Due to the ambiguity of the closed-form solutions which comprise the elliptic integrals and Jacobian elliptic functions, showing little physical insight into the problem, a new scheme, termed Fourier series expansion, is adopted for approximation herein. Based on least-squares fitting to the coefficients, the solutions are expressed with arbitrary high-order Fourier series, since the radius and the flight time vary periodically as a function of the polar angle. As a consequence, the solutions can be written in terms of elementary functions such as cosines, rather than complex mathematical functions. Simulations enhance the proposed approximation method, showing bounded and negligible deviations. The approximation results show a promising prospect in preliminary orbits design, determination, and transfers for low-altitude spacecrafts.
Optimum Approximate Solution of Herschel-Bulkley Fluid Formula
Institute of Scientific and Technical Information of China (English)
XU Gui-yun; LIN Xue-dong; ZHANG Yong-zhong
2004-01-01
During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained through mathematic analysis and 3-D optimization calculation. In the close region of relative radius of the core flow, the continuity of deviation is determined with the limit methods. By analysis, the results indicate that the deviation in the area around the discontinuous nodes is very large; the deviation is the function of fluid parameters, approximate solution parameters and the relative radius of the core flow. While the fluid parameters keep certain, the 3-D figures of the deviation are drawn. The slice plane is used to seek the extremums of multi-peaks surface; The optimized parameters of approximate formula make the approximate formula in the regions of the certain deviation. The available area of relative radius of the core flow increases by 43.2%. It is more valuable for the calculation of flow resistance in pipe transportation.
Hadley, Kristin M.; Dorward, Jim
2011-01-01
Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...
A mathematical medley fifty easy pieces on mathematics
Szpiro, George G
2010-01-01
Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author
Mathematical olympiad challenges
Andreescu, Titu
2000-01-01
Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-e...
Engineering mathematics pocket book
Bird, John
2008-01-01
This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course.All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on ...
Mathematical models of morphogenesis
Directory of Open Access Journals (Sweden)
Dilão Rui
2015-01-01
Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.
Zorich, Vladimir A
2015-01-01
VLADIMIR A. ZORICH is professor of mathematics at Moscow State University. His areas of specialization are analysis, conformal geometry, quasiconformal mappings, and mathematical aspects of thermodynamics. He solved the problem of global homeomorphism for space quasiconformal mappings. He holds a patent in the technology of mechanical engineering, and he is also known by his book Mathematical Analysis of Problems in the Natural Sciences . This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems...
Mathematics Difficulties & Classroom Leadership
DEFF Research Database (Denmark)
Schmidt, Maria Christina Secher
2016-01-01
are presented: 1) descriptions of the teachers’ classroom leadership to include all their students in the learning community, 2) the learning community produced by stated and practiced rules for teaching and learning behavior, 3) the classroom behavior of students who experience difficulties with mathematics......This article investigates possible links between inclusion, students, for whom mathematics is extensively difficult, and classroom leadership through a case study on teaching strategies and student participation in four classrooms at two different primary schools in Denmark. Three sets of results....... The findings suggest that the teachers’ pedagogical choices and actions support an active learning environment for students in diverse learning needs, and that the teachers practise dimensions of inclusive classroom leadership that are known to be successful for teaching mathematics to all students. Despite...
Basic mathematics for biochemists
Cornish-Bowden, Athel
1981-01-01
Some teachers of biochemistry think it positively beneficial for students to struggle with difficult mathematics. I do not number myself among these people, although I have derived much personal pleasure from the study of mathematics and from applying it to problems that interest me in biochemistry. On the contrary, I think that students choose courses in biochemistry out of interest in biochemistry and that they should not be encumbered with more mathematics than is absolutely required for a proper understanding of biochemistry. This of course includes physical chemistry, because a biochemist ignorant of physical chemistry is no biochemist. I have been guided by these beliefs in writing this book. I have laid heavy emphasis on those topics, such as the use of logarithms, that play an important role in biochemistry and often cause problems in teaching; I have ignored others, such as trigonometry, that one can manage without. The proper treatment of statistics has been more difficult to decide. Although it cle...
Persian architecture and mathematics
2012-01-01
This volulme features eight original papers dedicated to the theme “Persian Architecture and Mathematics,” guest edited by Reza Sarhangi. All papers were approved through a rigorous process of blind peer review and edited by an interdisciplinary scientific editorial committee. Topics range from symmetry in ancient Persian architecture to the elaborate geometric patterns and complex three-dimensional structures of standing monuments of historical periods, from the expression of mathematical ideas to architectonic structures, and from decorative ornament to the representation of modern group theory and quasi-crystalline patterns. The articles discuss unique monuments Persia, including domed structures and two-dimensional patterns, which have received significant scholarly attention in recent years. This book is a unique contribution to studies of Persian architecture in relation to mathematics.
Mathematical methods in engineering
Machado, José
2014-01-01
This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.
Advances in mathematical economics
Yamazaki, Akira
2005-01-01
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. The editorial board of this series comprises the following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.). Editors: R. Anderson (U.C. Berkeley), C. Castaing (Univ. Montpellier), F.H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeley), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J.-M. Grandmont...
Frontiers in mathematical biology
1994-01-01
Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.
An SQP algorithm for mathematical programs with nonlinear complementarity constraints
Institute of Scientific and Technical Information of China (English)
Zhi-bin ZHU; Jin-bao JIAN; Cong ZHANG
2009-01-01
In this paper,we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an l1 penalty function,the line search assures global convergence,while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover,we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.
Applied mathematics made simple
Murphy, Patrick
1982-01-01
Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte
Mathematics for the environment
Walter, Martin
2011-01-01
MATHEMATICS IS CONNECTED TO EVERYTHING ELSEEarth's Climate and Some Basic Principles One of the Greatest Crimes of the 20th Century Feedback Edison's Algorithm: Listening to Nature's Feedback Fuzzy Logic, Filters, the Bigger Picture Principle Consequences of the Crime: Suburbia's Topology A Toxic Consequence of the Crime Hubbert's Peak and the End of Cheap Oil Resource Wars: Oil and Water The CO2 Greenhouse Law of Svante ArrheniusEconomic Instability: Ongoing Causes Necessary Conditions for Economic Success The Mathematical Structure of Ponzi Schemes Dishonest Assessment of Risk One Reason Why
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Hartimo, Mirja
2010-01-01
During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.
Mathematical analysis fundamentals
Bashirov, Agamirza
2014-01-01
The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o
Beasley, John D
2006-01-01
""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat
Introduction to mathematical logic
Mendelson, Elliott
2015-01-01
The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th
Computer mathematics for programmers
Abney, Darrell H; Sibrel, Donald W
1985-01-01
Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p
Mathematical Astronomy in India
Plofker, Kim
Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.
Dennery, Philippe
1967-01-01
""A fine example of how to present 'classical' physical mathematics."" - American ScientistWritten for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understo
Concepts of modern mathematics
Stewart, Ian
1995-01-01
Some years ago, ""new math"" took the country's classrooms by storm. Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of ""new math"" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor an
Mathematical modelling of metabolism
DEFF Research Database (Denmark)
Gombert, Andreas Karoly; Nielsen, Jens
2000-01-01
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....
Comprehensive basic mathematics
Veena, GR
2005-01-01
Salient Features As per II PUC Basic Mathematics syllabus of Karnataka. Provides an introduction to various basic mathematical techniques and the situations where these could be usefully employed. The language is simple and the material is self-explanatory with a large number of illustrations. Assists the reader in gaining proficiency to solve diverse variety of problems. A special capsule containing a gist and list of formulae titled ''REMEMBER! Additional chapterwise arranged question bank and 3 model papers in a separate section---''EXAMINATION CORNER''.
Sperling, Abraham
1981-01-01
Mathematics discusses the fundamentals of four common branches of Mathematics: Arithmetic, Algebra, Geometry, and Trigonometry. This book contains a number of special features, wherein the rest of the text is fully metricated in accordance with the recommended International System of Units (S.I.), which is the modern form of the metric system. The discussion of logarithms and trigonometry is very straightforward and involves none of the usual mystery associated with these topics. The last two chapters offer an entertaining initiation into the Theory of Probability, a subject of increasing impo
DEFF Research Database (Denmark)
December 2004-November 2007 Denmark, Hungary, Lithuania, the Netherlands, Norway, Slovenia and Spain have cooperated in the project Mathematics in Action (MiA). The MiA project is supported by the Grundtvig action in the Socrates program of the European Commission. The aim of the project is to su......December 2004-November 2007 Denmark, Hungary, Lithuania, the Netherlands, Norway, Slovenia and Spain have cooperated in the project Mathematics in Action (MiA). The MiA project is supported by the Grundtvig action in the Socrates program of the European Commission. The aim of the project...
Concepts of mathematical modeling
Meyer, Walter J
2004-01-01
Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec
Mathematics Education: For Whom?
Mesquita, Mônica
2009-01-01
To rethink about our role as researchers of the mathematics education pro- cess could be a way to think about the relation between for what and why mathematics education exists. Some thoughts, that grew from my inner dia- logues as a researcher, teacher, student, and mother that I am, were devel- oped within practices inside multiple systems in which I was engaged, bring- ing some questions that became a paper from the necessity for sharing them in the Discussion Group 3 of the ICME environment
Mathematics in modern immunology.
Castro, Mario; Lythe, Grant; Molina-París, Carmen; Ribeiro, Ruy M
2016-04-01
Mathematical and statistical methods enable multidisciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. We collect a representative sample of studies in T-cell biology that illustrate the benefits of modelling-experimental collaborations and that have proven valuable or even groundbreaking. We conclude that it is possible to find excellent examples of synergy between mathematical modelling and experiment in immunology, which have brought significant insight that would not be available without these collaborations, but that much remains to be discovered.
Discrete algorithmic mathematics
Maurer, Stephen B
2005-01-01
The exposition is self-contained, complemented by diverse exercises and also accompanied by an introduction to mathematical reasoning … this book is an excellent textbook for a one-semester undergraduate course and it includes a lot of additional material to choose from.-EMS, March 2006In a textbook, it is necessary to select carefully the statements and difficulty of the problems … in this textbook, this is fully achieved … This review considers this book an excellent one.-The Mathematical Gazette, March 2006
Friedman, Mel
2012-01-01
Earn College Credit with REA's Test Prep for CLEP* College Mathematics Everything you need to pass the exam and get the college credit you deserve.CLEP* is the most popular credit-by-examination program in the country, accepted by more than 2,900 colleges and universities. For over 15 years, REA has helped students pass the CLEP* exam and earn college credit while reducing their tuition costs. Our test prep for CLEP* College Mathematics and the free online tools that come with it, allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your lea
Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava
Rassias, Michael
2014-01-01
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.
APPROXIMATE SAMPLING THEOREM FOR BIVARIATE CONTINUOUS FUNCTION
Institute of Scientific and Technical Information of China (English)
杨守志; 程正兴; 唐远炎
2003-01-01
An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution. The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation, a piece-wise linear function, and posseses an explicit computation formula. Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function.
Operator splitting and approximate factorization for taxis-diffusion-reaction models
Gerisch, A.; Verwer, J.G.
2000-01-01
In this paper we consider the numerical solution of 2D systems of certain types of taxis-diffusion-reaction equations from mathematical biology. By spatial discretization these PDE systems are approximated by systems of positive, nonlinear ODEs (Method of Lines). The aim of this paper is to examine
Bonito, Andrea
2011-01-01
We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.
ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide
Miura, H.; Schmit, L. A., Jr.
1978-01-01
A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure.
Yanofsky, Noson S
2015-01-01
A major question in philosophy of science involves the unreasonable effectiveness of mathematics in physics. Why should mathematics, created or discovered, with nothing empirical in mind be so perfectly suited to describe the laws of the physical universe? We review the well-known fact that the symmetries of the laws of physics are their defining properties. We show that there are similar symmetries of mathematical facts and that these symmetries are the defining properties of mathematics. By examining the symmetries of physics and mathematics, we show that the effectiveness is actually quite reasonable. In essence, we show that the regularities of physics are a subset of the regularities of mathematics.
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
Directory of Open Access Journals (Sweden)
María F. Ayllón
2016-04-01
Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.
Lane, Ciara; Stynes, Martin; O'Donoghue, John
2016-10-01
A questionnaire survey was carried out as part of a PhD research study to investigate the image of mathematics held by post-primary students in Ireland. The study focused on students in fifth year of post-primary education studying ordinary level mathematics for the Irish Leaving Certificate examination - the final examination for students in second-level or post-primary education. At the time this study was conducted, ordinary level mathematics students constituted approximately 72% of Leaving Certificate students. Students were aged between 15 and 18 years. A definition for 'image of mathematics' was adapted from Lim and Wilson, with image of mathematics hypothesized as comprising attitudes, beliefs, self-concept, motivation, emotions and past experiences of mathematics. A questionnaire was composed incorporating 84 fixed-response items chosen from eight pre-established scales by Aiken, Fennema and Sherman, Gourgey and Schoenfeld. This paper focuses on the findings from the questionnaire survey. Students' images of mathematics are compared with regard to gender, type of post-primary school attended and prior mathematical achievement.
Mathematical Knowledge of Non-mathematics Students and Their Beliefs about Mathematics
Directory of Open Access Journals (Sweden)
Ljerka Jukic Matic
2014-02-01
Full Text Available Mathematics is tightly interwoven with science and engineering, where it has numerous applications. In the educational context, there is an ongoing debate who should teach mathematics to non-mathematicians and how this mathematics should be taught. The knowledge gained in mathematics course is used in another course (mathematics, science or engineering, hence students should retain core concepts some time after learning. Beliefs that students have about mathematics significantly influence on their learning, and consequently on the retained knowledge. We investigated retained calculus knowledge and beliefs about mathematics in two groups of first year students coming from the science and engineering study programs. The results showed that both groups of students showed better procedural knowledge than conceptual. Also they showed positive beliefs about mathematics in their study program, but were not certain where this knowledge will be used later. However they differed in the perception of mathematics as being exciting discipline. The educational implications of these findings are also discussed.
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Mathematics Curriculum Framework. Revised.
Arkansas State Dept. of Education, Little Rock.
This document presents the content standards for mathematics in Arkansas. These standards are organized into five strands: (1) number sense, properties, and operations; (2) geometry and spatial sense; (3) measurement; (4) data analysis, statistics, and probability; and (5) patterns, algebra, and functions. Each of these strands is subdivided into…
Towards mathematical philosophy
Hendricks, Vincent F
2008-01-01
Logical investigations in cognitive science have successfully utilized methods and systems of belief revision, non-monotonic logic and dynamic epistemic logic. This title deals with focal issues of belief revision. It contains a collection of articles applying methods of logic or, more generally, of mathematics to solve problems.
Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen
2015-01-01
Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…
Bureau of Naval Personnel, Washington, DC.
The second of three volumes of a mathematics training course for Navy personnel, this document contains material primarily found at the college level. Beginning with logarithms and trigonometry, the text moves into vectors and static equilibrium (physics). Coordinate geometry, conic sections, and the tangents, normals, and slopes of curves follow.…
Cartier, Pierre; Heinzmann, Gerhard; Villani, Cédric
2016-01-01
This book challenges the views put forward by Pierre Cartier, one of the anchors of the famous Bourbaki group, and Cédric Villani, one of the most brilliant mathematicians of his generation, who received the Fields Medal in 2010. Jean Dhombres, mathematician and science historian, and Gerhard Heinzmann, philosopher of science and also a specialist in mathematics engage in a fruitful dialogue with the two mathematicians, prompting readers to reflect on mathematical activity and its social consequences in history as well as in the modern world. Cédric Villani’s popular success proves once again that a common awareness has developed, albeit in a very confused way, of the major role of mathematics in the construction and efficiency of natural sciences, which are at the origin of our technologies. Despite this, the idea that mathematics cannot be shared remains firmly entrenched, a perceived failing that has even been branded a lack of culture by vocal forces in the media as well as cultural and political esta...
Directory of Open Access Journals (Sweden)
Bascompte, Jordi
2007-06-01
Full Text Available Biology has become the new “physics” of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, I summarize some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions.La biología se ha convertido en la nueva “física” de las matemáticas, una de las áreas con mayores aplicaciones. Las matemáticas, por su parte, han proporcionado herramientas y metáforas muy poderosas para abordar la increíble complejidad de los sistemas biológicos. Esto ha permitido la génesis de marcos conceptuales sólidos. En este artículo resumo algunas de las aplicaciones más exitosas de las matemáticas a la biología que van desde la genética de poblaciones a la biología del desarrollo y las redes de interacciones ecológicas.
Designing for Mathematical Abstraction
Pratt, Dave; Noss, Richard
2010-01-01
Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…
New Technologies in Mathematics.
Sarmiento, Jorge
An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…
Battista, Michael T.
1993-01-01
Presents a series of 13 activities to explore the mathematics of baseball. Activities examine the numerical measures of player statistics and team standings and the geometry of baseball. Discusses the use of computer spreadsheets and LOGO computer simulations to study the concepts embodied in the activities. (MDH)
Mathematics for quantum chemistry
Anderson, Jay Martin
2005-01-01
This concise volume offers undergraduates an introduction to mathematical formalism in problems of molecular structure and motion. The main topics cover the calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics and applications to molecular motion. Answers to problems. 1966 edition.
Hermann Weyl's intuitionistic mathematics
Dalen, D. van
2008-01-01
It is common knowledge that for a short while Hermann Weyl joined Brouwer in his pursuit of a revision of mathematics according to intuitionistic principles. There is, however, little information in the literature to shed light on Weyl's role, and in particular on Brouwer's reaction to Weyl's allegi
Bruun, Faye; Diaz, Joan M.; Dykes, Valerie J.
2015-01-01
Students may excel in computation, but their ability to apply their skills will suffer if they do not understand the math vocabulary used in instructions and story problems. This action research project examines two methods for strengthening students' ability to communicate mathematically: (1) Journal writing and peer discussion; and (2) The…
Stoddard, Edward
1994-01-01
Entertaining, easy-to-follow suggestions for developing greater speed and accuracy in doing mathematical calculations. Surefire methods for multiplying without carrying, dividing with half the pencil work of long division, plus advice on how to add and subtract rapidly, master fractions, work quickly with decimals, handle percentages, and much more.
Mankiewicz, Richard
2000-01-01
Questioning how mathematics has evolved over the centuries and for what reasons; how human endeavour and changes in the way we live have been dependent on mathematics, this book tells the story of the impact this intellectual activity has had across cultures and civilizations. It shows how, far from being just the obsession of an elite group of philosophers, priests and scientists, mathematics has in some shape or other entered every area of human activity. The mysterious tally sticks of prehistoric peoples and the terrestial maps used for trade, exploration and warfare; the perennial fascination with the motions of heavenly bodies and changing perspectives on the art and science of vision; all are testament to a mathematics at the heart of history. The path of this changing discipline is marked by a wealth of images, from medieval manuscripts to the unsettling art of Dali or Duchamp, from the austere beauty of Babylonian clay tablets to the delicate complexity of computer-generated images. The text encompass...
Thornton, Steve
2000-01-01
Describes the most enduring link between Napoleon and mathematics as the geometric result known as Napoleon's Theorem, which states that if equilateral triangles are drawn on the three sides of any triangle, the line segments joining the centers of these equilateral triangles will themselves form an equilateral triangle. (ASK)
Mathematics as Problem Solving.
Soifer, Alexander
This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)
Foundations of mathematical logic
Curry, Haskell B
2010-01-01
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.
Consumer Mathematics. Teaching Units.
North Carolina State Dept. of Public Instruction, Raleigh.
GRADES OR AGES: Secondary school. SUBJECT MATTER: Consumer mathematics including--money management, transportation, probability, swindles and gyps, insurance, housing, taxes, consumer credit, banks, savings, and investments. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into ten parallel units, one for each of the above areas, which…
Woof, K. R.
1975-01-01
Describes an experimental type of science course which involves theoretical and practical approaches to scientific topics by using mathematics to develop and explain scientific problems and theory. Gives an example of such a course applied to the teaching of physical anthropology. (MLH)
Teaching Mathematics with Technology.
Jensen, Robert J.
1988-01-01
Argues that calculator activities, even in the early grades, can present situations in which basic mathematical thinking processes come into play. The activity described involves developing efficient calculator guess-and-test strategies and requires only an introductory notion of the four basic operations of arithmetic. (PK)
Using and Applying Mathematics
Knight, Rupert
2011-01-01
The Nobel prize winning physicist Richard Feynman (2007) famously enthused about "the pleasure of finding things out". In day-to-day classroom life, however, it is easy to lose and undervalue this pleasure in the process, as opposed to products, of mathematics. Finding things out involves a journey and is often where the learning takes place.…
Symmetry in Mathematics Learning.
Dreyfus, Tommy; Eisenberg, Theodore
1989-01-01
Discusses the creed in symmetry and the omnipresence of symmetrical relationships in mathematics and nature, discusses mathematicians' attraction toward looking for symmetrical relationships as an unstated problem-solving heuristic, and shows how symmetry can be used as a didactical tool. (Author/MKR)
A Classroom Mathematics Utility.
Williams, Michael
1984-01-01
Reviews CATUSPLOT, a mathematics utility aimed at high school algebra through college-level calculus. Basic program capabilities include plotting, tabulating, integrating, and locating of intersections of functions composed of combinations of polynomial, trigonometric, and exponential functions. Rated excellent on all areas examined…
An approximation technique for jet impingement flow
Energy Technology Data Exchange (ETDEWEB)
Najafi, Mahmoud; Fincher, Donald [Kent State University Ashtabula Department of Mathematical Sciences (United States); Rahni, Taeibi; Javadi, KH. [Department of Aerospace Engineering, Sharif University of Technology (Iran, Islamic Republic of); Massah, H. [Acoustic Research Center, Institute of Applied Physics (Iran, Islamic Republic of)
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Diophantine approximation and special Liouville numbers
Schleischitz, Johannes
2013-01-01
This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\\geq 2$) of $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$ with prescribed approximation properties are dedu...
Schmeisser, Gerhard
2014-01-01
Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer’s 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate...
Nonlinear approximation with bi-framelets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten; Gribonval, Rémi
2005-01-01
We study the approximation in Lebesgue spaces of wavelet bi-frame systems given by translations and dilations of a finite set of generators. A complete characterization of the approximation spaces associated with best m-term approximation of wavelet bi-framelet systems is given. The characterizat...
Some relations between entropy and approximation numbers
Institute of Scientific and Technical Information of China (English)
郑志明
1999-01-01
A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Axiomatic Characterizations of IVF Rough Approximation Operators
Directory of Open Access Journals (Sweden)
Guangji Yu
2014-01-01
Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.
Approximation properties of fine hyperbolic graphs
Indian Academy of Sciences (India)
Benyin Fu
2016-05-01
In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use the techniques of Ozawa’s to prove that a fine hyperbolic graph has the metric invariant translation approximation property.
Nonlinear approximation with dictionaries, I: Direct estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
$-term approximation with algorithmic constraints: thresholding and Chebychev approximation classes are studied respectively. We consider embeddings of the Jackson type (direct estimates) of sparsity spaces into the mentioned approximation classes. General direct estimates are based on the geometry of the Banach space...
Approximate Nearest Neighbor Queries among Parallel Segments
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Malamatos, Theocharis; Tsigaridas, Elias
2010-01-01
We develop a data structure for answering efficiently approximate nearest neighbor queries over a set of parallel segments in three dimensions. We connect this problem to approximate nearest neighbor searching under weight constraints and approximate nearest neighbor searching on historical data...
Truth Approximation, Social Epistemology, and Opinion Dynamics
Douven, Igor; Kelp, Christoph
2011-01-01
This paper highlights some connections between work on truth approximation and work in social epistemology, in particular work on peer disagreement. In some of the literature on truth approximation, questions have been addressed concerning the efficiency of research strategies for approximating the
Upper Bounds on Numerical Approximation Errors
DEFF Research Database (Denmark)
Raahauge, Peter
2004-01-01
This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function...... to approximations of a standard (strictly concave)growth model.KEYWORDS: Numerical approximation errors, Bellman contractions, Error bounds...
The Contribution of General Cognitive Abilities and Approximate Number System to Early Mathematics
Passolunghi, Maria Chiara; Cargnelutti, Elisa; Pastore, Massimiliano
2014-01-01
Background: Math learning is a complex process that entails a wide range of cognitive abilities to be fulfilled. There is sufficient evidence that both general and specific cognitive skills assume a fundamental role, despite the absence of shared consensus about the relative extent of their involvement. Moreover, regarding general abilities, there…
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
The aesthetic value of mathematical knowledge and mathematics teaching
Directory of Open Access Journals (Sweden)
Erovenko V. A.
2016-01-01
Full Text Available The article is devoted to identifying the value of the phenomenon of aesthetic value and beauty of mathematical knowledge and the beauty of mathematical theory of teaching mathematics. The aesthetic potential of mathematical knowledge allows the use of theater technology in the educational process with the active dialogic interaction between teacher and students. The criteria of beauty in mathematical theories are distinguished: the realization of beauty as the unity of the whole, and in the disclosure of the complex through the elementary; methodological interpretation of the beauty in the community of mathematical structures and optimal information content of the meta-language of mathematics; the practical embodiment of beauty in the formalization of the infinite through the finite. The beauty of mathematics is the force that permeates all the “layers of knowledge” not along, and across, although the effectiveness of mathematical activity due to aesthetic laws, which do not always lend themselves to unambiguous interpretation. In the article it is stated that, depending on the educational goals of communicative impact on the audience, in fact, “mathematical lectures theatricality” can have different characteristics, the most important of which are teachers artistry and artistic director's work of a teacher. This cultural phenomenon that includes the theatrical talent, helps create an atmosphere of cooperation needed in varying degrees of activity for pedagogical interaction. The author believes that such approach, developed on the basis of the Stanislavsky system, allows university professors of mathematics significantly improve mathematical lectures.
Integrating Mathematics and Social Issues
Harrell, Gregory K.
2007-01-01
This article illustrates how to integrate mathematics with social issues. Social issues discussed in the newspaper provide a rich context for connecting mathematical activities to the real world. The sample activities focus on measurement concepts. (Contains 2 figures.)
Pedoe, Dan
2012-01-01
This lighthearted work uses a variety of practical applications and puzzles to take a look at today's mathematical trends. In nine chapters, Professor Pedoe covers mathematical games, chance and choice, automatic thinking, and more.
How to solve mathematical problems
Wickelgren, Wayne A
1995-01-01
Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.
Mathematics Alive and in Action
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2005-01-01
This chapter addresses two main questions: What do mathematicians do? What is mathematics good for? With focus on recent times, a panorama of mathematical contributions to civilization is presented and the intellectual drive by which they were perceived is described....
APPROXIMATE AMENABILITY OF CERTAIN INVERSE SEMIGROUP ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Mehdi ROSTAMI; Abdolrasoul POURABBAS; Morteza ESSMAILI
2013-01-01
In this article,the approximate amenability of semigroup algebra e1(S) is investigated,where S is a uniformly locally finite inverse semigroup.Indeed,we show that for a uniformly locally finite inverse semigroup S,the notions of amenability,approximate amenability and bounded approximate amenability of e1 (S) are equivalent.We use this to give a direct proof of the approximate amenability of e1(S) for a Brandt semigroup S.Moreover,we characterize the approximate amenability of e1(S),where S is a uniformly locally finite band semigroup.
Approximation method to compute domain related integrals in structural studies
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2015-11-01
Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the
Mastering mathematics for OCR GCSE
Lambert, Elaine
2015-01-01
Build your students' knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts; with resources developed specifically for the OCR GCSE 2015 specification by mathematics subject specialists experienced in teaching and examining GCSE. - Supports you and your students through the new specifications, with topic explanations and new. exam-style questions, written in line with the new assessment objectives. - Measure progress and assess learning throughout the cour
Yanofsky, Noson S.
2015-01-01
A major question in philosophy of science involves the unreasonable effectiveness of mathematics in physics. Why should mathematics, created or discovered, with nothing empirical in mind be so perfectly suited to describe the laws of the physical universe? We review the well-known fact that the symmetries of the laws of physics are their defining properties. We show that there are similar symmetries of mathematical facts and that these symmetries are the defining properties of mathematics. By...
University Mathematics Students’ Learning Difficulties
Lithner, Johan
2011-01-01
The processes of learning mathematics are immensely complex and we largely lack insights into these processes. This is especially problematic when it comes to tertiary mathematics education, which has been much less researched than primary and secondary mathematics education. It is thus far from possible to clarify all relevant issues related to university mathematics learning difficulties. This paper will discuss the notion of learning difficulties and some related insights.Keywords: univers...
Graph orientations with no sink and an approximation for a hard case of No. SAT
Energy Technology Data Exchange (ETDEWEB)
Bubley, R.; Dyer, M. [Univ. of Leeds (United Kingdom)
1997-06-01
Graph orientation problems have a long pedigree both in pure mathematics and theoretical computer science. We consider here all of the major combinatorial problems associated with sink-free graph orientations: decision, construction, listing, counting, approximate counting and approximate sampling. We also observe a close connection between sink-free graph orientations and a restricted form of the SAT problem in which each variable may appear at most twice; we name this Twice-SAT. We show that this problem is No. P-complete, and offer a fully polynomial randomized approximation scheme for it.