WorldWideScience

Sample records for approximation code ddscat

  1. The discrete dipole approximation code DDscat.C++: features, limitations and plans

    Science.gov (United States)

    Choliy, V. Ya.

    2013-08-01

    We present a new freely available open-source C++ software for numerical solution of the electromagnetic waves absorption and scattering problems within the Discrete Dipole Approximation paradigm. The code is based upon the famous and free Fortan-90 code DDSCAT by B. Draine and P. Flatau. Started as a teaching project, the presented code DDscat.C++ differs from the parent code DDSCAT with a number of features, essential for C++ but quite seldom in Fortran. This article introduces the new code, explains its features, presents timing information and some plans for further development.

  2. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1

    CERN Document Server

    Draine, B T

    2010-01-01

    DDSCAT 7.1 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.1 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...

  3. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0

    CERN Document Server

    Draine, B T

    2008-01-01

    DDSCAT 7.0 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2009). DDSCAT 7.0 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...

  4. User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10)

    CERN Document Server

    Draine, B T; Flatau, Piotr J.

    2000-01-01

    DDSCAT.5a is a freely available software package which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT.5a10 allows accurate calculations of electromagnetic scattering from targets with "size parameters" 2 pi a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target ...

  5. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3

    CERN Document Server

    Draine, B T

    2013-01-01

    DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCA...

  6. User Guide for the Discrete Dipole Approximation Code DDSCAT.6.0

    CERN Document Server

    Draine, B T

    2003-01-01

    DDSCAT.6.0 is a freely available software package (http://www.astro.princeton.edu/~draine/DDSCAT.6.0.html) which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT.6.0 allows accurate calculations of electromagnetic scattering from targets with ``size parameters'' 2*pi*a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). DDSCAT.6.0 includes the option of using the FFTW (Fastest Fourier Transform in the West) package. DDSCAT.6.0 also includes MPI support, permitting parallel calculations on multiprocessor systems. DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the use...

  7. User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1

    CERN Document Server

    Draine, B T; Draine, Bruce T.; Flatau, Piotr J.

    2004-01-01

    DDSCAT 6.1 is a software package which applies the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT 6.1 allows accurate calculations of electromagnetic scattering from targets with size parameters 2 pi a_eff/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 2). DDSCAT 6.1 includes support for MPI and FFTW. We also make available a "plain" distribution of DDSCAT 6.1 that does not include support for MPI, FFTW, or netCDF, but is much simpler to install than the full distribution. The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into th...

  8. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2

    CERN Document Server

    Draine, Bruce T

    2012-01-01

    DDSCAT 7.2 is a freely available open-source Fortran-90 software package applying the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", which can be used to study absorption, scattering, and electric fields around arrays of nanostructures. The DDA approximates the target by an array of polarizable points. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008). Efficient near-field calculations are enabled following Flatau & Draine (2012). DDSCAT 7.2 allows accurate calculations of electromagnetic scattering from targets with size parameters 2*pi*aeff/lambda < 25 provided the refractive index m is not large compared to unity (|m-1| ...

  9. DDscat.C++ User and programmer guide

    CERN Document Server

    Choliy, Vasyl

    2014-01-01

    DDscat.C++ 7.3.0 is a freely available open-source C++ software package applying the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and a complex refractive index. DDscat.C++ is a clone of well known DDscat Fortran-90 software. We refer to DDscat as to the parent code in this document. Versions 7.3.0 of both codes have the identical functionality but the quite different implementation. Started as a teaching project, the DDscat.C++ code differs from the parent code DDscat in programming techniques and features, essential for C++ but quite seldom in Fortran. As DDscat.C++ in its current version is just a clone, usage of DDscat.C++ for electromagnetic calculations is the same as of DDscat. Please, refer to "User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3" to start using the code(s). This document consists of two parts. In the first part we present Quick start guide for users who want to begin to use the c...

  10. Low rank approximations for the DEPOSIT computer code

    OpenAIRE

    Litsarev, Mikhail; Oseledets, Ivan

    2014-01-01

    We present an efficient technique based on low-rank separated approximations for the computation of three-dimensional integrals in the computer code DEPOSIT that describes ion-atomic collision processes. Implementation of this technique decreases the total computational time by a factor of 1000. The general concept can be applied to more complicated models.

  11. Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes

    OpenAIRE

    Crepeau, Claude; Gottesman, Daniel; Smith, Adam

    2005-01-01

    It is a standard result in the theory of quantum error-correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we describe quantum error-correcting codes capable...

  12. Quantum universal coding protocols and universal approximation of multi-copy states

    International Nuclear Information System (INIS)

    We have constructed universal codes for quantum lossless source coding and classical-quantum channel coding. In this construction, we essentially employ group representation theory. In order to treat quantum lossless source coding, universal approximation of multi-copy states is discussed in terms of the quantum relative entropy.

  13. Searching with quantization: approximate nearest neighbor search using short codes and distance estimators

    OpenAIRE

    Jégou, Hervé; Douze, Matthijs; Schmid, Cordelia

    2009-01-01

    We propose an approximate nearest neighbor search method based on quantization. It uses, in particular, product quantizer to produce short codes and corresponding distance estimators approximating the Euclidean distance between the orginal vectors. The method is advantageously used in an asymmetric manner, by computing the distance between a vector and code, unlike competing techniques such as spectral hashing that only compare codes. Our approach approximates the Euclidean distance based on ...

  14. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation

    International Nuclear Information System (INIS)

    The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement. - Highlights: • The beam-splitting code is presented as open-source software. • Both physical and computational aspects of the code are discussed. • Computational speed of the code is higher than ray-tracing codes. • A comparison with the ray-tracing Macke's code shows excellent agreement

  15. Distributed Successive Approximation Coding using Broadcast Advantage: The Two-Encoder Case

    CERN Document Server

    Chen, Zichong; Vetterli, Martin

    2010-01-01

    Traditional distributed source coding rarely considers the possible link between separate encoders. However, the broadcast nature of wireless communication in sensor networks provides a free gossip mechanism which can be used to simplify encoding/decoding and reduce transmission power. Using this broadcast advantage, we present a new two-encoder scheme which imitates the ping-pong game and has a successive approximation structure. For the quadratic Gaussian case, we prove that this scheme is successively refinable on the {sum-rate, distortion pair} surface, which is characterized by the rate-distortion region of the distributed two-encoder source coding. A potential energy saving over conventional distributed coding is also illustrated. This ping-pong distributed coding idea can be extended to the multiple encoder case and provides the theoretical foundation for a new class of distributed image coding method in wireless scenarios.

  16. DESIGN OF LDPC-CODED BICM USING A SEMI-GAUSSIAN APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    Huang Jie; Zhang Fan; Zhu Jinkang

    2007-01-01

    This paper investigates analysis and design of Low-Density Parity-Check (LDPC) coded BitInterleaved Coded Modulation (BICM) over Additive White Gaussian Noise (AWGN) channel. It focuses on Gray-labeled 8-ary Phase-Shift-Keying (8PSK) modulation and employs a Maximum A Posteriori (MAP) symbol-to-bit metric calculator at the receiver. An equivalent model of a BICM communication channel with ideal interleaving is presented. The probability distribution function of log-likelihood ratio messages from the MAP receiver can be approximated by a mixture of symmetric Gaussian densities. As a result semi-Gaussian approximation can be used to analyze the decoder.Extrinsic information transfer charts are employed to describe the convergence behavior of LDPC decoder. The design of irregular LDPC codes reduces to a linear programming problem on two-dimensional variable edge-degree distribution. This method allows irregular code design in a wider range of rates without any limit on the maximum node degree and can be used to design irregular codes having rates varying from 0.5275 to 0.9099. The designed convergence thresholds are only a few tenths,even a few hundredths of a decibel from the capacity limits. It is shown by Monte Carlo simulations that,when the block length is 30,000, these codes operate about 0.62-0.75 dB from the capacity limit at a bit error rate of 10-8.

  17. New Density Evolution Approximation for LDPC and Multi-Edge Type LDPC Codes

    OpenAIRE

    Jayasooriya, Sachini; Shirvanimoghaddam, Mahyar; Ong, Lawrence; Lechner, Gottfried; Johnson, Sarah J.

    2016-01-01

    This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian approximations for density evolution and discuss their accuracy under several conditions, namely at low rates, with punctured and degree-one variable nodes. We observe that the assumption of symmetric Gaussian distribution for the density-evolution mes...

  18. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  19. Application of static fuel management codes for determination of the neutron noise using the adiabatic approximation

    International Nuclear Information System (INIS)

    The neutron noise, induced by a rod manoeuvring experiment in a pressurized water reactor, has been calculated by the incore fuel management code SIMULATE. The space- and frequency-dependent noise in the thermal group was calculated through the adiabatic approximation in three dimensions and two-group theory, with the spatial resolution of the nodal model underlying the SIMULATE algorithm. The calculated spatial noise profiles were interpreted on physical terms. They were also compared with model calculations in a 2-D one-group model, where various approximations as well as the full space-dependent response could be calculated. The adiabatic results obtained with SIMULATE can be regarded as reliable for sub-plateau frequencies (below 0.1 Hz). (orig.)

  20. The discrete-dipole-approximation code ADDA: Capabilities and known limitations

    International Nuclear Information System (INIS)

    The open-source code ADDA is described, which implements the discrete dipole approximation (DDA), a method to simulate light scattering by finite 3D objects of arbitrary shape and composition. Besides standard sequential execution, ADDA can run on a multiprocessor distributed-memory system, parallelizing a single DDA calculation. Hence the size parameter of the scatterer is in principle limited only by total available memory and computational speed. ADDA is written in C99 and is highly portable. It provides full control over the scattering geometry (particle morphology and orientation, and incident beam) and allows one to calculate a wide variety of integral and angle-resolved scattering quantities (cross sections, the Mueller matrix, etc.). Moreover, ADDA incorporates a range of state-of-the-art DDA improvements, aimed at increasing the accuracy and computational speed of the method. We discuss both physical and computational aspects of the DDA simulations and provide a practical introduction into performing such simulations with the ADDA code. We also present several simulation results, in particular, for a sphere with size parameter 320 (100-wavelength diameter) and refractive index 1.05.

  1. Approximate quantum error correction: Optimal codes for independent and correlated errors

    International Nuclear Information System (INIS)

    The reversibility of open system dynamics in practice depends on a separation of probability regimes in which high-probability errors are corrected at the expense of leaving lower-probability errors uncorrected whenever these occur, i.e. correcting only errors on single qubits in a quantum code. However, several important quantum information processing scenarios are not describable by a neat separation of probability regimes, and we investigate codes for optimal information protection when this is the case. We use entanglement dynamics to compare and evaluate the performance of different codes and present optimal codes for full noisy quantum channels in terms of minimum deviation from perfect correctability. We present N-qubit inequalities governing optimal codes for different probability regimes of errors and give explicit examples of significant improvement for some standard cases.

  2. A new structural analysis/synthesis capability - ACCESS. [Approximation Concepts Code for Efficient Structural Synthesis

    Science.gov (United States)

    Schmit, L. A.; Miura, H.

    1975-01-01

    The creation of an efficient automated capability for minimum weight design of structures is reported. The ACCESS 1 computer program combines finite element analysis techniques and mathematical programming algorithms using an innovative collection of approximation concepts. Design variable linking, constraint deletion techniques and approximate analysis methods are used to generate a sequence of small explicit mathematical programming problems which retain the essential features of the design problem. Organization of the finite element analysis is carefully matched to the design optimization task. The efficiency of the ACCESS 1 program is demonstrated by giving results for several example problems.

  3. Multidimensional spatially coupled transverse leakage approximation for nodal expansion diffusion codes

    International Nuclear Information System (INIS)

    A spatially coupled transverse leakage approximation in 2-D and 3-D cartesian geometry is developed. A fundamental spatially coupled expansion generates a new set of unknowns, the cross terms, which may be determined by continuity conditions of flux in node vertex (2-D) or averaged flux in node edges (3-D). The fundamental expansion is compatible to a TIP Legendre approximation, and the transverse leakages are obtained as a by-product from the cross terms. Two benchmark problems show the continuity and accuracy of the solutions. (author)

  4. Approximate information capacity of the perfect integrate-and-fire neuron using the temporal code

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír

    2012-01-01

    Roč. 1434, JAN 24 (2012), s. 136-141. ISSN 0006-8993. [International Workshop on Neural Coding. Limassol, 29.10.2010-03.11.2010] R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GAP103/11/0282 Institutional research plan: CEZ:AV0Z50110509 Keywords : integrate-and- fire neuron * information capacity Subject RIV: FH - Neurology Impact factor: 2.879, year: 2012

  5. ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide

    Science.gov (United States)

    Miura, H.; Schmit, L. A., Jr.

    1978-01-01

    A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure.

  6. Upgraded Approximation of Non-Binary Alphabets for Polar Code Construction

    OpenAIRE

    Ghayoori, Arash; Gulliver, T. Aaron

    2013-01-01

    An algorithm is presented for approximating a single-user channel with a prime input alphabet size. The result is an upgraded version of the channel with a reduced output alphabet size. It is shown that this algorithm can be used to reduce the output alphabet size to the input alphabet size in most cases.

  7. ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    Science.gov (United States)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.

  8. ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    Science.gov (United States)

    Miura, H.; Schmit, L. A., Jr.

    1976-01-01

    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.

  9. A computer code for beam optics calculation--third order approximation

    Institute of Scientific and Technical Information of China (English)

    L(U) Jianqin; LI Jinhai

    2006-01-01

    To calculate the beam transport in the ion optical systems accurately, a beam dynamics computer program of third order approximation is developed. Many conventional optical elements are incorporated in the program. Particle distributions of uniform type or Gaussian type in the ( x, y, z ) 3D ellipses can be selected by the users. The optimization procedures are provided to make the calculations reasonable and fast. The calculated results can be graphically displayed on the computer monitor.

  10. Primary Displacement Damage Calculation Induced by Neutron and Ion Using Binary Collision Approximation Techniques (Marlowe Code)

    International Nuclear Information System (INIS)

    Irradiation Experimental Area of TechnoFusion will emulate the extreme irradiation fusion conditions in materials by means of three ion accelerators: one used for self-implanting heavy ions (Fe, Si, C,...) to emulate the displacement damage induced by fusion neutrons and the other two for light ions (H and He) to emulate the transmutation induced by fusion neutrons. This Laboratory will play an essential role in the selection of functional materials for DEMO reactor since it will allow reproducing the effects of neutron radiation on fusion materials. Ion irradiation produces little or no residual radioactivity, allowing handling of samples without the need for special precautions. Currently, two different methods are used to calculate the primary displacement damage by neutron irradiation or by ion irradiation. On one hand, the displacement damage doses induced by neutrons are calculated considering the NRT model based on the electronic screening theory of Linhard. This methodology is commonly used since 1975. On the other hand, for experimental research community the SRIM code is commonly used to calculate the primary displacement damage dose induced by ion irradiation. Therefore, both methodologies of primary displacement damage calculation have nothing in common. However, if we want to design ion irradiation experiments capable to emulate the neutron fusion effect in materials, it is necessary to develop comparable methodologies of damage calculation for both kinds of radiation. It would allow us to define better the ion irradiation parameters (Ion, current, Ion energy, dose, etc) required to emulate a specific neutron irradiation environment. Therefore, our main objective was to find the way to calculate the primary displacement damage induced by neutron irradiation and by ion irradiation starting from the same point, that is, the PKA spectrum. In order to emulate the neutron irradiation that would prevail under fusion conditions, two approaches are contemplated: a) on

  11. Recklessly Approximate Sparse Coding

    OpenAIRE

    Denil, Misha; De Freitas, Nando

    2012-01-01

    It has recently been observed that certain extremely simple feature encoding techniques are able to achieve state of the art performance on several standard image classification benchmarks including deep belief networks, convolutional nets, factored RBMs, mcRBMs, convolutional RBMs, sparse autoencoders and several others. Moreover, these "triangle" or "soft threshold" encodings are ex- tremely efficient to compute. Several intuitive arguments have been put forward to explain this remarkable p...

  12. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. Scarnato

    2012-10-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation. When BC is internally mixed with NaCl (100–300 nm in radius, strong depolarization features for near-VIS incident radiation are evident

  13. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. V. Scarnato

    2013-05-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200–1000 nm range is amplified when internally mixed with NaCl (100–300 nm in radius by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have

  14. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    International Nuclear Information System (INIS)

    We compute the absorption efficiency (Qabs) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 μm wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical polyhedral grain shapes with aeff = 0.1 μm. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 μm, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 μm) shifts the 10 and 11 μm features systematically toward longer wavelengths and relative to the 11 μm feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 μm spectra provides a potential means to probe the temperatures at which forsterite formed.

  15. The Vertical Current Approximation Nonlinear Force-Free Field Code - Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    CERN Document Server

    Aschwanden, Markus J

    2016-01-01

    In this work we provide an updated description of the Vertical Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, nonpotential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann (2004), we find agreement in the potential, nonpotential, and free energy within a factor of about 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare en...

  16. A First-Stage Approximation to Identify New Imprinted Genes through Sequence Analysis of Its Coding Regions

    Science.gov (United States)

    Daura-Oller, Elias; Cabré, Maria; Montero, Miguel A.; Paternáin, José L.; Romeu, Antoni

    2009-01-01

    In the present study, a positive training set of 30 known human imprinted gene coding regions are compared with a set of 72 randomly sampled human nonimprinted gene coding regions (negative training set) to identify genomic features common to human imprinted genes. The most important feature of the present work is its ability to use multivariate analysis to look at variation, at coding region DNA level, among imprinted and non-imprinted genes. There is a force affecting genomic parameters that appears through the use of the appropriate multivariate methods (principle components analysis (PCA) and quadratic discriminant analysis (QDA)) to analyse quantitative genomic data. We show that variables, such as CG content, [bp]% CpG islands, [bp]% Large Tandem Repeats, and [bp]% Simple Repeats, are able to distinguish coding regions of human imprinted genes. PMID:19360135

  17. A First-Stage Approximation to Identify New Imprinted Genes through Sequence Analysis of Its Coding Regions

    Directory of Open Access Journals (Sweden)

    Elias Daura-Oller

    2009-01-01

    Full Text Available In the present study, a positive training set of 30 known human imprinted gene coding regions are compared with a set of 72 randomly sampled human nonimprinted gene coding regions (negative training set to identify genomic features common to human imprinted genes. The most important feature of the present work is its ability to use multivariate analysis to look at variation, at coding region DNA level, among imprinted and non-imprinted genes. There is a force affecting genomic parameters that appears through the use of the appropriate multivariate methods (principle components analysis (PCA and quadratic discriminant analysis (QDA to analyse quantitative genomic data. We show that variables, such as CG content, [bp]% CpG islands, [bp]% Large Tandem Repeats, and [bp]% Simple Repeats, are able to distinguish coding regions of human imprinted genes.

  18. Statistical physics and approximate message-passing algorithms for sparse linear estimation problems in signal processing and coding theory

    OpenAIRE

    Barbier, Jean

    2015-01-01

    This thesis is interested in the application of statistical physics methods and inference to sparse linear estimation problems. The main tools are the graphical models and approximate message-passing algorithm together with the cavity method. We will also use the replica method of statistical physics of disordered systems which allows to associate to the studied problems a cost function referred as the potential of free entropy in physics. It allows to predict the different phases of typical ...

  19. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    International Nuclear Information System (INIS)

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P1) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level

  20. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II

    International Nuclear Information System (INIS)

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P1) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently

  1. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1977-11-01

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.

  2. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    Science.gov (United States)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  3. Clinical coding. Code breakers.

    Science.gov (United States)

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships. PMID:15768716

  4. Diophantine approximations

    CERN Document Server

    Niven, Ivan

    2008-01-01

    This self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discuss

  5. Approximate Representations and Approximate Homomorphisms

    OpenAIRE

    Moore, Cristopher; Russell, Alexander

    2010-01-01

    Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities i...

  6. Approximate Likelihood

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  7. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  8. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  9. New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with Distorted Wave Born Approximation

    International Nuclear Information System (INIS)

    A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra

  10. Approximate option pricing

    Energy Technology Data Exchange (ETDEWEB)

    Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  11. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m.  We consider `natural' classes of badly approximable  subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  12. AZIMUT code abstract

    International Nuclear Information System (INIS)

    The brief description of the AZIMUT code for calculation the neutron flux in a cluster cell is presented. Code takes into account 1 and 2 azimuthal harmonics in the one-group P3-approximation and uses the heterogeneous approach. 2 refs

  13. The Procions` code; Le code Procions

    Energy Technology Data Exchange (ETDEWEB)

    Deck, D.; Samba, G.

    1994-12-19

    This paper presents a new code to simulate plasmas generated by inertial confinement. This multi-kinds kinetic code is done with no angular approximation concerning ions and will work in plan and spherical geometry. First, the physical model is presented, using Fokker-Plank. Then, the numerical model is introduced in order to solve the Fokker-Plank operator under the Rosenbluth form. At the end, several numerical tests are proposed. (TEC). 17 refs., 27 figs.

  14. Fuzzy Approximating Spaces

    OpenAIRE

    Bin Qin

    2014-01-01

    Relationships between fuzzy relations and fuzzy topologies are deeply researched. The concept of fuzzy approximating spaces is introduced and decision conditions that a fuzzy topological space is a fuzzy approximating space are obtained.

  15. Stochastic approximation: invited paper

    OpenAIRE

    Lai, Tze Leung

    2003-01-01

    Stochastic approximation, introduced by Robbins and Monro in 1951, has become an important and vibrant subject in optimization, control and signal processing. This paper reviews Robbins' contributions to stochastic approximation and gives an overview of several related developments.

  16. Approximate flavor symmetries

    CERN Document Server

    Rasin, A

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  17. Approximate iterative algorithms

    CERN Document Server

    Almudevar, Anthony Louis

    2014-01-01

    Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a

  18. Approximation of distributed delays

    CERN Document Server

    Lu, Hao; Eberard, Damien; Simon, Jean-Pierre

    2010-01-01

    We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.

  19. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  20. Permutation codes

    OpenAIRE

    Ericson, Thomas

    1993-01-01

    Slepians permutation codes are investigated in detail. In particular we optimize the initial vector and derive all dominating codes in dimension n 2 6. With the exception of the simplex and biorthogonal codes - which are always included as special cases of permutation codes - there are probably no further good codes in higher dimensions.

  1. AN OPTIMAL FUZZY APPROXIMATOR

    Institute of Scientific and Technical Information of China (English)

    YueShihong; ZhangKecun

    2002-01-01

    In a dot product space with the reproducing kernel (r. k. S. ) ,a fuzzy system with the estimation approximation errors is proposed ,which overcomes the defect that the existing fuzzy control system is difficult to estimate the errors of approximation for a desired function,and keeps the characteristics of fuzzy system as an inference approach. The structure of the new fuzzy approximator benefits a course got by other means.

  2. Approximation of irrationals

    OpenAIRE

    Malvina Baica

    1985-01-01

    The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF), and defines it as Generalized Euclidean Algorithm (abbr. GEA) to approximate irrationals.This paper deals with approximation of irrationals of degree n=2,3,5. Though approximations of these irrationals in a variety of patterns are known, the results are new and practical, since there is used an algorithmic method.

  3. Expectation Consistent Approximate Inference

    OpenAIRE

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability distributions which are made consistent on a set of moments and encode different features of the original intractable distribution. In this way we are able to use Gaussian approximations for models with ...

  4. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  5. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  6. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  7. Approximate Modified Policy Iteration

    CERN Document Server

    Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu

    2012-01-01

    Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...

  8. Approximations to toroidal harmonics

    International Nuclear Information System (INIS)

    Toroidal harmonics P/sub n-1/2/1(cosh μ) and Q/sub n-1/2/1(cosh μ) are useful in solutions to Maxwell's equations in toroidal coordinates. In order to speed their computation, a set of approximations has been developed that is valid over the range 0 -10. The simple method used to determine the approximations is described. Relative error curves are also presented, obtained by comparing approximations to the more accurate values computed by direct summation of the hypergeometric series

  9. Approximations in Inspection Planning

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.; Bloch, Allan

    2000-01-01

    . One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found by the......Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations...... inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....

  10. The Karlqvist approximation revisited

    OpenAIRE

    Tannous, C.

    2015-01-01

    The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.

  11. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  12. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  13. Approximate spatial reasoning

    Science.gov (United States)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  14. Diophantine approximations on fractals

    CERN Document Server

    Einsiedler, Manfred; Shapira, Uri

    2009-01-01

    We exploit dynamical properties of diagonal actions to derive results in Diophantine approximations. In particular, we prove that the continued fraction expansion of almost any point on the middle third Cantor set (with respect to the natural measure) contains all finite patterns (hence is well approximable). Similarly, we show that for a variety of fractals in [0,1]^2, possessing some symmetry, almost any point is not Dirichlet improvable (hence is well approximable) and has property C (after Cassels). We then settle by similar methods a conjecture of M. Boshernitzan saying that there are no irrational numbers x in the unit interval such that the continued fraction expansions of {nx mod1 : n is a natural number} are uniformly eventually bounded.

  15. Covariant approximation averaging

    CERN Document Server

    Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2014-01-01

    We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.

  16. Accuracy of Approximate Eigenstates

    CERN Document Server

    Lucha, Wolfgang; Lucha, Wolfgang

    2000-01-01

    Besides perturbation theory, which requires, of course, the knowledge of the exact unperturbed solution, variational techniques represent the main tool for any investigation of the eigenvalue problem of some semibounded operator H in quantum theory. For a reasonable choice of the employed trial subspace of the domain of H, the lowest eigenvalues of H usually can be located with acceptable precision whereas the trial-subspace vectors corresponding to these eigenvalues approximate, in general, the exact eigenstates of H with much less accuracy. Accordingly, various measures for the accuracy of the approximate eigenstates derived by variational techniques are scrutinized. In particular, the matrix elements of the commutator of the operator H and (suitably chosen) different operators, with respect to degenerate approximate eigenstates of H obtained by some variational method, are proposed here as new criteria for the accuracy of variational eigenstates. These considerations are applied to that Hamiltonian the eig...

  17. Synthesis of approximation errors

    Energy Technology Data Exchange (ETDEWEB)

    Bareiss, E.H.; Michel, P.

    1977-07-01

    A method is developed for the synthesis of the error in approximations in the large of regular and irregular functions. The synthesis uses a small class of dimensionless elementary error functions which are weighted by the coefficients of the expansion of the regular part of the function. The question is answered whether a computer can determine the analytical nature of a solution by numerical methods. It is shown that continuous least-squares approximations of irregular functions can be replaced by discrete least-squares approximation and how to select the discrete points. The elementary error functions are used to show how the classical convergence criterions can be markedly improved. There are eight numerical examples included, 30 figures and 74 tables.

  18. Towards a Unified Framework for Approximate Quantum Error Correction

    CERN Document Server

    Mandayam, Prabha

    2012-01-01

    Operator quantum error correction extends the standard formalism of quantum error correction (QEC) to codes in which only a subsystem within a subspace of states is used to store information in a noise-resilient fashion. Motivated by recent work on approximate QEC, which has opened up the possibility of constructing subspace codes beyond the framework of perfect error correction, we investigate the problem of {\\it approximate} operator quantum error correction (AOQEC). We demonstrate easily checkable sufficient conditions for the existence of AOQEC codes. Furthermore, for certain classes of noise processes, we prove the efficacy of the transpose channel as a simple-to-construct recovery map that works nearly as well as the optimal recovery channel, with optimality defined in terms of worst-case fidelity over all code states. This work generalizes our earlier approach \\cite{aqecPRA} of using the transpose channel for approximate correction of subspace codes to the case of subsystem codes, and brings us closer ...

  19. The Zeldovich approximation

    CERN Document Server

    White, Martin

    2014-01-01

    This year marks the 100th anniversary of the birth of Yakov Zel'dovich. Amongst his many legacies is the Zel'dovich approximation for the growth of large-scale structure, which remains one of the most successful and insightful analytic models of structure formation. We use the Zel'dovich approximation to compute the two-point function of the matter and biased tracers, and compare to the results of N-body simulations and other Lagrangian perturbation theories. We show that Lagrangian perturbation theories converge well and that the Zel'dovich approximation provides a good fit to the N-body results except for the quadrupole moment of the halo correlation function. We extend the calculation of halo bias to 3rd order and also consider non-local biasing schemes, none of which remove the discrepancy. We argue that a part of the discrepancy owes to an incorrect prediction of inter-halo velocity correlations. We use the Zel'dovich approximation to compute the ingredients of the Gaussian streaming model and show that ...

  20. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  1. Approximating The DCM

    DEFF Research Database (Denmark)

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM that...

  2. Speech coding

    Science.gov (United States)

    Gersho, Allen

    1990-05-01

    Recent advances in algorithms and techniques for speech coding now permit high quality voice reproduction at remarkably low bit rates. The advent of powerful single-ship signal processors has made it cost effective to implement these new and sophisticated speech coding algorithms for many important applications in voice communication and storage. Some of the main ideas underlying the algorithms of major interest today are reviewed. The concept of removing redundancy by linear prediction is reviewed, first in the context of predictive quantization or DPCM. Then linear predictive coding, adaptive predictive coding, and vector quantization are discussed. The concepts of excitation coding via analysis-by-synthesis, vector sum excitation codebooks, and adaptive postfiltering are explained. The main idea of vector excitation coding (VXC) or code excited linear prediction (CELP) are presented. Finally low-delay VXC coding and phonetic segmentation for VXC are described.

  3. code {poems}

    Directory of Open Access Journals (Sweden)

    Ishac Bertran

    2012-08-01

    Full Text Available "Exploring the potential of code to communicate at the level of poetry," the code­ {poems} project solicited submissions from code­writers in response to the notion of a poem, written in a software language which is semantically valid. These selections reveal the inner workings, constitutive elements, and styles of both a particular software and its authors.

  4. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  5. Approximate level method

    OpenAIRE

    Richtárik, Peter

    2008-01-01

    In this paper we propose and analyze a variant of the level method [4], which is an algorithm for minimizing nonsmooth convex functions. The main work per iteration is spent on 1) minimizing a piecewise-linear model of the objective function and on 2) projecting onto the intersection of the feasible region and a polyhedron arising as a level set of the model. We show that by replacing exact computations in both cases by approximate computations, in relative scale, the theoretical ...

  6. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111. ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  7. Local approximate inference algorithms

    OpenAIRE

    Jung, Kyomin; Shah, Devavrat

    2006-01-01

    We present a new local approximation algorithm for computing Maximum a Posteriori (MAP) and log-partition function for arbitrary exponential family distribution represented by a finite-valued pair-wise Markov random field (MRF), say $G$. Our algorithm is based on decomposition of $G$ into {\\em appropriately} chosen small components; then computing estimates locally in each of these components and then producing a {\\em good} global solution. We show that if the underlying graph $G$ either excl...

  8. Fragments of approximate counting

    Czech Academy of Sciences Publication Activity Database

    Buss, S.R.; Kolodziejczyk, L.. A.; Thapen, Neil

    2014-01-01

    Roč. 79, č. 2 (2014), s. 496-525. ISSN 0022-4812 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : approximate counting * bounded arithmetic * ordering principle Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9287274&fileId=S0022481213000376

  9. Improved S2 approximations

    International Nuclear Information System (INIS)

    Highlights: • Development of optimization rules for S2 quadrature sets. • Studying the dependency of optimized S2 quadratures on composition and geometry. • Demonstrating S2 procedures preserving the features of higher approximations. - Abstract: Discrete ordinates method relies on approximating the integral term of the transport equation with the aid of quadrature summation rules. These quadratures are usually based on certain assumptions which assure specific symmetry rules and transport/diffusion limits. Generally, these assumptions are not problem-dependent which results in inaccuracies in some instances. Here, various methods have been developed for more accurate estimation of the independent angle in S2 approximation, as it is tightly related to valid estimation of the diffusion coefficient/length. We proposed and examined a method to reduce a complicated problem that usually is consisting many energy groups and discrete directions (SN) to an equivalent one-group S2 problem while it mostly preserves general features of the original model. Some numerical results are demonstrated to show the accuracy of proposed method

  10. On the WKBJ approximation

    International Nuclear Information System (INIS)

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  11. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points in the...

  12. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  13. Approximations to Euler's constant

    International Nuclear Information System (INIS)

    We study a problem of finding good approximations to Euler's constant γ=lim→∞ Sn, where Sn = Σk=Ln (1)/k-log(n+1), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, considering more general linear transformations of the sequence Sn we establish new accelerating convergence formulae for γ. Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results. (author)

  14. Approximating Majority Depth

    CERN Document Server

    Chen, Dan

    2012-01-01

    We consider the problem of approximating the majority depth (Liu and Singh, 1993) of a point q with respect to an n-point set, S, by random sampling. At the heart of this problem is a data structures question: How can we preprocess a set of n lines so that we can quickly test whether a randomly selected vertex in the arrangement of these lines is above or below the median level. We describe a Monte-Carlo data structure for this problem that can be constructed in O(nlog n$ time, can answer queries O((log n)^{4/3}) expected time, and answers correctly with high probability.

  15. The Compact Approximation Property does not imply the Approximation Property

    OpenAIRE

    Willis, George A.

    1992-01-01

    It is shown how to construct, given a Banach space which does not have the approximation property, another Banach space which does not have the approximation property but which does have the compact approximation property.

  16. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  17. Code Cactus

    International Nuclear Information System (INIS)

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors)

  18. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  19. Interacting boson approximation

    International Nuclear Information System (INIS)

    Lectures notes on the Interacting Boson Approximation are given. Topics include: angular momentum tensors; properties of T/sub i//sup (n)/ matrices; T/sub i//sup (n)/ matrices as Clebsch-Gordan coefficients; construction of higher rank tensors; normalization: trace of products of two s-rank tensors; completeness relation; algebra of U(N); eigenvalue of the quadratic Casimir operator for U(3); general result for U(N); angular momentum content of U(3) representation; p-Boson model; Hamiltonian; quadrupole transitions; S,P Boson model; expectation value of dipole operator; S-D model: U(6); quadratic Casimir operator; an O(5) subgroup; an O(6) subgroup; properties of O(5) representations; quadratic Casimir operator; quadratic Casimir operator for U(6); decomposition via SU(5) chain; a special O(3) decomposition of SU(3); useful identities; a useful property of D/sub αβγ/(α,β,γ = 4-8) as coupling coefficients; explicit construction of T/sub x//sup (2)/ and d/sub αβγ/; D-coefficients; eigenstates of T3; and summary of T = 2 states

  20. Operators of Approximations and Approximate Power Set Spaces

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-yong; MO Zhi-wen; SHU Lan

    2004-01-01

    Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.

  1. Approximation algorithms and hardness of approximation for knapsack problems

    NARCIS (Netherlands)

    Buhrman, H.; Loff, B.; Torenvliet, L.

    2012-01-01

    We show various hardness of approximation algorithms for knapsack and related problems; in particular we will show that unless the Exponential-Time Hypothesis is false, then subset-sum cannot be approximated any better than with an FPTAS. We also give a simple new algorithm for approximating knapsac

  2. Approximate nonlinear self-adjointness and approximate conservation laws

    International Nuclear Information System (INIS)

    In this paper, approximate nonlinear self-adjointness for perturbed PDEs is introduced and its properties are studied. Consequently, approximate conservation laws which cannot be obtained by the approximate Noether theorem are constructed by means of the method. As an application, a class of perturbed nonlinear wave equations is considered to illustrate the effectiveness. (paper)

  3. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  4. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  5. $\\sigma $ -Approximately Contractible Banach Algebras

    OpenAIRE

    Momeni, M; Yazdanpanah, T.; Mardanbeigi, M. R.

    2012-01-01

    We investigate $\\sigma $ -approximate contractibility and $\\sigma $ -approximate amenability of Banach algebras, which are extensions of usual notions of contractibility and amenability, respectively, where $\\sigma $ is a dense range or an idempotent bounded endomorphism of the corresponding Banach algebra.

  6. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2015-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  7. Approximate sine-Gordon solitons

    Energy Technology Data Exchange (ETDEWEB)

    Stratopoulos, G.N. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Zakrzewski, W.J. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom))

    1993-08-01

    We look at the recently proposed scheme of approximating a sine-Gordon soliton by an expression derived from two dimensional instantons. We point out that the scheme of Sutcliffe in which he uses two dimensional instantons can be generalised to higher dimensions and that these generalisations produce even better approximations than the original approximation. We also comment on generalisations to other models. (orig.)

  8. NSURE code

    International Nuclear Information System (INIS)

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  9. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  10. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  11. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  12. Beyond Stabilizer Codes II: Clifford Codes

    OpenAIRE

    Klappenecker, Andreas; Roetteler, Martin

    2000-01-01

    Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group has an abelian index group. In particular, if the errors are modelled by tensor products of Pauli matrices, then the associated Clifford codes are necessarily stabilizer codes.

  13. MCNP code

    International Nuclear Information System (INIS)

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  14. ANIMAL code

    International Nuclear Information System (INIS)

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  15. Legendre-tau approximations for functional differential equations

    Science.gov (United States)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  16. Semi-supervised sparse coding

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-07-06

    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.

  17. Approximate solutions for the skyrmion

    CERN Document Server

    Ponciano, J A; Fanchiotti, H; Canal-Garcia, C A

    2001-01-01

    We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pade approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the 2-point Pade approximant procedure whereby the exact behaviour at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.

  18. The Smoothed Approximate Linear Program

    CERN Document Server

    Desai, V V; Moallemi, C C

    2009-01-01

    We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural `projection' of a well studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program--the `smoothed approximate linear program'--is distinct from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate substantially superior bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. Second, experiments with our approach on a challenging problem (the game of Tetris) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several AD...

  19. Approximate Grammar for Information Extraction

    OpenAIRE

    Sriram, V; Reddy, B. Ravi Sekar; Sangal, R.

    2003-01-01

    In this paper, we present the concept of Approximate grammar and how it can be used to extract information from a documemt. As the structure of informational strings cannot be defined well in a document, we cannot use the conventional grammar rules to represent the information. Hence, the need arises to design an approximate grammar that can be used effectively to accomplish the task of Information extraction. Approximate grammars are a novel step in this direction. The rules of an approximat...

  20. BDD Minimization for Approximate Computing

    OpenAIRE

    Soeken, Mathias; Grosse, Daniel; Chandrasekharan, Arun; Drechsler, Rolf

    2016-01-01

    We present Approximate BDD Minimization (ABM) as a problem that has application in approximate computing. Given a BDD representation of a multi-output Boolean function, ABM asks whether there exists another function that has a smaller BDD representation but meets a threshold w.r.t. an error metric. We present operators to derive approximated functions and present algorithms to exactly compute the error metrics directly on the BDD representation. An experimental evaluation demonstrates the app...

  1. CANAL code

    International Nuclear Information System (INIS)

    The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils

  2. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...

  3. Matrix-Free Approximate Equilibration

    OpenAIRE

    Bradley, Andrew M.; Murray, Walter

    2011-01-01

    The condition number of a diagonally scaled matrix, for appropriately chosen scaling matrices, is often less than that of the original. Equilibration scales a matrix so that the scaled matrix's row and column norms are equal. Scaling can be approximate. We develop approximate equilibration algorithms for nonsymmetric and symmetric matrices having signed elements that access a matrix only by matrix-vector products.

  4. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  5. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  6. N-variable rational approximants

    International Nuclear Information System (INIS)

    ''Desirable properties'' of a two-variable generalization of Pade approximants are laid down. The ''Chisholm approximants'' are defined and are shown to obey nearly all of these properties; the alternative ways of completing a unique definition are discussed, and the ''prong structure'' of the defining equations is elucidated. Several generalizations and variants of Chisholm approximants are described: N-variable diagonal, 2-variable simple off-diagonal, N-variable simple and general off-diagonal, and rotationally covariant 2-variable approximants. All of the 2-variable approximants are capable of representing singularities of functions of two variables, and of analytically continuing beyond the polycylinder of convergence of the double series. 8 figures

  7. NOVEL BIPHASE CODE -INTEGRATED SIDELOBE SUPPRESSION CODE

    Institute of Scientific and Technical Information of China (English)

    Wang Feixue; Ou Gang; Zhuang Zhaowen

    2004-01-01

    A kind of novel binary phase code named sidelobe suppression code is proposed in this paper. It is defined to be the code whose corresponding optimal sidelobe suppression filter outputs the minimum sidelobes. It is shown that there do exist sidelobe suppression codes better than the conventional optimal codes-Barker codes. For example, the sidelobe suppression code of length 11 with filter of length 39 has better sidelobe level up to 17dB than that of Barker code with the same code length and filter length.

  8. An approach to cylindrical approximation of toroidal geometry

    International Nuclear Information System (INIS)

    Neutron transport processes in Tokamak fusion devices are described with same mathematical equipment as that used in fission reactor calculations. The aim of this paper is to show some of these methods in toroidal geometry problem. A new approach to cylindrical approximation is described. All calculations are performed by ANISN one-dimensional Sn code. To validate the present method, comparison have been done with Monte Carlo results, as well as with calculations done on previous geometry approximation (author)

  9. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing in...

  10. Concatenated codes with convolutional inner codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Thommesen, Christian; Zyablov, Viktor

    1988-01-01

    The minimum distance of concatenated codes with Reed-Solomon outer codes and convolutional inner codes is studied. For suitable combinations of parameters the minimum distance can be lower-bounded by the product of the minimum distances of the inner and outer codes. For a randomized ensemble of...... concatenated codes a lower bound of the Gilbert-Varshamov type is proved...

  11. Chebyshev polynomial approximation to approximate partial differential equations

    OpenAIRE

    Caporale, Guglielmo Maria; Cerrato, Mario

    2008-01-01

    This pa per suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions t...

  12. Minimizing correlation effect using zero cross correlation code in spectral amplitude coding optical code division multiple access

    Science.gov (United States)

    Safar, Anuar Mat; Aljunid, Syed Alwee; Arief, Amir Razif; Nordin, Junita; Saad, Naufal

    2012-01-01

    The use of minimal multiple access interference (MAI) in code design is investigated. Applying a projection and mapping techniques, a code that has a zero cross correlation (ZCC) between users in optical code division multiple access (OCDMA) is presented in this paper. The system is based on an incoherent light source—LED, spectral amplitude coding (SAC), and direct detection techniques at the receiver. Using power spectral density (PSD) function and Gaussian approximation, we obtain the signal-to-noise ratio (SNR) and the bit-error rate (BER) to measure the code performance. Making a comparison with other existing codes, e.g., Hadamard, MFH and MDW codes, we show that our code performs better at BER 10-9 in terms of number of simultaneous users. We also demonstrate the comparison between the theoretical and simulation analyses, where the results are close to one another.

  13. Non-axisymmetric oscillations of rapidly rotating relativistic stars by conformal flatness approximation

    OpenAIRE

    Yoshida, Shin'ichirou

    2012-01-01

    We present a new numerical code to compute non-axisymmetric eigenmodes of rapidly rotating relativistic stars by adopting spatially conformally flat approximation of general relativity. The approximation suppresses the radiative degree of freedom of relativistic gravity and the field equations are cast into a set of elliptic equations. The code is tested against the low-order f- and p-modes of slowly rotating stars for which a good agreement is observed in frequencies computed by our new code...

  14. The efficiency of Flory approximation

    International Nuclear Information System (INIS)

    The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)

  15. Approximate Reanalysis in Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures is...... investigated. The nested optimization problem is re-formulated to accommodate the use of an approximate displacement vector and the design sensitivities are derived accordingly. It is shown that relatively rough approximations are acceptable since the errors are taken into account in the sensitivity analysis...

  16. Quantum Cyclic Code

    CERN Document Server

    Dutta, Sagarmoy

    2010-01-01

    In this paper, we define and study \\emph{quantum cyclic codes}, a generalisation of cyclic codes to the quantum setting. Previously studied examples of quantum cyclic codes were all quantum codes obtained from classical cyclic codes via the CSS construction. However, the codes that we study are much more general. In particular, we construct cyclic stabiliser codes with parameters $[[5,1,3

  17. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  18. Approximate maximizers of intricacy functionals

    CERN Document Server

    Buzzi, Jerome

    2009-01-01

    G. Edelman, O. Sporns, and G. Tononi introduced in theoretical biology the neural complexity of a family of random variables. This functional is a special case of intricacy, i.e., an average of the mutual information of subsystems whose weights have good mathematical properties. Moreover, its maximum value grows at a definite speed with the size of the system. In this work, we compute exactly this speed of growth by building "approximate maximizers" subject to an entropy condition. These approximate maximizers work simultaneously for all intricacies. We also establish some properties of arbitrary approximate maximizers, in particular the existence of a threshold in the size of subsystems of approximate maximizers: most smaller subsystems are almost equidistributed, most larger subsystems determine the full system. The main ideas are a random construction of almost maximizers with a high statistical symmetry and the consideration of entropy profiles, i.e., the average entropies of sub-systems of a given size. ...

  19. Metrical Diophantine approximation for quaternions

    CERN Document Server

    Dodson, Maurice

    2011-01-01

    The metrical theory of Diophantine approximation for quaternions is developed using recent results in the general theory. In particular, Quaternionic analogues of the classical theorems of Khintchine, Jarnik and Jarnik-Besicovitch are established.

  20. Metrical Diophantine approximation for quaternions

    Science.gov (United States)

    Dodson, Maurice; Everitt, Brent

    2014-11-01

    Analogues of the classical theorems of Khintchine, Jarnik and Jarnik-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general `lim sup' sets.

  1. Reinforcement Learning via AIXI Approximation

    OpenAIRE

    Veness, Joel; Ng, Kee Siong; Hutter, Marcus; Silver, David

    2010-01-01

    This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To deve...

  2. Binary nucleation beyond capillarity approximation

    OpenAIRE

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...

  3. Approximate factorization with source terms

    Science.gov (United States)

    Shih, T. I.-P.; Chyu, W. J.

    1991-01-01

    A comparative evaluation is made of three methodologies with a view to that which offers the best approximate factorization error. While two of these methods are found to lead to more efficient algorithms in cases where factors which do not contain source terms can be diagonalized, the third method used generates the lowest approximate factorization error. This method may be preferred when the norms of source terms are large, and transient solutions are of interest.

  4. Chebyshev approximation for multivariate functions

    OpenAIRE

    Sukhorukova, Nadezda; Ugon, Julien; Yost, David

    2015-01-01

    In this paper, we derive optimality conditions (Chebyshev approximation) for multivariate functions. The theory of Chebyshev (uniform) approximation for univariate functions is very elegant. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). It is not very straightforward, however, how to extend the notion of alternance to the case of multivariate functions. There have been several attempts to extend the theory of Cheby...

  5. Analytic Approximations for Spread Options

    OpenAIRE

    Carol Alexander; Aanand Venkatramanan

    2007-01-01

    Even in the simple case that two price processes follow correlated geometric Brownian motions with constant volatility no analytic formula for the price of a standard European spread option has been derived, except when the strike is zero in which case the option becomes an exchange option. This paper expresses the price of a spread option as the price of a compound exchange option and hence derives a new analytic approximation for its price and hedge ratios. This approximation has several ad...

  6. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  7. Using projections and correlations to approximate probability distributions

    CERN Document Server

    Karlen, D A

    1998-01-01

    A method to approximate continuous multi-dimensional probability density functions (PDFs) using their projections and correlations is described. The method is particularly useful for event classification when estimates of systematic uncertainties are required and for the application of an unbinned maximum likelihood analysis when an analytic model is not available. A simple goodness of fit test of the approximation can be used, and simulated event samples that follow the approximate PDFs can be efficiently generated. The source code for a FORTRAN-77 implementation of this method is available.

  8. Implatation of MC2 computer code

    International Nuclear Information System (INIS)

    The implantation of MC2 computer code in the CDC system is presented. The MC2 computer code calculates multigroup cross sections for tipical compositions of fast reactors. The multigroup constants are calculated using solutions of PI or BI approximations for determined buckling value as weighting function. (M.C.K.)

  9. Comparing numerical and analytic approximate gravitational waveforms

    Science.gov (United States)

    Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.

  10. Wavelet Sparse Approximate Inverse Preconditioners

    Science.gov (United States)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  11. Shearlets and Optimally Sparse Approximations

    CERN Document Server

    Kutyniok, Gitta; Lim, Wang-Q

    2011-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the $L^2$ error of the best $N$-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported sh...

  12. Relativistic regular approximations revisited: An infinite-order relativistic approximation

    International Nuclear Information System (INIS)

    The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy - Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy - Wouthuysen transformation, which results in the ZORA Hamiltonian and a non-unit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E3/c4 for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the non-variational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. copyright 1999 American Institute of Physics

  13. Quantum Convolutional BCH Codes

    CERN Document Server

    Aly, S A; Klappenecker, A; Roetteler, M; Sarvepalli, P K; Aly, Salah A.; Grassl, Markus; Klappenecker, Andreas; Roetteler, Martin; Sarvepalli, Pradeep Kiran

    2007-01-01

    Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular convolutional BCH codes. These codes have the property that they contain their Euclidean, respectively Hermitian, dual codes. Hence, they can be used to define quantum convolutional codes by the stabilizer code construction. We compute BCH-like bounds on the free distances which can be controlled as in the case of block codes, and establish that the codes have non-catastrophic encoders.

  14. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  15. Concept Approximation between Fuzzy Ontologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fuzzy ontologies are efficient tools to handle fuzzy and uncertain knowledge on the semantic web; but there are heterogeneity problems when gaining interoperability among different fuzzy ontologies. This paper uses concept approximation between fuzzy ontologies based on instances to solve the heterogeneity problems. It firstly proposes an instance selection technology based on instance clustering and weighting to unify the fuzzy interpretation of different ontologies and reduce the number of instances to increase the efficiency. Then the paper resolves the problem of computing the approximations of concepts into the problem of computing the least upper approximations of atom concepts. It optimizes the search strategies by extending atom concept sets and defining the least upper bounds of concepts to reduce the searching space of the problem. An efficient algorithm for searching the least upper bounds of concept is given.

  16. An Approximation Ratio for Biclustering

    OpenAIRE

    Puolamäki, Kai; Hanhijärvi, Sami; Garriga, Gemma C

    2007-01-01

    The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying one-way clustering algorithms independently on the rows and on the columns of the input matrix. We show that such a solution yields a worst-case approximation ratio of 1+sqrt(2) under L1-norm for 0-1 valued matrices, and of 2...

  17. An Approximation Ratio for Biclustering

    CERN Document Server

    Puolamäki, Kai; Garriga, Gemma C

    2007-01-01

    The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying one-way clustering algorithms independently on the rows and on the columns of the input matrix. We show that such a solution yields a worst-case approximation ratio of 1+sqrt(2) under L1-norm for 0-1 valued matrices, and of 2 under L2-norm for real valued matrices.

  18. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of...... provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an...

  19. Concatenated Conjugate Codes

    CERN Document Server

    Hamada, M

    2006-01-01

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  20. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  1. Approximate Reasoning with Fuzzy Booleans

    NARCIS (Netherlands)

    Broek, van den P.M.; Noppen, J.A.R.

    2004-01-01

    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante

  2. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare maximi...

  3. Analytical Approximations to Galaxy Clustering

    OpenAIRE

    Mo, H. J.

    1997-01-01

    We discuss some recent progress in constructing analytic approximations to the galaxy clustering. We show that successful models can be constructed for the clustering of both dark matter and dark matter haloes. Our understanding of galaxy clustering and galaxy biasing can be greatly enhanced by these models.

  4. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    2013-01-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  5. Approximation by Penultimate Stable Laws

    NARCIS (Netherlands)

    L.F.M. de Haan (Laurens); L. Peng (Liang); H. Iglesias Pereira

    1997-01-01

    textabstractIn certain cases partial sums of i.i.d. random variables with finite variance are better approximated by a sequence of stable distributions with indices \\\\alpha_n \\\\to 2 than by a normal distribution. We discuss when this happens and how much the convergence rate can be improved by using

  6. Approximation properties of haplotype tagging

    Directory of Open Access Journals (Sweden)

    Dreiseitl Stephan

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.

  7. Impact of inflow transport approximation on light water reactor analysis

    Science.gov (United States)

    Choi, Sooyoung; Smith, Kord; Lee, Hyun Chul; Lee, Deokjung

    2015-10-01

    The impact of the inflow transport approximation on light water reactor analysis is investigated, and it is verified that the inflow transport approximation significantly improves the accuracy of the transport and transport/diffusion solutions. A methodology for an inflow transport approximation is implemented in order to generate an accurate transport cross section. The inflow transport approximation is compared to the conventional methods, which are the consistent-PN and the outflow transport approximations. The three transport approximations are implemented in the lattice physics code STREAM, and verification is performed for various verification problems in order to investigate their effects and accuracy. From the verification, it is noted that the consistent-PN and the outflow transport approximations cause significant error in calculating the eigenvalue and the power distribution. The inflow transport approximation shows very accurate and precise results for the verification problems. The inflow transport approximation shows significant improvements not only for the high leakage problem but also for practical large core problem analyses.

  8. Low Rank Approximation in $G_0W_0$ Approximation

    CERN Document Server

    Shao, Meiyue; Yang, Chao; Liu, Fang; da Jornada, Felipe H; Deslippe, Jack; Louie, Steven G

    2016-01-01

    The single particle energies obtained in a Kohn--Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The $G_0W_0$ approximation is a widely used technique in which the self energy is expressed as the convolution of a non-interacting Green's function ($G_0$) and a screened Coulomb interaction ($W_0$) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating $W_0$ at multiple frequencies. In this paper, we discuss how the cos...

  9. Twisted Permutation Codes

    OpenAIRE

    Gillespie, Neil I.; Praeger, Cheryl E.; Spiga, Pablo

    2014-01-01

    We introduce twisted permutation codes, which are frequency permutation arrays analogous to repetition permutation codes, namely, codes obtained from the repetition construction applied to a permutation code. In particular, we show that a lower bound for the minimum distance of a twisted permutation code is the minimum distance of a repetition permutation code. We give examples where this bound is tight, but more importantly, we give examples of twisted permutation codes with minimum distance...

  10. Transitive nonpropelinear perfect codes

    OpenAIRE

    Mogilnykh, I. Yu.; Solov'eva, F. I.

    2014-01-01

    A code is called transitive if its automorphism group (the isometry group) of the code acts transitively on its codewords. If there is a subgroup of the automorphism group acting regularly on the code, the code is called propelinear. Using Magma software package we establish that among 201 equivalence classes of transitive perfect codes of length 15 from \\cite{ost} there is a unique nonpropelinear code. We solve the existence problem for transitive nonpropelinear perfect codes for any admissi...

  11. Approximate Matching of Hierarchial Data

    DEFF Research Database (Denmark)

    Augsten, Nikolaus

    formally proof that the pq-gram index can be incrementally updated based on the log of edit operations without reconstructing intermediate tree versions. The incremental update is independent of the data size and scales to a large number of changes in the data. We introduce windowed pq-grams for the......-gram based distance between streets, introduces a global greedy matching that guarantees stable pairs, and links addresses that are stored with different granularity. The connector has been successfully tested with public administration databases. Our extensive experiments on both synthetic and real world......The goal of this thesis is to design, develop, and evaluate new methods for the approximate matching of hierarchical data represented as labeled trees. In approximate matching scenarios two items should be matched if they are similar. Computing the similarity between labeled trees is hard as in...

  12. Approximate Privacy: Foundations and Quantification

    CERN Document Server

    Feigenbaum, Joan; Schapira, Michael

    2009-01-01

    Increasing use of computers and networks in business, government, recreation, and almost all aspects of daily life has led to a proliferation of online sensitive data about individuals and organizations. Consequently, concern about the privacy of these data has become a top priority, particularly those data that are created and used in electronic commerce. There have been many formulations of privacy and, unfortunately, many negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environments. We formulate communication-complexity-based definitions, both worst-case and average-case, of a problem's privacy-approximation ratio. We use our definitions to investigate the extent to which approximate privacy is achievable in two standard problems: the second-price Vickrey auction and the millionaires problem of Yao. For both the second-price Vickrey auction and the millionaires problem, we show that not only is perfect privacy impossible or infeasibly costly to achieve...

  13. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  14. Concentration Bounds for Stochastic Approximations

    CERN Document Server

    Frikha, Noufel

    2012-01-01

    We obtain non asymptotic concentration bounds for two kinds of stochastic approximations. We first consider the deviations between the expectation of a given function of the Euler scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure. We then give some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes. For the first case, as opposed to the previous work of Lemaire and Menozzi (EJP, 2010), we do not have any systematic bias in our estimates. Also, no specific non-degeneracy conditions are assumed.

  15. Waveless Approximation Theories of Gravity

    CERN Document Server

    Isenberg, J A

    2007-01-01

    The analysis of a general multibody physical system governed by Einstein's equations in quite difficult, even if numerical methods (on a computer) are used. Some of the difficulties -- many coupled degrees of freedom, dynamic instability -- are associated with the presence of gravitational waves. We have developed a number of ``waveless approximation theories'' (WAT) which repress the gravitational radiation and thereby simplify the analysis. The matter, according to these theories, evolves dynamically. The gravitational field, however, is determined at each time step by a set of elliptic equations with matter sources. There is reason to believe that for many physical systems, the WAT-generated system evolution is a very accurate approximation to that generated by the full Einstein theory.

  16. On Approximability of Block Sorting

    CERN Document Server

    Narayanaswamy, N S

    2011-01-01

    Block Sorting is a well studied problem, motivated by its applications in Optical Character Recognition (OCR), and Computational Biology. Block Sorting has been shown to be NP-Hard, and two separate polynomial time 2-approximation algorithms have been designed for the problem. But questions like whether a better approximation algorithm can be designed, and whether the problem is APX-Hard have been open for quite a while now. In this work we answer the latter question by proving Block Sorting to be Max-SNP-Hard (APX-Hard). The APX-Hardness result is based on a linear reduction of Max-3SAT to Block Sorting. We also provide a new lower bound for the problem via a new parametrized problem k-Block Merging.

  17. Variance approximation under balanced sampling

    OpenAIRE

    Deville, Jean-Claude; Tillé, Yves

    2016-01-01

    A balanced sampling design has the interesting property that Horvitz–Thompson estimators of totals for a set of balancing variables are equal to the totals we want to estimate, therefore the variance of Horvitz–Thompson estimators of variables of interest are reduced in function of their correlations with the balancing variables. Since it is hard to derive an analytic expression for the joint inclusion probabilities, we derive a general approximation of variance based on a residual technique....

  18. Approximating Metal-Insulator Transitions

    OpenAIRE

    Danieli, C.; Rayanov, K.; Pavlov, B.; Martin, G.; Flach, S

    2014-01-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility ed...

  19. Saddlepoint approximations to option prices

    OpenAIRE

    Rogers, L. C. G.; Zane, O.

    1999-01-01

    The use of saddlepoint approximations in statistics is a well-established technique for computing the distribution of a random variable whose moment generating function is known. In this paper, we apply the methodology to computing the prices of various European-style options, whose returns processes are not the Brownian motion with drift assumed in the Black-Scholes paradigm. Through a number of examples, we show that the methodology is generally accurate and fast.

  20. Approximate maximizers of intricacy functionals

    OpenAIRE

    Buzzi, Jerome; Zambotti, Lorenzo

    2009-01-01

    G. Edelman, O. Sporns, and G. Tononi introduced in theoretical biology the neural complexity of a family of random variables. This functional is a special case of intricacy, i.e., an average of the mutual information of subsystems whose weights have good mathematical properties. Moreover, its maximum value grows at a definite speed with the size of the system. In this work, we compute exactly this speed of growth by building "approximate maximizers" subject to an entropy condition. These appr...

  1. Stochastic approximation algorithms and applications

    CERN Document Server

    Kushner, Harold J

    1997-01-01

    In recent years algorithms of the stochastic approximation type have found applications in new and diverse areas, and new techniques have been developed for proofs of convergence and rate of convergence. The actual and potential applications in signal processing have exploded. New challenges have arisen in applications to adaptive control. This book presents a thorough coverage of the ODE method used to analyze these algorithms.

  2. Quantum Tunneling Beyond Semiclassical Approximation

    OpenAIRE

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black h...

  3. Approximate quantum and acoustic cloaking

    CERN Document Server

    Greenleaf, Allan; Lassas, Matti; Uhlmann, Gunther

    2008-01-01

    At any energy E > 0, we construct a sequence of bounded potentials $V^E_{n}, n\\in\\N$, supported in an annular region $B_{out}\\setminus B_{inn}$ in three-space, which act as approximate cloaks for solutions of Schr\\"odinger's equation: For any potential $V_0\\in L^\\infty(B_{inn})$ such that E is not a Neumann eigenvalue of $-\\Delta+V_0$ in $B_{inn}$, the scattering amplitudes $a_{V_0+V_n^E}(E,\\theta,\\omega)\\to 0$ as $n\\to\\infty$. The $V^E_{n}$ thus not only form a family of approximately transparent potentials, but also function as approximate invisibility cloaks in quantum mechanics. On the other hand, for $E$ close to interior eigenvalues, resonances develop and there exist {\\it almost trapped states} concentrated in $B_{inn}$. We derive the $V_n^E$ from singular, anisotropic transformation optics-based cloaks by a de-anisotropization procedure, which we call \\emph{isotropic transformation optics}. This technique uses truncation, inverse homogenization and spectral theory to produce nonsingular, isotropic app...

  4. Computer Experiments for Function Approximations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  5. Homological stabilizer codes

    International Nuclear Information System (INIS)

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev’s toric code or to the topological color codes. - Highlights: ► We show that Kitaev’s toric codes are equivalent to homological stabilizer codes on 4-valent graphs. ► We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. ► We find and classify all 2D homological stabilizer codes. ► We find optimal codes among the homological stabilizer codes.

  6. Radiative transfer in disc galaxies $-$ V. The accuracy of the KB approximation

    CERN Document Server

    Lee, Dukhang; Seon, Kwang-Il; Camps, Peter; Verstocken, Sam; Han, Wonyong

    2016-01-01

    We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined ($i \\gtrsim 85^{\\circ}$) and/or optically thick (central face-on optical depth $\\gtrsim1$) galaxy models, the approximation can give rise to substantial errors, sometimes, up to $\\gtrsim 40\\%$. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite inten...

  7. Product Approximation of Grade and Precision

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-yong; MO Zhi-wen

    2005-01-01

    The normal graded approximation and variable precision approximation are defined in approximate space. The relationship between graded approximation and variable precision approximation is studied, and an important formula of conversion between them is achieved. The product approximation of gradeand precision is defined and its basic properties are studied.

  8. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  9. Model Children's Code.

    Science.gov (United States)

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  10. Turbo Codes Extended with Outer BCH Code

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    1996-01-01

    The "error floor" observed in several simulations with the turbo codes is verified by calculation of an upper bound to the bit error rate for the ensemble of all interleavers. Also an easy way to calculate the weight enumerator used in this bound is presented. An extended coding scheme is proposed...... including an outer BCH code correcting a few bit errors....

  11. Generalized gradient approximation made simple

    International Nuclear Information System (INIS)

    Generalized gradient approximations Exc = ∫ d3 r f(n↑, n↓, triangledown n↑, triangledown n↓) for the exchange-correlation energy typically surpass the accuracy of the local spin density approximation and compete with standard quantum-chemical methods in electronic-structure calculations. But the derivation and analytic expression for the integrand f tend to be complicated and over-parametrized. We present a simple derivation of a simple but accurate expression for f, involving no parameter other than fundamental-constants. The derivation invoices only general ideas (not details) of the real-space cutoff construction, and agrees closely with the result of this construction. Besides its greater simplicity, this PBE96 functional has other advantages over PW91: (1) The correct behavior of the correlation energy is recovered under uniform scaling to the high-density limit. (2) The linear response of the uniform electron gas agrees with the accurate local spin density prediction. 96:006128*1 Paper TuI 6 Many-body effects are hidden in the universal density functional. The interaction of degenerate states via two-body operators, such as the electron-electron repulsion (for describing multiplets or the interaction of molecular fragments at large separations) are thus not explicitly considered in the Kohn-Sham scheme. In practice the density functionals have to be approximated, and there is a fundamental difficulty which arises in the case of degeneracy. While density functionals should be universal, the effect of degeneracy is linked to the potential characteristic to the atom, molecule, or crystal. There are, however, several possibilities to treat degeneracy effects within density functional theory, a few of which will be discussed. These take profit of the use of two-body operators, which can be, but must not be, the physical electron-electron interaction

  12. Compressive Hyperspectral Imaging via Approximate Message Passing

    Science.gov (United States)

    Tan, Jin; Ma, Yanting; Rueda, Hoover; Baron, Dror; Arce, Gonzalo R.

    2016-03-01

    We consider a compressive hyperspectral imaging reconstruction problem, where three-dimensional spatio-spectral information about a scene is sensed by a coded aperture snapshot spectral imager (CASSI). The CASSI imaging process can be modeled as suppressing three-dimensional coded and shifted voxels and projecting these onto a two-dimensional plane, such that the number of acquired measurements is greatly reduced. On the other hand, because the measurements are highly compressive, the reconstruction process becomes challenging. We previously proposed a compressive imaging reconstruction algorithm that is applied to two-dimensional images based on the approximate message passing (AMP) framework. AMP is an iterative algorithm that can be used in signal and image reconstruction by performing denoising at each iteration. We employed an adaptive Wiener filter as the image denoiser, and called our algorithm "AMP-Wiener." In this paper, we extend AMP-Wiener to three-dimensional hyperspectral image reconstruction, and call it "AMP-3D-Wiener." Applying the AMP framework to the CASSI system is challenging, because the matrix that models the CASSI system is highly sparse, and such a matrix is not suitable to AMP and makes it difficult for AMP to converge. Therefore, we modify the adaptive Wiener filter and employ a technique called damping to solve for the divergence issue of AMP. Our approach is applied in nature, and the numerical experiments show that AMP-3D-Wiener outperforms existing widely-used algorithms such as gradient projection for sparse reconstruction (GPSR) and two-step iterative shrinkage/thresholding (TwIST) given a similar amount of runtime. Moreover, in contrast to GPSR and TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies the reconstruction process.

  13. Quantum Tunneling Beyond Semiclassical Approximation

    CERN Document Server

    Banerjee, Rabin

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  14. Quantum tunneling beyond semiclassical approximation

    Science.gov (United States)

    Banerjee, Rabin; Ranjan Majhi, Bibhas

    2008-06-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  15. Fermion Tunneling Beyond Semiclassical Approximation

    CERN Document Server

    Majhi, Bibhas Ranjan

    2008-01-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in \\cite{Majhi3} for the scalar particle, Hawking radiation as tunneling of Dirac particle through an event horizon is analysed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  16. Fermion tunneling beyond semiclassical approximation

    Science.gov (United States)

    Majhi, Bibhas Ranjan

    2009-02-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  17. Rollout Sampling Approximate Policy Iteration

    CERN Document Server

    Dimitrakakis, Christos

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.

  18. The distorted wave Glauber approximation

    International Nuclear Information System (INIS)

    A solution of the Pauli equation with non-zero potentials defines quantum scalar and vector potentials and magnetic fields and quantum trajectories. If a line integral of perturbing potentials and fields along these quantum trajectories is added to the phase of this solution, an approximate solution of the perturbed equation is found. Glauber theory is a special case and the conditions of applicability are similar. Applications given start from the harmonic oscillator and from a homogeneous magnetic field and add a perturbation. (author)

  19. The structural physical approximation conjecture

    Science.gov (United States)

    Shultz, Fred

    2016-01-01

    It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.

  20. Rotating wave approximation and entropy

    International Nuclear Information System (INIS)

    This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.

  1. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points in the...

  2. Patched Conic Trajectory Code

    Science.gov (United States)

    Park, Brooke Anderson; Wright, Henry

    2012-01-01

    PatCon code was developed to help mission designers run trade studies on launch and arrival times for any given planet. Initially developed in Fortran, the required inputs included launch date, arrival date, and other orbital parameters of the launch planet and arrival planets at the given dates. These parameters include the position of the planets, the eccentricity, semi-major axes, argument of periapsis, ascending node, and inclination of the planets. With these inputs, a patched conic approximation is used to determine the trajectory. The patched conic approximation divides the planetary mission into three parts: (1) the departure phase, in which the two relevant bodies are Earth and the spacecraft, and where the trajectory is a departure hyperbola with Earth at the focus; (2) the cruise phase, in which the two bodies are the Sun and the spacecraft, and where the trajectory is a transfer ellipse with the Sun at the focus; and (3) the arrival phase, in which the two bodies are the target planet and the spacecraft, where the trajectory is an arrival hyperbola with the planet as the focus.

  3. Wavelet Approximation in Data Assimilation

    Science.gov (United States)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  4. Affine Grassmann codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Beelen, Peter; Ghorpade, Sudhir Ramakant

    2010-01-01

    We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes.We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that...... affine Grassmann codes have a large automorphism group and determine the number of minimum weight codewords....

  5. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both the...... coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  6. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  7. Polyphase alternating codes

    Directory of Open Access Journals (Sweden)

    M. Markkanen

    2008-08-01

    Full Text Available We present a new class of alternating codes. Instead of the customary binary phase codes, the new codes utilize either p or p–1 phases, where p is a prime number. The first class of codes has code length pm, where m is a positive integer, the second class has code length p–1. We give an actual construction algorithm, and explain the principles behind it. We handle a few specific examples in detail. The new codes offer an enlarged collection of code lengths for radar experiments.

  8. Coding for dummies

    CERN Document Server

    Abraham, Nikhil

    2015-01-01

    Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill

  9. Approximation Error Based Suitable Domain Search for Fractal Image Compression

    Directory of Open Access Journals (Sweden)

    Vijayshri Chaurasia

    2010-02-01

    Full Text Available Fractal Image compression is a very advantageous technique in the field of image compression. The coding phase of this technique is very time consuming because of computational expenses of suitable domain search. In this paper we have proposed an approximation error based speed-up technique with the use of feature extraction. Proposed scheme reduces the number of range-domain comparisons with significant amount and gives improved time performance.

  10. Coupling CFD code with system code and neutron kinetic code

    Energy Technology Data Exchange (ETDEWEB)

    Vyskocil, Ladislav, E-mail: Ladislav.Vyskocil@ujv.cz; Macek, Jiri

    2014-11-15

    Highlights: • Coupling interface between CFD code Fluent and system code Athlet was created. • Athlet code is internally coupled with neutron kinetic code Dyn3D. • Explicit coupling of overlapped computational domains was used. • A coupled system of Athlet/Dyn3D+Fluent codes was successfully tested on a real case. - Abstract: The aim of this work was to develop the coupling interface between CFD code Fluent and system code Athlet internally coupled with neutron kinetic code Dyn3D. The coupling interface is intended for simulation of complex transients such as Main Steam Line Break scenarios, which cannot be modeled separately first by system and neutron kinetic code and then by CFD code, because of the feedback between the codes. In the first part of this article, the coupling method is described. Explicit coupling of overlapped computational domains is used in this work. The second part of the article presents a demonstration simulation performed by the coupled system of Athlet/Dyn3D and Fluent. The “Opening a Steam Dump to the Atmosphere” test carried out at the Temelin NPP (VVER-1000) was simulated by the coupled system. In this simulation, the primary and secondary circuits were modeled by Athlet, mixing in downcomer and lower plenum was simulated by Fluent and heat generation in the core was calculated by Dyn3D. The results of the simulation with Athlet/Dyn3D+Fluent were compared with the experimental data and the results from a calculation performed with Athlet/Dyn3D without Fluent.

  11. Coupling CFD code with system code and neutron kinetic code

    International Nuclear Information System (INIS)

    Highlights: • Coupling interface between CFD code Fluent and system code Athlet was created. • Athlet code is internally coupled with neutron kinetic code Dyn3D. • Explicit coupling of overlapped computational domains was used. • A coupled system of Athlet/Dyn3D+Fluent codes was successfully tested on a real case. - Abstract: The aim of this work was to develop the coupling interface between CFD code Fluent and system code Athlet internally coupled with neutron kinetic code Dyn3D. The coupling interface is intended for simulation of complex transients such as Main Steam Line Break scenarios, which cannot be modeled separately first by system and neutron kinetic code and then by CFD code, because of the feedback between the codes. In the first part of this article, the coupling method is described. Explicit coupling of overlapped computational domains is used in this work. The second part of the article presents a demonstration simulation performed by the coupled system of Athlet/Dyn3D and Fluent. The “Opening a Steam Dump to the Atmosphere” test carried out at the Temelin NPP (VVER-1000) was simulated by the coupled system. In this simulation, the primary and secondary circuits were modeled by Athlet, mixing in downcomer and lower plenum was simulated by Fluent and heat generation in the core was calculated by Dyn3D. The results of the simulation with Athlet/Dyn3D+Fluent were compared with the experimental data and the results from a calculation performed with Athlet/Dyn3D without Fluent

  12. Simple approximations for condensational growth

    Energy Technology Data Exchange (ETDEWEB)

    Kostinski, A B [Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1200 (United States)], E-mail: alex.kostinski@mtu.edu

    2009-01-15

    A simple geometric argument relating to the liquid water content of clouds is given. The phase relaxation time and the nature of the quasi-steady approximation for the diffusional growth of cloud drops are elucidated directly in terms of water vapor concentration. Spatial gradients of vapor concentration, inherent in the notion of quasi-steady growth, are discussed and we argue for an occasional reversal of the traditional point of view: rather than a drop growing in response to a given supersaturation, the observed values of the supersaturation in clouds are the result of a vapor field adjusting to droplet growth. Our perspective is illustrated by comparing the exponential decay of condensation trails with a quasi-steady regime of cirrus clouds. The role of aerosol loading in decreasing relaxation times and increasing the rate of growth of the liquid water content is also discussed.

  13. Strong shock implosion, approximate solution

    Science.gov (United States)

    Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.

    1983-01-01

    The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.

  14. Stochastic Approximation with Averaging Innovation

    CERN Document Server

    Laruelle, Sophie

    2010-01-01

    The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic approximation in a setting with innovations satisfying some averaging properties and to study some applications. The averaging assumptions allow us to unify the framework where the innovations are generated (to solve problems from Numerical Probability) and the one with exogenous innovations (market data, output of "device" $e.g.$ an Euler scheme) with stationary or ergodic properties. We propose several fields of applications with random innovations or quasi-random numbers. In particular we provide in both setting a rule to tune the step of the algorithm. At last we illustrate our results on five examples notably in Finance.

  15. Benchmarking Declarative Approximate Selection Predicates

    CERN Document Server

    Hassanzadeh, Oktie

    2009-01-01

    Declarative data quality has been an active research topic. The fundamental principle behind a declarative approach to data quality is the use of declarative statements to realize data quality primitives on top of any relational data source. A primary advantage of such an approach is the ease of use and integration with existing applications. Several similarity predicates have been proposed in the past for common quality primitives (approximate selections, joins, etc.) and have been fully expressed using declarative SQL statements. In this thesis, new similarity predicates are proposed along with their declarative realization, based on notions of probabilistic information retrieval. Then, full declarative specifications of previously proposed similarity predicates in the literature are presented, grouped into classes according to their primary characteristics. Finally, a thorough performance and accuracy study comparing a large number of similarity predicates for data cleaning operations is performed.

  16. Narrow-width approximation accuracy

    International Nuclear Information System (INIS)

    A study of general properties of the narrow-width approximation (NWA) with polarization/spin decorrelation is presented. We prove for sufficiently inclusive differential rates of arbitrary resonant decay or scattering processes with an on-shell intermediate state decaying via a cubic or quartic vertex that decorrelation effects vanish and the NWA is of order Γ. Its accuracy is then determined numerically for all resonant 3-body decays involving scalars, spin-1/2 fermions or vector bosons. We specialize the general results to MSSM benchmark scenarios. Significant off-shell corrections can occur - similar in size to QCD corrections. We qualify the configurations in which a combined consideration is advisable. For this purpose, we also investigate process-independent methods to improve the NWA

  17. Reconstruction within the Zeldovich approximation

    CERN Document Server

    White, Martin

    2015-01-01

    The Zeldovich approximation, 1st order Lagrangian perturbation theory, provides a good description of the clustering of matter and galaxies on large scales. The acoustic feature in the large-scale correlation function of galaxies imprinted by sound waves in the early Universe has been successfully used as a `standard ruler' to constrain the expansion history of the Universe. The standard ruler can be improved if a process known as density field reconstruction is employed. In this paper we develop the Zeldovich formalism to compute the correlation function of biased tracers in both real- and redshift-space using the simplest reconstruction algorithm with a Gaussian kernel and compare to N-body simulations. The model qualitatively describes the effects of reconstruction on the simulations, though its quantitative success depends upon how redshift-space distortions are handled in the reconstruction algorithm.

  18. Approximating metal-insulator transitions

    Science.gov (United States)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  19. Diophantine approximations and Diophantine equations

    CERN Document Server

    Schmidt, Wolfgang M

    1991-01-01

    "This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum

  20. Dodgson's Rule Approximations and Absurdity

    CERN Document Server

    McCabe-Dansted, John C

    2010-01-01

    With the Dodgson rule, cloning the electorate can change the winner, which Young (1977) considers an "absurdity". Removing this absurdity results in a new rule (Fishburn, 1977) for which we can compute the winner in polynomial time (Rothe et al., 2003), unlike the traditional Dodgson rule. We call this rule DC and introduce two new related rules (DR and D&). Dodgson did not explicitly propose the "Dodgson rule" (Tideman, 1987); we argue that DC and DR are better realizations of the principle behind the Dodgson rule than the traditional Dodgson rule. These rules, especially D&, are also effective approximations to the traditional Dodgson's rule. We show that, unlike the rules we have considered previously, the DC, DR and D& scores differ from the Dodgson score by no more than a fixed amount given a fixed number of alternatives, and thus these new rules converge to Dodgson under any reasonable assumption on voter behaviour, including the Impartial Anonymous Culture assumption.

  1. Approximate analytic solutions to the NPDD: Short exposure approximations

    Science.gov (United States)

    Close, Ciara E.; Sheridan, John T.

    2014-04-01

    There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.

  2. Teseo code validation

    International Nuclear Information System (INIS)

    In this report some validation tests for the TESEO code are described. The TESEO code was developed at ENEA - Clementel Center in the framework of the C2RV code sequence. This code sequence produces multigroup resonance cross sections for fast reactor analysis. It consists of the codes TESEO, MC2-II, GERES, ANISN, MEDIL. The TESEO code processes basic nuclear data in ENDF-B format and produces an ultrafine group (2082 groups) cross section library for the MC2-II code. To validate the TESEO algorithms, the data produced by TESEO code were compared with the data produced by other well-tested codes which use different algorithms. No substantial differences was found between these data and the data produced by TESEO code. TESEO algorithms showed high reliability. A detailed study of TESEO calculation options was carried out. Their use and functions are shown to inform the user of the code

  3. Locally Orderless Registration Code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  4. Decentralized Network Coding

    OpenAIRE

    Fragouli, C.; Soljanin, E.

    2004-01-01

    This paper proposes deterministic algorithms for decentralized network coding. Decentralized coding allows to locally specify the coding operations at network nodes without knowledge of the overall network topology, and to accommodate future changes in the network such as addition of receivers. To the best of our knowledge, these are the first deterministic decentralized algorithms proposed for network coding.

  5. Multidimensional stochastic approximation Monte Carlo.

    Science.gov (United States)

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  6. Decision analysis with approximate probabilities

    Science.gov (United States)

    Whalen, Thomas

    1992-01-01

    This paper concerns decisions under uncertainty in which the probabilities of the states of nature are only approximately known. Decision problems involving three states of nature are studied. This is due to the fact that some key issues do not arise in two-state problems, while probability spaces with more than three states of nature are essentially impossible to graph. The primary focus is on two levels of probabilistic information. In one level, the three probabilities are separately rounded to the nearest tenth. This can lead to sets of rounded probabilities which add up to 0.9, 1.0, or 1.1. In the other level, probabilities are rounded to the nearest tenth in such a way that the rounded probabilities are forced to sum to 1.0. For comparison, six additional levels of probabilistic information, previously analyzed, were also included in the present analysis. A simulation experiment compared four criteria for decisionmaking using linearly constrained probabilities (Maximin, Midpoint, Standard Laplace, and Extended Laplace) under the eight different levels of information about probability. The Extended Laplace criterion, which uses a second order maximum entropy principle, performed best overall.

  7. Function approximation in inhibitory networks.

    Science.gov (United States)

    Tripp, Bryan; Eliasmith, Chris

    2016-05-01

    In performance-optimized artificial neural networks, such as convolutional networks, each neuron makes excitatory connections with some of its targets and inhibitory connections with others. In contrast, physiological neurons are typically either excitatory or inhibitory, not both. This is a puzzle, because it seems to constrain computation, and because there are several counter-examples that suggest that it may not be a physiological necessity. Parisien et al. (2008) showed that any mixture of excitatory and inhibitory functional connections could be realized by a purely excitatory projection in parallel with a two-synapse projection through an inhibitory population. They showed that this works well with ratios of excitatory and inhibitory neurons that are realistic for the neocortex, suggesting that perhaps the cortex efficiently works around this apparent computational constraint. Extending this work, we show here that mixed excitatory and inhibitory functional connections can also be realized in networks that are dominated by inhibition, such as those of the basal ganglia. Further, we show that the function-approximation capacity of such connections is comparable to that of idealized mixed-weight connections. We also study whether such connections are viable in recurrent networks, and find that such recurrent networks can flexibly exhibit a wide range of dynamics. These results offer a new perspective on computation in the basal ganglia, and also perhaps on inhibitory networks within the cortex. PMID:26963256

  8. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... discusses code as the artist’s material and, further, formulates a critique of Cramer. The seductive magic in computer-generated art does not lie in the magical expression, but nor does it lie in the code/material/text itself. It lies in the nature of code to do something – as if it was magic: in the...

  9. QR Codes 101

    Science.gov (United States)

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  10. Polyphase alternating codes

    CERN Document Server

    Markkanen, Markku

    2007-01-01

    This work introduces a method for constructing polyphase alternating codes in which the length of a code transmission cycle can be $p^m$ or $p-1$, where $p$ is a prime number and $m$ is a positive integer. The relevant properties leading to the construction alternating codes and the algorithm for generating alternating codes is described. Examples of all practical and some not that practical polyphase code lengths are given.

  11. Constructing quantum codes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum error correcting codes are indispensable for quantum information processing and quantum computation.In 1995 and 1996,Shor and Steane gave first several examples of quantum codes from classical error correcting codes.The construction of efficient quantum codes is now an active multi-discipline research field.In this paper we review the known several constructions of quantum codes and present some examples.

  12. Fuzzy Set Approximations in Fuzzy Formal Contexts

    Institute of Scientific and Technical Information of China (English)

    Mingwen Shao; Shiqing Fan

    2006-01-01

    In this paper, a kind of multi-level formal concept is introduced. Based on the proposed multi-level formal concept, we present a pair of rough fuzzy set approximations within fuzzy formal contexts. By the proposed rough fuzzy set approximations, we can approximate a fuzzy set according to different precision level. We discuss the properties of the proposed approximation operators in detail.

  13. Rateless Coding for MIMO Block Fading Channels

    CERN Document Server

    Fan, Yijia; Erkip, Elza; Poor, H Vincent

    2008-01-01

    In this paper the performance limits and design principles of rateless codes over fading channels are studied. The diversity-multiplexing tradeoff (DMT) is used to analyze the system performance for all possible transmission rates. It is revealed from the analysis that the design of such rateless codes follows the design principle of approximately universal codes for parallel multiple-input multiple-output (MIMO) channels, in which each sub-channel is a MIMO channel. More specifically, it is shown that for a single-input single-output (SISO) channel, the previously developed permutation codes of unit length for parallel channels having rate LR can be transformed directly into rateless codes of length L having multiple rate levels (R, 2R, . . ., LR), to achieve the DMT performance limit.

  14. Topological Code Architectures for Quantum Computation

    Science.gov (United States)

    Cesare, Christopher Anthony

    This dissertation is concerned with quantum computation using many-body quantum systems encoded in topological codes. The interest in these topological systems has increased in recent years as devices in the lab begin to reach the fidelities required for performing arbitrarily long quantum algorithms. The most well-studied system, Kitaev's toric code, provides both a physical substrate for performing universal fault-tolerant quantum computations and a useful pedagogical tool for explaining the way other topological codes work. In this dissertation, I first review the necessary formalism for quantum information and quantum stabilizer codes, and then I introduce two families of topological codes: Kitaev's toric code and Bombin's color codes. I then present three chapters of original work. First, I explore the distinctness of encoding schemes in the color codes. Second, I introduce a model of quantum computation based on the toric code that uses adiabatic interpolations between static Hamiltonians with gaps constant in the system size. Lastly, I describe novel state distillation protocols that are naturally suited for topological architectures and show that they provide resource savings in terms of the number of required ancilla states when compared to more traditional approaches to quantum gate approximation.

  15. Polyphase alternating codes

    OpenAIRE

    M. Markkanen; Vierinen, J.; Markkanen, J.

    2007-01-01

    We present a new class of alternating codes. Instead of the customary binary phase codes, the new codes utilize either p or p–1 phases, where p is a prime number. The first class of codes has code length pm, where m is a positive integer, the second class has code length p–1. We give an actual construction algorithm, and explain the principles behind it. We ...

  16. Construction of Codes for Network Coding

    CERN Document Server

    Elsenhans, Andreas-Stephan; Wassermann, Alfred

    2010-01-01

    Based on ideas of K\\"otter and Kschischang we use constant dimension subspaces as codewords in a network. We show a connection to the theory of q-analogues of a combinatorial designs, which has been studied in Braun, Kerber and Laue as a purely combinatorial object. For the construction of network codes we successfully modified methods (construction with prescribed automorphisms) originally developed for the q-analogues of a combinatorial designs. We then give a special case of that method which allows the construction of network codes with a very large ambient space and we also show how to decode such codes with a very small number of operations.

  17. TIPONLINE Code Table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coded items are entered in the tiponline data entry program. The codes and their explanations are necessary in order to use the data

  18. Balanced Permutation Codes

    OpenAIRE

    Gabrys, Ryan; Milenkovic, Olgica

    2016-01-01

    Motivated by charge balancing constraints for rank modulation schemes, we introduce the notion of balanced permutations and derive the capacity of balanced permutation codes. We also describe simple interleaving methods for permutation code constructions and show that they approach capacity

  19. SEVERO code - user's manual

    International Nuclear Information System (INIS)

    This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)

  20. Benchmarking the starting points of the GW approximation for molecules

    International Nuclear Information System (INIS)

    The GW approximation is nowadays being used to obtain accurate quasiparticle energies of atoms and molecules. In practice, the GW approximation is generally evaluated perturbatively, based on a prior self-consistent calculation within a simpler approximation. The final result thus depends on the choice of the self-consistent mean-field chosen as a starting point. Using a recently developed GW code based on Gaussian basis functions, we benchmark a wide range of starting points for perturbative GW, including Hartree-Fock, LDA, PBE, PBE0, B3LYP, HSE06, BH and HLYP, CAM-B3LYP, and tuned CAM-B3LYP. In the evaluation of the ionization energy, the hybrid functionals are clearly superior results starting points when compared to Hartree-Fock, to LDA, or to the semi local approximations. Furthermore, among the hybrid functionals, the ones with the highest proportion of exact-exchange usually perform best. Finally, the reliability of the frozen-core approximation, that allows for a considerable speedup of the calculations, is demonstrated. (authors)

  1. On the TTB approximation for photon transport in MCNP

    International Nuclear Information System (INIS)

    Three dimensional and continuous energy monte carlo code system, MCNP 4 deals with electron transport in addition to neutron and gamma-ray transport. Benchmark experiments involved bremsstrahlung of secondary electron are analyzed by the code MCNP 4, in the following three cases: (1) without approximation for electron pair production, (2) with the TTB approximation (thick-target-bremsstrahlung) for electron pair production, and (3) with secondary electron transport. Bishop et al. measured photon spectrum of gamma-ray (6.1Mev) which is emitted from N-16 in reactor coolant, and penetrating through iron and lead. Johnson et al. measured scattering photon spectrum and doses of capture gamma-ray (∼8Mev) which is emitted from titan and nickel, and penetrating through iron, concrete and lead. Calculation results of MCNP 4 with the secondary electron transport give good agreement with the measured values obtained by these two benchmark experiments, although the TTB approximation calculations overestimate in penetration problem, and underestimate in backscattering problem. (M. Suetake)

  2. Unfolding the color code

    OpenAIRE

    Kubica, Aleksander; Yoshida, Beni; Pastawski, Fernando

    2015-01-01

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the ...

  3. Informal control code logic

    OpenAIRE

    Bergstra, J. A.

    2010-01-01

    General definitions as well as rules of reasoning regarding control code production, distribution, deployment, and usage are described. The role of testing, trust, confidence and risk analysis is considered. A rationale for control code testing is sought and found for the case of safety critical embedded control code.

  4. Informal Control code logic

    OpenAIRE

    Bergstra, Jan A.

    2010-01-01

    General definitions as well as rules of reasoning regarding control code production, distribution, deployment, and usage are described. The role of testing, trust, confidence and risk analysis is considered. A rationale for control code testing is sought and found for the case of safety critical embedded control code.

  5. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow the...

  6. ARC Code TI: CODE Software Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — CODE is a software framework for control and observation in distributed environments. The basic functionality of the framework allows a user to observe a...

  7. ARC Code TI: ROC Curve Code Augmentation

    Data.gov (United States)

    National Aeronautics and Space Administration — ROC (Receiver Operating Characteristic) curve Code Augmentation was written by Rodney Martin and John Stutz at NASA Ames Research Center and is a modification of...

  8. High performance word level sequential and parallel coding methods and architectures for bit plane coding

    Institute of Scientific and Technical Information of China (English)

    XIONG ChengYi; TIAN JinWen; LIU Jian

    2008-01-01

    This paper introduced a novel high performance algorithm and VLSI architectures for achieving bit plane coding (BPC) in word level sequential and parallel mode. The proposed BPC algorithm adopts the techniques of coding pass prediction and par-allel & pipeline to reduce the number of accessing memory and to increase the ability of concurrently processing of the system, where all the coefficient bits of a code block could be coded by only one scan. A new parallel bit plane architecture (PA) was proposed to achieve word-level sequential coding. Moreover, an efficient high-speed architecture (HA) was presented to achieve multi-word parallel coding. Compared to the state of the art, the proposed PA could reduce the hardware cost more efficiently, though the throughput retains one coefficient coded per clock. While the proposed HA could perform coding for 4 coefficients belonging to a stripe column at one intra-clock cycle, so that coding for an N×N code-block could be completed in approximate N2/4 intra-clock cycles. Theoretical analysis and ex-perimental results demonstrate that the proposed designs have high throughput rate with good performance in terms of speedup to cost, which can be good alter-natives for low power applications.

  9. Spike Code Flow in Cultured Neuronal Networks.

    Science.gov (United States)

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network. PMID:27217825

  10. Generic programming for deterministic neutron transport codes

    International Nuclear Information System (INIS)

    This paper discusses the implementation of neutron transport codes via generic programming techniques. Two different Boltzmann equation approximations have been implemented, namely the Sn and SPn methods. This implementation experiment shows that generic programming allows us to improve maintainability and readability of source codes with no performance penalties compared to classical approaches. In the present implementation, matrices and vectors as well as linear algebra algorithms are treated separately from the rest of source code and gathered in a tool library called 'Generic Linear Algebra Solver System' (GLASS). Such a code architecture, based on a linear algebra library, allows us to separate the three different scientific fields involved in transport codes design: numerical analysis, reactor physics and computer science. Our library handles matrices with optional storage policies and thus applies both to Sn code, where the matrix elements are computed on the fly, and to SPn code where stored matrices are used. Thus, using GLASS allows us to share a large fraction of source code between Sn and SPn implementations. Moreover, the GLASS high level of abstraction allows the writing of numerical algorithms in a form which is very close to their textbook descriptions. Hence the GLASS algorithms collection, disconnected from computer science considerations (e.g. storage policy), is very easy to read, to maintain and to extend. (authors)

  11. HE11 radiation patterns and gaussian approximations

    International Nuclear Information System (INIS)

    The possibility of approximating the HE11 radiation pattern with a Gaussian distribution is presented. A numerical comparison between HE11 far-field theoretical patterns and Abrams and Crenn approximations permits an evaluation of the validity of these two approximations. A new numerically optimized HE11 Gaussian approximation for the far-field, extended to great part of the near field, has been found. In particular, the value given for the beam radius at the waist, has been demonstrated to give the best HE11 Gaussian approximation in the far-field. The Crenn approximation is found to be very close to this optimal approximation, while the Abrams approximation is shown to be less precise. Universal curves for intensity, amplitude and power distribution are given for the HE11 radiated mode. These results are of interest for laser waveguide applications and for plasma ECRH transmission systems

  12. Legendre rational approximation on the whole line

    Institute of Scientific and Technical Information of China (English)

    GUO; Benyu; WANG; Zhongqing

    2004-01-01

    The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.

  13. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  14. Universal Rateless Codes From Coupled LT Codes

    CERN Document Server

    Aref, Vahid

    2011-01-01

    It was recently shown that spatial coupling of individual low-density parity-check codes improves the belief-propagation threshold of the coupled ensemble essentially to the maximum a posteriori threshold of the underlying ensemble. We study the performance of spatially coupled low-density generator-matrix ensembles when used for transmission over binary-input memoryless output-symmetric channels. We show by means of density evolution that the threshold saturation phenomenon also takes place in this setting. Our motivation for studying low-density generator-matrix codes is that they can easily be converted into rateless codes. Although there are already several classes of excellent rateless codes known to date, rateless codes constructed via spatial coupling might offer some additional advantages. In particular, by the very nature of the threshold phenomenon one expects that codes constructed on this principle can be made to be universal, i.e., a single construction can uniformly approach capacity over the cl...

  15. Diophantine approximation and special Liouville numbers

    OpenAIRE

    Schleischitz, Johannes

    2013-01-01

    This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\\geq 2$) of $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\\zeta_{1},\\zeta_{2},...,\\zeta_{k}$ with prescribed approximation properties are dedu...

  16. On martingale approximation of adapted processes

    OpenAIRE

    Queffélec, Hervé; Volný, Dalibor

    2011-01-01

    We show that the existence of a martingale approximation of a stationary process depends on the choice of the filtration. There exists a stationary linear process which has a martingale approximation with respect to the natural filtration, but no approximation with respect to a larger filtration with respect to wich it is adapted and regular. There exists a stationary process adapted, regular, and having a martingale approximation with respect to a given filtration but not (regular and having...

  17. Approximate duals and nearly Parseval frames

    OpenAIRE

    AZANDARYANI, MORTEZA MIRZAEE

    2015-01-01

    In this paper we introduce approximate duality of g-frames in Hilbert $C^\\ast$-modules and we show that approximate duals of g-frames in Hilbert $C^\\ast$-modules share many useful properties with those in Hilbert spaces. Moreover, we obtain some new results for approximate duality of frames and g-frames in Hilbert spaces; in particular, we consider approximate duals of $\\varepsilon$-nearly Parseval and $\\varepsilon$-close frames.

  18. An approximation technique for jet impingement flow

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Mahmoud; Fincher, Donald [Kent State University Ashtabula Department of Mathematical Sciences (United States); Rahni, Taeibi; Javadi, KH. [Department of Aerospace Engineering, Sharif University of Technology (Iran, Islamic Republic of); Massah, H. [Acoustic Research Center, Institute of Applied Physics (Iran, Islamic Republic of)

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  19. Nonlinear approximation with bi-framelets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten; Gribonval, Rémi

    2005-01-01

    We study the approximation in Lebesgue spaces of wavelet bi-frame systems given by translations and dilations of a finite set of generators. A complete characterization of the approximation spaces associated with best m-term approximation of wavelet bi-framelet systems is given...

  20. Some relations between entropy and approximation numbers

    Institute of Scientific and Technical Information of China (English)

    郑志明

    1999-01-01

    A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.

  1. NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS

    Institute of Scientific and Technical Information of China (English)

    L. Borup; M. Nielsen

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.

  2. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....

  3. A Linear Approximation Method for Probabilistic Inference

    OpenAIRE

    Shachter, Ross D.

    2013-01-01

    An approximation method is presented for probabilistic inference with continuous random variables. These problems can arise in many practical problems, in particular where there are "second order" probabilities. The approximation, based on the Gaussian influence diagram, iterates over linear approximations to the inference problem.

  4. Approximation properties of fine hyperbolic graphs

    Indian Academy of Sciences (India)

    Benyin Fu

    2016-05-01

    In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use the techniques of Ozawa’s to prove that a fine hyperbolic graph has the metric invariant translation approximation property.

  5. Axiomatic Characterizations of IVF Rough Approximation Operators

    OpenAIRE

    Guangji Yu

    2014-01-01

    This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.

  6. Approximate Nearest Neighbor Queries among Parallel Segments

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Malamatos, Theocharis; Tsigaridas, Elias

    2010-01-01

    We develop a data structure for answering efficiently approximate nearest neighbor queries over a set of parallel segments in three dimensions. We connect this problem to approximate nearest neighbor searching under weight constraints and approximate nearest neighbor searching on historical data...

  7. Upper Bounds on Numerical Approximation Errors

    DEFF Research Database (Denmark)

    Raahauge, Peter

    2004-01-01

    This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function. The...... approximations of a standard (strictly concave)growth model.KEYWORDS: Numerical approximation errors, Bellman contractions, Error bounds...

  8. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    , Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important to...... understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  9. Codes from difference sets

    CERN Document Server

    Ding, Cunsheng

    2014-01-01

    This is the first monograph on codebooks and linear codes from difference sets and almost difference sets. It aims at providing a survey of constructions of difference sets and almost difference sets as well as an in-depth treatment of codebooks and linear codes from difference sets and almost difference sets. To be self-contained, this monograph covers necessary mathematical foundations and the basics of coding theory. It also contains tables of best BCH codes and best cyclic codes over GF(2) and GF(3) up to length 125 and 79, respectively. This repository of tables can be used to benchmark

  10. (Sigma-Delta) Codes

    OpenAIRE

    Boulagouaz, M.; Leroy, A

    2013-01-01

    In this paper we introduce the notion of cyclic ($f(t),\\sigma,\\delta$)-codes for $f(t)\\in \\Ore$. These codes generalize the $\\theta$-codes as introduced by D. Boucher, F. Ulmer, W. Geiselmann \\cite{BGU}. We construct generic and control matrices for these codes. As a particular case the ($\\si,\\de$)-$W$-code associated to a Wedderburn polynomial are defined and we show that their control matrices are given by generalized Vandermonde matrices. All the Wedderburn polynomials of $\\mathbb F_q[t;\\t...

  11. XSOR codes users manual

    International Nuclear Information System (INIS)

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms

  12. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  13. Permutation codes for sources.

    Science.gov (United States)

    Berger, T.; Jelinek, F.; Wolf, J. K.

    1972-01-01

    Source encoding techniques based on permutation codes are investigated. For a broad class of distortion measures it is shown that optimum encoding of a source permutation code is easy to instrument even for very long block lengths. Also, the nonparametric nature of permutation encoding is well suited to situations involving unknown source statistics. For the squared-error distortion measure a procedure for generating good permutation codes of a given rate and block length is described. The performance of such codes for a memoryless Gaussian source is compared both with the rate-distortion function bound and with the performance of various quantization schemes. The comparison reveals that permutation codes are asymptotically ideal for small rates and perform as well as the best entropy-coded quantizers presently known for intermediate rates. They can be made to compare favorably at high rates, too, provided the coding delay associated with extremely long block lengths is tolerable.

  14. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  15. Chinese remainder codes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Aili; LIU Xiufeng

    2006-01-01

    Chinese remainder codes are constructed by applying weak block designs and the Chinese remainder theorem of ring theory.The new type of linear codes take the congruence class in the congruence class ring R/I1 ∩ I2 ∩…∩ In for the information bit,embed R/Ji into R/I1 ∩ I2 ∩…∩ In,and assign the cosets of R/Ji as the subring of R/I1 ∩ I2 ∩…∩ In and the cosets of R/Ji in R/I1 ∩ I2 ∩…∩ In as check lines.Many code classes exist in the Chinese remainder codes that have high code rates.Chinese remainder codes are the essential generalization of Sun Zi codes.

  16. Chinese Remainder Codes

    Institute of Scientific and Technical Information of China (English)

    张爱丽; 刘秀峰; 靳蕃

    2004-01-01

    Chinese Remainder Codes are constructed by applying weak block designs and Chinese Remainder Theorem of ring theory. The new type of linear codes take the congruence class in the congruence class ring R/I1∩I2∩…∩In for the information bit, embed R/Ji into R/I1∩I2∩…∩In, and asssign the cosets of R/Ji as the subring of R/I1∩I2∩…∩In and the cosets of R/Ji in R/I1∩I2∩…∩In as check lines. There exist many code classes in Chinese Remainder Codes, which have high code rates. Chinese Remainder Codes are the essential generalization of Sun Zi Codes.

  17. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  18. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  19. Relativistic quasiparticle random phase approximation in deformed nuclei

    International Nuclear Information System (INIS)

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  20. BASS Code Development

    Science.gov (United States)

    Sawyer, Scott

    2004-01-01

    The BASS computational aeroacoustic code solves the fully nonlinear Euler equations in the time domain in two-dimensions. The acoustic response of the stator is determined simultaneously for the first three harmonics of the convected vortical gust of the rotor. The spatial mode generation, propagation and decay characteristics are predicted by assuming the acoustic field away from the stator can be represented as a uniform flow with small harmonic perturbations superimposed. The computed field is then decomposed using a joint temporal-spatial transform to determine the wave amplitudes as a function of rotor harmonic and spatial mode order. This report details the following technical aspects of the computations and analysis. 1) the BASS computational technique; 2) the application of periodic time shifted boundary conditions; 3) the linear theory aspects unique to rotor-stator interactions; and 4) the joint spatial-temporal transform. The computational results presented herein are twofold. In each case, the acoustic response of the stator is determined simultaneously for the first three harmonics of the convected vortical gust of the rotor. The fan under consideration here like modern fans is cut-off at +, and propagating acoustic waves are only expected at 2BPF and 3BPF. In the first case, the computations showed excellent agreement with linear theory predictions. The frequency and spatial mode order of acoustic field was computed and found consistent with linear theory. Further, the propagation of the generated modes was also correctly predicted. The upstream going waves propagated from the domain without reflection from the in ow boundary. However, reflections from the out ow boundary were noticed. The amplitude of the reflected wave was approximately 5% of the incident wave. The second set of computations were used to determine the influence of steady loading on the generated noise. Toward this end, the acoustic response was determined with three steady loading

  1. APPROXIMATE AMENABILITY OF CERTAIN INVERSE SEMIGROUP ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Mehdi ROSTAMI; Abdolrasoul POURABBAS; Morteza ESSMAILI

    2013-01-01

    In this article,the approximate amenability of semigroup algebra e1(S) is investigated,where S is a uniformly locally finite inverse semigroup.Indeed,we show that for a uniformly locally finite inverse semigroup S,the notions of amenability,approximate amenability and bounded approximate amenability of e1 (S) are equivalent.We use this to give a direct proof of the approximate amenability of e1(S) for a Brandt semigroup S.Moreover,we characterize the approximate amenability of e1(S),where S is a uniformly locally finite band semigroup.

  2. Polygonal Approximation of Contour Shapes Using Corner Detectors

    Directory of Open Access Journals (Sweden)

    Hermilo Sánchez‐Cruz

    2009-12-01

    Full Text Available A great amount of corner detectors that appear in literature are based on using the Freeman chain code of eight directions,which is used to represent contour shapes. We propose a new method for corner detection based on a three‐symbol chain coderepresentation, which requires lower storage memory and an easy way to obtain shape corners. We compare it with fiveexisting methods, which are well known in the literature, giving our method a better performance. Furthermore, in order toreconstruct the original shapes through polygonal approximations, we propose an error parameter to quantify the efficiency.This can be accomplished by considering the redundancy of points produced when looking for corners and when computing thedifference between the original region and the approximated polygon.

  3. Convergence and Rate Analysis of Neural Networks for Sparse Approximation

    CERN Document Server

    Balavoine, Aurèle; Rozell, Christopher J

    2011-01-01

    We present an analysis of the Locally Competitive Algorithm (LCA), a Hopfield-style neural network that solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few non-zero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing, but traditional analysis approaches are difficult because the objective functions are non-smooth. Specifically, we characterize the convergence properties of this system by showing that the LCA is globally convergent to a fixed point corresponding to the exact solution of the objective function, and (under some mild conditions) this solution is reached in finite time. Furthermore, we characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate (that depends on the specifics of a given problem). We support our analysis with several illustrative simulations.

  4. On Gakerkin approximations for the quasigeostrophic equations

    CERN Document Server

    Rocha, Cesar B; Grooms, Ian

    2015-01-01

    We study the representation of approximate solutions of the three-dimensional quasigeostrophic (QG) equations using Galerkin series with standard vertical modes. In particular, we show that standard modes are compatible with nonzero buoyancy at the surfaces and can be used to solve the Eady problem. We extend two existing Galerkin approaches (A and B) and develop a new Galerkin approximation (C). Approximation A, due to Flierl (1978), represents the streamfunction as a truncated Galerkin series and defines the potential vorticity (PV) that satisfies the inversion problem exactly. Approximation B, due to Tulloch and Smith (2009b), represents the PV as a truncated Galerkin series and calculates the streamfunction that satisfies the inversion problem exactly. Approximation C, the true Galerkin approximation for the QG equations, represents both streamfunction and PV as truncated Galerkin series, but does not satisfy the inversion equation exactly. The three approximations are fundamentally different unless the b...

  5. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  6. Nonlinear approximation with dictionaries, I: Direct estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    We study various approximation classes associated with $m$-term approximation by elements from a (possibly redundant) dictionary in a Banach space. The standard approximation class associated with the best $m$-term approximation is compared to new classes defined by considering $m......$-term approximation with algorithmic constraints: thresholding and Chebychev approximation classes are studied respectively. We consider embeddings of the Jackson type (direct estimates) of sparsity spaces into the mentioned approximation classes. General direct estimates are based on the geometry of the Banach space......, and we prove that assuming a certain structure of the dictionary is sufficient and (almost) necessary to obtain stronger results. We give examples of classical dictionaries in $L^p$ spaces and modulation spaces where our results recover some known Jackson type estimates, and discuss som new estimates...

  7. Nonlinear approximation with dictionaries I. Direct estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2004-01-01

    We study various approximation classes associated with m-term approximation by elements from a (possibly) redundant dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation...... with algorithmic constraints: thresholding and Chebychev approximation classes are studied, respectively. We consider embeddings of the Jackson type (direct estimates) of sparsity spaces into the mentioned approximation classes. General direct estimates are based on the geometry of the Banach space, and we prove...... that assuming a certain structure of the dictionary is sufficient and (almost) necessary to obtain stronger results. We give examples of classical dictionaries in L^p spaces and modulation spaces where our results recover some known Jackson type estimates, and discuss som new estimates they provide....

  8. Validation of TNXY code with reference problems

    International Nuclear Information System (INIS)

    In this paper, the validation process for TNXY code, as well as the rference problems used in the same (Wagner and Benchmark 14 problems) are described. TNXY code is based on a polynomial type nodal method known as RTN-0. Several numerical results obtained with such code and others frequently illustrated in the literature related with numerical calculus for nuclear reactors are presented. Tests were done with different size meshes and different SN approximations. Several conclusions based on comparisons among different results obtained, as well as the present state of the already mentioned code and its almost inmediate applications to fuel assemblies as the used in the nuclear reactor of Laguna Verde are given. (Author)

  9. Generating code adapted for interlinking legacy scalar code and extended vector code

    Science.gov (United States)

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  10. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  11. Security of QR Codes

    OpenAIRE

    Kapsalis, Ioannis

    2013-01-01

    The 2-dimensional barcodes known as QR (Quick Response) Codesare increasing their popularity as they appear in more places in theurban environment. QR Codes can be considered as physical hyper-linksthat give the ability to users to access, through their mobile devicesthat are able to scan QR Codes, additional information located in aweb-page. Apart from marketing, QR Codes have been also adopted indifferent areas such as the on-line payments. This development alongwith the trend that some of ...

  12. Practices in Code Discoverability

    OpenAIRE

    Teuben, Peter; Allen, Alice; Nemiroff, Robert J.; Shamir, Lior

    2012-01-01

    Much of scientific progress now hinges on the reliability, falsifiability and reproducibility of computer source codes. Astrophysics in particular is a discipline that today leads other sciences in making useful scientific components freely available online, including data, abstracts, preprints, and fully published papers, yet even today many astrophysics source codes remain hidden from public view. We review the importance and history of source codes in astrophysics and previous efforts to d...

  13. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  14. Progressive fractal coding

    OpenAIRE

    Kopilovic, Ivan; Saupe, Dietmar; Hamzaoui, Raouf

    2001-01-01

    Progressive coding is an important feature of compression schemes. Wavelet coders are well suited for this purpose because the wavelet coefficients can be naturally ordered according to decreasing importance. Progressive fractal coding is feasible, but it was proposed only for hybrid fractal-wavelet schemes. We introduce a progressive fractal image coder in the spatial domain. A Lagrange optimization based on rate-distortion performance estimates determines an optimal ordering of the code bit...

  15. Opening up codings?

    DEFF Research Database (Denmark)

    Steensig, Jakob; Heinemann, Trine

    2015-01-01

    We welcome Tanya Stivers’s discussion (Stivers, 2015/this issue) of coding social interaction and find that her descriptions of the processes of coding open up important avenues for discussion, among other things of the precise ad hoc considerations that researchers need to bear in mind, both when....... Instead we propose that the promise of coding-based research lies in its ability to open up new qualitative questions....

  16. Phonological coding during reading.

    Science.gov (United States)

    Leinenger, Mallorie

    2014-11-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. PMID:25150679

  17. Locally Repairable Codes

    OpenAIRE

    Papailiopoulos, Dimitris S.; Dimakis, Alexandros G.

    2012-01-01

    Distributed storage systems for large-scale applications typically use replication for reliability. Recently, erasure codes were used to reduce the large storage overhead, while increasing data reliability. A main limitation of off-the-shelf erasure codes is their high-repair cost during single node failure events. A major open problem in this area has been the design of codes that {\\it i)} are repair efficient and {\\it ii)} achieve arbitrarily high data rates. In this paper, we explore the r...

  18. QR codes for dummies

    CERN Document Server

    Waters, Joe

    2012-01-01

    Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown

  19. ARC Code TI: ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — ACCEPT consists of an overall software infrastructure framework and two main software components. The software infrastructure framework consists of code written to...

  20. Tokamak Systems Code

    International Nuclear Information System (INIS)

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  1. Weak approximation of second-order BSDEs

    OpenAIRE

    Possamaï, Dylan; Tan, Xiaolu

    2013-01-01

    We study the weak approximation of the second-order backward SDEs (2BSDEs), when the continuous driving martingales are approximated by discrete time martingales. We establish a convergence result for a class of 2BSDEs, using both robustness properties of BSDEs, as proved in Briand, Delyon and M\\'{e}min [Stochastic Process. Appl. 97 (2002) 229-253], and tightness of solutions to discrete time BSDEs. In particular, when the approximating martingales are given by some particular controlled Mark...

  2. A Conditional Saddlepoint Approximation for Testing Problems

    OpenAIRE

    Gatto, R.; Jammalamadaka, SR

    1999-01-01

    A saddlepoint approximation is provided for the distribution function of one M statistic conditional on another M statistic. Many interesting statistics based on dependent quantities (e.g., spacings, multinomial frequencies, rank differences) can be expressed in terms of independent identically distributed random variables conditioned on their sum, so that this conditional saddlepoint approximation yields accurate approximations for the distribution of such statistics. This saddlepoint approx...

  3. Approximation Resistant Predicates From Pairwise Independence

    CERN Document Server

    Austrin, Per

    2008-01-01

    We study the approximability of predicates on $k$ variables from a domain $[q]$, and give a new sufficient condition for such predicates to be approximation resistant under the Unique Games Conjecture. Specifically, we show that a predicate $P$ is approximation resistant if there exists a balanced pairwise independent distribution over $[q]^k$ whose support is contained in the set of satisfying assignments to $P$.

  4. Approximating Multivariable Functions by Feedforward Neural Nets

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    Berlin : Springer, 2013 - (Bianchini, M.; Maggini, M.; Jain, L.), s. 143-181 ISBN 978-3-642-36656-7. - (Intelligent Systems Reference Library. 49) R&D Projects: GA ČR GAP202/11/1368; GA MŠk(CZ) ME10023 Grant ostatní: CNR-AV ČR(CZ) Project 2010–2012 “Complexity of Neural-Network and Kernel Computational Models Institutional support: RVO:67985807 Keywords : multivariable approximation * feedforward neural networks * network complexity * approximation rates * variational norm * best approximation * tractability of approximation Subject RIV: IN - Informatics, Computer Science

  5. A Note on Generalized Approximation Property

    Directory of Open Access Journals (Sweden)

    Antara Bhar

    2013-01-01

    Full Text Available We introduce a notion of generalized approximation property, which we refer to as --AP possessed by a Banach space , corresponding to an arbitrary Banach sequence space and a convex subset of , the class of bounded linear operators on . This property includes approximation property studied by Grothendieck, -approximation property considered by Sinha and Karn and Delgado et al., and also approximation property studied by Lissitsin et al. We characterize a Banach space having --AP with the help of -compact operators, -nuclear operators, and quasi--nuclear operators. A particular case for ( has also been characterized.

  6. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  7. Research on universal combinatorial coding.

    Science.gov (United States)

    Lu, Jun; Zhang, Zhuo; Mo, Juan

    2014-01-01

    The conception of universal combinatorial coding is proposed. Relations exist more or less in many coding methods. It means that a kind of universal coding method is objectively existent. It can be a bridge connecting many coding methods. Universal combinatorial coding is lossless and it is based on the combinatorics theory. The combinational and exhaustive property make it closely related with the existing code methods. Universal combinatorial coding does not depend on the probability statistic characteristic of information source, and it has the characteristics across three coding branches. It has analyzed the relationship between the universal combinatorial coding and the variety of coding method and has researched many applications technologies of this coding method. In addition, the efficiency of universal combinatorial coding is analyzed theoretically. The multicharacteristic and multiapplication of universal combinatorial coding are unique in the existing coding methods. Universal combinatorial coding has theoretical research and practical application value. PMID:24772019

  8. Context adaptive coding of bi-level images

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2008-01-01

    .g. in the lossless JBIG bi-level image coding standard, and in the entropy coding of contemporary lossless and lossy image and video coding standards and schemes. The theoretical work and analysis of universal context based coding has addressed sequences of data and finite memory models as Markov chains and sources....... This paper discusses relations between context based coding of images and the context formation in some image models. Image models include Markov random fields (MRF), which hav a non-causal description, and the special case of Pickard random fields, which are causal. These field represent generalizations...... to 2-D of a finite memory source. Further developments of causal image models, e.g. to approximate MRF, lead to considering hidden states in the context formation. These causal image models provides image coding models and they are here related to context based image coding. The entropy of the image...

  9. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  10. One Twenty Phase Code Design for Radar

    Directory of Open Access Journals (Sweden)

    E.N.V. Purna Chandra Rao

    2013-12-01

    Full Text Available Sequences with good autocorrelation Properties are useful for radar and communication applications. In this paper One Twenty Phase sequences are synthesized using Modified Genetic Algorithm (MGA. MGA is used as a statistical technique for obtaining approximate solutions to combinatorial optimization problems. This algorithm combines the good methodologies of the two algorithms like global minimum converging property of Genetic Algorithm (GA and fast convergence rate of Hamming scan algorithm. The synthesized sequences have autocorrelation Properties better than well-known binary MPS code and Frank codes. The synthesized sequences also have complex signal structure which is difficult to detect and analyze by enemy electronics support measure.

  11. Rotamak equilibrium calculations using the PEST code

    International Nuclear Information System (INIS)

    This report describes the use of the equilibrium part of the Princeton equilibrium and stability code PEST to model rotamak equilibria with an applied toroidal magnetic field. An overview of the code is provided, together with a list of required input data. The simulation of a range of equilibria measured in the ANSTO rotamak shows that the rotamak approximately satisfies magnetohydrodynamic equilibrium. Of particular interest is the presence of large diamagnetic poloidal current about the magnetic axis which produces a peak in the plasma pressure on the magnetic axis. For a low toroidal field, however, poloidal current of opposite direction is simultaneously driven on flux surfaces distant from the magnetic axis, producing paramagnetism

  12. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Pries-Heje, Lene; Dahlgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven...

  13. Nuremberg code turns 60

    OpenAIRE

    Thieren, Michel; Mauron, Alex

    2007-01-01

    This month marks sixty years since the Nuremberg code – the basic text of modern medical ethics – was issued. The principles in this code were articulated in the context of the Nuremberg trials in 1947. We would like to use this anniversary to examine its ability to address the ethical challenges of our time.

  14. Code of Ethics

    Science.gov (United States)

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  15. Computerized mega code recording.

    Science.gov (United States)

    Burt, T W; Bock, H C

    1988-04-01

    A system has been developed to facilitate recording of advanced cardiac life support mega code testing scenarios. By scanning a paper "keyboard" using a bar code wand attached to a portable microcomputer, the person assigned to record the scenario can easily generate an accurate, complete, timed, and typewritten record of the given situations and the obtained responses. PMID:3354937

  16. Codes of Conduct

    Science.gov (United States)

    Million, June

    2004-01-01

    Most schools have a code of conduct, pledge, or behavioral standards, set by the district or school board with the school community. In this article, the author features some schools that created a new vision of instilling code of conducts to students based on work quality, respect, safety and courtesy. She suggests that communicating the code…

  17. Code A1 Revised

    CERN Multimedia

    SC Secretariat

    2004-01-01

    Please note that the revised safety code A1 entitled 'MEDICAL CODE' is available on the web at the following url: https://edms.cern.ch/document/335476/last_released Paper copies can also be obtained from the SC Secretariat, e-mail : sc.secretariat@cern.ch SC Secretariat

  18. Safety Code A12

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that the Safety Code A12 (Code A12) entitled "THE SAFETY COMMISSION (SC)" is available on the web at the following url: https://edms.cern.ch/document/479423/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  19. Molecular Scattering and Born-Oppenheimer Approximation

    OpenAIRE

    Vania, Sordoni

    2008-01-01

    In this paper, we study the scattering wave operators for a diatomic molecules by using the Born-Oppenheimer approximation. Assuming that the ratio h^2 between the electronic and nuclear masses is small, we construct adiabatic wave operators that, under some non trapping conditions, approximate the two-cluster wave operators up to any powers of the parameter h

  20. Simultaneous approximation in scales of Banach spaces

    International Nuclear Information System (INIS)

    The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods

  1. A case where BO Approximation breaks down

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The Bom-Oppenheimer (BO)Approximation is ubiquitous in molecular physics,quantum physics and quantum chemistry. However, CAS researchers recently observed a breakdown of the Approximation in the reaction of fluorine with deuterium atoms.The result has been published in the August 24 issue of Science.

  2. Computing Functions by Approximating the Input

    Science.gov (United States)

    Goldberg, Mayer

    2012-01-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…

  3. Diagonal Pade approximations for initial value problems

    International Nuclear Information System (INIS)

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab

  4. Diagonal Pade approximations for initial value problems

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.

  5. On the closedness of approximation spectra

    OpenAIRE

    Parkkonen, Jouni; Paulin, Frédéric

    2008-01-01

    Generalizing Cusick's theorem on the closedness of the classical Lagrange spectrum for the approximation of real numbers by rational ones, we prove that various approximation spectra are closed, using penetration properties of the geodesic flow in cusp neighbourhoods in negatively curved manifolds and a result of Maucourant.

  6. Inverse scattering problem in relativistic quasiclassical approximation

    International Nuclear Information System (INIS)

    Inverse scattering problem is solved on the basis of quasipotential approach in quantum field theory within the framework of relativistic quasiclassical approximation. Formulas of quasipotential restoration by phase shifts are derived. Cases of non-relativistic and ultra-relativistic approximations are investigated

  7. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  8. Approximating fixed points in the Hilbert ball

    Czech Academy of Sciences Publication Activity Database

    Kopecká, Eva

    2014-01-01

    Roč. 15, č. 4 (2014), s. 819-829. ISSN 1345-4773 Institutional support: RVO:67985840 Keywords : approximating curve * approximating sequence * asymptotic center Subject RIV: BA - General Mathematics Impact factor: 0.655, year: 2014 http://www.ybook.co.jp/online2/jncav15.html

  9. Improved Approximation for the Directed Spanner Problem

    OpenAIRE

    Bhattacharyya, Arnab; Makarychev, Konstantin

    2010-01-01

    We prove that the size of the sparsest directed k-spanner of a graph can be approximated in polynomial time to within a factor of $\\tilde{O}(\\sqrt{n})$, for all k >= 3. This improves the $\\tilde{O}(n^{2/3})$-approximation recently shown by Dinitz and Krauthgamer.

  10. A Scheme for Approximating Probabilistic Inference

    OpenAIRE

    Dechter, Rina; Rish, Irina

    2013-01-01

    This paper describes a class of probabilistic approximation algorithms based on bucket elimination which offer adjustable levels of accuracy and efficiency. We analyze the approximation for several tasks: finding the most probable explanation, belief updating and finding the maximum a posteriori hypothesis. We identify regions of completeness and provide preliminary empirical evaluation on randomly generated networks.

  11. Approximation of the Inverse -Frame Operator

    Indian Academy of Sciences (India)

    M R Abdollahpour; A Najati

    2011-05-01

    In this paper, we introduce the concept of (strong) projection method for -frames which works for all conditional -Riesz frames. We also derive a method for approximation of the inverse -frame operator which is efficient for all -frames. We show how the inverse of -frame operator can be approximated as close as we like using finite-dimensional linear algebra.

  12. On approximating multi-criteria TSP

    NARCIS (Netherlands)

    Manthey, Bodo

    2012-01-01

    We present approximation algorithms for almost all variants of the multicriteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multicriteria maximum traveling salesman problems (Max-TSP). For multicriteria Max-STSP where the edge weights have to be symmet

  13. An improved proximity force approximation for electrostatics

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2012-01-01

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated to their shapes. Indeed, in the so called "proximity force approximation" the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contribution of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied to different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful to discuss the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction i...

  14. Trajectory averaging for stochastic approximation MCMC algorithms

    CERN Document Server

    Liang, Faming

    2010-01-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400--407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305--320]. The application of the trajectory averaging estimator to other stochastic approximation MCMC algorithms, for example, a stochastic approximation MLE al...

  15. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  16. An approximate model for pulsar navigation simulation

    Science.gov (United States)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.

  17. Approximating maximum clique with a Hopfield network.

    Science.gov (United States)

    Jagota, A

    1995-01-01

    In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic. PMID:18263357

  18. Fracture flow code

    International Nuclear Information System (INIS)

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  19. Transformation invariant sparse coding

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard

    2011-01-01

    Sparse coding is a well established principle for unsupervised learning. Traditionally, features are extracted in sparse coding in specific locations, however, often we would prefer invariant representation. This paper introduces a general transformation invariant sparse coding (TISC) model. The...... model decomposes images into features invariant to location and general transformation by a set of specified operators as well as a sparse coding matrix indicating where and to what degree in the original image these features are present. The TISC model is in general overcomplete and we therefore invoke...... sparse coding to estimate its parameters. We demonstrate how the model can correctly identify components of non-trivial artificial as well as real image data. Thus, the model is capable of reducing feature redundancies in terms of pre-specified transformations improving the component identification....

  20. Code blue: seizures.

    Science.gov (United States)

    Hoerth, Matthew T; Drazkowski, Joseph F; Noe, Katherine H; Sirven, Joseph I

    2011-06-01

    Eyewitnesses frequently perceive seizures as life threatening. If an event occurs on the hospital premises, a "code blue" can be called which consumes considerable resources. The purpose of this study was to determine the frequency and characteristics of code blue calls for seizures and seizure mimickers. A retrospective review of a code blue log from 2001 through 2008 identified 50 seizure-like events, representing 5.3% of all codes. Twenty-eight (54%) occurred in inpatients; the other 22 (44%) events involved visitors or employees on the hospital premises. Eighty-six percent of the events were epileptic seizures. Seizure mimickers, particularly psychogenic nonepileptic seizures, were more common in the nonhospitalized group. Only five (17.9%) inpatients had a known diagnosis of epilepsy, compared with 17 (77.3%) of the nonhospitalized patients. This retrospective survey provides insights into how code blues are called on hospitalized versus nonhospitalized patients for seizure-like events. PMID:21546315

  1. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Fuel performance codes approximate this complex behavior using an axisymmetric, axially-stacked, one-dimensional radial representation to save computation cost. However, the need for improved modeling of PCMI and, particularly, the importance of multidimensional capability for accurate fuel performance simulation has been identified as safety margin decreases. Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed

  2. REVISED STREAM CODE AND WASP5 BENCHMARK

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K

    2005-05-01

    STREAM is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River. The STREAM code uses an algebraic equation to approximate the solution of the one dimensional advective transport differential equation. This approach generates spurious oscillations in the concentration profile when modeling long duration releases. To improve the capability of the STREAM code to model long-term releases, its calculation module was replaced by the WASP5 code. WASP5 is a US EPA water quality analysis program that simulates one-dimensional pollutant transport through surface water. Test cases were performed to compare the revised version of STREAM with the existing version. For continuous releases, results predicted by the revised STREAM code agree with physical expectations. The WASP5 code was benchmarked with the US EPA 1990 and 1991 dye tracer studies, in which the transport of the dye was measured from its release at the New Savannah Bluff Lock and Dam downstream to Savannah. The peak concentrations predicted by the WASP5 agreed with the measurements within {+-}20.0%. The transport times of the dye concentration peak predicted by the WASP5 agreed with the measurements within {+-}3.6%. These benchmarking results demonstrate that STREAM should be capable of accurately modeling releases from SRS outfalls.

  3. Development of a self-consistent approximation

    International Nuclear Information System (INIS)

    A self-consistent approximation of a higher level than the standard self-consistent approximation, known in various fields of physics as the Migdal, Kraichnan or Born self-consistent approximation, is derived taking into account both the first and second terms of the series for the vertex function. In contrast to the standard approximation, the new self-consistent approximation is described by a system of two coupled nonlinear integral equations for the self-energy and the vertex function. In addition to all the diagrams with non-intersecting lines of correlation/interaction taken into account by the standard self-consistent approximation, the new approach takes into account in each term of the Green’s function expansion a significant number of diagrams with intersections of these lines. Because of this, the shape, linewidth, and amplitude of the resonance peaks of the dynamic susceptibility calculated in this approximation are much closer to the exact values of these characteristics. The advantage of the new self-consistent approach is demonstrated by the example of calculation of the dynamic susceptibility of waves in an inhomogeneous medium. (paper)

  4. Entanglement in the Born-Oppenheimer Approximation

    CERN Document Server

    Izmaylov, Artur F

    2016-01-01

    The role of electron-nuclear entanglement on the validity of the Born-Oppenheimer (BO) approximation is investigated. While nonadiabatic couplings generally lead to entanglement and to a failure of the BO approximation, surprisingly the degree of electron-nuclear entanglement is found to be uncorrelated with the degree of validity of the BO approximation. This is because while the degree of entanglement of BO states is determined by their deviation from the corresponding states in the crude BO approximation, the accuracy of the BO approximation is dictated, instead, by the deviation of the BO states from the exact electron-nuclear states. In fact, in the context of a minimal avoided crossing model, extreme cases are identified where an adequate BO state is seen to be maximally entangled, and where the BO approximation fails but the associated BO state remains approximately unentangled. Further, the BO states are found to not preserve the entanglement properties of the exact electron-nuclear eigenstates, and t...

  5. Application of RS Codes in Decoding QR Code

    Institute of Scientific and Technical Information of China (English)

    Zhu Suxia(朱素霞); Ji Zhenzhou; Cao Zhiyan

    2003-01-01

    The QR Code is a 2-dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents several QR Code's virtues, analyzes RS decoding algorithm and gives a software flow chart of decoding the QR Code with RS decoding algorithm.

  6. Report number codes

    International Nuclear Information System (INIS)

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name

  7. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  8. Orthorhombic rational approximants for decagonal quasicrystals

    Indian Academy of Sciences (India)

    S Ranganathan; Anandh Subramaniam

    2003-10-01

    An important exercise in the study of rational approximants is to derive their metric, especially in relation to the corresponding quasicrystal or the underlying clusters. Kuo’s model has been the widely accepted model to calculate the metric of the decagonal approximants. Using an alternate model, the metric of the approximants and other complex structures with the icosahedral cluster are explained elsewhere. In this work a comparison is made between the two models bringing out their equivalence. Further, using the concept of average lattices, a modified model is proposed.

  9. The Boussinesq approximation in rapidly rotating flows

    CERN Document Server

    Lopez, Jose M; Avila, Marc

    2013-01-01

    In the classical formulation of the Boussinesq approximation centrifugal buoyancy effects related to differential rotation, as well as strong vortices in the flow, are neglected. However, these may play an important role in rapidly rotating flows, such as in astrophysical and geophysical applications, and also in turbulent convection. We here provide a straightforward approach resulting in a Boussinesq-type approximation that consistently accounts for centrifugal effects. We further compare our new approach to the classical one in fluid flows confined between two differentially heated and rotating cylinders. The results justify the need of using the proposed approximation in rapidly rotating flows.

  10. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre;

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is...

  11. Approximately Liner Phase IIR Digital Filter Banks

    Directory of Open Access Journals (Sweden)

    J. D. Ćertić

    2013-11-01

    Full Text Available In this paper, uniform and nonuniform digital filter banks based on approximately linear phase IIR filters and frequency response masking technique (FRM are presented. Both filter banks are realized as a connection of an interpolated half-band approximately linear phase IIR filter as a first stage of the FRM design and an appropriate number of masking filters. The masking filters are half-band IIR filters with an approximately linear phase. The resulting IIR filter banks are compared with linear-phase FIR filter banks exhibiting similar magnitude responses. The effects of coefficient quantization are analyzed.

  12. Approximate equivalence in von Neumann algebras

    Institute of Scientific and Technical Information of China (English)

    DING Huiru; Don Hadwin

    2005-01-01

    One formulation of D. Voiculescu's theorem on approximate unitary equivalence is that two unital representations π and ρ of a separable C*-algebra are approximately unitarily equivalent if and only if rank o π = rank o ρ. We study the analog when the ranges of π and ρ are contained in a von Neumann algebra R, the unitaries inducing the approximate equivalence must come from R, and "rank" is replaced with "R-rank" (defined as the Murray-von Neumann equivalence of the range projection).

  13. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected by a...... sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based on the...

  14. Relativistic stellar pulsations in the Cowling approximation

    International Nuclear Information System (INIS)

    Much that is known about the general pulsational properties of non-rotating Newtonian stars is traceable to the fact that in the Cowling approximation, the stellar pulsation equations can be cast in a nearly Sturm-Liouville form. In this paper, the relativistic Cowling approximation is investigated, and it is shown that in this approximation the equations for non-radial relativistic stellar pulsations are also of nearly Sturm-Liouville character. The consequences of this are discussed as a series of theorems regarding the eigenfrequencies and eigenfunctions of g-, f- and p-modes in relativistic stars. (author)

  15. Bifurcations of Periodic Orbits and Uniform Approximations

    CERN Document Server

    Schomerus, H; Schomerus, Henning; Sieber, Martin

    1997-01-01

    We derive uniform approximations for contributions to Gutzwiller's periodic-orbit sum for the spectral density which are valid close to bifurcations of periodic orbits in systems with mixed phase space. There, orbits lie close together and give collective contributions, while the individual contributions of Gutzwiller's type would diverge at the bifurcation. New results for the tangent, the period doubling and the period tripling bifurcation are given. They are obtained by going beyond the local approximation and including higher order terms in the normal form of the action. The uniform approximations obtained are tested on the kicked top and are found to be in excellent agreement with exact quantum results.

  16. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  17. Detecting Gravitational Waves using Pade Approximants

    Science.gov (United States)

    Porter, E. K.; Sathyaprakash, B. S.

    1998-12-01

    We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.

  18. Dynamical Vertex Approximation for Nanoscopic Systems

    International Nuclear Information System (INIS)

    Full text: We present model calculations for nanoscopic systems including Hubbard-like Coulomb repulsion and double exchange interactions with localized, classical spins. We compare the results of the recently introduced nanoscopic version of the dynamical vertex approximation at dynamical mean field level against exact diagonalization for a Benzene-like ring, where the latter is doable. This comparison allows us to investigate the reliability of the approximation. It shows that, already at the simplest approximation level (i.e. including only local correlations) the results are very accurate in a rather wide range of parameters. Since the computational effort is highly reduced, it is suitable for studying more complex systems. (author)

  19. Distributed multiple description coding

    CERN Document Server

    Bai, Huihui; Zhao, Yao

    2011-01-01

    This book examines distributed video coding (DVC) and multiple description coding (MDC), two novel techniques designed to address the problems of conventional image and video compression coding. Covering all fundamental concepts and core technologies, the chapters can also be read as independent and self-sufficient, describing each methodology in sufficient detail to enable readers to repeat the corresponding experiments easily. Topics and features: provides a broad overview of DVC and MDC, from the basic principles to the latest research; covers sub-sampling based MDC, quantization based MDC,

  20. Classical Holographic Codes

    CERN Document Server

    Brehm, Enrico M

    2016-01-01

    In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.

  1. Speaking In Code

    OpenAIRE

    Croxall, Brian

    2014-01-01

    Brian Croxall Emory University Over the last five years, there have been countless articles written about the digital humanities. It’s been called both the savior and the death knell of scholarship in the twenty-first century. But what do we mean when we say “digital humanities”? How “digital” and how “humanities” need we be? Why is so much faith being placed in code and code words? In this presentation, Brian Croxall argues that digital humanists need to speak in code less frequently and tha...

  2. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  3. Laser propagation code study

    OpenAIRE

    Rockower, Edward B.

    1985-01-01

    A number of laser propagation codes have been assessed as to their suitability for modeling Army High Energy Laser (HEL) weapons used in an anti- sensor mode. We identify a number of areas in which systems analysis HEL codes are deficient. Most notably, available HEL scaling law codes model the laser aperture as circular, possibly with a fixed (e.g. 10%) obscuration. However, most HELs have rectangular apertures with up to 30% obscuration. We present a beam-quality/aperture shape scaling rela...

  4. Enigma fuel performance code

    International Nuclear Information System (INIS)

    The Enigma fuel performance code has been developed jointly by BNFL and the CEGB's Berkeley Nuclear Laboratories. Its development arose from the need for a code capable of analysing all aspects of light water reactor (LWR) fuel behaviour which would also provide a suitable framework for future submodel development. The submodels incorporated into Enigma reflect the significant progress which has been made in recent years in modelling the important physical processes which determine fuel behaviour. The Enigma code has been subjected to an extensive programme of validation which has demonstrated its suitability for LWR performance analysis. (author)

  5. FORIST unfolding code

    International Nuclear Information System (INIS)

    The FERDOR method is widely used to unfold neutron energy spectra from pulse-height distributions measured with NE-213 spectrometers. Two unfolding codes COOLC (developed at ORNL) and FORIST (modified version of COOLC developed at UIUC) implement the FERDOR method and are distributed by RSIC. Each code package contains an NE-213 response matrix, sample input data, and sample output. The smoothing (window) widths which are distributed with COOLC are not the most appropriate for all neutron spectrum measurements. The FORIST code determines an optimum set of window widths according to the desired statistical error in the smoothed spectrum

  6. Transfer reaction code with nonlocal interactions

    CERN Document Server

    Titus, L J; Nunes, F M

    2016-01-01

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.

  7. The Wkb Approximation through a Factorization Procedure

    International Nuclear Information System (INIS)

    We develop an alternative approach to the Wkb approximation through a factorization procedure for the one -dimensional time independent Schrodinger equation. The method yields the expected Wkb results for slowly varying potentials.

  8. On Approximating Four Covering and Packing Problems

    CERN Document Server

    Ashley, Mary; Berman, Piotr; Chaovalitwongse, Wanpracha; DasGupta, Bhaskar; Kao, Ming-Yang; 10.1016/j.jcss.2009.01.002

    2011-01-01

    In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from full-sibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their approximability properties differ considerably. Our inapproximability constant for the triangle packing problem improves upon the previous results; this is done by directly transforming the inapproximability gap of Haastad for the problem of maximizing the number of satisfied equations for a set of equations over GF(2) and is interesting in its own right. Our approximability results on the full siblings reconstruction problems answers questions originally posed by Berger-Wolf et al. and our results on the maximum profit coverage problem provides almost matching upper and lower bounds on the approximation ratio, answering a...

  9. Approximate Furthest Neighbor in High Dimensions

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Silvestri, Francesco; Sivertsen, Johan von Tangen;

    2015-01-01

    -dimensional Euclidean space. We build on the technique of Indyk (SODA 2003), storing random projections to provide sublinear query time for AFN. However, we introduce a different query algorithm, improving on Indyk’s approximation factor and reducing the running time by a logarithmic factor. We also present a variation...... based on a query-independent ordering of the database points; while this does not have the provable approximation factor of the query-dependent data structure, it offers significant improvement in time and space complexity. We give a theoretical analysis, and experimental results.......Much recent work has been devoted to approximate nearest neighbor queries. Motivated by applications in recommender systems, we consider approximate furthest neighbor (AFN) queries. We present a simple, fast, and highly practical data structure for answering AFN queries in high...

  10. Low Rank Approximation Algorithms, Implementation, Applications

    CERN Document Server

    Markovsky, Ivan

    2012-01-01

    Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...

  11. Approximation concepts for efficient structural synthesis

    Science.gov (United States)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  12. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  13. Nonlinear Ritz approximation for Fredholm functionals

    Directory of Open Access Journals (Sweden)

    Mudhir A. Abdul Hussain

    2015-11-01

    Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.

  14. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  15. Broadband Approximations for Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2010-12-01

    Full Text Available The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth changes, sidelobe levels and aperture efficiencies are given for frequency changes approximately up to four times operating frequency. A comparison of approximated and measured patterns of doubly curved reflector antennas shows that the given approximation could be reliably used for analyses of pattern changes due to very broad frequency changes.

  16. TMB: Automatic differentiation and laplace approximation

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Nielsen, Anders; Berg, Casper Willestofte;

    2016-01-01

    TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011). In addition, it offers easy access to parallel...... computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are...... automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three) of the joint likelihood. The computations are designed to be fast for problems with many random effects (approximate to 10(6)) and parameters (approximate to 10...

  17. Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility

    OpenAIRE

    Mostafazadeh, Ali

    2014-01-01

    arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...

  18. Approximate Bayesian computation in population genetics.

    OpenAIRE

    Beaumont, Mark A; Zhang, Wenyang; Balding, David J.

    2002-01-01

    We propose a new method for approximate Bayesian statistical inference on the basis of summary statistics. The method is suited to complex problems that arise in population genetics, extending ideas developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved by fitting a local-linear regression of simulated parameter values on simulated summ...

  19. Nonlinear approximation in alpha-modulation spaces

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2006-01-01

    The α-modulation spaces are a family of spaces that contain the Besov and modulation spaces as special cases. In this paper we prove that brushlet bases can be constructed to form unconditional and even greedy bases for the α-modulation spaces. We study m -term nonlinear approximation with brushlet...... bases, and give complete characterizations of the associated approximation spaces in terms of α-modulation spaces....

  20. Time Stamps for Fixed-Point Approximation

    DEFF Research Database (Denmark)

    Damian, Daniela

    2001-01-01

    Time stamps were introduced in Shivers's PhD thesis for approximating the result of a control-flow analysis. We show them to be suitable for computing program analyses where the space of results (e.g., control-flow graphs) is large. We formalize time-stamping as a top-down, fixed......-point approximation algorithm which maintains a single copy of intermediate results. We then prove the correctness of this algorithm....

  1. Intuitionistic Fuzzy Automaton for Approximate String Matching

    OpenAIRE

    K.M. Ravi; Choubey, A.; K.K. Tripati

    2014-01-01

    This paper introduces an intuitionistic fuzzy automaton model for computing the similarity between pairs of strings. The model details the possible edit operations needed to transform any input (observed) string into a target (pattern) string by providing a membership and non-membership value between them. In the end, an algorithm is given for approximate string matching and the proposed model computes the similarity and dissimilarity between the pair of strings leading to better approximation.

  2. Intuitionistic Fuzzy Automaton for Approximate String Matching

    Directory of Open Access Journals (Sweden)

    K.M. Ravi

    2014-03-01

    Full Text Available This paper introduces an intuitionistic fuzzy automaton model for computing the similarity between pairs of strings. The model details the possible edit operations needed to transform any input (observed string into a target (pattern string by providing a membership and non-membership value between them. In the end, an algorithm is given for approximate string matching and the proposed model computes the similarity and dissimilarity between the pair of strings leading to better approximation.

  3. Polynomial approximation of functions in Sobolev spaces

    International Nuclear Information System (INIS)

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces

  4. Polynomial approximation of functions in Sobolev spaces

    Science.gov (United States)

    Dupont, T.; Scott, R.

    1980-01-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.

  5. Heterogeneous Basket Options Pricing Using Analytical Approximations

    OpenAIRE

    2006-01-01

    This paper proposes the use of analytical approximations to price an heterogeneous basket option combining commodity prices, foreign currencies and zero-coupon bonds. We examine the performance of three moment matching approximations: inverse gamma, Edgeworth expansion around the lognormal and Johnson family distributions. Since there is no closed-form formula for basket options, we carry out Monte Carlo simulations to generate the benchmark values. We perfom a simulation experiment on a whol...

  6. Approximation of PDEs with Underlying Continuity Equations

    OpenAIRE

    Klebanov, Ilja

    2016-01-01

    We develop a numerical method for the solution of special partial differential equations. We use an approximation space, which automatically adapts in space and time to the function that has to be approximated. For that purpose, we use the corresponding probability density function, transport maps to its probability distribution and the underlying continuity equation. The theory and numerical examples will be presented using the Schrödinger equation as the showcase PDE.

  7. Parallel local approximation MCMC for expensive models

    OpenAIRE

    Conrad, Patrick; Davis, Andrew; Marzouk, Youssef; Pillai, Natesh; Smith, Aaron

    2016-01-01

    Performing Bayesian inference via Markov chain Monte Carlo (MCMC) can be exceedingly expensive when posterior evaluations invoke the evaluation of a computationally expensive model, such as a system of partial differential equations. In recent work [Conrad et al. JASA 2015, arXiv:1402.1694] we described a framework for constructing and refining local approximations of such models during an MCMC simulation. These posterior--adapted approximations harness regularity of the model to reduce the c...

  8. Summary Statistics in Approximate Bayesian Computation

    OpenAIRE

    Prangle, Dennis

    2015-01-01

    This document is due to appear as a chapter of the forthcoming Handbook of Approximate Bayesian Computation (ABC) edited by S. Sisson, Y. Fan, and M. Beaumont. Since the earliest work on ABC, it has been recognised that using summary statistics is essential to produce useful inference results. This is because ABC suffers from a curse of dimensionality effect, whereby using high dimensional inputs causes large approximation errors in the output. It is therefore crucial to find low dimensional ...

  9. A Ballistic Monte Carlo Approximation of {\\pi}

    CERN Document Server

    Dumoulin, Vincent

    2014-01-01

    We compute a Monte Carlo approximation of {\\pi} using importance sampling with shots coming out of a Mossberg 500 pump-action shotgun as the proposal distribution. An approximated value of 3.136 is obtained, corresponding to a 0.17% error on the exact value of {\\pi}. To our knowledge, this represents the first attempt at estimating {\\pi} using such method, thus opening up new perspectives towards computing mathematical constants using everyday tools.

  10. Approximate Assertional Reasoning Over Expressive Ontologies

    OpenAIRE

    Tserendorj, Tuvshintur

    2010-01-01

    In this thesis, approximate reasoning methods for scalable assertional reasoning are provided whose computational properties can be established in a well-understood way, namely in terms of soundness and completeness, and whose quality can be analyzed in terms of statistical measurements, namely recall and precision. The basic idea of these approximate reasoning methods is to speed up reasoning by trading off the quality of reasoning results against increased speed.

  11. Approximation by Semigroups of Spherical Operators

    OpenAIRE

    Wang, Yuguang; Cao, Feilong

    2011-01-01

    This paper discusses the approximation by %semigroups of operators of class ($\\mathscr{C}_0$) on the sphere and focuses on a class of so called exponential-type multiplier operators. It is proved that such operators form a strongly continuous semigroup of contraction operators of class ($\\mathscr{C}_0$), from which the equivalence between approximation for these operators and $K$-functionals introduced by the operators is given. As examples, the constructed $r$-th Boolean of generalized spher...

  12. Approximated power iterations for fast subspace tracking

    OpenAIRE

    Badeau, Roland; Richard, Gaël; David, Bertrand; Abed-Meraim, Karim

    2003-01-01

    This paper introduces a fast implementation of the power iterations method for subspace tracking, based on an approximation less restrictive than the well known projection approximation. This algorithm guarantees the orthonormality of the estimated subspace weighting matrix at each iteration, and satisfies a global and exponential convergence property. Moreover, it outperforms many subspace trackers related to the power method, such as PAST, NIC, NP3 and OPAST, while keeping the same computat...

  13. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  14. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ+ pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  15. Superconductivity in tight-binding approximation

    International Nuclear Information System (INIS)

    An interpretation of Barisic's relation for transition elements between the d-electron contribution to the cohesive energy and the local atomic parameter eta is presented. This relation is extended to a lattice with more than one atom per unit cell in the tight- binding approximation of rigid ions. It is conjectured that Barisic's relation is correct to first order approximation for transition metal alloys, provided the phonon induced d-d coupling is the dominant mechanism for superconductivity

  16. Phase Transitions for Greedy Sparse Approximation Algorithms

    OpenAIRE

    Blanchard, Jeffrey D.; Cartis, Coralia; Tanner, Jared; Thompson, Andrew

    2010-01-01

    A major enterprise in compressed sensing and sparse approximation is the design and analysis of computationally tractable algorithms for recovering sparse, exact or approximate, solutions of underdetermined linear systems of equations. Many such algorithms have now been proven to have optimal-order uniform recovery guarantees using the ubiquitous Restricted Isometry Property (RIP) (Candes and Tao (2005) [11]). However, without specifying a matrix, or class of matrices, it is unclear when the ...

  17. Radiation hydrodynamics integrated in the code PLUTO

    OpenAIRE

    Stefan, M. Kolb; Matthias, Stute; Wilhelm, Kley; Andrea, Mignone

    2013-01-01

    The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile MHD code PLUTO. The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency independent (grey) approximat...

  18. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author)

  19. FORTRAN code-evaluation system

    Science.gov (United States)

    Capps, J. D.; Kleir, R.

    1977-01-01

    Automated code evaluation system can be used to detect coding errors and unsound coding practices in any ANSI FORTRAN IV source code before they can cause execution-time malfunctions. System concentrates on acceptable FORTRAN code features which are likely to produce undesirable results.

  20. GAPCON-THERMAL-3 code description

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Mohr, C.L.; Panisko, F.E.; Stewart, K.B.

    1978-01-01

    GAPCON-3 is a computer program that predicts the thermal and mechanical behavior of an operating fuel rod during its normal lifetime. The code calculates temperatures, dimensions, stresses, and strains for the fuel and the cladding in both the radial and axial directions for each step of the user specified power history. The method of weighted residuals is for the steady state temperature calculation, and is combined with a finite difference approximation of the time derivative for transient conditions. The stress strain analysis employs an iterative axisymmetric finite element procedure that includes plasticity and creep for normal and pellet-clad mechanical interaction loads. GAPCON-3 can solve steady state and operational transient problems. Comparisons of GAPCON-3 predictions to both closed form analytical solutions and actual inpile instrumented fuel rod data have demonstrated the ability of the code to calculate fuel rod behavior. GAPCON-3 features a restart capability and an associated plot package unavailable in previous GAPCON series codes.

  1. SPQR: a Monte Carlo reactor kinetics code

    International Nuclear Information System (INIS)

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  2. No More Perfect Codes: Classification of Perfect Quantum Codes

    OpenAIRE

    Li, Zhuo; Xing, Lijuan

    2009-01-01

    We solve the problem of the classification of perfect quantum codes. We prove that the only nontrivial perfect quantum codes are those with the parameters . There exist no other nontrivial perfect quantum codes.

  3. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  4. OCA Code Enforcement

    Data.gov (United States)

    Montgomery County of Maryland — The Office of the County Attorney (OCA) processes Code Violation Citations issued by County agencies. The citations can be viewed by issued department, issued date...

  5. Importance of Building Code

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-06-01

    Full Text Available A building code, or building control, is a set of rules that specify the minimum standards for constructed objects such as buildings and non building structures. The main purpose of building codes are to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority. Building codes are generally intended to be applied by architects, engineers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants and others.

  6. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  7. Induction technology optimization code

    International Nuclear Information System (INIS)

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  8. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  9. Der Code der Transparenz

    OpenAIRE

    Alloa, Emmanuel

    2015-01-01

    In allen Bereichen der Gesellschaft werden gegenwärtig Forderungen nach mehr Transparenz laut. Was steht hinter diesem Wort? Für Emmanuel Alloa wohnt der Transparenzforderung die Paradoxie inne, ein "codefreier Code" sein zu wollen.

  10. The moment code BEDLAM

    Energy Technology Data Exchange (ETDEWEB)

    Channell, P.J.; Healy, L.M.; Lysenko, W.P.

    1985-10-01

    This paper describes the status of BEDLAM and presents the results of some tests. We simulated a section of radio-frequency quadrupole (RFQ) linac, neglecting space charge, to test the new code. Agreement with a Particle-In-Cell (PIC) simulation was excellent. We also verified that the fourth-order solution is more accurate than the second-order solution, which indicates the convergence of the method. We believe these results justify the continued development of moment simulation codes.

  11. Code-Pointer Integrity

    OpenAIRE

    Volodymyr Kuznetsov; Laszlo Szekeres; Mathias Payer; George Candea; Sekar, R.; Dawn Song

    2014-01-01

    Systems code is often written in low-level languages like C/C++, which offer many benefits but also delegate memory management to programmers. This invites memory safety bugs that attackers can exploit to divert control flow and compromise the system. Deployed defense mechanisms (e.g., ASLR, DEP) are incomplete, and stronger defense mechanisms (e.g., CFI) often have high overhead and limited guarantees [19, 15, 9]. We introduce code-pointer integrity (CPI), a new design point that guarantees...

  12. Towards advanced code simulators

    International Nuclear Information System (INIS)

    The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5

  13. Secure Fractal Image Coding

    OpenAIRE

    Lian, Shiguo

    2007-01-01

    In recent work, various fractal image coding methods are reported, which adopt the self-similarity of images to compress the size of images. However, till now, no solutions for the security of fractal encoded images have been provided. In this paper, a secure fractal image coding scheme is proposed and evaluated, which encrypts some of the fractal parameters during fractal encoding, and thus, produces the encrypted and encoded image. The encrypted image can only be recovered by the correct ke...

  14. Coding of auditory space

    OpenAIRE

    Konishi­, Masakazu

    2003-01-01

    Behavioral, anatomical, and physiological approaches can be integrated in the study of sound localization in barn owls. Space representation in owls provides a useful example for discussion of place and ensemble coding. Selectivity for space is broad and ambiguous in low-order neurons. Parallel pathways for binaural cues and for different frequency bands converge on high-order space-specific neurons, which encode space more precisely. An ensemble of broadly tuned place-coding neurons may conv...

  15. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  16. Analysis of the optimality of the standard genetic code.

    Science.gov (United States)

    Kumar, Balaji; Saini, Supreet

    2016-07-19

    Many theories have been proposed attempting to explain the origin of the genetic code. While strong reasons remain to believe that the genetic code evolved as a frozen accident, at least for the first few amino acids, other theories remain viable. In this work, we test the optimality of the standard genetic code against approximately 17 million genetic codes, and locate 29 which outperform the standard genetic code at the following three criteria: (a) robustness to point mutation; (b) robustness to frameshift mutation; and (c) ability to encode additional information in the coding region. We use a genetic algorithm to generate and score codes from different parts of the associated landscape, which are, as a result, presumably more representative of the entire landscape. Our results show that while the genetic code is sub-optimal for robustness to frameshift mutation and the ability to encode additional information in the coding region, it is very strongly selected for robustness to point mutation. This coupled with the observation that the different performance indicator scores for a particular genetic code are negatively correlated makes the standard genetic code nearly optimal for the three criteria tested in this work. PMID:27327359

  17. An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Butner, Ryan S.

    2012-12-31

    The purpose of this study is to generally inform the U.S. Department of Energy’s Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

  18. PEAR code review

    International Nuclear Information System (INIS)

    As a necessary component in the continuous improvement and refinement of methodologies employed in the nuclear industry, regulatory agencies need to periodically evaluate these processes to improve confidence in results and ensure appropriate levels of safety are being achieved. The independent and objective review of industry-standard computer codes forms an essential part of this program. To this end, this work undertakes an in-depth review of the computer code PEAR (Public Exposures from Accidental Releases), developed by Atomic Energy of Canada Limited (AECL) to assess accidental releases from CANDU reactors. PEAR is based largely on the models contained in the Canadian Standards Association (CSA) N288.2-M91. This report presents the results of a detailed technical review of the PEAR code to identify any variations from the CSA standard and other supporting documentation, verify the source code, assess the quality of numerical models and results, and identify general strengths and weaknesses of the code. The version of the code employed in this review is the one which AECL intends to use for CANDU 9 safety analyses. (author)

  19. On Expanded Cyclic Codes

    CERN Document Server

    Wu, Yingquan

    2008-01-01

    The paper has a threefold purpose. The first purpose is to present an explicit description of expanded cyclic codes defined in $\\GF(q^m)$. The proposed explicit construction of expanded generator matrix and expanded parity check matrix maintains the symbol-wise algebraic structure and thus keeps many important original characteristics. The second purpose of this paper is to identify a class of constant-weight cyclic codes. Specifically, we show that a well-known class of $q$-ary BCH codes excluding the all-zero codeword are constant-weight cyclic codes. Moreover, we show this class of codes achieve the Plotkin bound. The last purpose of the paper is to characterize expanded cyclic codes utilizing the proposed expanded generator matrix and parity check matrix. We analyze the properties of component codewords of a codeword and particularly establish the precise conditions under which a codeword can be represented by a subbasis. With the new insights, we present an improved lower bound on the minimum distance of...

  20. KENO-V code

    International Nuclear Information System (INIS)

    The KENO-V code is the current release of the Oak Ridge multigroup Monte Carlo criticality code development. The original KENO, with 16 group Hansen-Roach cross sections and P1 scattering, was one ot the first multigroup Monte Carlo codes and it and its successors have always been a much-used research tool for criticality studies. KENO-V is able to accept large neutron cross section libraries (a 218 group set is distributed with the code) and has a general P/sub N/ scattering capability. A supergroup feature allows execution of large problems on small computers, but at the expense of increased calculation time and system input/output operations. This supergroup feature is activated automatically by the code in a manner which utilizes as much computer memory as is available. The primary purpose of KENO-V is to calculate the system k/sub eff/, from small bare critical assemblies to large reflected arrays of differing fissile and moderator elements. In this respect KENO-V neither has nor requires the many options and sophisticated biasing techniques of general Monte Carlo codes

  1. Accumulative Landings System Code Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Code Tables Used In Landings System. These tables assign meanings to the codes that appear in the data tables. Code tables exist for species, gear, state, county,...

  2. Approximate design calculation methods for radiation streaming in shield irregularities

    International Nuclear Information System (INIS)

    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)

  3. Approximate minimum-time trajectories for 2-link flexible manipulators

    Science.gov (United States)

    Eisler, G. R.; Segalman, D. J.; Robinett, R. D.

    1989-01-01

    Powell's nonlinear programming code, VF02AD, was used to generate approximate minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link, m-joint system with horizontal-plane bending only. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link stiffness, EI, to transition from the semi-rigid to flexible case. Results show the level of compliance necessary to excite significant modal behavior. Quiescence of the final configuration is examined with the finite-element model.

  4. On the New Generalizations of Cosmography Inspired by Pade Approximant

    CERN Document Server

    Zhou, Ya-Nan; Wei, Hao

    2016-01-01

    The current accelerated expansion of the universe has been one of the most important fields in physics and astronomy since 1998. Many cosmological models have been proposed in the literature to explain this mysterious phenomenon. Since the nature and cause of the cosmic acceleration are still unknown, using model-independent approaches to study the evolution of the universe are welcome. One of the powerful model-independent approaches is the so-called cosmography. It only relies on the cosmological principle, without postulating any underlying theoretical model. However, there are several shortcomings in the usual cosmography. In the present work, we try to overcome these problems, and propose two new generalizations of cosmography inspired by Pad\\'e approximant. We also confront them with the latest observational data by the help of a Markov chain Monte Carlo (MCMC) code emcee, and find that they work fairly well.

  5. Multiuser detection and channel estimation: Exact and approximate methods

    DEFF Research Database (Denmark)

    Fabricius, Thomas

    2003-01-01

    This dissertation deals with optimal and close to optimal multiuser detection in Code Division Multiple Access. We derive optimal detection strategies in the sense of minimum expected probability of bit error, sequence error, and mean square error. These are implemented efficiently by the use of...... the Junction Tree Algorithm, which is a generalisation of Pearl's Belief Propagation, the BCJR, sum product, min/max sum, and Viterbi's algorithm. Although efficient algoithms, they have an inherent exponential complexity in the number of users when applied to CDMA multiuser detection. For this reason...... subtractive interference cancellation with hyperbolic tangent tentative decision device, in statistical mechanics and machine learning called the naive mean field approach. The differences between the proposed algorithms lie in how the bias is estimated/approximated. We propose approaches based on a second...

  6. Axisymmetric Modes of Rotating Relativistic Stars in the Cowling Approximation

    CERN Document Server

    Font, J A; Sen-Gupta, A; Stergioulas, N; Font, Jose A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos

    2001-01-01

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core-collapse, crust and core-quakes and binary mergers and could become detectable either in gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, nonlinear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0,1,2 and 3, for...

  7. Fast frequency hopping codes applied to SAC optical CDMA network

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  8. Product Codes for Optical Communication

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    2002-01-01

    Many optical communicaton systems might benefit from forward-error-correction. We present a hard-decision decoding algorithm for the "Block Turbo Codes", suitable for optical communication, which makes this coding-scheme an alternative to Reed-Solomon codes.......Many optical communicaton systems might benefit from forward-error-correction. We present a hard-decision decoding algorithm for the "Block Turbo Codes", suitable for optical communication, which makes this coding-scheme an alternative to Reed-Solomon codes....

  9. Mixed Burst Error Correcting Codes

    OpenAIRE

    Sethi, Amita

    2015-01-01

    In this paper, we construct codes which are an improvement on the previously known block wise burst error correcting codes in terms of their error correcting capabilities. Along with different bursts in different sub-blocks, the given codes also correct overlapping bursts of a given length in two consecutive sub-blocks of a code word. Such codes are called mixed burst correcting (mbc) codes.

  10. Nuclear code abstracts (1975 edition)

    International Nuclear Information System (INIS)

    Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)

  11. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  12. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  13. An Approximation Algorithm for #k-SAT

    CERN Document Server

    Thurley, Marc

    2011-01-01

    We present a simple randomized algorithm that approximates the number of satisfying assignments of Boolean formulas in conjunctive normal form. To the best of our knowledge this is the first algorithm which approximates #k-SAT for any k >= 3 within a running time that is not only non-trivial, but also significantly better than that of the currently fastest exact algorithms for the problem. More precisely, our algorithm is a randomized approximation scheme whose running time depends polynomially on the error tolerance and is mildly exponential in the number n of variables of the input formula. For example, even stipulating sub-exponentially small error tolerance, the number of solutions to 3-CNF input formulas can be approximated in time O(1.5366^n). For 4-CNF input the bound increases to O(1.6155^n). We further show how to obtain upper and lower bounds on the number of solutions to a CNF formula in a controllable way. Relaxing the requirements on the quality of the approximation, on k-CNF input we obtain sign...

  14. Tree-fold loop approximation of AMD

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Akira [Tohoku Univ., Sendai (Japan). Faculty of Science

    1997-05-01

    AMD (antisymmetrized molecular dynamics) is a frame work for describing a wave function of nucleon multi-body system by Slater determinant of Gaussian wave flux, and a theory for integrally describing a wide range of nuclear reactions such as intermittent energy heavy ion reaction, nucleon incident reaction and so forth. The aim of this study is induction on approximation equation of expected value, {nu}, in correlation capable of calculation with time proportional A (exp 3) (or lower), and to make AMD applicable to the heavier system such as Au+Au. As it must be avoided to break characteristics of AMD, it needs not to be anxious only by approximating the {nu}-value. However, in order to give this approximation any meaning, error of this approximation will have to be sufficiently small in comparison with bond energy of atomic nucleus and smaller than 1 MeV/nucleon. As the absolute expected value in correlation may be larger than 50 MeV/nucleon, the approximation is required to have a high accuracy within 2 percent. (G.K.)

  15. Tree-fold loop approximation of AMD

    International Nuclear Information System (INIS)

    AMD (antisymmetrized molecular dynamics) is a frame work for describing a wave function of nucleon multi-body system by Slater determinant of Gaussian wave flux, and a theory for integrally describing a wide range of nuclear reactions such as intermittent energy heavy ion reaction, nucleon incident reaction and so forth. The aim of this study is induction on approximation equation of expected value, ν, in correlation capable of calculation with time proportional A (exp 3) (or lower), and to make AMD applicable to the heavier system such as Au+Au. As it must be avoided to break characteristics of AMD, it needs not to be anxious only by approximating the ν-value. However, in order to give this approximation any meaning, error of this approximation will have to be sufficiently small in comparison with bond energy of atomic nucleus and smaller than 1 MeV/nucleon. As the absolute expected value in correlation may be larger than 50 MeV/nucleon, the approximation is required to have a high accuracy within 2 percent. (G.K.)

  16. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  17. Approximate Equalities on Rough Intuitionistic Fuzzy Sets and an Analysis of Approximate Equalities

    CERN Document Server

    Tripathy, B K

    2012-01-01

    In order to involve user knowledge in determining equality of sets, which may not be equal in the mathematical sense, three types of approximate (rough) equalities were introduced by Novotny and Pawlak ([8, 9, 10]). These notions were generalized by Tripathy, Mitra and Ojha ([13]), who introduced the concepts of approximate (rough) equivalences of sets. Rough equivalences capture equality of sets at a higher level than rough equalities. More properties of these concepts were established in [14]. Combining the conditions for the two types of approximate equalities, two more approximate equalities were introduced by Tripathy [12] and a comparative analysis of their relative efficiency was provided. In [15], the four types of approximate equalities were extended by considering rough fuzzy sets instead of only rough sets. In fact the concepts of leveled approximate equalities were introduced and properties were studied. In this paper we proceed further by introducing and studying the approximate equalities based ...

  18. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  19. Gradient-based Kriging approximate model and its application research to optimization design

    Institute of Scientific and Technical Information of China (English)

    XUAN Ying; XIANG JunHua; ZHANG WeiHua; ZHANG YuLin

    2009-01-01

    In the process of multidisciplinary design optimization, there exits the calculation complexity problem due to frequently calling high fidelity system analysis models. The high fidelity system analysis models can be surrogated by approximate models. The sensitivity analysis and numerical noise filtering can be done easily by coupling approximate models to optimization. Approximate models can reduce the number of executions of the problem's simulation code during optimization, so the solution efficiency of the multidisciplinary design optimization problem can be improved. Most optimization methods are based on gradient. The gradients of the objective and constrain functions are gained easily. The gradient-based Kriging (GBK) approximate model can be constructed by using system response value and its gradients. The gradients can greatly improve prediction precision of system response. The hybrid optimization method is constructed by coupling GBK approximate models to gradient-based optimization methods. An aircraft aerodynamics shape optimization design example indicates that the methods of this paper can achieve good feasibility and validity.

  20. Markovian stochastic approximation with expanding projections

    CERN Document Server

    Andrieu, Christophe

    2011-01-01

    Stochastic approximation is a framework unifying many random iterative algorithms occurring in a diverse range of applications. The stability of the process is often difficult to verify in practical applications and the process may even be unstable without additional stabilisation techniques. We study a stochastic approximation procedure with expanding projections similar to Andrad\\'ottir [Oper. Res. 43 (2010) 1037--1048]. We focus on Markovian noise and show the stability and convergence under general conditions. Our framework also incorporates the possibility to use a random step size sequence, which allows us to consider settings with a non-smooth family of Markov kernels. We apply the theory to stochastic approximation expectation maximisation with particle independent Metropolis-Hastings sampling.

  1. On approximation of Markov binomial distributions

    CERN Document Server

    Xia, Aihua; 10.3150/09-BEJ194

    2010-01-01

    For a Markov chain $\\mathbf{X}=\\{X_i,i=1,2,...,n\\}$ with the state space $\\{0,1\\}$, the random variable $S:=\\sum_{i=1}^nX_i$ is said to follow a Markov binomial distribution. The exact distribution of $S$, denoted $\\mathcal{L}S$, is very computationally intensive for large $n$ (see Gabriel [Biometrika 46 (1959) 454--460] and Bhat and Lal [Adv. in Appl. Probab. 20 (1988) 677--680]) and this paper concerns suitable approximate distributions for $\\mathcal{L}S$ when $\\mathbf{X}$ is stationary. We conclude that the negative binomial and binomial distributions are appropriate approximations for $\\mathcal{L}S$ when $\\operatorname {Var}S$ is greater than and less than $\\mathbb{E}S$, respectively. Also, due to the unique structure of the distribution, we are able to derive explicit error estimates for these approximations.

  2. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  3. Large scale systems approximation: Analysis and control

    International Nuclear Information System (INIS)

    This work concerns the study of the approximation of high dimensional systems by low order models. This approximation is defined by aggregation methods, the method based on singular perturbations and a relatively recent method. This later one is formulated in a particular representation of the system and is called balanced realisation method. The application of the approximation is then studied in the case of suboptimal control theory for the several defined models. The results of numerical simulation for the analysis and control are carried on two examples defined by a model of a nuclear reactor core of order nine and a steam generator of a fuel station of order twenty and permitted to develop a comparative study of the performances of the different methods analysed in the case of open loop and closed loop models

  4. Approximate Bayesian Computation: a nonparametric perspective

    CERN Document Server

    Blum, Michael

    2010-01-01

    Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well-suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s_obs from the data and simulating summary statistics for different values of the parameter theta. The posterior distribution is then approximated by an estimator of the conditional density g(theta|s_obs). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better perfor...

  5. On transparent potentials: a Born approximation study

    International Nuclear Information System (INIS)

    In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy

  6. The unitary convolution approximation for heavy ions

    CERN Document Server

    Grande, P L

    2002-01-01

    The convolution approximation for the impact-parameter dependent energy loss is reviewed with emphasis on the determination of the stopping force for heavy projectiles. In this method, the energy loss in different impact-parameter regions is well determined and interpolated smoothly. The physical inputs of the model are the projectile-screening function (in the case of dressed ions), the electron density and oscillators strengths of the target atoms. Moreover, the convolution approximation, in the perturbative mode (called PCA), yields remarkable agreement with full semi-classical-approximation (SCA) results for bare as well as for screened ions at all impact parameters. In the unitary mode (called UCA), the method contains some higher-order effects (yielding in some cases rather good agreement with full coupled-channel calculations) and approaches the classical regime similar as the Bohr model for large perturbations (Z/v>>1). The results are then used to compare with experimental values of the non-equilibri...

  7. Approximate path integral methods for partition functions

    International Nuclear Information System (INIS)

    We review several approximate methods for evaluating quantum mechanical partition functions with the goal of obtaining a method that is easy to implement for multidimensional systems but accurately incorporates quantum mechanical corrections to classical partition functions. A particularly promising method is one based upon an approximation to the path integral expression of the partition function. In this method, the partition-function expression has the ease of evaluation of a classical partition function, and quantum mechanical effects are included by a weight function. Anharmonicity is included exactly in the classical Boltzmann average and local quadratic expansions around the centroid of the quantum paths yield a simple analytic form for the quantum weight function. We discuss the relationship between this expression and previous approximate methods and present numerical comparisons for model one-dimensional potentials and for accurate three-dimensional vibrational force fields for H2O and SO2

  8. The adiabatic approximation in multichannel scattering

    International Nuclear Information System (INIS)

    Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)

  9. On the functional CLT via martingale approximation

    CERN Document Server

    Gordin, Mikhail

    2009-01-01

    In this paper we develop necessary and sufficient conditions for the validity of a martingale approximation for the partial sums of a stationary process in terms of the maximum of consecutive errors. Such an approximation is useful for transferring from the martingale to the original process the conditional functional central limit theorem. The condition found is simple and well adapted to a variety of examples, leading to a better understanding of the structure of several stochastic processes and their asymptotic behavior. The approximation brings together many disparate examples in probability theory. It is valid for classes of variables defined by familiar projection conditions such as Maxwell-Woodroofe condition, various classes of mixing processes including the large class of strongly mixing processes and for additive functionals of Markov chains with normal or symmetric Markov operators.

  10. Approximating Minimum Manhattan Networks in Higher Dimensions

    CERN Document Server

    Das, Aparna; Kaufmann, Michael; Kobourov, Stephen; Spoerhase, Joachim; Wolff, Alexander

    2011-01-01

    We consider the minimum Manhattan network problem, which is defined as follows. Given a set of points called \\emph{terminals} in $\\mathbb{R}^d$, find a minimum-length network such that each pair of terminals is connected by a set of axis-parallel line segments whose total length is equal to the pair's Manhattan (that is, $L_1$-) distance. The problem is NP-hard in 2D and there is no PTAS for 3D (unless ${\\cal P}={\\cal NP}$). Approximation algorithms are known for 2D, but not for 3D. We present, for any fixed dimension $d$ and any $\\epsilon>0$, an $O(n^\\epsilon)$-approximation. For 3D, we also give a $4(k-1)$-approximation for the case that the terminals are contained in the union of $k \\ge 2$ parallel planes.

  11. Numerical approximation of partial differential equations

    CERN Document Server

    Bartels, Sören

    2016-01-01

    Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular ...

  12. Recent Developments of Lattice Physics Code STREAM

    International Nuclear Information System (INIS)

    Three new advanced features have been implemented in the lattice physics code STREAM for higher accuracy and performance in the analyses of Light water reactors (LWRs). First, In this paper, the RIF library has been extended to include more isotopes to analyze a variety of fuel types including UO2 and MOX fuels. With the application of the new RIF library and method to the UO2 and MOX pin depletion problems, STREAM shows reactivity errors of less than 80 pcm at all burnup steps. Second, the inflow transport approximation has been implemented. In LWRs analyses, the anisotropic scattering effect is generally treated by the transport corrected cross section (XS) with an isotropic scattering approximation. Therefore, a more rigorous inflow transport correction method is implemented in order to mitigate this problem. Three new advanced features are implemented in the lattice physics code STREAM. STREAM with the upgraded RIF library can analyze both of UO2 and MOX fuel depletion problems with errors less than 80 pcm for all burnup steps. The inflow transport approximation and high order scattering model make it possible to treat highly anisotropic scattering accurately. The results from the inflow transport approximation and high order scattering treatment are accurate and consistent each other

  13. Recent Developments of Lattice Physics Code STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Three new advanced features have been implemented in the lattice physics code STREAM for higher accuracy and performance in the analyses of Light water reactors (LWRs). First, In this paper, the RIF library has been extended to include more isotopes to analyze a variety of fuel types including UO{sub 2} and MOX fuels. With the application of the new RIF library and method to the UO{sub 2} and MOX pin depletion problems, STREAM shows reactivity errors of less than 80 pcm at all burnup steps. Second, the inflow transport approximation has been implemented. In LWRs analyses, the anisotropic scattering effect is generally treated by the transport corrected cross section (XS) with an isotropic scattering approximation. Therefore, a more rigorous inflow transport correction method is implemented in order to mitigate this problem. Three new advanced features are implemented in the lattice physics code STREAM. STREAM with the upgraded RIF library can analyze both of UO{sub 2} and MOX fuel depletion problems with errors less than 80 pcm for all burnup steps. The inflow transport approximation and high order scattering model make it possible to treat highly anisotropic scattering accurately. The results from the inflow transport approximation and high order scattering treatment are accurate and consistent each other.

  14. Approximation by fully complex multilayer perceptrons.

    Science.gov (United States)

    Kim, Taehwan; Adali, Tülay

    2003-07-01

    We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570

  15. Optimizing ATLAS code with different profilers

    International Nuclear Information System (INIS)

    After the current maintenance period, the LHC will provide higher energy collisions with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to speed up substantially. However, ATLAS code is composed of approximately 6M lines, written by many different programmers with different backgrounds, which makes code optimisation a challenge. To help with this effort different profiling tools and techniques are being used. These include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools like Pin, PAPI, and GOoDA; as well as techniques such as library interposing. In this paper we will mainly focus on Pin tools and GOoDA. Pin is a dynamic binary instrumentation tool which can obtain statistics such as call counts, instruction counts and interrogate functions' arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes for linear algebra calculations which has provided the insight necessary to achieve significant performance improvements. Complimenting this, GOoDA, an in-house performance tool built in collaboration with Google, which is based on hardware performance monitoring unit events, is used to identify hot-spots in the code for different types of hardware limitations, such as CPU resources, caches, or memory bandwidth. GOoDA has been used in improvement of the performance of new magnetic field code and identification of potential vectorization targets in several places, such as Runge-Kutta propagation code

  16. Approximately -Jordan Homomorphisms on Banach Algebras

    Directory of Open Access Journals (Sweden)

    Karimi T

    2009-01-01

    Full Text Available Let , and let be two rings. An additive map is called -Jordan homomorphism if for all . In this paper, we establish the Hyers-Ulam-Rassias stability of -Jordan homomorphisms on Banach algebras. Also we show that (a to each approximate 3-Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra there corresponds a unique 3-ring homomorphism near to , (b to each approximate -Jordan homomorphism between two commutative Banach algebras there corresponds a unique -ring homomorphism near to for all .

  17. BEST APPROXIMATION BY DOWNWARD SETS WITH APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    H.Mohebi; A. M. Rubinov

    2006-01-01

    We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where x ∈ X and W is a closed downward subset of X.

  18. Computing Nash Equilibria: Approximation and Smoothed Complexity

    OpenAIRE

    Chen, Xi; Deng, Xiaotie; Teng, Shang-Hua

    2006-01-01

    We show that the BIMATRIX game does not have a fully polynomial-time approximation scheme, unless PPAD is in P. In other words, no algorithm with time polynomial in n and 1/\\epsilon can compute an \\epsilon-approximate Nash equilibrium of an n by nbimatrix game, unless PPAD is in P. Instrumental to our proof, we introduce a new discrete fixed-point problem on a high-dimensional cube with a constant side-length, such as on an n-dimensional cube with side-length 7, and show that they are PPAD-co...

  19. Self-interaction correction to GW approximation

    International Nuclear Information System (INIS)

    A general approach to correct the self-interaction error in GW approximation is proposed, and proved to be exact in the one-electron limit. The correction is expressed by vertex corrections to both the self-energy and the polarization, and the formulation can be shown to be equivalent to the Schneider-Taylor-Yaris approximation of many-body scattering theory. The suitability of this correction in many-electron systems is also discussed. Numerical calculations of the two-electron two-site Hubbard model are performed to illustrate the effects of the self-interaction correction on many-electron systems.

  20. Weisskopf--Wigner approximation in atomic physics

    International Nuclear Information System (INIS)

    Several approximations involved in the usual Weisskopf-Wigner treatment of the emission of light by an atom are investigated. The system considered is a recoilless, nonrelativistic hydrogen atom interacting with a quantized electromagnetic field, in dipole approximation (with a nonrelativistic cutoff in momentum space). Since only electric dipole waves interact with the atom, the Hamiltonian can be expressed in a simple one-dimensional form. The time evolution of the system is determined by resolvent operator techniques. The method goes beyond the analysis by Van Hove and Hugenholtz, allowing one to treat also fields of finite intensity in the infinite-volume limit. A comparison between this and other techniques is made

  1. The exact renormalization group and approximation solutions

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the structure of Polchinski's formulation of the flow equations for the continuum Wilson effective action. Reinterpretations in terms of I.R. cutoff greens functions are given. A promising non-perturbative approximation scheme is derived by carefully taking the sharp cutoff limit and expanding in `irrelevancy' of operators. We illustrate with two simple models of four dimensional $\\lambda \\varphi^4$ theory: the cactus approximation, and a model incorporating the first irrelevant correction to the renormalized coupling. The qualitative and quantitative behaviour give confidence in a fuller use of this method for obtaining accurate results.

  2. Pade approximants for linear Boltzmann equation

    International Nuclear Information System (INIS)

    The iteration technique is used to find the relation between the linear functional and Pade approximants. Two examples are solved as applications: (1) the neutron escape probability and (ii) the reflection and transmission function in radiative transfer and in turn the emergent and transmitted intensities for a finite slab and the emergent intensity for a semi-infinite medium. Numerical calculations are carried our and compared with the exact results and results obtained from other techniques. It is found that the Pade approximants converge to the exact results. (author)

  3. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...... for intermediate binding distances. A Hubbard model for the dimer allows us to obtain exact analytical results for the various approximations, which is readily compared with the exact diagonalization of the model. Moreover, the model is shown to reproduce all the qualitative results from the ab initio...

  4. The Aster code

    International Nuclear Information System (INIS)

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  5. Physical Layer Network Coding

    CERN Document Server

    Shengli, Zhang; Lam, Patrick P K

    2007-01-01

    A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11). This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes. In contrast to straightforward network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increase...

  6. Error coding simulations

    Science.gov (United States)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  7. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  8. Diffusion approximation of neuronal models revisited

    Czech Academy of Sciences Publication Activity Database

    Čupera, Jakub

    2014-01-01

    Roč. 11, č. 1 (2014), s. 11-25. ISSN 1547-1063. [International Workshop on Neural Coding (NC) /10./. Praha, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : stochastic model * neuronal activity * first-passage time Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.840, year: 2014

  9. High burnup in DIONISIO code

    International Nuclear Information System (INIS)

    with high precision the neutron flux, burnup and concentration of every isotope, fissile, fissionable or fertile, gaseous or solid, all of them as functions of radius and time. But this formidable task is not suitable to be included in a fuel performance code, which must attend the great number of thermomechanical and thermochemical processes within the fuel rod. To accommodate both requirements, a simplified treatment is adopted consisting of restricting the balance equations to more relevant nuclides and reducing the energy spectrum to a single group. The purpose is to obtain empirical expressions to represent, with the higher possible approximation degree, the absorption, capture and fission cross sections of these isotopes as functions of the initial enrichment in 235U, the average burnup and the radial coordinate. The curves obtained with a so drastic simplification demand a careful testing before incorporation in the general fuel behaviour code. This testing is performed via comparison with the reliable reactor codes. The first antecedent in this type of analysis is found in the RADAR model [4] which was validated against the WIMS [5,6] code. The TUBRNP model, included in the TRANSURANUS code [7] and the RAPID model [8] are also based on the same concept. In this work curves fitted for the cross sections of 235U, 236U, 238U, 239Pu, 240Pu, 241Pu and 242Pu are obtained from the predictions of the reactor cell codes HUEMUL [9] and CONDOR [10] for an average burnup ranging from fresh fuel to 120 MWd/kgHM and for an initial enrichment ranging from natural uranium to 12%. The final purpose is to extend the application range of the DIONISIO code [11,12,13] (originally designed to predict the fuel behavior in normal operation conditions) to the high burnup domain. The predictions of DIONISIO were compared with a large number of experimental data, obtaining an excellent agreement

  10. Graph Codes with Reed-Solomon Component Codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn

    2006-01-01

    We treat a specific case of codes based on bipartite expander graphs coming from finite geometries. The code symbols are associated with the branches and the symbols connected to a given node are restricted to be codewords in a Reed-Solomon code. We give results on the parameters of the codes and...

  11. Phase-coded pulse aperiodic transmitter coding

    Directory of Open Access Journals (Sweden)

    I. I. Virtanen

    2009-07-01

    Full Text Available Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately overspread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC, whereas the weather radar users have adopted the term Simultaneous Multiple Pulse-Repetition Frequency (SMPRF. When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thousand kilometers – about seven milliseconds – whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of microseconds in the F-region. If one is interested in estimating the scattering autocorrelation function (ACF at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR conditions using lag profile inversion. In addition, a qualitative evaluation under high-SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F-region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromsø VHF (224 MHz radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper.

  12. Coded Random Access

    DEFF Research Database (Denmark)

    Paolini, Enrico; Stefanovic, Cedomir; Liva, Gianluigi;

    2015-01-01

    The rise of machine-to-machine communications has rekindled the interest in random access protocols as a support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed under a collision model, where slots containing collided packets are considered as...... waste. However, if the common receiver (e.g., base station) is capable to store the collision slots and use them in a transmission recovery process based on successive interference cancellation, the design space for access protocols is radically expanded. We present the paradigm of coded random access......, in which the structure of the access protocol can be mapped to a structure of an erasure-correcting code defined on graph. This opens the possibility to use coding theory and tools for designing efficient random access protocols, offering markedly better performance than ALOHA. Several instances of...

  13. Code query by example

    Science.gov (United States)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  14. MHD Generation Code

    CERN Document Server

    Frutos-Alfaro, Francisco

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  15. Adjoint code generator

    Institute of Scientific and Technical Information of China (English)

    CHENG Qiang; CAO JianWen; WANG Bin; ZHANG HaiBin

    2009-01-01

    The adjoint code generator (ADG) is developed to produce the adjoint codes, which are used to analytically calculate gradients and the Hessian-vector products with the costs independent of the number of the independent variables. Different from other automatic differentiation tools, the implementation of ADG has advantages of using the least program behavior decomposition method and several static dependence analysis techniques. In this paper we first address the concerned concepts and fundamentals, and then introduce the functionality and the features of ADG. In particular, we also discuss the design architecture of ADG and implementation details including the recomputation and storing strategy and several techniques for code optimization. Some experimental results in several applications are presented at the end.

  16. Decoding the productivity code

    DEFF Research Database (Denmark)

    Hansen, David

    , that is, the productivity code of the 21st century, is dissolved. Today, organizations are pressured for operational efficiency, often in terms of productivity, due to increased global competition, demographical changes, and use of natural resources. Taylor’s principles for rationalization founded...... that swing between rationalization and employee development. The productivity code is the lack of alternatives to this ineffective approach. This thesis decodes the productivity code based on the results from a 3-year action research study at a medium-sized manufacturing facility. During the project period....... The improvement system consists of five elements: The improvement process, participants, management, organization, and technology. The improvement system is not an organizational structure but rather a capability and readiness to organize the right improvement activities for a given challenge, i...

  17. Improved algorithms for approximate string matching (extended abstract

    Directory of Open Access Journals (Sweden)

    Papamichail Georgios

    2009-01-01

    Full Text Available Abstract Background The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. Results We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s - |n - m|·min(m, n, s + m + n and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm also excels in practice, especially in cases where the two strings compared differ significantly in length. Conclusion We have provided the design, analysis and implementation of a new algorithm for calculating the edit distance of two strings with both theoretical and practical implications. Source code of our algorithm is available online.

  18. A modular code supervisor

    International Nuclear Information System (INIS)

    Large industrial computer CEA codes in the field of scientific computing, mechanics, thermohydraulics, and neutronics, are decomposed in sets of separate modules. Each module performs a well-defined task and all information exchanged by the modules are contained in data structures, taken as input or given as output. The advantage of this structure is the great flexibility offered to experienced user to solve a large number of different problems, but to choose, order, monitor large sequences of modules and understand what each module requires as input and output is out of the interest of the common user. The aim is to conserve entirely this flexibility in dealing with knowledge relevant from scientific or technical fields and not from the code itself. The first part of this paper describes the three main steps of the software: specification phase, generating algorithm, translation in code command language. The second part describes how the authors obtain explanations from the modelization of operators and from a particular representation of the internal structure of the generated particular representation of the internal structure of the generated plan (triangular table) that lead to a generalization allowing synthesis of sequences of operators or the transformations of the total order of the generated plan in a partial one. The software is the first part of the modular codes supervisor. It was applied to CRONOS, neutronic reactor core code, which has the command language GIBIANE. It will be extended to the reactor calculations supervisor, SAGA, using the ensemble of the codes developed by CEA/DMT/SERMA

  19. Approximate double commutants in von Neumann algebras

    OpenAIRE

    Hadwin, Don

    2011-01-01

    Richard Kadison showed that not every commutative von Neumann subalgebra of a factor von Neumann algebra is equal to its relative double commutant. We prove that every commutative C*-subalgebra of a centrally prime C*-algebra $B$ equals its relative approximate double commutant. If $B$ is a von Neumann algebra, there is a related distance formula.

  20. Median Approximations for Genomes Modeled as Matrices.

    Science.gov (United States)

    Zanetti, Joao Paulo Pereira; Biller, Priscila; Meidanis, Joao

    2016-04-01

    The genome median problem is an important problem in phylogenetic reconstruction under rearrangement models. It can be stated as follows: Given three genomes, find a fourth that minimizes the sum of the pairwise rearrangement distances between it and the three input genomes. In this paper, we model genomes as matrices and study the matrix median problem using the rank distance. It is known that, for any metric distance, at least one of the corners is a [Formula: see text]-approximation of the median. Our results allow us to compute up to three additional matrix median candidates, all of them with approximation ratios at least as good as the best corner, when the input matrices come from genomes. We also show a class of instances where our candidates are optimal. From the application point of view, it is usually more interesting to locate medians farther from the corners, and therefore, these new candidates are potentially more useful. In addition to the approximation algorithm, we suggest a heuristic to get a genome from an arbitrary square matrix. This is useful to translate the results of our median approximation algorithm back to genomes, and it has good results in our tests. To assess the relevance of our approach in the biological context, we ran simulated evolution tests and compared our solutions to those of an exact DCJ median solver. The results show that our method is capable of producing very good candidates. PMID:27072561

  1. Revisiting Twomey's approximation for peak supersaturation

    Directory of Open Access Journals (Sweden)

    B. J. Shipway

    2015-04-01

    Full Text Available Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment that can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down that can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. While multimodal aerosol with N different dispersion characteristics requires 2N+1 inputs to calculate the activation fraction, only N of these one-dimensional lookup tables are needed. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap, physically based parametrization of droplet nucleation for use in climate and Numerical Weather Prediction models.

  2. Alternative approximation concepts for space frame synthesis

    Science.gov (United States)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.

  3. On Banach spaces without the approximation property

    OpenAIRE

    Reinov, Oleg I.

    2002-01-01

    A. Szankowski's example is used to construct a Banach space similar to that of "An example of an asymptotically Hilbertian space which fails the approximation property", P.G. Casazza, C.L. Garc\\'{\\i}a, W.B. Johnson [math.FA/0006134 ()].

  4. Nonlinear approximation with dictionaries,.. II: Inverse estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...

  5. Nonlinear approximation with dictionaries. II. Inverse Estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2006-01-01

    In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block...

  6. ON BEST SIMULTANEOUS APPROXIMATION IN QUOTIENT SPACES

    Institute of Scientific and Technical Information of China (English)

    M. Iranmanesh; H. Mohebi

    2007-01-01

    We assume that X is a normed linear space, W and M are subspaces of X.We develop a theory of best simultaneous approximation in quotient spaces and introduce equivalent assertions between the subspaces W and W + M and the quotient space W/M.

  7. On operators with bounded approximation property

    OpenAIRE

    Reinov, Oleg

    2013-01-01

    It is known that any separable Banach space with BAP is a complemented subspace of a Banach space with a basis. We show that every operator with bounded approximation property, acting from a separable Banach space, can be factored through a Banach space with a basis.

  8. Approximation and compression with sparse orthonormal transforms.

    Science.gov (United States)

    Sezer, Osman Gokhan; Guleryuz, Onur G; Altunbasak, Yucel

    2015-08-01

    We propose a new transform design method that targets the generation of compression-optimized transforms for next-generation multimedia applications. The fundamental idea behind transform compression is to exploit regularity within signals such that redundancy is minimized subject to a fidelity cost. Multimedia signals, in particular images and video, are well known to contain a diverse set of localized structures, leading to many different types of regularity and to nonstationary signal statistics. The proposed method designs sparse orthonormal transforms (SOTs) that automatically exploit regularity over different signal structures and provides an adaptation method that determines the best representation over localized regions. Unlike earlier work that is motivated by linear approximation constructs and model-based designs that are limited to specific types of signal regularity, our work uses general nonlinear approximation ideas and a data-driven setup to significantly broaden its reach. We show that our SOT designs provide a safe and principled extension of the Karhunen-Loeve transform (KLT) by reducing to the KLT on Gaussian processes and by automatically exploiting non-Gaussian statistics to significantly improve over the KLT on more general processes. We provide an algebraic optimization framework that generates optimized designs for any desired transform structure (multiresolution, block, lapped, and so on) with significantly better n -term approximation performance. For each structure, we propose a new prototype codec and test over a database of images. Simulation results show consistent increase in compression and approximation performance compared with conventional methods. PMID:25823033

  9. WEIGHTED APPROXIMATION ON SZASZ-TYPE OPERATORS

    Institute of Scientific and Technical Information of China (English)

    Feng Guo

    2003-01-01

    In this paper, we use weighted modules ω2φλ (f,t)w to study the pointwise approximation on Szász-type operators, and obtain the direct and converse theorem, as well as characterizations of the pointwise approxi- mation of Jacobi-weighted Szász-type operators.

  10. Virial expansion coefficients in the harmonic approximation

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.;

    2012-01-01

    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to...

  11. An approximation to discrete optimal feedback controls

    OpenAIRE

    2003-01-01

    We study discrete solutions of nonlinear optimal control problems. By value functions, we construct difference equations to approximate the optimal control on each interval of “small” time. We aim to find a discrete optimal feedback control. An algorithm is proposed for computing the solution of the optimal control problem.

  12. UNIFORM SEMICLASSICAL APPROXIMATION IN QUANTUM STATISTICAL MECHANICS

    International Nuclear Information System (INIS)

    We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential

  13. An approximate analytical approach to resampling averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, M.

    2004-01-01

    Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr...

  14. Quasiclassical approximation for ultralocal scalar fields

    International Nuclear Information System (INIS)

    It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author)

  15. Neutral kaons without Weisskopf-Wigner approximation

    International Nuclear Information System (INIS)

    The model-independent formalism is constructed to describe decays of mixed particles without using the Weisskopf-Wigner approximation (WWA). Limitations due to various symmetries are traced for neutral K mesons. As an application we show that effects of CPT violation and going beyond WWA may be separated and studied independently. 16 refs

  16. Neutral Kaons without Weisskopf-Wigner Approximation

    OpenAIRE

    Azimov, Ya. I.

    1995-01-01

    The model-independent formalism is constructed to describe decays of mixed particles without using the Weisskopf-Wigner approximation. Limitations due to various symmetries are traced for neutral $K-$mesons. As an application we show that effects of $CPT-$violation and going beyond WWA may be separated and studied independently.

  17. Approximate counting by hashing in bounded arithmetic

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2009-01-01

    Roč. 74, č. 3 (2009), s. 829-860. ISSN 0022-4812 R&D Projects: GA AV ČR IAA1019401 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * approximate counting * universal hashing Subject RIV: BA - General Mathematics Impact factor: 0.631, year: 2009

  18. Eignets for function approximation on manifolds

    CERN Document Server

    Mhaskar, H N

    2009-01-01

    Let $\\XX$ be a compact, smooth, connected, Riemannian manifold without boundary, $G:\\XX\\times\\XX\\to \\RR$ be a kernel. Analogous to a radial basis function network, an eignet is an expression of the form $\\sum_{j=1}^M a_jG(\\circ,y_j)$, where $a_j\\in\\RR$, $y_j\\in\\XX$, $1\\le j\\le M$. We describe a deterministic, universal algorithm for constructing an eignet for approximating functions in $L^p(\\mu;\\XX)$ for a general class of measures $\\mu$ and kernels $G$. Our algorithm yields linear operators. Using the minimal separation amongst the centers $y_j$ as the cost of approximation, we give modulus of smoothness estimates for the degree of approximation by our eignets, and show by means of a converse theorem that these are the best possible for every \\emph{individual function}. We also give estimates on the coefficients $a_j$ in terms of the norm of the eignet. Finally, we demonstrate that if any sequence of eignets satisfies the optimal estimates for the degree of approximation of a smooth function, measured in ter...

  19. Revisiting Twomey's approximation for peak supersaturation

    Directory of Open Access Journals (Sweden)

    B. J. Shipway

    2014-10-01

    Full Text Available Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment which can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down which can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. Multimode aerosol with only N different dispersion characteristics require only N of these one-dimensional lookup tables. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap and very accurate physically-based parametrization of droplet nucleation for use in climate and NWP models.

  20. Double unresolved approximations to multiparton scattering amplitudes

    International Nuclear Information System (INIS)

    We present approximations to tree-level multiparton scattering amplitudes which are appropriate when two partons are unresolved. These approximations are required for the analytic isolation of infrared singularities of n+2 parton scattering processes contributing to the next-to-next-to-leading order corrections to n jet cross sections. In each case the colour ordered matrix elements factorise and yield a function containing the singular factors multiplying the n-parton amplitudes. When the unresolved particles are colour unconnected, the approximations are simple products of the familiar eikonal and Altarelli-Parisi splitting functions used to describe single unresolved emission. However, when the unresolved particles are colour connected the factorisation is more complicated and we introduce new and general functions to describe the triple collinear and soft/collinear limits in addition to the known double soft gluon limits of Berends and Giele. As expected the triple collinear splitting functions obey an N=1 SUSY identity. To illustrate the use of these double unresolved approximations, we have examined the singular limits of the tree-level matrix elements for e+e- →5 partons when only three partons are resolved. When integrated over the unresolved regions of phase space, these expressions will be of use in evaluating the O(αs3) corrections to the three-jet rate in electron-positron annihilation. (orig.)