Quantum Cramer–Rao Bound for a Massless Scalar Field in de Sitter Space
Directory of Open Access Journals (Sweden)
Marcello Rotondo
2017-10-01
Full Text Available How precisely can we estimate cosmological parameters by performing a quantum measurement on a cosmological quantum state? In quantum estimation theory, the variance of an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent Fisher information and ultimately by quantum Fisher information, which is the maximization of the former over all positive operator-valued measurements. Such bound is known as the quantum Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for each field wave number mode. We obtain the expressions of the quantum Fisher information as well as the Fisher informations associated to occupation number measurement and power spectrum measurement, and show the specific results of their evolution for pure de Sitter expansion and de Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results from the point of view of the quantum-to-classical transition of cosmological perturbations and show quantitatively how this transition and the residual quantum correlations affect the bound on the precision.
Sharp Bounds for Symmetric and Asymmetric Diophantine Approximation
Institute of Scientific and Technical Information of China (English)
Cornelis KRAAIKAMP; Ionica SMEETS
2011-01-01
In 2004,Tong found bounds for the approximation quality of a regular continued fraction convergent to a rational number,expressed in bounds for both the previous and next approximation.The authors sharpen his results with a geometric method and give both sharp upper and lower bounds.The asymptotic frequencies that these bounds occur are also calculated.
Energy Technology Data Exchange (ETDEWEB)
Ngampitipan, Tritos, E-mail: tritos.ngampitipan@gmail.com [Faculty of Science, Chandrakasem Rajabhat University, Ratchadaphisek Road, Chatuchak, Bangkok 10900 (Thailand); Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Boonserm, Petarpa, E-mail: petarpa.boonserm@gmail.com [Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Chatrabhuti, Auttakit, E-mail: dma3ac2@gmail.com [Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Visser, Matt, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)
2016-06-02
Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.
International Nuclear Information System (INIS)
Ngampitipan, Tritos; Boonserm, Petarpa; Chatrabhuti, Auttakit; Visser, Matt
2016-01-01
Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.
Bounded-Degree Approximations of Stochastic Networks
Energy Technology Data Exchange (ETDEWEB)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.
Upper bounds on minimum cardinality of exact and approximate reducts
Chikalov, Igor
2010-01-01
In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.
Usefulness of bound-state approximations in reaction theory
International Nuclear Information System (INIS)
Adhikari, S.K.
1981-01-01
A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process
Probabilistic Lower Bounds for Approximation by Shallow Perceptron Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra; Sanguineti, M.
2017-01-01
Roč. 91, July (2017), s. 34-41 ISSN 0893-6080 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow networks * perceptrons * model complexity * lower bounds on approximation rates * Chernoff-Hoeffding bounds Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 5.287, year: 2016
Group C∗-algebras without the completely bounded approximation property
DEFF Research Database (Denmark)
Haagerup, U.
2016-01-01
It is proved that: (1) The Fourier algebra A(G) of a simple Lie group G of real rank at least 2 with finite center does not have a multiplier bounded approximate unit. (2) The reduced C∗-algebra C∗ r of any lattice in a non-compact simple Lie group of real rank at least 2 with finite center does...... not have the completely bounded approximation property. Hence, the results obtained by de Canniere and the author for SOe (n, 1), n ≥ 2, and by Cowling for SU(n, 1) do not generalize to simple Lie groups of real rank at least 2. © 2016 Heldermann Verlag....
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Higgs mass upper bound in the O(4) approximation
International Nuclear Information System (INIS)
Lin, L.
1991-01-01
In this paper the theoretical breakdown of the minimal standard model in four dimension is investigated when the mass of the Higgs particle is larger than the weak interaction scale. The triviality arguement for an upper bound on the Higgs mass is made quantitative on the lattice in large scale simulations of the spontaneously broken Higgs sector. The authors obtain an upper bound m H ≅640 GeV on the Higgs mass at a dimensionless correlation length ξ = 2 in lattice units.units
Analytic bounds and approximations for annuities and Asian options
Vanduffel, S.; Shang, Z.; Henrard, L.; Dhaene, J.; Valdez, E.A.
2008-01-01
Even in case of the Brownian motion as most natural rate of return model it appears too difficult to obtain analytic expressions for most risk measures of constant continuous annuities. In literature the so-called comonotonic approximations have been proposed but these still require the evaluation
Hung, Tran Loc; Giang, Le Truong
2016-01-01
Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.
Energies and bounds from perturbative approximations to the Bloch-Horowitz effective Hamiltonian
International Nuclear Information System (INIS)
Darema-Rogers, F.; Vincent, C.M.
1978-01-01
Bloch-Horowitz perturbation theory is applied to the calculation of approximate energies and model-space eigenvectors, for the solvable large-matrix Hamiltonian H used by Pittel, Vincent, and Vergados. Two types of upper and lower bounds to the energies are discussed: moment-theory bounds, obtained by applying moment theory to the terms of perturbation theory, and norm bounds, derived from the expectation E-bar and variance sigma 2 of H with respect to an eigenvector approximated by nth order perturbation theory (n < or = 6). It is shown that lower bounds cannot be constructed unless some fourth-order quantity is known. The upper bounds are generally stricter than the lower bounds. All of the bounds apply even when back-door intruder states cause perturbation theory to diverge; but they lose their rigor and become ''quasibounds'' when there are physical intruders. The moment-theory and norm lower quasibounds always require estimation of a parameter. For the solvable Hamiltonians, it is shown that this can be done quite reliably, and that the resulting quasibounds are tight enough to have some practical utility. The energy-independent effective interaction V is constructed and its errors are displayed and discussed. Finally, a certain [1/2] pseudo-Pade approximant is empirically shown to give energies with a mean absolute error of less than 0.3 MeV in all cases
Chaaban, Anas; Morvan, Jean-Marie; Alouini, Mohamed-Slim
2016-01-01
The capacity of the free-space optical channel is studied. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed. This approach leads to new capacity upper bounds for a channel with a peak intensity constraint or an average intensity constraint. Under an average constraint only, the derived bound is tighter than an existing sphere-packing bound derived earlier by Farid and Hranilovic. The achievable rate of a truncated-Gaussian input distribution is also derived. It is shown that under both average and peak constraints, this achievable rate and the sphere-packing bounds are within a small gap at high SNR, leading to a simple high-SNR capacity approximation. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions.
Chaaban, Anas
2016-02-03
The capacity of the free-space optical channel is studied. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed. This approach leads to new capacity upper bounds for a channel with a peak intensity constraint or an average intensity constraint. Under an average constraint only, the derived bound is tighter than an existing sphere-packing bound derived earlier by Farid and Hranilovic. The achievable rate of a truncated-Gaussian input distribution is also derived. It is shown that under both average and peak constraints, this achievable rate and the sphere-packing bounds are within a small gap at high SNR, leading to a simple high-SNR capacity approximation. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions.
Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning
International Nuclear Information System (INIS)
Serna, J I; Monz, M; Kuefer, K H; Thieke, C
2009-01-01
One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide on the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to ensure that all clinically meaningful plans are covered and that as many clinically irrelevant plans as possible are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that constitutes the first phase. It is possible that two plans on the Pareto surface have a small, clinically insignificant difference in one criterion and a significant difference in another criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, the so-called trade-off bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects. The proposed scheme is applied to two artificial cases and one clinical case of a paraspinal tumor. For all cases, the quality of the Pareto surface approximation is measured with respect to the number of computed plans, and the range of values occurring in the approximation for different criteria is compared. Through enforcing trade-off bounds, the scheme disregards clinically irrelevant plans during the approximation. Thereby, the number of plans necessary to achieve a good approximation quality can be significantly reduced. Thus, trade-off bounds are an effective tool to focus the planning and to reduce computation time.
Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning.
Serna, J I; Monz, M; Küfer, K H; Thieke, C
2009-10-21
One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide on the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to ensure that all clinically meaningful plans are covered and that as many clinically irrelevant plans as possible are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that constitutes the first phase. It is possible that two plans on the Pareto surface have a small, clinically insignificant difference in one criterion and a significant difference in another criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, the so-called trade-off bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects. The proposed scheme is applied to two artificial cases and one clinical case of a paraspinal tumor. For all cases, the quality of the Pareto surface approximation is measured with respect to the number of computed plans, and the range of values occurring in the approximation for different criteria is compared. Through enforcing trade-off bounds, the scheme disregards clinically irrelevant plans during the approximation. Thereby, the number of plans necessary to achieve a good approximation quality can be significantly reduced. Thus, trade-off bounds are an effective tool to focus the planning and to reduce computation time.
Maximum error-bounded Piecewise Linear Representation for online stream approximation
Xie, Qing; Pang, Chaoyi; Zhou, Xiaofang; Zhang, Xiangliang; Deng, Ke
2014-01-01
Given a time series data stream, the generation of error-bounded Piecewise Linear Representation (error-bounded PLR) is to construct a number of consecutive line segments to approximate the stream, such that the approximation error does not exceed a prescribed error bound. In this work, we consider the error bound in L∞ norm as approximation criterion, which constrains the approximation error on each corresponding data point, and aim on designing algorithms to generate the minimal number of segments. In the literature, the optimal approximation algorithms are effectively designed based on transformed space other than time-value space, while desirable optimal solutions based on original time domain (i.e., time-value space) are still lacked. In this article, we proposed two linear-time algorithms to construct error-bounded PLR for data stream based on time domain, which are named OptimalPLR and GreedyPLR, respectively. The OptimalPLR is an optimal algorithm that generates minimal number of line segments for the stream approximation, and the GreedyPLR is an alternative solution for the requirements of high efficiency and resource-constrained environment. In order to evaluate the superiority of OptimalPLR, we theoretically analyzed and compared OptimalPLR with the state-of-art optimal solution in transformed space, which also achieves linear complexity. We successfully proved the theoretical equivalence between time-value space and such transformed space, and also discovered the superiority of OptimalPLR on processing efficiency in practice. The extensive results of empirical evaluation support and demonstrate the effectiveness and efficiency of our proposed algorithms.
Maximum error-bounded Piecewise Linear Representation for online stream approximation
Xie, Qing
2014-04-04
Given a time series data stream, the generation of error-bounded Piecewise Linear Representation (error-bounded PLR) is to construct a number of consecutive line segments to approximate the stream, such that the approximation error does not exceed a prescribed error bound. In this work, we consider the error bound in L∞ norm as approximation criterion, which constrains the approximation error on each corresponding data point, and aim on designing algorithms to generate the minimal number of segments. In the literature, the optimal approximation algorithms are effectively designed based on transformed space other than time-value space, while desirable optimal solutions based on original time domain (i.e., time-value space) are still lacked. In this article, we proposed two linear-time algorithms to construct error-bounded PLR for data stream based on time domain, which are named OptimalPLR and GreedyPLR, respectively. The OptimalPLR is an optimal algorithm that generates minimal number of line segments for the stream approximation, and the GreedyPLR is an alternative solution for the requirements of high efficiency and resource-constrained environment. In order to evaluate the superiority of OptimalPLR, we theoretically analyzed and compared OptimalPLR with the state-of-art optimal solution in transformed space, which also achieves linear complexity. We successfully proved the theoretical equivalence between time-value space and such transformed space, and also discovered the superiority of OptimalPLR on processing efficiency in practice. The extensive results of empirical evaluation support and demonstrate the effectiveness and efficiency of our proposed algorithms.
Bounds on Rates of Variable-Basis and Neural-Network Approximation
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra; Sanguineti, M.
2001-01-01
Roč. 47, č. 6 (2001), s. 2659-2665 ISSN 0018-9448 R&D Projects: GA ČR GA201/00/1482 Institutional research plan: AV0Z1030915 Keywords : approximation by variable-basis functions * bounds on rates of approximation * complexity of neural networks * high-dimensional optimal decision problems Subject RIV: BA - General Mathematics Impact factor: 2.077, year: 2001
DEFF Research Database (Denmark)
Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.
2003-01-01
This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...
International Nuclear Information System (INIS)
Jackson, J.D.
1994-01-01
The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasibound states, and scattering resonances in muon (μ)--hydrogen (x)--hydrogen (y) molecular ions. Our purpose is to comment on the existence and nature of the narrow states reported in three-body calculations, for L=0 and 1, at approximately 55 eV above threshold and the family of states in the same partial waves reported about 1.9 keV above threshold. We first discuss the motivation for study of excited states beyond the well-known and well-studied bound states. Then we reproduce the energies and other properties of these well-known states to show that, despite the relatively large muon mass, the Born-Oppenheimer approximation gives a good, semiquantitative description containing all the essential physics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dμ), d-(tμ), and t-(tμ) are compared with the accurate three-body results, again with general success. The places of disagreement are understood in terms of the differences in location of slightly bound (or unbound) states in the Born-Oppenheimer approximation compared to the accurate three-body calculations
New approximation to the bound states of Schroedinger operators with coulomb interaction
International Nuclear Information System (INIS)
Nunez, M.A.; Izquierdo B., G.
1994-01-01
In this work, the authors present a mathematical formulation of the physical fact that the bound states of a quantum system confined into a box Ω (with impenetrable walls) are similar to those of the unconfined system, if the box Ω is sufficiently large, and it is shown how the bound states of atomic and molecular Hamiltonians can be approximated by those of the system confined for a box Ω large enough (Dirichlet eigenproblem in Ω). Thus, a method for computing bound states is obtained which has the advantage of reducing the problem to the case of compact operators. This implies that a broad class of numerical and analytic techniques used for solving the Dirichlet problem, may be applied in full strength to obtain accurate computations of energy levels, wave functions, and other physical properties of interest
Application of the N-quantum approximation method to bound state problems
International Nuclear Information System (INIS)
Raychaudhuri, A.
1977-01-01
The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions
Approximate Q.C.D. lower bound for the bag constant B
International Nuclear Information System (INIS)
Nielsen, H.B.
1978-01-01
Using an article by Savvidy from 1977 in which a state in Q.C.D. with lower energy than the perturbative vacuum was found, the author calculates an approximate lower bound for the M.I.T. bag constant B relative to the Q.C.D. coupling parameter Λ. With an M.I.T. bag constant Bsup(1/4)=145 MeV the author finds Λsub(P)<=0.89 GeV when the propagator of the gluon is used to renormalize the coupling constant. (Auth.)
DEFF Research Database (Denmark)
Christensen, Ole; Lindner, Alexander M
2001-01-01
We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...
Quasiparadoxes of massless QED
International Nuclear Information System (INIS)
Smilga, A.V.
1990-04-01
We show that the limit m e =0 in the conventional QED is not smooth. In contrast to the massless QED the massive QED, however small the mass is, involves finite probability chirality breaking processes. The chirality breaking effects may be observed provided the size of experimental installation is greater than the formation length ∼ E/m 2 . We discuss also the finite cross sections of virtual longitudinal photon production and scattering in massless QED recently found by Gorsky, Ioffe and Khodjamirian and argue that real longitudinal photons do not interact while the limit of zero virtuality is not smooth. (author). 23 refs, 4 figs
Heskes, Tom; Eisinga, Rob; Breitling, Rainer
2014-11-21
The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .
Chaaban, Anas
2015-04-01
The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel is studied. It is shown that for an IM-DD channel with generally input-dependent noise, the worst noise at high SNR is input-independent Gaussian with variance dependent on the input cost. Based on this result, a Gaussian IM-DD channel model is proposed where the noise variance depends on the optical intensity constraints only. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed, which leads to a tighter bound than an existing sphere-packing bound for the channel with only an average intensity constraint. Under both average and peak constraints, it yields bounds that characterize the high SNR capacity within a negligible gap, where the achievability is proved by using a truncated Gaussian input distribution. This completes the high SNR capacity characterization of the channel, by closing the gap in the existing characterization for a small average-to-peak ratio. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of significant practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions. Finally, the capacity/SNR loss between heterodyne detection (HD) systems and IM-DD systems is bounded at high SNR, where it is shown that the loss grows as SNR increases for a complex-valued HD system, while it is bounded by 1.245 bits or 3.76 dB at most for a real-valued one.
Chaaban, Anas; Morvan, Jean-Marie; Alouini, Mohamed-Slim
2015-01-01
The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel is studied. It is shown that for an IM-DD channel with generally input-dependent noise, the worst noise at high SNR is input-independent Gaussian with variance dependent on the input cost. Based on this result, a Gaussian IM-DD channel model is proposed where the noise variance depends on the optical intensity constraints only. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed, which leads to a tighter bound than an existing sphere-packing bound for the channel with only an average intensity constraint. Under both average and peak constraints, it yields bounds that characterize the high SNR capacity within a negligible gap, where the achievability is proved by using a truncated Gaussian input distribution. This completes the high SNR capacity characterization of the channel, by closing the gap in the existing characterization for a small average-to-peak ratio. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of significant practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions. Finally, the capacity/SNR loss between heterodyne detection (HD) systems and IM-DD systems is bounded at high SNR, where it is shown that the loss grows as SNR increases for a complex-valued HD system, while it is bounded by 1.245 bits or 3.76 dB at most for a real-valued one.
Approximation of complex algebraic numbers by algebraic numbers of bounded degree
Bugeaud, Yann; Evertse, Jan-Hendrik
2007-01-01
We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...
Quantum mean-field approximations for nuclear bound states and tunneling
International Nuclear Information System (INIS)
Negele, J.W.; Levit, S.; Paltiel, Z.; Massachusetts Inst. of Tech., Cambridge
1979-01-01
A conceptual framework has been presented in which observables are approximated in terms of a self-consistent quantum mean-field theory. Since the SPA (Stationary Phase Approximation) determines the optimal mean field to approximate a given observable, it is natural that when one changes the observable, the best mean field to describe it changes as well. Although the theory superficially appears applicable to any observable expressible in terms of an evolution operator, for example an S-matrix element, one would have to go far beyond the SPA to adequately approximate the overlap of two many-body wave functions. The most salient open problems thus concern quantitative assessment of the accuracy of the SPA, reformulation of the theory to accomodate hard cores, and selection of sensible expectation values of few-body operators to address in scattering problems
Directory of Open Access Journals (Sweden)
J. Ben Atkinson
1995-01-01
Full Text Available We consider the transient analysis of the M/G/1/0 queue, for which Pn(t denotes the probability that there are no customers in the system at time t, given that there are n(n=0,1 customers in the system at time 0. The analysis, which is based upon coupling theory, leads to simple bounds on Pn(t for the M/G/1/0 and M/PH/1/0 queues and improved bounds for the special case M/Er/1/0. Numerical results are presented for various values of the mean arrival rate λ to demonstrate the increasing accuracy of approximations based upon the above bounds in light traffic, i.e., as λ→0. An important area of application for the M/G/1/0 queue is as a reliability model for a single repairable component. Since most practical reliability problems have λ values that are small relative to the mean service rate, the approximations are potentially useful in that context. A duality relation between the M/G/1/0 and GI/M/1/0 queues is also described.
First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations
Energy Technology Data Exchange (ETDEWEB)
Schmuck, Markus [Imperial College, London (United Kingdom). Depts. of Chemical Engineering and Mathematics
2012-04-15
We study the well-accepted Poisson-Nernst-Planck equations modeling transport of charged particles. By formal multiscale expansions we rederive the porous media formulation obtained by two-scale convergence in [42, 43]. The main result is the derivation of the error which occurs after replacing a highly heterogeneous solid-electrolyte composite by a homogeneous one. The derived estimates show that the approximation errors for both, the ion densities quantified in L{sup 2}-norm and the electric potential measured in H{sup 1}-norm, are of order O(s{sup 1/2}). (orig.)
Partially massless fields during inflation
Baumann, Daniel; Goon, Garrett; Lee, Hayden; Pimentel, Guilherme L.
2018-04-01
The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.
Improved Approximation Algorithms for Item Pricing with Bounded Degree and Valuation
Hamane, Ryoso; Itoh, Toshiya
When a store sells items to customers, the store wishes to decide the prices of the items to maximize its profit. If the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. It would be hard for the store to decide the prices of items. Assume that a store has a set V of n items and there is a set C of m customers who wish to buy those items. The goal of the store is to decide the price of each item to maximize its profit. We refer to this maximization problem as an item pricing problem. We classify the item pricing problems according to how many items the store can sell or how the customers valuate the items. If the store can sell every item i with unlimited (resp. limited) amount, we refer to this as unlimited supply (resp. limited supply). We say that the item pricing problem is single-minded if each customer j∈C wishes to buy a set ej⊆V of items and assigns valuation w(ej)≥0. For the single-minded item pricing problems (in unlimited supply), Balcan and Blum regarded them as weighted k-hypergraphs and gave several approximation algorithms. In this paper, we focus on the (pseudo) degree of k-hypergraphs and the valuation ratio, i. e., the ratio between the smallest and the largest valuations. Then for the single-minded item pricing problems (in unlimited supply), we show improved approximation algorithms (for k-hypergraphs, general graphs, bipartite graphs, etc.) with respect to the maximum (pseudo) degree and the valuation ratio.
Bound-state problem in the light-front Tamm-Dancoff approximation: Numerical study in 1+1 dimensions
International Nuclear Information System (INIS)
Harindranath, A.; Perry, R.J.; Shigemitsu, J.
1992-01-01
Numerical solutions to the two-fermion bound-state problem in the (1+1)-dimensional Yukawa model are presented within the lowest-order light-front Tamm-Dancoff approximation (i.e., keeping only two-fermion and two-fermion--one-boson sectors). Our motivation is twofold. First, we want to understand the dynamics of the model from the very-weak-coupling domain, where the system is governed by nonrelativistic dynamics, to moderate and strong-coupling domains where retardation and self-energy effects become important. Second, we want to develop techniques for solving coupled Tamm-Dancoff integral equations, in particular, methods that can be generalized to higher-order Tamm-Dancoff approximations. To achieve the first goal we first simplify the problem considerably (from a numerical point of view) by the explicit elimination of the higher Fock-space sector. The resulting integral equation, whose kernel depends upon the invariant mass of the state, is solved for the coupling constant, for a given set of the invariant mass and fermion and boson mass parameters. To achieve the second goal we solve the coupled set of equations using both basis functions and direct-discretization techniques. Results from these more general techniques are compared with the explicit-elimination method
Covariant representations of massless Fermi fields
International Nuclear Information System (INIS)
Borek, R.
1983-01-01
The author shows in the framework of algebraic quantum field theory that representations of the quasi-local algebra of a free, massless spinor field exist which fulfil two axioms of von Neumann. Furthermore, the current algebra of a charged, massless fermion is considered. Finally, representations with the spectral condition of a charged, massless fermion and the quasi-local algebra of a free, massless Majorana particle are constructed. (HSI) [de
Macroscopic (and microscopic massless modes
Directory of Open Access Journals (Sweden)
Michael C. Abbott
2015-05-01
Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.
Smooth massless limit of field theories
International Nuclear Information System (INIS)
Fronsdal, C.
1980-01-01
The massless limit of Fierz-Pauli field theories, describing fields with fixed mass and spin interacting with external sources, is examined. Results are obtained for spins, 1, 3/2, 2 and 3 using conventional models, and then for all half-integral spins in a relatively model-independent manner. It is found that the massless limit is smooth provided that the sources satisfy certain conditions. In the massless limit these conditions reduce to the conservation laws required by internal consistency of massless field theory. Smoothness simply requires that quantities that vanish in the massless case approach zero in a certain well-defined manner. (orig.)
Hydrodynamical model with massless constituents
International Nuclear Information System (INIS)
Chiu, C.B.; Wang, K.H.
1974-01-01
Within the constituent hydrodynamical model, it is shown that the total number of constituents is conserved, if these constituents are massless and satisfy the Fermi-Dirac distribution. A simple scheme for the transition from the constituent-phase to the hadron-phase is suggested, and the hadron inclusive momentum spectra are presented for this case. This phase transition scheme predicts the average transverse momentum of meson resonances which is compatible with the data. (U.S.)
Massless radioactivity: a medical must?
International Nuclear Information System (INIS)
Wolterbeek, H.Th
2013-01-01
Full text: The authoritative body in the field of nomenclature for radiochemistry is the International Union of Pure and Applied Chemistry (IUPAC). The concepts of specific activity, radioactivity concentration, carrier, carrier-free, and no-carrier-added have been) and are also recently discussed as to their correctness, relevance, clarity and consistency. Here, specific activity (sa) is suggested as to be defined as the activity (a) of a specified radioisotope in an amount of substance divided by the mass (m) of the total number of atoms (sa=a/m). Qaim, in a recent review of the future of medical radionuclides, justly argues that both yield, radionuclide purity and specific activity should be increased: here, again, however, the term specific activity deserves attention. What should be the goal in increasing specific activity? Up to as near as possible to massless? Approaching massless in terms of the smallest achievable m value? Taking the radionuclide n X, in physics specific activity is defined as both activity and mass related to n X, in radiochemistry specific activity is defined as the activity of n X related to the mass of all X, but in nuclear medicine most interest is in what IUPAC calls activity concentration, that is, the activity of n X in relation to the mass or volume of the material in which n X is present. This means that, apparently, nuclear medicine asks for high activity concentration of n X in non-isotopic carriers. Does this always imply the highest possible n X specific activity? The presentation focuses on this issue: examples are given that show both the absence of any need for the highest possible specific activity (e.g. 99 Mo, 166 Ho) and the need for 'as-near-as-possible to massless' (e.g. 99m Tc, 177 Lu, α-particles), in all cases in dependence of the radionuclide's position in the production chain and its eventual application in nuclear diagnostics or - therapy
Symmetry breaking due to quantum fluctuations in massless field theories
International Nuclear Information System (INIS)
Ghose, P.; Datta, A.
1977-10-01
It is shown that quantum fluctuations can act as the driving mechanism for the spontaneous breakdown of both scale and the discrete phi→-phi symmetries in a lamdaphi 4 theory which is massless and scale invariant in the tree approximation. Consequently dimensional transformation occurs and the dimensionless and only parameter lambda in the theory is fixed and replaced by the vacuum expectation value of the field. These results are shown to be consistent with the appropriate renormalization group equation for the theory. A scalar electrodynamics which is massless and scale invariant in the tree approximation is also considered, and it is shown that the Higgs meson in such a theory is much heavier than the vector meson for small values of the gauge coupling constant e. Another interesting consequence of such a theory is that it possesses vortex-line solutions only when quantum fluctuations are taken into account
Czech Academy of Sciences Publication Activity Database
Kainen, P.C.; Kůrková, Věra; Vogt, A.
2007-01-01
Roč. 147, č. 1 (2007), s. 1-10 ISSN 0021-9045 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : characteristic functions of closed half-spaces * perceptron neural networks * integral formulas * variation with respect to half-spaces * Radon transform * Gaussian function * rates of approximation Subject RIV: IN - Informatics, Computer Science Impact factor: 0.697, year: 2007
Massless gluino and pseudoscalar meson family
International Nuclear Information System (INIS)
Smilga, A.V.; Vysotskij, M.I.
1982-01-01
It is shown that masslessness of the glUino leads necessarily to the existence of the light isosinglet pseudoscalar boson not observed in experiment. Thus, any realistic supersymmetry model must include the mechanism for generating the gluino mass
Stochastic massless fields I: Integer spin
International Nuclear Information System (INIS)
Lim, S.C.
1981-04-01
Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)
Partially massless graviton on beyond Einstein spacetimes
Bernard, Laura; Deffayet, Cédric; Hinterbichler, Kurt; von Strauss, Mikael
2017-06-01
We show that a partially massless graviton can propagate on a large set of spacetimes which are not Einstein spacetimes. Starting from a recently constructed theory for a massive graviton that propagates the correct number of degrees of freedom on an arbitrary spacetime, we first give the full explicit form of the scalar constraint responsible for the absence of a sixth degree of freedom. We then spell out generic conditions for the constraint to be identically satisfied, so that there is a scalar gauge symmetry which makes the graviton partially massless. These simplify if one assumes that spacetime is Ricci symmetric. Under this assumption, we find explicit non-Einstein spacetimes (some, but not all, with vanishing Bach tensors) allowing for the propagation of a partially massless graviton. These include in particular the Einstein static Universe.
Mass generation in perturbed massless integrable models
International Nuclear Information System (INIS)
Controzzi, D.; Mussardo, G.
2005-01-01
We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory
Twistor diagrams and massless Moeller scattering
International Nuclear Information System (INIS)
Hodges, A.P.
1983-01-01
The theory of twistor diagrams, as devised by Penrose, is intended to lead to a manifestly finite account of scattering amplitudes in quantum field theory. The theory is here extended to a more general type of interaction between massless fields than has hitherto been described. It is applied to the example of first-order massless Moeller scattering in quantum electrodynamics. It is shown that earlier studies of this example have failed to render a correct account, in particular by overlooking an infrared divergency, but that the scattering data can nevertheless be represented within the twistor formalism. (author)
Can massless neutrinos dominate the universe
International Nuclear Information System (INIS)
Kolb, E.W.
1980-01-01
The restrictions from cosmological considerations on masses and lifetimes of neutral, weakly interacting fermions are reviewed. In particular, the possibility that the massless decay products of a heavy neutrino dominate the energy density of the present universe is discussed in detail. 4 figures
Partially massless higher-spin theory
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)
2017-02-16
We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.
Free massless scalar fields in two dimensions
International Nuclear Information System (INIS)
Hadjiivanov, L.K.
1980-01-01
A common Fock space for two free massless scalar fields, nonlocal with respect to each other, is constructed. The operators corresponding to the two formal charges are correctly defined and it is shown that they generate translationally invariant states from the vacuum
Partially massless higher-spin theory
International Nuclear Information System (INIS)
Brust, Christopher; Hinterbichler, Kurt
2017-01-01
We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.
Quasinormal modes for massless topological black holes
International Nuclear Information System (INIS)
Aros, Rodrigo; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2003-01-01
An exact expression for the quasinormal modes of scalar perturbation on a massless topological black hole in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature, and the horizon geometry is assumed to have a negative constant curvature
Lorentz transformations, sideways shift and massless spinning particles
Energy Technology Data Exchange (ETDEWEB)
Bolonek-Lasoń, K. [Department of Statistical Methods, Faculty of Economics and Sociology (Poland); Kosiński, P. [Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Maślanka, P., E-mail: pmaslan@uni.lodz.pl [Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland)
2017-06-10
Recently (Stone et al. (2015) ) the influence of the so called “Wigner translations” (more generally-Lorentz transformations) on circularly polarized Gaussian packets (providing the solution to Maxwell equations in paraxial approximation) has been studied. It appears that, within this approximation, the Wigner translations have an effect of shifting the wave packet trajectory parallel to itself by an amount proportional to the photon helicity. It has been suggested that this shift may result from specific properties of the algebra of Poincare generators for massless particles. In the present letter we describe the general relation between transformation properties of electromagnetic field on quantum and classical levels. It allows for a straightforward derivation of the helicity-dependent transformation rules. We present also an elementary derivation of the formula for sideways shift based on classical Maxwell theory. Some comments are made concerning the generalization to higher helicities and the relation to the coordinate operator defined long time ago by Pryce.
Lorentz transformations, sideways shift and massless spinning particles
Bolonek-Lasoń, K.; Kosiński, P.; Maślanka, P.
2017-06-01
Recently (Stone et al. (2015) [16]) the influence of the so called ;Wigner translations; (more generally-Lorentz transformations) on circularly polarized Gaussian packets (providing the solution to Maxwell equations in paraxial approximation) has been studied. It appears that, within this approximation, the Wigner translations have an effect of shifting the wave packet trajectory parallel to itself by an amount proportional to the photon helicity. It has been suggested that this shift may result from specific properties of the algebra of Poincare generators for massless particles. In the present letter we describe the general relation between transformation properties of electromagnetic field on quantum and classical levels. It allows for a straightforward derivation of the helicity-dependent transformation rules. We present also an elementary derivation of the formula for sideways shift based on classical Maxwell theory. Some comments are made concerning the generalization to higher helicities and the relation to the coordinate operator defined long time ago by Pryce.
Tunnelling of Massive/Massless Bosons from the Apparent Horizon of FRW Universe
Directory of Open Access Journals (Sweden)
Kimet Jusufi
2017-01-01
Full Text Available We investigate the Hawking radiation of vector particles from the apparent horizon of a Friedmann-Robertson-Walker (FRW universe in the framework of quantum tunnelling method. Furthermore we use Proca equation, a relativistic wave equation for a massive/massless spin-1 particle (massless γ photons, weak massive W± and Z0 bosons, strong massless gluons, and ρ and ω mesons together with a Painlevé space-time metric for the FRW universe. We solve the Proca equation via Hamilton-Jacobi (HJ equation and the WKB approximation method. We recover the same result for the Hawking temperature associated with vector particles as in the case of scalar and Dirac particles tunnelled from outside to the inside of the apparent horizon in a FRW universe.
Massive and massless gauge fields of any spin and symmetry
International Nuclear Information System (INIS)
Hussain, F.; Jarvis, P.D.
1988-05-01
An analysis of the BRST approach to massive and massless gauge fields of any spin and symmetry is presented. Previous results on massless gauge fields are extended to totally antisymmetric massless tensors and Kaehler-Dirac particles. Two methods for arriving at a BRST invariant, massive theory from the corresponding massless one are discussed. The first allows for an interpretation in terms of dimensional reduction, while the second keeps the BRST operator of the massless theory, but employs gauge invariant fields. (author). 10 refs
The massless supersymmetric ladder with L rungs
International Nuclear Information System (INIS)
Rossi, G.C.; Stanev, Ya.S.
2009-01-01
We show that in the massless N=1 supersymmetric Wess-Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points
``Massless'' vector field in de Sitter universe
Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.
2008-03-01
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.
''Massless'' vector field in de Sitter universe
International Nuclear Information System (INIS)
Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.
2008-01-01
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function
Massless Interacting Scalar Fields in de Sitter space
López Nacir, Diana
2016-10-28
We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.
Instantons and Massless Fermions in Two Dimensions
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Behaviour of Charged Spinning Massless Particles
Directory of Open Access Journals (Sweden)
Ivan Morales
2017-12-01
Full Text Available We revisit the classical theory of a relativistic massless charged point particle with spin and interacting with an external electromagnetic field. In particular, we give a proper definition of its kinetic energy and its total energy, the latter being conserved when the external field is stationary. We also write the conservation laws for the linear and angular momenta. Finally, we find that the particle’s velocity may differ from c as a result of the spin—electromagnetic field interaction, without jeopardizing Lorentz invariance.
Massless representations and admissibility condition for higher spin superalgebras
Energy Technology Data Exchange (ETDEWEB)
Konstein, S E; Vasiliev, M A
1989-01-16
Massless particle representations of various infinite-dimensional higher spin superalgebras proposed previously are constructed. We analyse which of higher spin superalgebras obey the requirement (the admissibility condition) of possessing massless unitary representations with the same spectra of spins as predicted by the structure of gauge fields originating from these superalgebras. It is argued that those higher spin superalgebras, which obey the admissibility condition, can serve as rigid supersymmetries in nontrivial consistent gauge theories of massless fields of all spins.
Massless particles, electromagnetism, and Rieffel induction
International Nuclear Information System (INIS)
Landsman, N.P.; Wiedemann, U.A.
1994-06-01
The connection between space-time covariant representations (obtained by inducing from the Lorentz group) and irreducible unitary representations (induced from Wigner's little group) of the Poincare groups is re-examined in the massless case. In the situation relevant to physics, it is found that these are related by Marsden-Weinstein reduction with respect to a gauge group. An analogous phenomenon is observed for classical massless relativistic particles. This symplectic reduction procedure can be ('second') quantized using a generalization of the Rieffel induction technique in operator algebra theory, which is carried through in detail for electromagnetism. Starting from the so-called Fermi representation of the field algebra generated by the free abelian gauge field, we construct a new ('rigged') sesquilinear form on the representation space, which is positive semi-definite, and given in terms of a Gaussian weak distribution (promeasure) on the gauge group (taken to be a Hilbert Lie group). This eventually constructs the algebra of observables of quantum electromagnetism (directly in its vacuum representation) as a representation of the so-called algebra of weak observables induced by the trivial representation of the gauge group. (orig.)
Ground states of the massless Derezinski-Gerard model
International Nuclear Information System (INIS)
Ohkubo, Atsushi
2009-01-01
We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.
Lorentz transformations, sideways shift and massless spinning particles
Directory of Open Access Journals (Sweden)
K. Bolonek-Lasoń
2017-06-01
Full Text Available Recently (Stone et al. (2015 [16] the influence of the so called “Wigner translations” (more generally-Lorentz transformations on circularly polarized Gaussian packets (providing the solution to Maxwell equations in paraxial approximation has been studied. It appears that, within this approximation, the Wigner translations have an effect of shifting the wave packet trajectory parallel to itself by an amount proportional to the photon helicity. It has been suggested that this shift may result from specific properties of the algebra of Poincare generators for massless particles. In the present letter we describe the general relation between transformation properties of electromagnetic field on quantum and classical levels. It allows for a straightforward derivation of the helicity-dependent transformation rules. We present also an elementary derivation of the formula for sideways shift based on classical Maxwell theory. Some comments are made concerning the generalization to higher helicities and the relation to the coordinate operator defined long time ago by Pryce.
Axial gravity, massless fermions and trace anomalies
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica
2017-08-15
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)
Axial gravity, massless fermions and trace anomalies
International Nuclear Information System (INIS)
Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi
2017-01-01
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)
Veselago focusing of anisotropic massless Dirac fermions
Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.
2018-05-01
Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
Infrared behavior of massless field theories
International Nuclear Information System (INIS)
Sapirstein, J.R.
1979-01-01
Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators
Renormalization and operator product expansion in theories with massless particles
International Nuclear Information System (INIS)
Anikin, S.A.; Smirnov, V.A.
1985-01-01
Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)
Conservation of lepton charges, massive majorana and massless neutrinos
International Nuclear Information System (INIS)
Petcov, S.T.; Toshev, S.T.
1984-01-01
It is shown that the necessary and sufficient condition for the presence of k massless and (n-k) massive nondegenerate Majorana neutrinos in a theory with n neutrino flavours and a neutrino mass term of Majorana type is the existence of k standard and no other conserved lepton charges. Two-loop Majorana mass corrections for neutrinos, massless at tree level, are also briefly discussed. (orig.)
On a manifestation of the anomalies in the massless QED
International Nuclear Information System (INIS)
Gorskij, A.S.
1989-01-01
The questions concerned with the axial and conformal anomalies in the massless QED are discussed. It is shown that the interaction of the longitudinal real photons is proportional to the β function of the theory and the corresponding matrix element L |Θ αβ |γ L > where Θ αβ is energy-momentum tensor has a common features with the nonvanishing matrix element α |γ> in the massless limit. 7 refs.; 2 figs
On massless representations of the Q-deformed Poincare algebra
International Nuclear Information System (INIS)
Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.
1993-01-01
This talk is devoted to the construction of massless representations of the q-deformed Poincare algebra. In section 2 we give Hilbert space representations of the SL q (2, C)-covariant quantum space. We then show in the next section how the generators of the q-Poincare algebra can be expressed in terms of operators which live in the light cone. The q-deformed massless one-particle states are considered in section 4. (orig.)
On Born approximation in black hole scattering
Batic, D.; Kelkar, N. G.; Nowakowski, M.
2011-12-01
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.
Nonstandard approximation schemes for lower dimensional quantum field theories
International Nuclear Information System (INIS)
Fitzpatrick, D.A.
1981-01-01
The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
The Weinberg-Witten theorem on massless particles: an essay
International Nuclear Information System (INIS)
Loebbert, F.
2008-01-01
In this essay we deal with the Weinberg-Witten theorem which imposes limitations on massless particles. First we motivate a classification of massless particles given by the Poincare group as the symmetry group of Minkowski spacetime. We then use the fundamental structure of the background in the form of Poincare covariance to derive restrictions on charged massless particles known as the Weinberg-Witten theorem. We address possible misunderstandings in the proof of this theorem motivated by several papers on this topic. In the last section the consequences of the theorem are discussed. We treat it in the context of known particles and as a constraint for emergent theories. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Rational hybrid Monte Carlo algorithm for theories with unknown spectral bounds
International Nuclear Information System (INIS)
Kogut, J. B.; Sinclair, D. K.
2006-01-01
The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds
New non-linear modified massless Klein-Gordon equation
Energy Technology Data Exchange (ETDEWEB)
Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)
2017-11-15
The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)
Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field
Huang, Zhiming
2017-12-01
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.
Limit on possible energy-dependent velocities for massless particles
International Nuclear Information System (INIS)
Haines, T.J.; Alexandreas, D.E.; Allen, R.C.; Biller, S.; Berley, D.; Burman, R.L.; Cady, D.R.; Chang, C.Y.; Dingus, B.L.; Dion, G.M.; Ellsworth, R.W.; Goodman, J.A.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.; Sandberg, V.D.; Wilkinson, C.A.; Yodh, G.B.
1990-01-01
A basic tenet of special relativity is that all massless particles travel at a constant, energy-independent velocity. Astrophysical data, including observation of the Crab pulsar at ∼100 MeV and the recent detection of the pulsar in Hercules X-1 at energies ≥100 TeV, are used to place new experimental constraints on energy-dependent deviations from constant velocity for massless particles. Previous experiments reached energies ∼10 GeV; this analysis improves the previous constraints by 7 orders of magnitude
Massless fermions and Kaluza--Klein theory with torsion
International Nuclear Information System (INIS)
Wu, Y.; Zee, A.
1984-01-01
A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail
Kac--Moody current algebras of D = 2 massless gauge theories, their representations and applications
International Nuclear Information System (INIS)
Craigie, N.S.; Nahm, W.; Narain, K.S.
1987-01-01
We give a classification of the Kac--Moody current algebras of all the possible massless fermion-gauge theories in two dimensions. It is shown that only Kac--Moody algebras based on A/sub N/, B/sub N/, C/sub N/, and D/sub N/ in the Cartan classification with all possible central charge occur.The representation of local fermion fields and simply laced Kac--Moody algebras with minimal central charge in terms of free boson fields on a compactified space is discussed in detail, where stress is laid on the role played by the boundary conditions on the various collective modes. Fractional solitons and the possible soliton representation of certain nonsimply laced algebras is also analysed. We briefly discuss the relationship between the massless bound state sector of these two-dimensional gauge theories and the critically coupled two-dimensional nonlinear sigma model, which share the same current algebra. Finally we briefly discuss the relevance of Sp(n) Kac--Moody algebras to the physics of monopole-fermion systems. copyright 1987 Academic Press, Inc
Nonplanar loops leave the Veneziano model photon massless
Foda, O.
1987-01-01
The absence of a pole at p2=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.
Nonplanar loops leave the Veneziano model photon massless
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
The absence of a pole at p 2 =0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found. (orig.)
Nonplanar loops leave the Veneziano model photon massless
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-04-16
The absence of a pole at p/sup 2/=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.
Gauge dependence of the infrared behaviour of massless QED3
International Nuclear Information System (INIS)
Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.
2006-01-01
Using the Zumino identities it is shown that in a class of non-local gauges, massless QED 3 has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact
Loop expansion in massless three-dimensional QED
International Nuclear Information System (INIS)
Guendelman, E.I.; Radulovic, Z.M.
1983-01-01
It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops
Automated computation of one-loop integrals in massless theories
International Nuclear Information System (INIS)
Hameren, A. van; Vollinga, J.; Weinzierl, S.
2005-01-01
We consider one-loop tensor and scalar integrals, which occur in a massless quantum field theory, and we report on the implementation into a numerical program of an algorithm for the automated computation of these one-loop integrals. The number of external legs of the loop integrals is not restricted. All calculations are done within dimensional regularization. (orig.)
The gravitational shock wave of a massless particle
Hooft, G. 't; Dray, T
1985-01-01
The (spherical) gravitational shock wave due to a massless particle moving at the speed of light along the horizon of the Schwarzchild black hole is obtained. Special cases of our procedure yield previous results by Aichelburg and Sexl[1] for a photon in Minkowski vpace and by Penrose [2] for
Massive and massless supersymmetry: Multiplet structure and unitary irreducible representations
International Nuclear Information System (INIS)
Jarvis, P.D.
1976-01-01
UIR's of the supersymmetry algebra for the massive and massless cases are analyzed covariantly (without the use of induced representations) in terms of their component spins. For the massive case normalized basis vectors vertical-barp 2 >0, j 0 ; sigma; pjlambda> are constructed, where j 0 is the ''superspin'' and sigma is an additional quantum number serving to distinguish the different vertical-barpjlambda>, the constituent p 2 >0, spin-j UIR's of the Poincare group. For the massless case, normalized basis vectors vertical-barp 2 =0, lambda 0 ; plambda> are similarly constructed, where lambda 0 is the ''superhelicity.'' Matrix elements of the supersymmetry generators, in these bases, are explicitly given. The ''sigma basis'' is used to define weight diagrams for the massive UIR's of supersymmetry, and their properties are briefly described. Eigenfunctions ω/sub sigma/(theta) are also defined, and their connection with the reduction of higher spin massive superfields PHI/subJ/(x,theta) is discussed. Finally, it is shown how gauge dependence necessarily arises with certain massless superfields. The massless scalar superfield, both gauge-dependent and gauge-independent, is discussed as an example
How to translate a massless particle (the Weyl neutrino)
International Nuclear Information System (INIS)
Berger, S.B.
1979-01-01
Previous work indicated a deep connection between translations and rotations for a Weyl neutrino (a massless particle). In the letter the explicit form of a translation in the z-direction is given assuming a translation operator of the form esup(i anti g.anti x). (author)
Dybalski, Wojciech; Pizzo, Alessandro
2018-02-01
Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.
The trace anomaly and massless scalar degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Gianotti, Maurizio [Los Alamos National Laboratory; Mottola, Emil [Los Alamos National Laboratory
2008-01-01
The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.
Models for light QCD bound states
International Nuclear Information System (INIS)
LaCourse, D.P.
1992-01-01
After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value
International Nuclear Information System (INIS)
Orzalesi, C.A.
1979-01-01
In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)
Super-acceleration from massless, minimally coupled phi sup 4
Onemli, V K
2002-01-01
We derive a simple form for the propagator of a massless, minimally coupled scalar in a locally de Sitter geometry of arbitrary spacetime dimension. We then employ it to compute the fully renormalized stress tensor at one- and two-loop orders for a massless, minimally coupled phi sup 4 theory which is released in Bunch-Davies vacuum at t=0 in co-moving coordinates. In this system, the uncertainty principle elevates the scalar above the minimum of its potential, resulting in a phase of super-acceleration. With the non-derivative self-interaction the scalar's breaking of de Sitter invariance becomes observable. It is also worth noting that the weak-energy condition is violated on cosmological scales. An interesting subsidiary result is that cancelling overlapping divergences in the stress tensor requires a conformal counterterm which has no effect on purely scalar diagrams.
Time-dependent massless Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Khantoul, Boubakeur, E-mail: bobphys@gmail.com [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom); Department of Physics, University of Jijel, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Fring, Andreas, E-mail: a.fring@city.ac.uk [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom)
2015-10-30
Using the Lewis–Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent vector potential. The eigenvalue equations for the two spinor components of the Lewis–Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians. - Highlights: • An explicit analytical solution for a massless 2+1 dimensional time-dependent Dirac equation is found. • All steps of the Lewis–Riesenfeld method have been carried out.
Renormalization problem in nonrenormalizable massless PHI4 theory
International Nuclear Information System (INIS)
Symanzik, K.
1975-05-01
Nonrenormalizable massless PHI 4 theory is made finite by regularization via higher derivatives in the kinetic part of the Lagrangean. The theory is shown to remain finite in the infinite cutoff limit if certain integrals over functions of one variable, with computable Taylor expansion at the origin, are finite. The values of these integrals are the only unknowns in the double series in powers of g and gsup(2/epsilon) obtained for the Green's functions in massless (PHI 4 )sub(4 + epsilon) with generic epsilon. For epsilon = 1 and epsilon = 2, these series reduce to double series in powers of g and ln g. The problems of extension to (PHI 4 )sub(4 + epsilon) with mass, of causality and unitarity, of the relation to the BPHZ formalism, and of the indeterminacy of the result are discussed. (orig.) [de
Vacuum polarization of massless fields in black holes
International Nuclear Information System (INIS)
Zel'nikov, A.I.; Frolov, V.P.
1987-01-01
This chapter contains a detailed survey of the fundamental results from an investigation of the contribution of massless fields to vacuum polarization near black holes. A method is developed for calculating the vacuum average energy-momentum tensor for the electromagnetic field on the surface of a black hole. An explicit value is derived for the renormalized energy-momentum tensor of an electromagnetic field near the event horizon of a rotating black hole
Gauge-invariant dressed fermion propagator in massless QED3
International Nuclear Information System (INIS)
Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.
2006-01-01
The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement
Instanton density in a theory with massless quarks
International Nuclear Information System (INIS)
Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.
1979-01-01
Effect of the complex structure of the QCD vacuum on the density of small-sized instantons is discussed. The method which allows to account for this effect of vacuum quark and gluon condensate is developed. Evaluation of the instanton density is given in the framework of the theory with one, two or three massless quarks. The results of the paper are presented for the cases of SU(2) and SU(3) color groups
Massless phases and confinement in extended Z(4) gauge theories
International Nuclear Information System (INIS)
Alcaraz, F.C.; Jacobs, L.
1983-01-01
We analyze a general Z(4) lattice gauge theory in four dimensions. The two-parameter model is shown to possess four distinct phases characterized by the behavior of Wilson loops carrying one or two units of flux. The appearance of a bifurcation in the phase plane just below the Wilson action is conjectured to be the precursor of the massless electrodynamicslike phase seen in the larger-N models
Gravitational interaction of massless higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A
1987-04-30
We show that, despite a widespread belief, the gravitational interaction of massless higher-spin fields (s>2) does exist at least in the first nontrivial order. The principal novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. Our construction is based on an infinite-dimensional higher-spin superalgebra proposed previously that leads to an infinite system of all spins s>1.
Parity violation and the masslessness of the neutrino
International Nuclear Information System (INIS)
Mannheim, P.D.
1978-09-01
It is proposed that the weak interaction be obtained by gauging the strong interaction chiral flavor group. The neutrinos are then four-component spinors. Pairs of right-handed neutrinos are allowed to condense into the vacuum. This produces maximal parity violation in both the quark and lepton sectors of the weak interaction, keeps the neutrinos massless, and also leads to the conventional Weinberg mixing pattern. The approach also in principle provides a way of calculating the Cabibbo angle. 11 references
Parity violation and the masslessness of the neutrino
Energy Technology Data Exchange (ETDEWEB)
Mannheim, P.D.
1978-09-01
It is proposed that the weak interaction be obtained by gauging the strong interaction chiral flavor group. The neutrinos are then four-component spinors. Pairs of right-handed neutrinos are allowed to condense into the vacuum. This produces maximal parity violation in both the quark and lepton sectors of the weak interaction, keeps the neutrinos massless, and also leads to the conventional Weinberg mixing pattern. The approach also in principle provides a way of calculating the Cabibbo angle. 11 references.
On the Pomeranchuk singularity in massless vector theories
International Nuclear Information System (INIS)
Bartels, J.; Hamburg Univ.
1980-06-01
It is shown that the Pomeron in massless (abelian of nonabelian) vector theories, as derived from a perturbative high energy description which satisfies unitarity, comes as a diffusion problem in the logarithmic scale of transverse momentum. For a realistic theory there are reasons to expect that this diffusion should come to a stop: (a) the long range forces of the massless gluons should be screened, (b) the Pomeranchuk singularity in the j-plane should be t-dependant, and (c) there should not be a discontinuity in the zero mass limit at t = 0 or in the t 0 limit of the massless case. In the third part we outline a scheme for summing all diagrams which are required by unitarity. It uses reggeon field theory in zero transverse dimensions and leads to: (i) the diffusion comes to a stop (zero drift and zero diffusion constant); (ii) the total cross section is constant (up to powers of lns); (iii) in order to give a meaning to the divergent perturbation expansion, one has to add a nonperturbative term of the order exp(-const/g 2 ). (orig.)
Hunting Down Massless Dark Photons in Kaon Physics
Fabbrichesi, M.; Gabrielli, E.; Mele, B.
2017-07-01
If dark photons are massless, they couple to standard-model particles only via higher dimensional operators, while direct (renormalizable) interactions induced by kinetic mixing, which motivates most of the current experimental searches, are absent. We consider the effect of possible flavor-changing magnetic-dipole couplings of massless dark photons in kaon physics. In particular, we study the branching ratio for the process K+→π+π0γ ¯ with a simplified-model approach, assuming the chiral quark model to evaluate the hadronic matrix element. Possible effects in the K0-K¯ 0 mixing are taken into account. We find that branching ratios up to O (10-7) are allowed—depending on the dark-sector masses and couplings. Such large branching ratios for K+→π+π0γ ¯ could be of interest for experiments dedicated to rare K+ decays like NA62 at CERN, where γ ¯ can be detected as a massless invisible system.
Charged boson bound states in the kerr-newman metric
International Nuclear Information System (INIS)
Li Yuanjie; Zhang Duanming
1986-01-01
Charged boson bound states in Kerr-Newman metric are discussed. It is found that massless boson cannot be attracted by Kerr-Newman black hole to form bound states. For the massive boson, the condition of the nonbound states when 0 2 - Q 2 and both the condition and wave functions of the bound states when a = √M 2 - Q 2 are obtained. The energy mode of the bound states is single, E = (m√M 2 - Q 2 + eQM)/(2M 2 - Q 2 ). When Q = 0 or e = 0, the conclusion is in agreement with that of Zhang Shiwei and Su Rukeng
Casimir energy of massless fermions in the Slab-bag
International Nuclear Information System (INIS)
Paola, R.D.M. de; Rodrigues, R.B.; Svaiter, N.F.
1999-04-01
The zero-point energy of a massless fermion field in the interior of two parallel plates in a D-dimensional space-time at zero temperature is calculated. In order to regularize the model, a mix between dimensional and zeta function regularization procedure is used and it is founded that the regularized zero-point energy density is finite for any number of space-time dimensions. We present a general expression for the Casimir energy for the fermionic field in such a situation. (author)
On the bosonization of the massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.; Stoyanov, D.Ts.
1979-01-01
A method for constructing a field transformed according to a linear representation of a Lie group out of fields transformed nonlinearly under the action of the same group is proposed. This procedure is used in order to construct spinor fields out of tensor ones. Such a ''bosonization'' of the spinor field is used to reformulate the massless spinor electrodynamics in terms of nonlinear tensor fields. It appears in this formulation that the Dirac equation is reduced to a definition of the electromagnetic vector potential in terms of the nonlinear tensor fields and to the current conservations playing the role of a consistency condition for this formulation
Gravitational Collapse of Massless Fields in an Expanding Universe
Directory of Open Access Journals (Sweden)
Yoo Chul-Moon
2018-01-01
Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
Massless versus Kaluza-Klein gravitons at the LHC
International Nuclear Information System (INIS)
Calmet, Xavier; Aquino, Priscila de; Rizzo, Thomas G.
2010-01-01
We show that the LHC will be able to differentiate between a four-dimensional model with quantum gravity at ∼1 TeV where the (massless) graviton becomes strongly coupled to standard model particles at 1 TeV and brane world type models with a large extra-dimensional volume and massive Kaluza-Klein gravitons. We estimate that the 14 TeV LHC could put a limit of the order of ∼5 TeV on the four-dimensional Planck mass in a model independent way.
Massless fields in curved space-time: The conformal formalism
International Nuclear Information System (INIS)
Castagnino, M.A.; Sztrajman, J.B.
1986-01-01
A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome
On the conformal transformations in the massless Thirring model
International Nuclear Information System (INIS)
Hadjiivanov, L.K.; Mikhov, S.G.; Stoyanov, D.T.
1977-01-01
On the basis of solutions for the massless scalar field in the two dimensional space-time the fields satisfying the renormalized Thirring equation are constructed. Both infinitesimal and global transformations with respect to the two-dimensional conformal group for these fields are obtained. The latter do not coincide with the standard ones. The renormalized Thirring equation is proved to be covariant under infinitesimal conformal group transformations as well as under the global transformations belonging to the universal covering of the conformal group
Triangle identity and free differential algebra of massless higher spins
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1989-09-25
In terms of Berezins's theory of symbols of operators, the integral formulation is suggested for the free differential algebra which gives rise to consistent equations of motion of interacting massless fields of all spins 0{le}s<{infinity} in the frameworks of gravity. In the first nontrivial order of the expansion in powers of curvatures, Frobenius consistency conditions for higher-spin equations of motion are shown to reduce to the simple geometrical fast that there are two ways for splitting any quadrangle in two triangles. To clarify our construction, we illustrate how it works in the simplest case of pure gravity. (orig.).
Interacting massless scalar and source-free electromagnetic fields
International Nuclear Information System (INIS)
Ayyangar, B.R.N.; Mohanty, G.
1985-01-01
The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)
Asymptotic fermion propagator in massless three-dimensional QED
International Nuclear Information System (INIS)
Hand, B.J.
1993-01-01
Massless quantum electrodynamics in two spatial and one time dimensions has a logarithmically confining static Coulomb potential, and thus nontrivial infrared behavior. We apply a technique developed for ordinary four-dimensional quantum electrodynamics in which the charged asymptotic states in the theory are dressed with soft vector bosons, in order to improve the representation of the infrared dynamics in perturbation theory. The resulting modification to the mass-shell behavior of the fermion propagator is determined, with the result that the propagator no longer possesses a mass-shell singularity
The massless two-loop two-point function
International Nuclear Information System (INIS)
Bierenbaum, I.; Weinzierl, S.
2003-01-01
We consider the massless two-loop two-point function with arbitrary powers of the propagators and derive a representation from which we can obtain the Laurent expansion to any desired order in the dimensional regularization parameter ε. As a side product, we show that in the Laurent expansion of the two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the generalization of this product structure to higher loop integrals. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Takahashi, Y; Yokoyama, K
1975-01-01
In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.
Conformally covariant massless spin-two field equations
International Nuclear Information System (INIS)
Drew, M.S.; Gegenberg, J.D.
1980-01-01
An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)
Cubic Interactions of Massless Bosonic Fields in Three Dimensions
Mkrtchyan, Karapet
2018-06-01
In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.
Extended higher-spin superalgebras and their massless representations
Energy Technology Data Exchange (ETDEWEB)
Konstein, S E; Vasiliev, M A [AN SSSR, Moscow (USSR). Fizicheskij Inst.
1990-02-12
Three two-parameter sequences of infinite-dimensional extended higher-spin superalgebras are constructed, which give rise to consistent equations of motion of interacting gauge fields of all spins in four dimensions. In the Yang-Mills sector of spin-1 gauge fields, these higher-spin superalgebras reduce to u(n) + u(m), o(n) + o(m) and usp(n) + usp(m) with arbitrary integer parameters n {ge} 0 and m {ge} 0 (n and m are assumed to be even for symplectic algebras). Massless unitary representations of the proposed higher-spin superalgebras are analyzed. It is shown that all these superalgebras obey the admissibility condition which requires them to possess massless unitary representations with just the same spectra of spins as follows from the structure of the related higher-spin gauge fields. We argue that the infinite-dimensional (super)algebras listed in this article classify all possible higher-spin rigid (super)symmetries in four dimensions. (orig.).
Spikes and matter inhomogeneities in massless scalar field models
International Nuclear Information System (INIS)
Coley, A A; Lim, W C
2016-01-01
We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch’s transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes. (paper)
Upper bound on the radii of black-hole photonspheres
International Nuclear Information System (INIS)
Hod, Shahar
2013-01-01
One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by r γ ⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound
No parity anomaly in massless QED3: A BPHZL approach
International Nuclear Information System (INIS)
Del Cima, O.M.; Franco, D.H.T.; Piguet, O.; Schweda, M.
2009-01-01
In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED 3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.
Relativistic gravitation from massless systems of scalar and vector fields
International Nuclear Information System (INIS)
Fonseca Teixeira, A.F. da.
1979-01-01
Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt
Singletons, higher spin massless states and the supermembrane
International Nuclear Information System (INIS)
Bergshoeff, E.; Salam, A.; Sezgin, E.; Tanii, Yoshiaki.
1988-01-01
We analyse the spectrum of the eleven dimensional supermembrane quantized in AdS 4 xS 7 background. The classical membrane lives at the boundary of AdS 4 which is S 2 xS 1 , and has OSp(8,4) symmetry. We find that the spectrum contains, in addition to the N=8 supersymmetric (massive) singletons (which may possibly be the ultimate preons), also massless states of all higher integer and half-integer spin. These states fill the irreducible representations of OSp(8,4) with highest spin s max =2,4,6,... The s max =2 multiplet corresponds to the states of the de Wit-Nicolai's N=8 gauged supergravity in four dimensions. (author). 24 refs
Simultaneous dense coding affected by fluctuating massless scalar field
Huang, Zhiming; Ye, Yiyong; Luo, Darong
2018-04-01
In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.
Massive and mass-less Yang-Mills and gravitational fields
Veltman, M.J.G.; Dam, H. van
1970-01-01
Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
All the fundamental massless bosonic fields in superstring theory
International Nuclear Information System (INIS)
Manoukian, E.B.
2012-01-01
A systematic analysis of all the massless bosonic fields in superstring theory is carried out. Emphasis is put on the derivation of their propagators, their polarization aspects and the investigation of their underlying constraints as well as their number of degrees of freedom. The treatment is given in the presence of external sources, in the celebrated Coulomb gauge, ensuring the positivity of the formalism - a result which is also established in the process. The challenge here is the investigation involved in the self-dual fourth rank anti-symmetric tensor field. No constraints are imposed on the external sources so that their components may be varied independently, thus the complete expressions of the propagators may be obtained. As emphasized in our earlier work, the latter condition is an important one in dynamical theories with constraints giving rise to modifications as Faddeev-Popov factors. The analysis is carried out in 10 dimensions, not only because of the consistency requirement by the superstrings, but also in order to take into account of the self-duality character of the fourth rank anti-symmetric tensor field as spelled out in the paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Theory of Coulomb drag for massless Dirac fermions
International Nuclear Information System (INIS)
Carrega, M; Principi, A; Polini, M; Tudorovskiy, T; Katsnelson, M I
2012-01-01
Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)
On the Construction of Scattering Amplitudes for Spinning Massless Particles
Berends, F A
1997-01-01
In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s \\to s s$) or unequal spins ($s_a s_b \\to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimension, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.
Cosmological stability bound in massive gravity and bigravity
International Nuclear Information System (INIS)
Fasiello, Matteo; Tolley, Andrew J.
2013-01-01
We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity
Multi-flavor massless QED{sub 2} at finite densities via Lefschetz thimbles
Energy Technology Data Exchange (ETDEWEB)
Tanizaki, Yuya [RIKEN BNL Research Center, Brookhaven National Laboratory,Upton, NY 11973-5000 (United States); Tachibana, Motoi [Department of Physics, Saga University,Saga 840-8502 (Japan)
2017-02-15
We consider multi-flavor massless (1+1)-dimensional QED with chemical potentials at finite spatial length and the zero-temperature limit. Its sign problem is solved using the mean-field calculation with complex saddle points.
Dynamics of massless higher spins in the second order in curvatures
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [International Centre for Theoretical Physics, Trieste (Italy)
1990-04-05
The consistent equations of motion of interacting massless fields of all spins s=0, 1/2, 1, ..., {infinity} are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (orig.).
Four loop massless propagators: An algebraic evaluation of all master integrals
Energy Technology Data Exchange (ETDEWEB)
Baikov, P.A., E-mail: baikov@theory.sinp.msu.r [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Chetyrkin, K.G., E-mail: konstantin.chetyrkin@kit.ed [Institut fuer Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany)] [Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312 (Russian Federation)
2010-10-01
The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas ({zeta}{sub 2n}) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.
Four loop massless propagators: An algebraic evaluation of all master integrals
International Nuclear Information System (INIS)
Baikov, P.A.; Chetyrkin, K.G.
2010-01-01
The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas (ζ 2n ) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.
A minimal approach to the scattering of physical massless bosons
Boels, Rutger H.; Luo, Hui
2018-05-01
Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour
Scattering of massless particles: scalars, gluons and gravitons
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2014-07-01
In a recent note we presented a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this paper we show that a natural formulation also exists for a massless colored cubic scalar theory. In Yang-Mills, the formula is an integral over the space of n marked points on a sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-like terms dressed with U( N ) color structures while the second is a Pfaffian. The S-matrix of a U( N ) × U( Ñ ) cubic scalar theory is obtained by simply replacing the Pfaffian with a U( Ñ ) version of the previous U( N ) factor. Given that gravity amplitudes are obtained by replacing the U( N ) factor in Yang-Mills by a second Pfaffian, we are led to a natural color-kinematics correspondence. An expansion of the integrand of the scalar theory leads to sums over trivalent graphs and are directly related to the KLT matrix. Combining this and the Yang-Mills formula we find a connection to the BCJ color-kinematics duality as well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We end by considering a special kinematic point where the partial amplitude simply counts the number of color-ordered planar trivalent trees, which equals a Catalan number. The scattering equations simplify dramatically and are equivalent to a special Y-system with solutions related to roots of Chebyshev polynomials. The sum of the integrand over the solutions gives rise to a representation of Catalan numbers in terms of eigenvectors and eigenvalues of the adjacency matrix of an A-type Dynkin diagram.
On bound states of photons in noncommutative U(1) gauge theory
International Nuclear Information System (INIS)
Fatollahi, A.H.; Jafari, A.
2006-01-01
We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Limitations of shallow nets approximation.
Lin, Shao-Bo
2017-10-01
In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Babaz, Mathieu; Jezequel, Louis; Lamarque, Claude-Henri; Perrard, Patrick
2016-02-01
A new approach of cables' dynamics is presented in this paper. It is based on the exact expression of tension coming from continuum mechanics, while the previous elastic models of cables in open literature consider an approximation of small strain which reduces the cable to a linear spring. The equations of a mass suspended to a massless cable are derived on the basis of this new formulation. The problem is studied and numerically calculated for one and two degrees of freedom. A comparison with the classical approach and a nonlinear analysis are presented.
Internal space-time symmetries of massive and massless particles and their unification
International Nuclear Information System (INIS)
Kim, Y.S.
2001-01-01
It is noted that the internal space-time symmetries of relativistic particles are dictated by Wigner's little groups. The symmetry of massive particles is like the three-dimensional rotation group, while the symmetry of massless particles is locally isomorphic to the two-dimensional Euclidean group. It is noted also that, while the rotational degree of freedom for a massless particle leads to its helicity, the two translational degrees of freedom correspond to its gauge degrees of freedom. It is shown that the E(2)-like symmetry of of massless particles can be obtained as an infinite-momentum and/or zero-mass limit of the O(3)-like symmetry of massive particles. This mechanism is illustrated in terms of a sphere elongating into a cylinder. In this way, the helicity degree of freedom remains invariant under the Lorentz boost, but the transverse rotational degrees of freedom become contracted into the gauge degree of freedom
Single twistor description of massless, massive, AdS, and other interacting particles
International Nuclear Information System (INIS)
Bars, Itzhak; Picon, Moises
2006-01-01
The Penrose transform between twistors and the phase space of massless particles is generalized from the massless case to an assortment of other particle dynamical systems, including special examples of massless or massive particles, relativistic or nonrelativistic, interacting or noninteracting, in flat space or curved spaces. Our unified construction involves always the same twistor Z A with only four complex degrees of freedom and subject to the same helicity constraint. Only the twistor to phase space transform differs from one case to another. Hence, a unification of diverse particle dynamical systems is displayed by the fact that they all share the same twistor description. Our single twistor approach seems to be rather different and a strikingly economical construction of twistors compared to other past approaches that introduced multiple twistors to represent some similar but far more limited set of particle phase space systems
Translation-invariant global charges in a local scattering theory of massless particles
International Nuclear Information System (INIS)
Strube, D.
1989-01-01
The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de
Energy Technology Data Exchange (ETDEWEB)
Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-03-21
Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.
Cubic interaction in extended theories of massless higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A
1987-08-17
A cubic interaction of all massless higher-spin fields with s greater than or equal to 1 is constructed, based on the extended higher-spin superalgebras suggested previously by one of us (M.V.). This interaction incorporates gravitational and Yang-Mills interactions of massless higher-spin fields, which turn out to be consistent in the cubic order. An essential novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. An explicit form is found for deformed higher-spin gauge transformations leaving the action invariant.
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Bootstrap bound for conformal multi-flavor QCD on lattice
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
2016-07-08
The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.
Zero-mode effects in the lattice thermodynamics of massless bose field
International Nuclear Information System (INIS)
Gorenstein, M.I.; Lipskikh, S.I.; Sorin, A.S.
1985-01-01
The thermodynamics of free massless Bose field on a lattice is discussed. The coefficients characterizing the finite size effects are obtained. The use of these coefficients in the Yang-Mills thermodynamics allows one to make Monte-Carlo calculations, carried out on the different size lattices, self-consistent
Massive, massless and ghost modes of gravitational waves from higher-order gravity
DEFF Research Database (Denmark)
Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia
We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...
Energy Technology Data Exchange (ETDEWEB)
Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)
1975-01-01
With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.
Gauge dependence of the infrared behaviour of massless QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: sharat@imsc.res.in
2006-03-23
Using the Zumino identities it is shown that in a class of non-local gauges, massless QED{sub 3} has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact.
New twistorial integral formulas for massless free fields of arbitrary spin
International Nuclear Information System (INIS)
Cardoso, J.G.
1991-01-01
A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field integrals is presented. The invariant integral expressions for the spinning massless free fields are directly transcribed into the framework of twistor theory. It is then shown that the resulting twistorial field integrals can be thought of as being equivalent to the universal Penrose contour integral formulas for these fields
Renormalization group analysis of the temperature dependent coupling constant in massless theory
International Nuclear Information System (INIS)
Yamada, Hirofumi.
1987-06-01
A general analysis of finite temperature renormalization group equations for massless theories is presented. It is found that in a direction where momenta and temperature are scaled up with their ratio fixed the coupling constant behaves in the same manner as in zero temperature and that asymptotic freedom at short distances is also maintained at finite temperature. (author)
No nonminimally coupled massless scalar hair for spherically symmetric neutral black holes
Directory of Open Access Journals (Sweden)
Shahar Hod
2017-08-01
Full Text Available We provide a remarkably compact proof that spherically symmetric neutral black holes cannot support static nonminimally coupled massless scalar fields. The theorem is based on causality restrictions imposed on the energy-momentum tensor of the fields near the regular black-hole horizon.
Geometric representation of the generator of duality in massless and massive p-form field theories
International Nuclear Information System (INIS)
Contreras, Ernesto; Martinez, Yisely; Leal, Lorenzo
2010-01-01
We study the invariance under duality transformations in massless and massive p-form field theories and obtain the Noether generators of the infinitesimal transformations that correspond to this symmetry. These generators can be realized in geometrical representations that generalize the loop representation of the Maxwell field, allowing for a geometrical interpretation which is studied.
On the exponentiation of leading infrared divergences in massless Yang-Mills theories
International Nuclear Information System (INIS)
Frenkel, J.; Garcia, R.L.
1977-01-01
We derive, in the axial gauge, the effective U-matrix which governs the behaviour of leading infrared singularities in the self-energy functions of Yang-Mills particles. We then show in a very simple manner, that these divergences, which determine the leading singularities in massless Yang-Mills theories, exponentiate [pt
International Nuclear Information System (INIS)
Gorskij, A.S.; Ioffe, B.L.; Khodzhamiryan, A.Yu.
1989-01-01
It is shown that in massless electrodynamics (when the electron mass is strictly zero) the cross section of longitudinal photon interaction on mass shell is nonvanishing. The reasons of appearance of this effects and its possible consequences as well as analogous effects in other quantum field theories (especially non-Abelian gauge theories) are discussed. 7 refs.; 2 figs
International Nuclear Information System (INIS)
Galvao, C.A.P.; Mignaco, J.A.
1994-01-01
The classical electromagnetic theory is analysed which corresponds to the two-dimensional quantum electrodynamics with massless spinor fields (Schwinger model). The chiral anomaly is introduced as a currents property, which in the two-dimensional spinor fields are duality related. It is also shown that the resulting classical theory is consistent. (author). 5 refs
Description of the higher massless irreducible integer spins in the BRST approach
International Nuclear Information System (INIS)
Pashnev, A.; Tsulaya, M.
1998-01-01
The BRST approach is applied to the description of irreducible massless higher spins representations of the Poincare group in arbitrary dimensions. The total system of constraints in such theory includes both the first and the second class constraints. The corresponding nilpotent BRST charge contains terms up to the seventh degree in ghosts
IR finite one-loop box scalar integral with massless internal lines
International Nuclear Information System (INIS)
Duplancic, G.; Nizic, B.
2002-01-01
The IR finite one-loop box scalar integral with massless internal lines has been recalculated. The result is very compact, simple and valid for arbitrary values of the relevant kinematic variables. It is given in terms of only two dilogarithms and a few logarithms, all of very simple arguments. (orig.)
Janssen, T.M.; Prokopec, T.
2011-01-01
In this paper we consider a massless scalar field, with a possible coupling ξ to the Ricci scalar in a D dimensional Friedmann-Lemaître-Robertson-Walker space-time with a constant deceleration parameter q=ϵ-1, ϵ=-H˙/H2. Correlation functions for the Bunch-Davies vacuum of such a theory have long
bounding the error of a continuous approximation for linear systems
African Journals Online (AJOL)
DR S.E UWAMUSI
Across all branches of Engineering and Sciences, computational methods provide the .... Stephen Ehidiamhen Uwamusi, Department of Mathematics, University of Benin, ..... Table 5: (Applied Rump's operation on Gauss-Siedel method (3.8)).
Effective bounds on strong unicity in L1-approximation
DEFF Research Database (Denmark)
Kohlenbach, Ulrich; Oliva, Paulo B.
In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [17]) t...
Spectral properties of the massless relativistic quartic oscillator
Durugo, Samuel O.; Lőrinczi, József
2018-03-01
An explicit solution of the spectral problem of the non-local Schrödinger operator obtained as the sum of the square root of the Laplacian and a quartic potential in one dimension is presented. The eigenvalues are obtained as zeroes of special functions related to the fourth order Airy function, and closed formulae for the Fourier transform of the eigenfunctions are derived. These representations allow to derive further spectral properties such as estimates of spectral gaps, heat trace and the asymptotic distribution of eigenvalues, as well as a detailed analysis of the eigenfunctions. A subtle spectral effect is observed which manifests in an exponentially tight approximation of the spectrum by the zeroes of the dominating term in the Fourier representation of the eigenfunctions and its derivative.
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
Mohri, Mehryar; Rostamizadeh, Afshin
2013-01-01
We present a brief survey of existing mistake bounds and introduce novel bounds for the Perceptron or the kernel Perceptron algorithm. Our novel bounds generalize beyond standard margin-loss type bounds, allow for any convex and Lipschitz loss function, and admit a very simple proof.
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
Circuit lower bounds in bounded arithmetics
Czech Academy of Sciences Publication Activity Database
Pich, Ján
2015-01-01
Roč. 166, č. 1 (2015), s. 29-45 ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007214000888
Gauge structure of neutral-vector field theory. [Massive vector fields, massless limits
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Yokoyama, [Hiroshima univ., Takehara (Japan). Research Inst. for Theoretical Physics
1975-03-01
General aspects of gauge structure of neutral-vector field theory are investigated from an extended standpoint, where massive vector fields are treated in a form corresponding to the electromagnetic fields in a general gauge formalism reported previously. All results obtained are shown to have unique massless limits. It is shown that a generalized q-number gauge transformation for fields makes the theory invariant in cooperation with a simultaneous transformation for relevant gauge parameters. A method of differentiation with respect to a gauge variable is found to clarify some essential features of the gauge structure. Two possible types of gauge structure also emerge correspondingly to the massless case. A neutral-vector field theory proposed in a preceding paper is included in the present framework as the most preferable case.
Spectral asymmetry of the massless Dirac operator on a 3-torus
International Nuclear Information System (INIS)
Downes, Robert J.; Vassiliev, Dmitri; Levitin, Michael
2013-01-01
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant
All-order results for infrared and collinear singularities in massless gauge theories
Dixon, Lance J; Magnea, Lorenzo
2010-01-01
We review recent results concerning the all-order structure of infrared and collinear divergences in massless gauge theory amplitudes. While the exponentiation of these divergences for nonabelian gauge theories has been understood for a long time, in the past couple of years we have begun to unravel the all-order structure of the anomalous dimensions that build up the perturbative exponent. In the large-Nc limit, all infrared and collinear divergences are determined by just three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes with any number of hard partons may be captured by a surprisingly simple expression constructed as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard partons at three loops or beyond, are tightly constrained and are currently under study.
Gauge-invariant dressed fermion propagator in massless QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in
2006-04-27
The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.
Lattice Hamiltonian approach to the massless Schwinger model. Precise extraction of the mass gap
International Nuclear Information System (INIS)
Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka; Szyniszewski, Marcin; Manchester Univ.
2012-12-01
We present results of applying the Hamiltonian approach to the massless Schwinger model. A finite basis is constructed using the strong coupling expansion to a very high order. Using exact diagonalization, the continuum limit can be reliably approached. This allows to reproduce the analytical results for the ground state energy, as well as the vector and scalar mass gaps to an outstanding precision better than 10 -6 %.
Resonant frequencies of massless scalar field in rotating black-brane spacetime
Institute of Scientific and Technical Information of China (English)
Jing Ji-Liang; Pan Qi-Yuan
2008-01-01
This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.
Lattice Hamiltonian approach to the massless Schwinger model. Precise extraction of the mass gap
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Kujawa-Cichy, Agnieszka [Poznan Univ. (Poland). Faculty of Physics; Szyniszewski, Marcin [Poznan Univ. (Poland). Faculty of Physics; Manchester Univ. (United Kingdom). NOWNano DTC
2012-12-15
We present results of applying the Hamiltonian approach to the massless Schwinger model. A finite basis is constructed using the strong coupling expansion to a very high order. Using exact diagonalization, the continuum limit can be reliably approached. This allows to reproduce the analytical results for the ground state energy, as well as the vector and scalar mass gaps to an outstanding precision better than 10{sup -6} %.
Infrared divergences of Green functions and renormalization in massless theories. 2
International Nuclear Information System (INIS)
Anikin, S.A.; Zav'yalova, O.I.; Karchev, N.I.
1981-01-01
General theorems are proved concerning the infrared finiteness of Green functions in theories including massless particles. Considerations are based on α-representation of Feynman diagrams. Necessory conditions are considered for proving theorems in the case of diagrams with massive lines. Under certain conditions the contribution of the considered sections into the Feynman amplitude is shown to be free from infrared divergences, but only for those subgraphs which involve all the massive lines and contain all the outer vertexes in one affinity component
Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1988-04-25
Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d-2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.
A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.
1995-08-01
We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs
Three-point Green's function of massless QED in position space to lowest order
International Nuclear Information System (INIS)
Mitra, Indrajit
2009-01-01
The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions
On the identification of gravitation with the massless spin 2 field
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
The identification of gravitation with the massless spin 2 gauge field (the gauge group is the group of translations) requires to restrict the solutions of Einstein's equations to the class of topologically trivial manifolds. It is shown that the validity of this restriction in nature is supported by the present-day empirical facts. The identification has a drastic impact on cosmology, because the fulfilment of the cosmological principle seems to be improbable. (author)
Massless scalar field in de Sitter spacetime: unitary quantum time evolution
International Nuclear Information System (INIS)
Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M
2013-01-01
We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)
Production of massless particles in collisions of strings at high energy
International Nuclear Information System (INIS)
Lipatov, L.N.
1988-01-01
The authors obtain explicit formulas (generalizing the Low-Gribov expressions) for the production amplitude of massless particles (gluons and gravitons) with low transverse momenta in the scattering of lower-mass excitations of open and closed strings. In the limit α' → 0 they reproduce the results of calculation of effective vertices for inelastic scattering amplitudes in multi-Regge kinematics in the Yang-Mills theory and in gravitation
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Mankoč Borštnik, N. S.; Nielsen, H. B.
2006-12-01
The genuine Kaluza-Klein-like theories--with no fields in addition to gravity--have difficulties with the existence of massless spinors after the compactification of some space dimensions \\cite{witten}. We proposed (Phys. Lett. B 633 (2006)771) such a boundary condition for spinors in 1+5 compactified on a flat disk that ensures masslessness of spinors in d=1+3 as well as their chiral coupling to the corresponding background gauge field (which solves equations of motion for a free field linear in the Riemann curvature). In this paper we study the same toy model: M^{(1+3)} x M^{(2)}, looking this time for an involution which transforms a space of solutions of Weyl equations in d=1+5 from the outside of the flat disk in x^5 and x^6 into its inside, allowing massless spinor of only one handedness--and accordingly assures mass protection--and of one charge--1/2--and infinitely many massive spinors of the same charge, chirally coupled to the corresponding background gauge field. We reformulate the operator of momentum so that it is Hermitean on the vector space of spinor states obeying the involution boundary condition.
International Nuclear Information System (INIS)
Uchikata, Nami; Yoshida, Shijun
2011-01-01
We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r + + /L→0, where r + and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r + /L→0 is given by Q>(3/eL)Q c , where Q, Q c , and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r + + =0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Q c , 0.78Q c , and 0.76Q c , respectively.
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Symanzik approach in modeling of bound states of Dirac particle in singular background
Directory of Open Access Journals (Sweden)
Pismak Yu. M.
2017-01-01
Full Text Available In the model of interaction of spinor field with homogeneous isotropic material plane constructed in framework of Symanzik approach, the bound states are studied. For localized near plane Dirac particle the expression for current, charge and density are presented. For bound state with massless dispersion law the current, charge and density are calculated for simplified model with 2 parameter exactly.The model can find application to a wide class of phenomena arising by the interaction of fields of quantum electrodynamics with two-dimensional materials.
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.
Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E
2018-06-01
An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.
Variational lower bound on the scattering length
International Nuclear Information System (INIS)
Rosenberg, L.; Spruch, L.
1975-01-01
The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable
Non-Schwinger solution of the two-dimensional massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.
1981-01-01
In the present paper a regularization procedure is formulated for the current in the two-dimensional massless spinor electrodynamics that is both gauge and γ 5 -gauge invariant. This gives rise to an operator solution of the model that does not involve a massive photon. The latter solution is studied in some detail, and it is shown that although a charge operator exists, it does not define the electric charge of the spinor field. This can be a manifestation of the charge screening mechanism that is present in the Schwinger model [ru
Analytic continuation of massless two-loop four-point functions
International Nuclear Information System (INIS)
Gehrmann, T.; Remiddi, E.
2002-01-01
We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1→3 decay to Minkowskian regions relevant to all 1→3 and 2→2 reactions with one space-like or time-like off-shell external leg. Our results can be used to derive two-loop master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron-positron annihilation. (author)
Infrared behaviour of massless QED in space-time dimensions 2
International Nuclear Information System (INIS)
Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.
2005-01-01
We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2< d<4
Infrared behaviour of massless QED in space-time dimensions 2
Energy Technology Data Exchange (ETDEWEB)
Mitra, Indrajit [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India) and Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indra@theory.saha.ernet.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in
2005-04-07
We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2
Quantum Hall effect of massless Dirac fermions and free fermions in Hofstadter's butterfly
International Nuclear Information System (INIS)
Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao
2016-01-01
We propose a new physical interpretation of the Diophantine equation of σ xy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called 'subcells', which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σ xy , that are consistent with the Diophantine equation: Landau quantization of (1) massless Dirac fermions or (2) free fermions in Hofstadter's butterfly. (author)
Heun Polynomials and Exact Solutions for the Massless Dirac Particle in the C-Metric
Kar, Priyasri; Singh, Ritesh K.; Dasgupta, Ananda; Panigrahi, Prasanta K.
2018-03-01
The equation of motion of a massless Dirac particle in the C-metric leads to the general Heun equation (GHE) for the radial and the polar variables. The GHE, under certain parametric conditions, is cast in terms of a new set of su(1, 1) generators involving differential operators of degrees ±1/2 and 0. Additional Heun polynomials are obtained using this new algebraic structure and are used to construct some exact solutions for the radial and the polar parts of the Dirac equation.
Equations of motion of interacting massless fields of all spins as a free differential algebra
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1988-08-11
It is argued that the equations of motion of interacting massless fields of all spins s=0, 1, ..., infinity can naturally be formulated in terms of a free differential algebra (FDA) constructed from one-forms and zero-forms that belong both to the adjoint representation of the infinite-dimensional superalgebra of higher spins and auxiliary fields proposed previously. This FDA is found explicitly in the first non-trivial order in the zero-forms. Various properties of the proposed FDA are discussed including the ways for incorporating internal (Yang-Mills) gauge symmetries via associative algebras.
Massless second-order tetradic spin-3 and higher-helicity bosons
Energy Technology Data Exchange (ETDEWEB)
Aragone, C; La Roche, H [Universidad Simon Bolivar, Caracas (Venezuela) Dept. de Fisica
1982-11-21
The unique, uniform, second-order formulation of massless bosons of helicity >=3 is presented here in terms of tetradic fields. The actions we find are shown to coincide both with the first-order (tetradic) formulation of Vasiliev and with the symmetric second-order description of Fronsdal. We carefully analyse the gravitational coupling of the spin-3 field and find that tetradic spin-3 matter presents the same translational consistency problem as symmetric matter does. Furthermore, in the curved tetradic case the generalized Lorentz invariance can be restored by the addition of nominimal terms.
Thermodynamics of lattice QCD with massless quarks and chiral 4-fermion interactions
International Nuclear Information System (INIS)
Kogut, J. B.
1998-01-01
N f = 2 lattice QCD with massless quarks and a weak 4-fermion interaction appears to have the expected second order transition, at least for N t ≥ 6. More work is needed to clarify the N t = 4 case. With more statistics the N t = 6 simulations should produce an accurate determination of the critical exponent β m . Moving to finite mass at β = β c should allow an accurate determination of σ. Hadronic screening masses need further analysis. Other order parameters remain to be analyzed. Unfortunately, there is no obvious way to include 4-fermion interactions with full SU(2) x SU(2) chiral flavor symmetry
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
International Nuclear Information System (INIS)
Inoue, J.; Ohtaka, K.
2004-01-01
We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....
Inertia effects on the rigid displacement approximation of tokamak plasma vertical motion
International Nuclear Information System (INIS)
Carrera, R.; Khayrutdinov, R.R.; Azizov, E.A.; Montalvo, E.; Dong, J.Q.
1991-01-01
Elongated plasmas in tokamaks are unstable to axisymmetric vertical displacements. The vacuum vessel and passive conductors can stabilize the plasma motion in the short time scale. For stabilization of the plasma movement in the long time scale an active feedback control system is required. A widely used method of plasma stability analysis uses the Rigid Displacement Model (RDM) of plasma behavior. In the RDM it is assumed that the plasma displacement is small and usually plasma inertia effects are neglected. In addition, it is considered that no changes in plasma shape, plasma current, and plasma current profile take place throughout the plasma motion. It has been demonstrated that the massless-filament approximation (instantaneous force-balance) accurately reproduces the unstable root of the passive stabilization problem. Then, on the basis that the instantaneous force-balance approximation is correct in the passive stabilization analysis, the massless approximation is utilized also in the study of the plasma vertical stabilization by active feedback. The authors show here that the RDM (without mass effects included) does not provide correct stability results for a tokamak configuration (plasma column, passive conductors, and feedback control coils). Therefore, it is concluded that inertia effects have to be retained in the RDM system of equations. It is shown analytically and numerically that stability diagrams with and without plasma-mass corrections differ significantly. When inertia effects are included, the stability region is more restricted than obtained in the massless approximation
Topological Symmetry, Spin Liquids and CFT Duals of Polyakov Model with Massless Fermions
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat
2008-04-30
We prove the absence of a mass gap and confinement in the Polyakov model with massless complex fermions in any representation of the gauge group. A U(1){sub *} topological shift symmetry protects the masslessness of one dual photon. This symmetry emerges in the IR as a consequence of the Callias index theorem and abelian duality. For matter in the fundamental representation, the infrared limits of this class of theories interpolate between weakly and strongly coupled conformal field theory (CFT) depending on the number of flavors, and provide an infinite class of CFTs in d = 3 dimensions. The long distance physics of the model is same as certain stable spin liquids. Altering the topology of the adjoint Higgs field by turning it into a compact scalar does not change the long distance dynamics in perturbation theory, however, non-perturbative effects lead to a mass gap for the gauge fluctuations. This provides conceptual clarity to many subtle issues about compact QED{sub 3} discussed in the context of quantum magnets, spin liquids and phase fluctuation models in cuprate superconductors. These constructions also provide new insights into zero temperature gauge theory dynamics on R{sup 2,1} and R{sup 2,1} x S{sup 1}. The confined versus deconfined long distance dynamics is characterized by a discrete versus continuous topological symmetry.
Partially massless higher-spin theory II: one-loop effective actions
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH, 44106 (United States)
2017-01-30
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
Light-cone gauge versus proper-time gauge for massless spinning particles
International Nuclear Information System (INIS)
Skagerstam, B.S.; Stern, A.
1987-01-01
Although the light-cone gauge is convenient for many applications in physics, it is known to distort topology. We show that as a consequence, some interesting, possibly physical, features of a quantum theory may be missed when working in the light-cone gauge. We shall illustrate this by examining the description of massless spinning particles in an arbitrary number of space-time dimensions. When quantizing such particles in four space-time dimensions (without introducing Grassmann degrees of freedom), the light-cone gauge yields a purely bosonic spectrum, i.e. the helicity λ is integer-valued. The problem is rectified by going to the proper-time gauge; there λ = 0, ±1/2, ±1, ... Upon using the proper-time gauge to quantize massless particle systems in more than four space-time dimensions, we find the following interesting features: Except for space-time dimension d equal to 5 and 9, (i) wave functions cannot be expressed as global functions of momentum (or position). (This is also true for d=4.) Further, for d ≠ 5 and 9, (ii) the helicity group spin (d-2) and (iii) canonical position operators do not exist, globally. (The result that helicity cannot be globally defined resembles a known property of nonabelian monopoles arising in grand unified theories. There, topological obstructions prevent one from defining the color group, globally.) All of the features (i)-(iii) are missed when working in the light-cone gauge. (orig.)
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N. [Univ. de Bourgogne (France). IMB, UMR 5584 du CNRS; Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M.; Terras, V. [ENS Lyon (France). UMR 5672 du CNRS, Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Inst., Moscow (Russian Federation)
2011-03-15
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system size. Moreover, the corresponding amplitudes can be obtained as a product of a ''smooth'' and a ''discrete'' part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the longdistance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determinant representations for their form factors. (orig.)
Partially-massless higher-spin algebras and their finite-dimensional truncations
International Nuclear Information System (INIS)
Joung, Euihun; Mkrtchyan, Karapet
2016-01-01
The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.
Partially massless higher-spin theory II: one-loop effective actions
International Nuclear Information System (INIS)
Brust, Christopher; Hinterbichler, Kurt
2017-01-01
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
Massive spin-one fields from couplings with five massless real scalars
Bizdadea, Constantin; Cioroianu, Eugen-Mihaita; Saliu, Solange-Odile
2017-12-01
In this paper we implement a new procedure by which one may generate mass for a vector field in the context of its interactions to a system of five real scalar fields. This purpose will be achieved by means of the general multi-step program from [1] adapted to the present situation: (1) we begin with a free theory in four space-time dimensions whose Lagrangian action is given by the sum between the standard Maxwell action and that for a collection consisting in five massless real scalar fields; (2) we construct a general class of gauge theories whose free limit is that from step (1) by means of the deformation of the solution to the master equation [2, 3] with the help of local BRST cohomology [4-6]; (3) we perform some suitable redefinitions of the free parameters that label interacting theories from (2) such that the mass terms become manifest in the new free limit. The outputs of our procedure can be synthesized in: (A) the vector field acquires mass; (B) the scalar fields gain gauge transformations; (C) the gauge algebras of the interacting theories are Abelian; (D) the propagator of the massive vector field emerging from the gauge-fixed actions behaves, in the limit of large Euclidean momenta, like that from the massless case.
General bounds in Hybrid Natural Inflation
Germán, Gabriel; Herrera-Aguilar, Alfredo; Hidalgo, Juan Carlos; Sussman, Roberto A.; Tapia, José
2017-12-01
Recently we have studied in great detail a model of Hybrid Natural Inflation (HNI) by constructing two simple effective field theories. These two versions of the model allow inflationary energy scales as small as the electroweak scale in one of them or as large as the Grand Unification scale in the other, therefore covering the whole range of possible energy scales. In any case the inflationary sector of the model is of the form V(phi)=V0 (1+a cos(phi/f)) where 0waterfall field. One interesting characteristic of this model is that the slow-roll parameter epsilon(phi) is a non-monotonic function of phi presenting a maximum close to the inflection point of the potential. Because the scalar spectrum Script Ps(k) of density fluctuations when written in terms of the potential is inversely proportional to epsilon(phi) we find that Script Ps(k) presents a minimum at phimin. The origin of the HNI potential can be traced to a symmetry breaking phenomenon occurring at some energy scale f which gives rise to a (massless) Goldstone boson. Non-perturbative physics at some temperature Tmodels is not common. We use this property of HNI to determine bounds for the inflationary energy scale Δ and for the tensor-to-scalar ratio r.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
Bounded Intention Planning Revisited
Sievers Silvan; Wehrle Martin; Helmert Malte
2014-01-01
Bounded intention planning provides a pruning technique for optimal planning that has been proposed several years ago. In addition partial order reduction techniques based on stubborn sets have recently been investigated for this purpose. In this paper we revisit bounded intention planning in the view of stubborn sets.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Polynomial approximation of functions in Sobolev spaces
International Nuclear Information System (INIS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces
Gelfond, O A
2015-01-01
Interactions of massless fields of all spins in four dimensions with currents of any spin is shown to result from a solution of the linear problem that describes a gluing between rank-one (massless) system and rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system, that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. Interpretation of the obtained results in spirit of AdS/CFT correspondence is discussed.
International Nuclear Information System (INIS)
Diabate, S.; Strack, S.
1993-01-01
Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs
International Nuclear Information System (INIS)
Toki, Hiroshi; Yamazaki, Toshimitsu
1989-01-01
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Perturbation of operators and approximation of spectrum
Indian Academy of Sciences (India)
outside the bounds of essential spectrum of A(x) can be approximated ... some perturbed discrete Schrödinger operators treating them as block ...... particular, one may think of estimating the spectrum and spectral gaps of Schrödinger.
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Tight Bounds for Distributed Functional Monitoring
DEFF Research Database (Denmark)
Woodruff, David P.; Zhang, Qin
2011-01-01
$, our bound resolves their main open question. Our lower bounds are based on new direct sum theorems for approximate majority, and yield significant improvements to problems in the data stream model, improving the bound for estimating $F_p, p > 2,$ in $t$ passes from $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{2/p......} t))$ to $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{4/p} t))$, giving the first bound for estimating $F_0$ in $t$ passes of $\\Omega(1/(\\eps^2 t))$ bits of space that does not use the gap-hamming problem, and showing a distribution for the gap-hamming problem with high external information cost or super...
International Nuclear Information System (INIS)
Takane, Yoshitake
2016-01-01
An unbounded massless Dirac model with two nondegenerate Dirac cones is the simplest model for Weyl semimetals, which show the anomalous electromagnetic response of chiral magnetic effect (CME) and anomalous Hall effect (AHE). However, if this model is naively used to analyze the electromagnetic response within a linear response theory, it gives the result apparently inconsistent with the persuasive prediction based on a lattice model. We show that this serious difficulty is related to the breaking of current conservation in the Dirac model due to quantum anomaly and can be removed if current and charge operators are redefined to include the contribution from the anomaly. We demonstrate that the CME as well as the AHE can be properly described using newly defined operators, and clarify that the CME is determined by the competition between the contribution from the anomaly and that from low-energy electrons. (author)
Comment on 'Late-time tails of a self-gravitating massless scalar field revisited'
International Nuclear Information System (INIS)
Szpak, Nikodem
2009-01-01
Bizon et al (2009 Class. Quantum Grav. 26 175006) discuss the power-law tail in the long-time evolution of a spherically symmetric self-gravitating massless scalar field in odd spatial dimensions. They derive explicit expressions for the leading-order asymptotics for solutions with small initial data by using formal series expansions. Unfortunately, this approach misses an interesting observation that the actual decay rate is a product of asymptotic cancellations occurring due to a special structure of the nonlinear terms. Here, we show that one can calculate the leading asymptotics more directly by recognizing the special structure and cancellations already on the level of the wave equation. (comments and replies)
No parity anomaly in massless QED{sub 3}: A BPHZL approach
Energy Technology Data Exchange (ETDEWEB)
Del Cima, O.M. [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras (PURO), Departamento de Ciencia e Tecnologia, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil)], E-mail: wadodelcima@if.uff.br; Franco, D.H.T. [Universidade Federal de Vicosa (UFV), Departamento de Fisica - Campus Universitario, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil)], E-mail: dhtfranco@gmail.com; Piguet, O. [Universidade Federal do Espirito Santo (UFES), CCE, Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)], E-mail: opiguet@pq.cnpq.br; Schweda, M. [Institut fuer Theoretische Physik, Technische Universitaet Wien (TU-Wien), Wiedner Hauptstrasse 8-10, A-1040, Vienna (Austria)], E-mail: mschweda@tph.tuwien.ac.at
2009-09-14
In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED{sub 3} frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.
2D massless QED Hall half-integer conductivity and graphene
International Nuclear Information System (INIS)
Martínez, A Pérez; Querts, E Rodriguez; Rojas, H Pérez; Gaitan, R; Rodriguez-Romo, S
2011-01-01
Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system C-non-invariant under fermion–antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature, the main features of the quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to e 2 /h for the Hall conductivity. For typical values of graphene the plateaus of the Hall conductivity are also reproduced. (paper)
Numerical evaluation of virtual corrections to multi-jet production in massless QCD
DEFF Research Database (Denmark)
Badger, S.; Yundin, V.; Biedermann, B.
2013-01-01
title: NJet. Catalogue identifier: AEPF_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPF_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: GNU General Public License, version 3. No. of lines in distributed program......, including test data, etc.: 250047. No. of bytes in distributed program, including test data, etc.: 2138947. Distribution format: tar.gz. Programming language: C++, Python. Computer: PC/Workstation. Operating system: No specific requirements - tested on Scientific Linux 5.2. and Mac OS X 10.......7.4. Classification: 11.5. External routines: QCDLoop (http://qcdloop.fnal.gov/), qd (http://crd.lbl.gov/dhbailey/mpdist/), both included in the distribution file. Nature of problem:. Evaluation of virtual corrections for multi-jet production in massless QCD. Solution method:. Purely numerical approach based on tree...
The scalar-photon 3-point vertex in massless quenched scalar QED
International Nuclear Information System (INIS)
Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A
2016-01-01
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)
Direct and semi-direct approaches to lepton mixing with a massless neutrino
International Nuclear Information System (INIS)
King, Stephen F.; Ludl, Patrick Otto
2016-01-01
We discuss the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry, extending previous group searches up to order 1535. We find a phenomenologically viable scheme for the semi-direct approach based on Q(648) which contains Δ(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m_1=0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ_1_2∼31"∘ and the Dirac (oscillation) CP phase δ being either about ±45"∘ or ±π.
Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field
Huang, Zhiming
2018-04-01
In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.
International Nuclear Information System (INIS)
Eab, C. H.; Lim, S. C.; Teo, L. P.
2007-01-01
This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed
Application of the negative-dimension approach to massless scalar box integrals
International Nuclear Information System (INIS)
Anastasiou, C.; Glover, E.W.N.; Oleari, C.
2000-01-01
We study massless one-loop box integrals by treating the number of space-time dimensions D as a negative integer. We consider integrals with up to three kinematic scales (s, t and either zero or one off-shell legs) and with arbitrary powers of propagators. For box integrals with q kinematic scales (where q=2 or 3) we immediately obtain a representation of the graph in terms of a finite sum of generalised hypergeometric functions with q-1 variables, valid for general D. Because the power each propagator is raised to is treated as a parameter, these general expressions are useful in evaluating certain types of two-loop box integrals which are one-loop insertions to one-loop box graphs. We present general expressions for this particular class of two-loop graphs with one off-shell leg, and give explicit representations in terms of polylogarithms in the on-shell case
International Nuclear Information System (INIS)
Danilov, G.S.; Dyatlov, I.T.; Petrov, V.Yu.
1982-01-01
In two-dimensional electrodynamics (QED 2 ) of massless fermions (quarks) the screening and confinement of a charge is due to the transition of local charges into vacuum of the system under the action of the field changing the topological number. An exact solution of the problem of the quark structure of vacuum for two variants of QED 2 shows that it is consistent with the phenomenon. The structure of vacuum is therefore related directly to the Adler anomaly and to the character of variation of the field topological numbers in dynamic processes. The solutions obtained permit one to investigate in an explicit form the properties of a chiral condensate, the existence of which is also a direct consequence of the Adler anomaly
International Nuclear Information System (INIS)
Ito, K.R.
1975-01-01
The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world. (author)
Massless charged particles: Cosmic censorship, and the third law of black hole mechanics
Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta
2017-10-01
The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.
Cross section evaluation by spinor integration: The massless case in 4D
International Nuclear Information System (INIS)
Feng Bo; Huang Rijun; Jia Yin; Luo Mingxing; Wang Honghui
2010-01-01
To get the total cross section of one interaction from its amplitude M, one needs to integrate |M| 2 over phase spaces of all outgoing particles. Starting from this paper, we will propose a new method to perform such integrations, which is inspired by the reduced phase space integration of one-loop unitarity cut developed in the last few years. The new method reduces one constrained three-dimension momentum space integration to a one-dimensional integration, plus one possible Feynman parameter integration. There is no need to specify a reference framework in our calculation, since every step is manifestly Lorentz invariant by the new method. The current paper is the first paper of a series for the new method. Here we have exclusively focused on massless particles in 4D. There is no need to carve out a complicated integration region in the phase space for this particular simple case because the integration region is always simply [0,1].
Bounded Rationality and Budgeting
Ibrahim, Mukdad
2016-01-01
This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...
Tate, Stephen James
2013-10-01
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.
An analytic distribution function for a mass-less cored stellar system in a cuspy dark-matter halo
Breddels, Maarten A.; Helmi, Amina
2013-01-01
We demonstrate the existence of a distribution function that can be used to represent spherical mass-less cored stellar systems having constant mildly tangential velocity anisotropy embedded in cuspy dark-matter halos. In particular, we derived analytically the functional form of the distribution
International Nuclear Information System (INIS)
Fradkin, E.S.; Metsaev, R.R.
1996-02-01
Using the language of highest weight representations and the light cone formalism we construct a full list of cubic amplitudes of scattering for all bosonic massless representations of the Poincare group in any even space-time dimension. (author). 29 refs
On the consistent interactions in D=11 among a graviton, a massless gravitino and a three-form
International Nuclear Information System (INIS)
Cioroianu, E.M.; Diaconu, E.; Sararu, S.C.
2009-01-01
The couplings that can be introduced between a massless Rarita-Schwinger field, a Pauli-Fierz field and an Abelian three-form gauge field in eleven spacetime dimensions are analyzed in the context of the deformation of the solution of the master equation. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Ginsburg, C.A.
1980-01-01
In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)
International Nuclear Information System (INIS)
Robinson, D.W.
1975-11-01
Let U,V be two strongly continuous one-parameter groups of bounded operators on a Banach space X with corresponding infinitesimal operators S, T. It is proved that: //U(t)-V(t)//=0(t), t→0, if, and only if, U=V; //U(t)-V(t)//=0 (t.exp.α), t→0, with 0 -1 where OMEGA, P, are bounded operators on X such that //U(t)OMEGA-OMEGA.U(t)//=0(t.exp.α), //U(t)P-PU(t)//=0(t.exp.α); t→0; //U(t)-V(t)//=0(t) if, and only if, S*-T* has a bounded extension to X*. Further results of this nature are inferred for semigroups, reflexive spaces, Hilbert spaces, and von Neumann algebras [fr
On transparent potentials: a Born approximation study
International Nuclear Information System (INIS)
Coudray, C.
1980-01-01
In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy
Local approximation of a metapopulation's equilibrium.
Barbour, A D; McVinish, R; Pollett, P K
2018-04-18
We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay
2013-01-01
Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...
Massive Galileon positivity bounds
de Rham, Claudia; Melville, Scott; Tolley, Andrew J.; Zhou, Shuang-Yong
2017-09-01
The EFT coefficients in any gapped, scalar, Lorentz invariant field theory must satisfy positivity requirements if there is to exist a local, analytic Wilsonian UV completion. We apply these bounds to the tree level scattering amplitudes for a massive Galileon. The addition of a mass term, which does not spoil the non-renormalization theorem of the Galileon and preserves the Galileon symmetry at loop level, is necessary to satisfy the lowest order positivity bound. We further show that a careful choice of successively higher derivative corrections are necessary to satisfy the higher order positivity bounds. There is then no obstruction to a local UV completion from considerations of tree level 2-to-2 scattering alone. To demonstrate this we give an explicit example of such a UV completion.
Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC
Shakir, Muhammad; Durrani, Tariq S; Alouini, Mohamed-Slim
2011-01-01
demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity
Generalized surface tension bounds in vacuum decay
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
Compound Poisson Approximations for Sums of Random Variables
Serfozo, Richard F.
1986-01-01
We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...
Approximating distributions from moments
Pawula, R. F.
1987-11-01
A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.
CONTRIBUTIONS TO RATIONAL APPROXIMATION,
Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)
International Nuclear Information System (INIS)
Zeppenfeld, D.
1984-01-01
The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Thin-wall approximation in vacuum decay: A lemma
Brown, Adam R.
2018-05-01
The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
The soliton solution of the PHI24 field theory in the Hartree approximation
International Nuclear Information System (INIS)
Altenbokum, M.
1984-01-01
In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Forecasting with Universal Approximators and a Learning Algorithm
DEFF Research Database (Denmark)
Kock, Anders Bredahl
2011-01-01
to the performance of the best single model in the set of models combined from. The use of universal approximators along with a combination scheme for which explicit loss bounds exist should give a solid theoretical foundation to the way the forecasts are performed. The practical performance will be investigated...... combination has a long history in econometrics focus has not been on proving loss bounds for the combination rules applied. We apply the Weighted Average Algorithm (WAA) of Kivinen & Warmuth (1999) for which such loss bounds exist. Specifically, one can bound the worst case performance of the WAA compared...
Forecasting with Universal Approximators and a Learning Algorithm
DEFF Research Database (Denmark)
Kock, Anders Bredahl
bounds for the combination rules applied. We apply the Weighted Average Algorithm (WAA) of Kivinen and Warmuth (1999) for which such loss bounds exist. Specifically, one can bound the worst case performance of the WAA compared to the performance of the best single model in the set of models combined from....... The use of universal approximators along with a combination scheme for which explicit loss bounds exist should give a solid theoretical foundation to the way the forecasts are performed. The practical performance will be investigated by considering various monthly postwar macroeconomic data sets for the G...
Modular structure of the local algebras associated with the free massless scalar field theory
International Nuclear Information System (INIS)
Hislop, P.D.; Longo, R.
1982-01-01
The modular structure of the von Neuman algebra of local observables associated with a double cone in the vacuum representation of the free massless scalar field theory of any number of dimensions is described. The modular automorphism group is induced by the unitary implementation of a family of generalized fractional linear transformations on Minkowski space and is a subgroup of the conformal group. The modular conjugation operator is the anti-unitary impementation of a product of time reversal and relativistic ray inversion. The group generated by the modular conjugation operators for the local algebras associated with the family of double cone regions is the group of proper conformal transformations. A theorem is presented asserting the unitary equivalence of local algebras associated with lightcones, double cones and wedge regions. For the double cone algebras, this provides an explicitly realization of spacelike duality and establishes the known type III 1 factor property. It is shown that the timelike duality property of the lightcone algebras does not hold for the double cone algebras. A different definition of the von Neumann algebras associated with a region is introduced which agrees with the standard one for a lightcone or a double cone region but which allows the timelike duality property for the double cone algebras. In the case of one spatial dimension, the standard local algebras associated with the double cone regions satisfy both specelike and timelike duality. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Goolsby-Cole, Cody; Sorbo, Lorenzo, E-mail: cgoolsby@physics.umass.edu, E-mail: sorbo@physics.umass.edu [Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA, 01003 (United States)
2017-08-01
We discuss the possibility of a feature in the spectrum of inflationary gravitational waves sourced by a scalar field χ whose vacuum fluctuations are amplified by a rapidly time dependent mass. Unlike previous work which has focused on the case in which the mass of the field χ vanishes only for an instant before becoming massive again, we study a system where the scalar field becomes and remains massless through the end of inflation. After applying appropriate constraints to our parameters, we find, for future CMB experiments, a small contribution to the tensor-to-scalar ratio which can be at most of the order r ∼ 10{sup −5}. At smaller scales probed by gravitational interferometers, on the other hand, the energy density in the gravitational waves produced this way might be above the projected sensitivity of LISA, Ω{sub GW} h {sup 2} ∼ 10{sup −13}, in a narrow region of parameter space. If there is more than one χ species, then these amplitudes are enhanced by a factor equal to the number of those species.
Analytic result for the one-loop scalar pentagon integral with massless propagators
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Tarasov, Oleg V.
2010-01-01
The method of dimensional recurrences proposed by one of the authors (O. V.Tarasov, 1996) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F 3 and the Gauss hypergeometric function 2 F 1 , both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions 2 F 1 . For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions 2 F 1 are presented in d=2-2ε, 4-2ε, and 6-2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2ε dimensions is given in terms of the Appell function F 3 and the Gauss hypergeometric function 2 F 1 . (orig.)
Analytic result for the one-loop scalar pentagon integral with massless propagators
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A.; Tarasov, Oleg V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2010-01-15
The method of dimensional recurrences proposed by one of the authors (O. V.Tarasov, 1996) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F{sub 3} and the Gauss hypergeometric function {sub 2}F{sub 1}, both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions {sub 2}F{sub 1}. For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions {sub 2}F{sub 1} are presented in d=2-2{epsilon}, 4-2{epsilon}, and 6-2{epsilon} dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2{epsilon} dimensions is given in terms of the Appell function F{sub 3} and the Gauss hypergeometric function {sub 2}F{sub 1}. (orig.)
AdS3/CFT2, finite-gap equations and massless modes
International Nuclear Information System (INIS)
Lloyd, Thomas; Stefański, Bogdan Jr.
2014-01-01
It is known that string theory on AdS 3 ×M 7 backgrounds, where M 7 =S 3 ×S 3 ×S 1 or S 3 ×T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 ×M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 ×M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 ×M 7
AdS{sub 3}/CFT{sub 2}, finite-gap equations and massless modes
Energy Technology Data Exchange (ETDEWEB)
Lloyd, Thomas; Stefański, Bogdan Jr. [Centre for Mathematical Science, City University London,Northampton Square, London EC1V 0HB (United Kingdom)
2014-04-29
It is known that string theory on AdS{sub 3}×M{sub 7} backgrounds, where M{sub 7}=S{sup 3}×S{sup 3}×S{sup 1} or S{sup 3}×T{sup 4}, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS{sub 3}×M{sub 7} backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS{sub 3}×M{sub 7} finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS{sub 3}×M{sub 7}.
International Nuclear Information System (INIS)
Hislop, P.D.
1988-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc
Modular structure of local algebras associated with massless free quantum fields
International Nuclear Information System (INIS)
Hislop, P.D.
1984-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation SU(2,2), a covering group of the conformal group. An irreducible set of standard linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. Using the results of Bisognano and Wichmann, the modular operators for these algebras are obtained in explicit form as conformal transformations and the duality property is proved. In the bose case, it is shown that the double-cone algebras constructed from any irreducible set of linear fields not including the standard fields do not satisfy duality and that any non-standard linear fields are not conformally covariant. A simple proof of duality, independent of the Tomita-Takesaki theory, for the double-cone algebras in the scalar case is also presented
Analyticity of effective coupling and propagators in massless models of quantum field theory
International Nuclear Information System (INIS)
Oehme, R.
1982-01-01
For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variable k 2 , which can be converted into analyticity of β- and γ-functions in the coupling parameter lambda. It is shown that the β-function can have branch point singularities related to stationary points of the effective coupling as a function of k 2 . The type of these singularities of β(lambda) can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the real k 2 -axis. The latter may be related to the sudden transition between weak and strong coupling regimes of the system. Finally, for the effective coupling and for the propagators, the analytic continuation in both variables k 2 and lambda is discussed. (orig.)
Massless spectra and gauge couplings at one-loop on non-factorisable toroidal orientifolds
Berasaluce-González, Mikel; Honecker, Gabriele; Seifert, Alexander
2018-01-01
So-called 'non-factorisable' toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al. [1] provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum - and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes - and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the Z4 × ΩR orientifolds on the A3 ×A1 ×B2-type torus. As observed before for factorisable backgrounds, also here the one-loop correction can drive the gauge groups to stronger coupling as demonstrated by means of a four-generation Pati-Salam example.
Action-angle variables for the massless relativistic string in 1+1 dimensions
International Nuclear Information System (INIS)
Soederberg, B.; Andersson, B.; Gustafson, G.
1985-01-01
In this paper the Poisson bracket algebra for the open massless relativistic string in the one-space- and one-time-dimensional case is considered. In order to characterize the orbit of the system the directrix function, i.e., the orbit of one of the endpoints of the string, is used. It turns out that the Poisson bracket algebra is of a very simple form in terms of the parameters of the directrix function. We use these results to construct action-angle variables for the general motion of the string. The variables are different for different Lorentz frames, with a continuous dependence. The action-angle variables of the center-of-mass frame and of the light-cone frames are of particular interest with respect to the simplicity of the Poincare generators and the physical interpretation. For the light-cone frame variables the equivalence to a set of indistinguishable oscillators is shown, for which an excitation corresponds to an instantaneous momentum transfer to an endpoint of the string
Analytic result for the one-loop scalar pentagon integral with massless propagators
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Tarasov, Oleg V.
2010-01-01
The method of dimensional recurrences proposed by Tarasov (1996, 2000) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F 3 and the Gauss hypergeometric function 2 F 1 , both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions 2 F 1 . For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions 2 F 1 are presented in d=2-2ε, 4-2ε, and 6-2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2ε dimensions is given in terms of the Appell function F 3 and the Gauss hypergeometric function 2 F 1 .
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
Potvin, Guy
2015-10-01
We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.
Energy Technology Data Exchange (ETDEWEB)
Gelfond, O. A., E-mail: gel@lpi.ru [Russian Academy of Sciences, Institute of System Research (Russian Federation); Vasiliev, M. A., E-mail: vasiliev@lpi.ru [Russian Academy of Sciences, I. E. Tamm Department of Theoretical Physics, Lebedev Physical Institute (Russian Federation)
2015-03-15
Interactions of massless fields of all spins in four dimensions with currents of any spin are shown to result from a solution of the linear problem that describes a gluing between a rank-one (massless) system and a rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. An interpretation of the obtained results in the spirit of the AdS/CFT correspondence is discussed.
International Nuclear Information System (INIS)
Stoyanov, D.Ts.
1978-01-01
Some critical remarks on the paper by N.Nakanishi ''Tso-Dimensional Quantum Field Theories Involving Massless Particles'' are presented. It is stated that because of the obtained commutation relations the massless scalar fields of the theory connot have the asymptotic behaviour assumed by N.Nakanishi. The contradiction, appearing in the proof of the irreducibility of the scalar field, is demonstrated. Therefore, the theory constructed by Nakanishi, in which an attempt is made to formulate it with the help of one scalar field and correspondingly with one topological charge, is contradictory. It is shown that the statistics of the solutions is not fixed and the solutions satisfying Bose or Fermi statistics differ by constant operator factors
Energy Technology Data Exchange (ETDEWEB)
Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam (Germany)
2016-12-06
We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.
International Nuclear Information System (INIS)
Loran, Farhang
2004-01-01
We solve Klein-Gordon equation for massless scalars on (d+1)-dimensional Minkowski (Euclidean) space in terms of the Cauchy data on the hypersurface t=0. By inserting the solution into the action of massless scalars in Minkowski (Euclidean) space we obtain the action of dual theory on the boundary t=0 which is exactly the holographic dual of conformally coupled scalars on (d+1)-dimensional (Euclidean anti) de Sitter space obtained in (A)dS/CFT correspondence. The observed equivalence of dual theories is explained using the one-to-one map between conformally coupled scalar fields on Minkowski (Euclidean) space and (Euclidean anti) de Sitter space which is an isomorphism between the hypersurface t=0 of Minkowski (Euclidean) space and the boundary of (A)dS space
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1987-11-01
Linearized curvatures are constructed for massless higher spin fields on the (anti-) de Sitter background. The quite uniform description for free massless fields of all integer and half-integer spins s greater than or equal to 3/2 is presented, based on these curvatures. In particular, the actions and the equations of motion are given in a simple form. The proposed linearized curvatures provide 'initial data' for determination of a non-Abelian higher spin symmetry that may correspond to a hypothetical non-trivial theory of higher spins interacting with gravity and themselves. It is noted that the conjugation law for fermion fields should be modified drastically after transition from the anti-de-Sitter geometry to the de Sitter one.
DEFF Research Database (Denmark)
di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin
2016-01-01
We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through...... the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string....... Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory....
Finite energy bounds for $\\piN$ scattering
Grassberger, P; Schwela, D
1974-01-01
Upper bounds on energy averaged pi N cross sections are given. Using low energy data and data from pi N backward scattering and NN to pi pi annihilation, it is found that sigma /sub tot/
Kahneman, Daniel
2002-01-01
The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...
Bounded Satisfiability for PCTL
Bertrand, Nathalie; Fearnley, John; Schewe, Sven
2012-01-01
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more appl...
International Nuclear Information System (INIS)
Caruso, F.; De Paola, R.; Svaiter, N.F.
1998-06-01
The renormalized energy density of a massless scalar field defined in a D-dimensional flat spacetime is computed in the presence of 'soft'and 'semihard'boundaries, modeled by some smoothly increasing potential functions. The sign of the renormalized energy densities for these different confining situations is investigated. The dependence of this energy on D for the cases of 'hard'and 'soft/semihard'boundaries area compared. (author)
International Nuclear Information System (INIS)
Adler, S.L.; Lieberman, J.
1978-01-01
We reanalyze the problem of regularization of the stress-energy tensor for massless vector particles propating in a general background metric, using covariant point separation techniques applied to the Hadamard elementary solution. We correct an error, point out by Wald, in the earlier formulation of Adler, Lieberman, and Ng, and find a stress-energy tensor trace anomaly agreeing with that found by other regularization methods
Perturbation expansions generated by an approximate propagator
International Nuclear Information System (INIS)
Znojil, M.
1987-01-01
Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example
Hardness of approximation for strip packing
DEFF Research Database (Denmark)
Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin
2017-01-01
Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
International Nuclear Information System (INIS)
Knobloch, A.F.
1980-01-01
A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Universal bounds in even-spin CFTs
Energy Technology Data Exchange (ETDEWEB)
Qualls, Joshua D. [Department of Physics, National Taiwan University,Taipei, Taiwan (China)
2015-12-01
We prove using invariance under the modular S− and ST−transformations that every unitary two-dimensional conformal field theory (CFT) having only even-spin primary operators (with no extended chiral algebra and with right- and left-central charges c,c̃>1) contains a primary operator with dimension Δ{sub 1} satisfying 0<Δ{sub 1}<((c+c̃)/24)+0.09280…. After deriving both analytical and numerical bounds, we discuss how to extend our methods to bound higher conformal dimensions before deriving lower and upper bounds on the number of primary operators in a given energy range. Using the AdS{sub 3}/CFT{sub 2} dictionary, the bound on Δ{sub 1} proves the lightest massive excitation in appropriate theories of 3D matter and gravity with cosmological constant Λ<0 can be no heavier than 1/8G{sub N}+O(√(−Λ)); the bounds on the number of operators are related via AdS/CFT to the entropy of states in the dual gravitational theory. In the flat-space approximation, the limiting mass is exactly that of the lightest BTZ black hole.
Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
International Nuclear Information System (INIS)
Yarmohammadi, Mohsen; Zareyan, Malek
2016-01-01
In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., , , and , , can be established by SO (2) group. (paper)
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Universal bounds on current fluctuations.
Pietzonka, Patrick; Barato, Andre C; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
The log-linear return approximation, bubbles, and predictability
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten
We study in detail the log-linear return approximation introduced by Campbell and Shiller (1988a). First, we derive an upper bound for the mean approximation error, given stationarity of the log dividendprice ratio. Next, we simulate various rational bubbles which have explosive conditional expec...
The Log-Linear Return Approximation, Bubbles, and Predictability
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten
2012-01-01
We study in detail the log-linear return approximation introduced by Campbell and Shiller (1988a). First, we derive an upper bound for the mean approximation error, given stationarity of the log dividend-price ratio. Next, we simulate various rational bubbles which have explosive conditional expe...
Approximate solutions of the Wei Hua oscillator using the Pekeris ...
Indian Academy of Sciences (India)
The approximate analytical bound-state solutions of the Schrödinger equation for the. Wei Hua oscillator are carried out in N-dimensional space by taking Pekeris approximation scheme to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained using the conventional Nikiforov–Uvarov ...
Space-efficient path-reporting approximate distance oracles
DEFF Research Database (Denmark)
Elkin, Michael; Neiman, Ofer; Wulff-Nilsen, Christian
2016-01-01
We consider approximate path-reporting distance oracles, distance labeling and labeled routing with extremely low space requirements, for general undirected graphs. For distance oracles, we show how to break the nlogn space bound of Thorup and Zwick if approximate paths rather than distances need...
Current-induced massless mode of the interband phase difference in two-band superconductors
International Nuclear Information System (INIS)
Tanaka, Y.; Hase, I.; Yanagisawa, T.; Kato, G.; Nishio, T.; Arisawa, S.
2015-01-01
Highlights: • A current induces an interband phase difference in two-band superconductors. • By controlling the boundary conditions, we can trap this phase difference. • A phase difference soliton is observed after switching off the current. - Abstract: There is a current-induced massless mode of an interband phase difference in two-band superconductors. For a thin wire, the externally applied current always invokes a finite interband phase difference when the end of the wire is terminated by a natural boundary condition, i.e., where the total current is specified but the other parameters are left as free and a finite interband phase difference is allowed. This condition can be realized by the normal state region formed by the shrinking of a cross section of the wire where the critical current density is lower than that of the other region of the wire. The interband interaction in the wire cannot completely prevent the emergence of the interband phase difference, though it reduces it somewhat. Instead, boundary conditions determine the presence of the interband phase difference. By reverting the normal state into the superconducting state at the shrunken region by decreasing the current, we may trap a rotation of integral multiples of 2π radians of the interband phase difference in the wire. After switching off the current, this rotation of integral multiples of 2π radians, which continuously spreads over the whole wire, is separated into several interband phase difference solitons (i-solitons), where one i-soliton locally generates a 2π interband phase difference
Approximate estimation of system reliability via fault trees
International Nuclear Information System (INIS)
Dutuit, Y.; Rauzy, A.
2005-01-01
In this article, we show how fault tree analysis, carried out by means of binary decision diagrams (BDD), is able to approximate reliability of systems made of independent repairable components with a good accuracy and a good efficiency. We consider four algorithms: the Murchland lower bound, the Barlow-Proschan lower bound, the Vesely full approximation and the Vesely asymptotic approximation. For each of these algorithms, we consider an implementation based on the classical minimal cut sets/rare events approach and another one relying on the BDD technology. We present numerical results obtained with both approaches on various examples
Approximate Model Checking of PCTL Involving Unbounded Path Properties
Basu, Samik; Ghosh, Arka P.; He, Ru
We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as PCTL formulas. Such approximate methods have been proposed primarily to deal with state-space explosion that makes the exact model checking by numerical methods practically infeasible for large systems. However, the existing statistical methods either consider a restricted subset of PCTL, specifically, the subset that can only express bounded until properties; or rely on user-specified finite bound on the sample path length. We propose a new method that does not have such restrictions and can be effectively used to reason about unbounded until properties. We approximate probabilistic characteristics of an unbounded until property by that of a bounded until property for a suitably chosen value of the bound. In essence, our method is a two-phase process: (a) the first phase is concerned with identifying the bound k 0; (b) the second phase computes the probability of satisfying the k 0-bounded until property as an estimate for the probability of satisfying the corresponding unbounded until property. In both phases, it is sufficient to verify bounded until properties which can be effectively done using existing statistical techniques. We prove the correctness of our technique and present its prototype implementations. We empirically show the practical applicability of our method by considering different case studies including a simple infinite-state model, and large finite-state models such as IPv4 zeroconf protocol and dining philosopher protocol modeled as Discrete Time Markov chains.
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
On Covering Approximation Subspaces
Directory of Open Access Journals (Sweden)
Xun Ge
2009-06-01
Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.
A Finite Continuation Algorithm for Bound Constrained Quadratic Programming
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.
1999-01-01
The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-01-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
DEFF Research Database (Denmark)
Madsen, Rasmus Elsborg
2005-01-01
The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Geometric convergence of some two-point Pade approximations
International Nuclear Information System (INIS)
Nemeth, G.
1983-01-01
The geometric convergences of some two-point Pade approximations are investigated on the real positive axis and on certain infinite sets of the complex plane. Some theorems concerning the geometric convergence of Pade approximations are proved, and bounds on geometric convergence rates are given. The results may be interesting considering the applications both in numerical computations and in approximation theory. As a specific case, the numerical calculations connected with the plasma dispersion function may be performed. (D.Gy.)
The adiabatic approximation in multichannel scattering
International Nuclear Information System (INIS)
Schulte, A.M.
1978-01-01
Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)
An improved saddlepoint approximation.
Gillespie, Colin S; Renshaw, Eric
2007-08-01
Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
Optimization and approximation
Pedregal, Pablo
2017-01-01
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
International Nuclear Information System (INIS)
Ritchie, Burke
2006-01-01
The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2
Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators
International Nuclear Information System (INIS)
Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H.
2017-01-01
We extend the O(α s 5 ) result of the analytic calculation of the quark mass anomalous dimension in pQCD https://www.doi.org/10.1007/JHEP10(2014)076 to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.
Energy Technology Data Exchange (ETDEWEB)
Bengtsson, Anders K.H. [Academy of Textiles, Engineering and Economics, University of Borås,Allégatan 1, SE-50190 Borås (Sweden)
2016-12-27
The dynamical commutators of the light-front Poincaré algebra yield first order differential equations in the p{sup +} momenta for the interaction vertex operators. The homogeneous solution to the equation for the quartic vertex is studied. Consequences as regards the constructibility assumption of quartic higher spin amplitudes from cubic amplitudes are discussed. The existence of quartic contact interactions unrelated to cubic interactions by Poincaré symmetry indicates that the higher spin S-matrix is not constructible. Thus quartic amplitude based no-go results derived by BCFW recursion for Minkowski higher spin massless fields may be circumvented.
Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators
Energy Technology Data Exchange (ETDEWEB)
Baikov, P.A. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,1(2), Leninskie gory, Moscow 119991 (Russian Federation); Chetyrkin, K.G.; Kühn, J.H. [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede-Straße 1, 726128 Karlsruhe (Germany)
2017-04-20
We extend the O(α{sub s}{sup 5}) result of the analytic calculation of the quark mass anomalous dimension in pQCD https://www.doi.org/10.1007/JHEP10(2014)076 to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.
Göschl, Daniel
2018-03-01
We discuss simulation strategies for the massless lattice Schwinger model with a topological term and finite chemical potential. The simulation is done in a dual representation where the complex action problem is solved and the partition function is a sum over fermion loops, fermion dimers and plaquette-occupation numbers. We explore strategies to update the fermion loops coupled to the gauge degrees of freedom and check our results with conventional simulations (without topological term and at zero chemical potential), as well as with exact summation on small volumes. Some physical implications of the results are discussed.
More on equations of motion for interacting massless field of all spins in 3+1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [Inst. of Theoretical Physics, Goteborg (Sweden)
1992-07-09
We establish the simple link between the recently proposed equations of motion for interacting massless fields of all spins 0{<=}s<{infinity} in 3+1 dimensions and conventional formulations of free higher-spin dynamics. In addition, we discuss various types of formal generalizations of the system of equations of Vasiliev which may give rise to interesting relativistic systems in 2+1 and 3+1 dimensions. In particular, it is shown that there exists a class of equations generalizing Vasiliev's system, parametrized by an arbitrary function of one variable. Self-dual higher-spin equations are discussed briefly. (orig.).
Cyclic approximation to stasis
Directory of Open Access Journals (Sweden)
Stewart D. Johnson
2009-06-01
Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.
International Nuclear Information System (INIS)
El Sawi, M.
1983-07-01
A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)
The relaxation time approximation
International Nuclear Information System (INIS)
Gairola, R.P.; Indu, B.D.
1991-01-01
A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Computing variational bounds for flow through random aggregates of Spheres
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Known formulas for variational bounds on Darcy's constant for slow flow through porous media depend on two-point and three-poiint spatial correlation functions. Certain bounds due to Prager and Doi depending only a two-point correlation functions have been calculated for the first time for random aggregates of spheres with packing fractions (eta) up to eta = 0.64. Three radial distribution functions for hard spheres were tested for eta up to 0.49: (1) the uniform distribution or ''well-stirred approximation,'' (2) the Percus Yevick approximation, and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution functions of Benett andd Finney were used for packing fractions near the random-close-packing limit (eta/sub RCP/dapprox.0.64). An accurate multidimensional Monte Carlo integration method (VEGAS) developed by Lepage was used to compute the required two-point correlation functions. The results show that Doi's bounds are preferred for eta>0.10 while Prager's bounds are preferred for eta>0.10. The ''upper bounds'' computed using the well-stirred approximation actually become negative (which is physically impossible) as eta increases, indicating the very limited value of this approximation. The other two choices of radial distribution function give reasonable results for eta up to 0.49. However, these bounds do not decrease with eta as fast as expected for large eta. It is concluded that variational bounds dependent on three-point correlation functions are required to obtain more accurate bounds on Darcy's constant for large eta
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Bound states in weakly disordered spin ladders
Energy Technology Data Exchange (ETDEWEB)
Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)
2005-04-30
We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
OPRA capacity bounds for selection diversity over generalized fading channels
Hanif, Muhammad Fainan
2014-05-01
Channel side information at the transmitter can increase the average capacity by enabling optimal power and rate adaptation. The resulting optimal power and rate adaptation (OPRA) capacity rarely has a closed-form analytic expression. In this paper, lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy evaluation even for kth best path selection. Some selected numerical results show that the newly proposed bounds closely approximate the actual OPRA capacity. © 2014 IEEE.
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Yalcin, Erdal; Schröder, Philipp
2010-01-01
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...
The random phase approximation
International Nuclear Information System (INIS)
Schuck, P.
1985-01-01
RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more
The quasilocalized charge approximation
International Nuclear Information System (INIS)
Kalman, G J; Golden, K I; Donko, Z; Hartmann, P
2005-01-01
The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two
Quivers of Bound Path Algebras and Bound Path Coalgebras
Directory of Open Access Journals (Sweden)
Dr. Intan Muchtadi
2010-09-01
Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.
Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver
2018-03-01
Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.
Viaggiu, S.
2018-04-01
In this paper, we continue the investigations present in Refs. 1-3. In particular, we extend the theorem proved in Ref. 3 to any massless excitation in a given spherical box. As a first interesting result, we show that it is possible, contrary to the black hole case studied in detail in Refs. 1-3, to build macroscopic configurations with a dark energy equation of state. To this purpose, by requiring a stable configuration, a macroscopic dark fluid is obtained with an internal energy U scaling as the volume V, but with a fundamental correction looking like ˜ 1/R motivated by quantum fluctuations. Thanks to the proposition in Sec. 3 (and in Ref. 3 for gravitons), one can depict the dark energy in terms of massless excitations with a discrete spectrum. This fact opens the possibility to test a possible physical mechanism converting usual radiation into dark energy in a macroscopic configuration, also in a cosmological context. In fact, for example, in a Friedmann flat universe with a cosmological constant, particles are marginally trapped at the Hubble horizon for any given comoving observer.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
Product differentiation under bounded rationality
Vermeulen, B.; Poutré, La J.A.; Kok, de A.G.; Pyka, A.; Handa, H.; Ishibuchi, H.; Ong, Y.-S.; Tan, K.-C.
2015-01-01
We study product differentiation equilibria and dynamics on the Salop circle under bounded rationality. Due to bounded rationality, firms tend to agglomerate in pairs. Upon adding a second tier of component suppliers, downstream assemblers may escape pairwise horizontal agglomeration. Moreover, we
Semiclassical and quantum field theoretic bounds for traversable Lorentzian stringy wormholes
International Nuclear Information System (INIS)
Nandi, Kamal Kanti; Zhang Yuanzhong; Kumar, K.B. Vijaya
2004-01-01
A lower bound on the size of a Lorentzian wormhole can be obtained by semiclassically introducing the Planck cutoff on the magnitude of tidal forces (Horowitz-Ross constraint). Also, an upper bound is provided by the quantum field theoretic constraint in the form of the Ford-Roman Quantum Inequality for massless minimally coupled scalar fields. To date, however, exact static solutions belonging to this scalar field theory have not been worked out to verify these bounds. To fill this gap, we examine the wormhole features of two examples from the Einstein frame description of the vacuum low energy string theory in four dimensions which is the same as the minimally coupled scalar field theory. Analyses in this paper support the conclusion of Ford and Roman that wormholes in this theory can have sizes that are indeed only a few order of magnitudes larger than the Planck scale. It is shown that the two types of bounds are also compatible. In the process, we point out a 'wormhole' analog of naked black holes
Approximate quantum Markov chains
Sutter, David
2018-01-01
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Simple Lie groups without the approximation property
DEFF Research Database (Denmark)
Haagerup, Uffe; de Laat, Tim
2013-01-01
For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...
Approximate radiative solutions of the Einstein equations
International Nuclear Information System (INIS)
Kuusk, P.; Unt, V.
1976-01-01
In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)
Recursive B-spline approximation using the Kalman filter
Directory of Open Access Journals (Sweden)
Jens Jauch
2017-02-01
Full Text Available This paper proposes a novel recursive B-spline approximation (RBA algorithm which approximates an unbounded number of data points with a B-spline function and achieves lower computational effort compared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to adapt the interval in which the B-spline function can approximate data points during run-time.
Metabolism of organically bound tritium
International Nuclear Information System (INIS)
Travis, C.C.
1984-01-01
The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables
Approximately dual frames in Hilbert spaces and applications to Gabor frames
Christensen, Ole; Laugesen, Richard S.
2011-01-01
Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...
Approximating the ground state of gapped quantum spin systems
Energy Technology Data Exchange (ETDEWEB)
Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL
2009-01-01
We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.
International Nuclear Information System (INIS)
Inoue, Kenzo; Nakano, Yoshimasa; Kakuto, Akira.
1980-01-01
The Weinberg-Salam model with two Higgs doublets is investigated. The spontaneous breakdown of the gauge symmetry is assumed to be produced by the Coleman-Weinberg mechanism, keeping gauge hierarchies in grand unified theories in mind. A discrete symmetry is introduced to secure flavor-diagonal Yukawa interactions of neutral Higgs bosons and the absence of the axion. Bounds on various masses are obtained by imposing coupling constants to lie in a finite range for the validity of the perturbation theory. It will be found that there must be at least one Higgs boson whose mass is lighter than 40 GeV, in order to satisfy the perturbation constraint at the unification mass scale in grand unified theories. (author)
Effect of vegetative canopy architecture on vertical transport of massless particles
A series of large-eddy simulations were performed to examine the effect of canopy architecture on particle dispersion. A heterogeneous canopy geometry was simulated that consists of a set of infinitely repeating vegetation rows. Simulations in which row structure was approximately resolved were comp...
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Common approximations for density operators may lead to imaginary entropy
International Nuclear Information System (INIS)
Lendi, K.; Amaral Junior, M.R. do
1983-01-01
The meaning and validity of usual second order approximations for density operators are illustrated with the help of a simple exactly soluble two-level model in which all relevant quantities can easily be controlled. This leads to exact upper bound error estimates which help to select more precisely permissible correlation times as frequently introduced if stochastic potentials are present. A final consideration of information entropy reveals clearly the limitations of this kind of approximation procedures. (Author) [pt
Self-similar factor approximants
International Nuclear Information System (INIS)
Gluzman, S.; Yukalov, V.I.; Sornette, D.
2003-01-01
The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Approximate Networking for Universal Internet Access
Directory of Open Access Journals (Sweden)
Junaid Qadir
2017-12-01
Full Text Available Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost-efficient ways of provisioning high-performance, global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible “ideal networking” (in which we have a high throughput and quality of service as well as low latency and congestion, we should consider providing “approximate networking” through the adoption of context-appropriate trade-offs. In this regard, we propose to leverage the advances in the emerging trend of “approximate computing” that rely on relaxing the bounds of precise/exact computing to provide new opportunities for improving the area, power, and performance efficiency of systems by orders of magnitude by embracing output errors in resilient applications. Furthermore, we propose to extend the dimensions of approximate computing towards various knobs available at network layers. Approximate networking can be used to provision “Global Access to the Internet for All” (GAIA in a pragmatically tiered fashion, in which different users around the world are provided a different context-appropriate (but still contextually functional Internet experience.
Lognormal Approximations of Fault Tree Uncertainty Distributions.
El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P
2018-01-26
Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...... and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...
Efficient Approximation of Optimal Control for Markov Games
DEFF Research Database (Denmark)
Fearnley, John; Rabe, Markus; Schewe, Sven
2011-01-01
We study the time-bounded reachability problem for continuous-time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation techniques to break time into discrete intervals, and optimal control is approximated for each interval separately...
Rama, S. Kalyana
2018-06-01
We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.
Energy Technology Data Exchange (ETDEWEB)
Ito, K R [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences
1975-03-01
The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world.
Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, Isabella [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Kramer, Gustav [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2016-03-15
We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p{sub T}) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p{sub T} and approaches one at larger p{sub T} at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.
Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD
International Nuclear Information System (INIS)
Bierenbaum, Isabella; Kramer, Gustav
2016-03-01
We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p T ) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p T and approaches one at larger p T at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions
Fowkes, Jaroslav M.
2012-06-21
We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
On functions of bounded semivariation
Czech Academy of Sciences Publication Activity Database
Monteiro, Giselle Antunes
2015-01-01
Roč. 40, č. 2 (2015), s. 233-276 ISSN 0147-1937 Institutional support: RVO:67985840 Keywords : semivariation * functions of bounded variation * regulated functions Subject RIV: BA - General Mathematics http://projecteuclid.org/euclid.rae/1491271216
Computational Lower Bounds Using Diagonalization
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...
International Conference Approximation Theory XV
Schumaker, Larry
2017-01-01
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...
International Nuclear Information System (INIS)
Luescher, M.; Pohlmeyer, K.
1977-09-01
Finite energy solutions of the field equations of the non-linear sigma-model are shown to decay asymptotically into massless lumps. By means of a linear eigenvalue problem connected with the field equations we then find an infinite set of dynamical conserved charges. They, however, do not provide sufficient information to decode the complicated scattering of lumps. (orig.) [de
Chiu, Chun-Huo; Wang, Yi-Ting; Walther, Bruno A; Chao, Anne
2014-09-01
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. © 2014, The International Biometric Society.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
The approximation gap for the metric facility location problem is not yet closed
Byrka, J.; Aardal, K.I.
2007-01-01
We consider the 1.52-approximation algorithm of Mahdian et al. for the metric uncapacitated facility location problem. We show that their algorithm does not close the gap with the lower bound on approximability, 1.463, by providing a construction of instances for which its approximation ratio is not
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Finite Element Approximation of the FENE-P Model
Barrett , John ,; Boyaval , Sébastien
2017-01-01
We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $\\subset$ R d , d = 2 or 3$, subject to no flow boundary conditions. Our schemes are based on approximating the pressure and the symmetric conforma-tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the velocity field is approximated by c...
Combinations of probabilistic and approximate quantum cloning and deleting
International Nuclear Information System (INIS)
Qiu Daowen
2002-01-01
We first construct a probabilistic and approximate quantum cloning machine (PACM) and then clarify the relation between the PACM and other cloning machines. After that, we estimate the global fidelity of the approximate cloning that improves the previous estimation for the deterministic cloning machine; and also derive a bound on the success probability of producing perfect multiple clones. Afterwards, we further establish a more generalized probabilistic and approximate cloning and deleting machine (PACDM) and discuss the connections of the PACDM to some of the existing quantum cloning and deleting machines. Finally the global fidelity and a bound on the success probability of the PACDM are obtained. Summarily, the quantum devices established in this paper improve and also greatly generalize some of the existing machines
Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters
Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha
2018-06-01
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zel'dovich (SZ) effect. We also use the model independent values of Hubble parameter H (z) smoothed by a non-parametric method, Gaussian process. Within 1σ confidence region, we obtain the mass of graviton mg 6.82 Mpc from weak lensing and mg 5.012 Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Generalized Skyrme model with the loosely bound potential
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
Bounds on the performance of a class of digital communication systems
Polk, D. R.; Gupta, S. C.; Cohn, D. L.
1973-01-01
Bounds on the capacity of a class of digital communication channels are derived. Equating the bounds on capacity to rate-distortion functions of (typical) sources in turn produces bounds on the performance of a class of digital communication systems. For ratios of squared quantization level to noise variance much less than one, the power requirements for this class of digital communication systems are shown to be within approximately 3 dB of the theoretical optimum.
Estimating the Effective Lower Bound for the Czech National Bank's Policy Rate
Kolcunova, Dominika; Havranek, Tomas
2018-01-01
The paper focuses on the estimation of the effective lower bound for the Czech National Bank's policy rate. The effective lower bound is determined by the value below which holding and using cash would be more convenient than deposits with negative yields. This bound is approximated based on storage, the insurance and transportation costs of cash and the costs associated with the loss of the convenience of cashless payments and complemented with the estimate based on interest charges, which p...
Capacity bounds for kth best path selection over generalized fading channels
Hanif, Muhammad Fainan
2014-02-01
Exact ergodic capacity calculation for fading wireless channels typically involves time-consuming numerical evaluation of infinite integrals. In this paper, lower and upper bounds on ergodic capacity for kth best path are presented. These bounds have simple analytic expressions which allow their fast evaluation. Numerical results show that the newly proposed bounds closely approximate the exact ergodic capacity for a large variety of system configurations. © 1997-2012 IEEE.
Polarized constituent quarks in NLO approximation
International Nuclear Information System (INIS)
Khorramian, Ali N.; Tehrani, S. Atashbar; Mirjalili, A.
2006-01-01
The valon representation provides a basis between hadrons and quarks, in terms of which the bound-state and scattering properties of hadrons can be united and described. We studied polarized valon distributions which have an important role in describing the spin dependence of parton distribution in leading and next-to-leading order approximation. Convolution integral in frame work of valon model as a useful tool, was used in polarized case. To obtain polarized parton distributions in a proton we need to polarized valon distribution in a proton and polarized parton distributions inside the valon. We employed Bernstein polynomial averages to get unknown parameters of polarized valon distributions by fitting to available experimental data
Simulation bounds for system availability
International Nuclear Information System (INIS)
Tietjen, G.L.; Waller, R.A.
1976-01-01
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Approximate Receding Horizon Approach for Markov Decision Processes: Average Award Case
National Research Council Canada - National Science Library
Chang, Hyeong S; Marcus, Steven I
2002-01-01
...) with countable state space, finite action space, and bounded rewards that uses an approximate solution of a fixed finite-horizon sub-MDP of a given infinite-horizon MDP to create a stationary policy...
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
International Nuclear Information System (INIS)
Zouzou, S.
1986-01-01
In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)
Bound entanglement and local realism
International Nuclear Information System (INIS)
Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr
2002-01-01
We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation
Upper and lower bounds in nonrelativistic scattering theory
International Nuclear Information System (INIS)
Darewych, J.W.; Pooran, R.
1980-01-01
We consider the problem of determining rigorous upper and lower bounds to the difference between the exact and approximate scattering phase shift, for the case of central potential scattering. The present work is based on the Kato identities and the phase-amplitude formalism of potential scattering developed by Calogero. For nonstationary approximations, a new first-order (in small quantities) bound is established which is particularly useful for partial waves other than s waves. Similar, but second-order, bounds are established for approximations which are stationary. Some previous results, based on the use of the Lippman--Schwinger equation are generalized, and some new bounds are established. These are illustrated, and compared to previous results, by a simple example. We discuss the advantages and disadvantages of the present results in comparison to those derived previously. Finally, we present the generalization of some of the present formalism to the case of many-channel scattering involving many-particle systems, and discuss some of the difficulties of their practical implementation
International Nuclear Information System (INIS)
Nalesso, G.F.; Jacobson, A.R.
1991-01-01
A solution to the problem of a plane electromagnetic wave traveling parallel to a constant magnetic field in a horizontally stratified ionosphere was developed assuming that the permittivity of the medium can be represented as the sum of an unperturbed component and a perturbed component. The method is successfully applied to the case of a linearly varying permittivity of a lossless ionosphere with a superimposed Gaussian perturbing term. The feasibility of applying the method in the presence of an odd number of turning points is discussed. 13 refs
Impact of the stability bound choice on the approximation of ruin ...
African Journals Online (AJOL)
In particular, we use two versions of the strong stability method: strong stability of a Markov chain and strong stability of a Lindley process. A comparative study, based on numerical results obtained by simulation, is performed between the two versions. Resume. Ce travail porte sur l'etude de l'eet du choix de la borne de ...
Electromagnetic structure of a bound nucleon
International Nuclear Information System (INIS)
Nogami, Y.
1977-01-01
The effect of binding on the electromagnetic (e.m.) structure of a nucleon in a nucleus is examined by means of a model consisting of a single nucleon which is bound in a harmonic oscillator potential and also coupled to the pion field through the Chew-Low interaction. The 'two-pion contribution' to the e.m. structure is considered. This is the part which is probably most susceptible to the binding effect. By the binding effect it is meant the one which arises because the nucleon wave functions, in the intermediate state as well as in the initial and final states, are distorted by the potential in which the nucleon is bound. This may be compared to a similar correction to the impulse approximation for pion-nucleus scattering. Unlike the latter which is likely to be quite appreciable, the binding correction to the e.m. structure of the nucleon is found to be negligibly small. The so-called quenching effect due to the Pauli principle when there are other nucleons is also discussed [pt
Diffraction scattering of strongly bound system
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-04-01
The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)
Dilation volumes of sets of bounded perimeter
DEFF Research Database (Denmark)
Kiderlen, Markus; Rataj, Jan
, this derivative coincides up to sign with the directional derivative of the covariogram of A in direction u. By known results for the covariogram, this derivative can therefore be expressed by the cosine transform of the surface area measure of A. We extend this result to sets Q that are at most countable and use...... it to determine the derivative of the contact distribution function of a stationary random closed set at zero. A variant for uncountable Q is given, too. The proofs are based on approximation of the characteristic function of A by smooth functions of bounded variation and showing corresponding formulas for them....
Lower complexity bounds for lifted inference
DEFF Research Database (Denmark)
Jaeger, Manfred
2015-01-01
instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show...... the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about...... that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing...
Some results in Diophantine approximation
DEFF Research Database (Denmark)
Pedersen, Steffen Højris
the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...
International Nuclear Information System (INIS)
Vainshtein, A.I.; Zakharov, V.I.; Novikov, V.A.; Shifman, M.A.
1975-01-01
Bounds on the masses of charmed particles are derived from the calculation of the amplitudes of the Ksub(L) → 2μ and Ksub(L)-Ksub(S) transitions within the framework of the Weinberg-Salam model. The strong interactions are assumed to be connected with the color SU(3) group and mediated by octet of massless gluons. The account of strong interactions is shown to have almost no effect on the bound on the masses of charmed particles μsub(c). From the Ksub(L) → 2μ decay rate the upper bound on μsub(c) is μsub(c) (<=) 8 GeV, and from the Ksub(L)-Ksub(S) mass difference the bound is found to be μsub(c) (<=) 2.3 GeV
Semiclassical bounds in magnetic bottles
Czech Academy of Sciences Publication Activity Database
Barseghyan, Diana; Exner, Pavel; Kovařík, H.; Weidl, T.
2016-01-01
Roč. 28, č. 1 (2016), s. 1650002 ISSN 0129-055X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : magnetic Laplacian * discrete spectrum * eigenvalue bounds Subject RIV: BE - Theoretical Physics Impact factor: 1.426, year: 2016
Positivity bounds for Sivers functions
International Nuclear Information System (INIS)
Kang Zhongbo; Soffer, Jacques
2011-01-01
We generalize a positivity constraint derived initially for parity-conserving processes to the parity-violating ones, and use it to derive non-trivial bounds on several Sivers functions, entering in the theoretical description of single spin asymmetry for various processes.
Bound states of 'dressed' particles
International Nuclear Information System (INIS)
Shirokov, M.I.
1994-01-01
A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)
Quantum lower bound for sorting
Shi, Yaoyun
2000-01-01
We prove that \\Omega(n log(n)) comparisons are necessary for any quantum algorithm that sorts n numbers with high success probability and uses only comparisons. If no error is allowed, at least 0.110nlog_2(n) - 0.067n + O(1) comparisons must be made. The previous known lower bound is \\Omega(n).
Unconditional lower bounds against advice
Buhrman, H.; Fortnow, L.; Santhanam, R.
2009-01-01
We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including: (1) For any constant c, NEXP not in P^{NP[n^c]} (2) For any constant c, MAEXP not in MA/n^c (3) BPEXP not in BPP/n^{o(1)}. It was previously unknown even whether NEXP in
Binding energies of two deltas bound states
International Nuclear Information System (INIS)
Sato, Hiroshi; Saito, Koichi.
1982-06-01
Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)
Distributed Large Independent Sets in One Round On Bounded-independence Graphs
Halldorsson , Magnus M.; Konrad , Christian
2015-01-01
International audience; We present a randomized one-round, single-bit messages, distributed algorithm for the maximum independent set problem in polynomially bounded-independence graphs with poly-logarithmic approximation factor. Bounded-independence graphs capture various models of wireless networks such as the unit disc graphs model and the quasi unit disc graphs model. For instance, on unit disc graphs, our achieved approximation ratio is O((log(n)/log(log(n)))^2).A starting point of our w...
Bound states in the two-dimension massive quantum electrodynamics (Qed2)
International Nuclear Information System (INIS)
Alves, V.S.; Gomes, M.
1994-01-01
This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)
2017-02-15
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.
Daudé, Thierry
2017-01-01
In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...
International Nuclear Information System (INIS)
Huang, Zhiming; Situ, Haozhen
2017-01-01
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.
International Nuclear Information System (INIS)
Chu, Yi-Zen
2014-01-01
Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere
Spherical Approximation on Unit Sphere
Directory of Open Access Journals (Sweden)
Eman Samir Bhaya
2018-01-01
Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of functions in spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in spaces for by modulus of smoothness of functions.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
A symmetric Roos bound for linear codes
Duursma, I.M.; Pellikaan, G.R.
2006-01-01
The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound
On some applications of diophantine approximations.
Chudnovsky, G V
1984-03-01
Siegel's results [Siegel, C. L. (1929) Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1] on the transcendence and algebraic independence of values of E-functions are refined to obtain the best possible bound for the measures of irrationality and linear independence of values of arbitrary E-functions at rational points. Our results show that values of E-functions at rational points have measures of diophantine approximations typical to "almost all" numbers. In particular, any such number has the "2 + epsilon" exponent of irrationality: Theta - p/q > q(-2-epsilon) for relatively prime rational integers p,q, with q >/= q(0) (Theta, epsilon). These results answer some problems posed by Lang. The methods used here are based on the introduction of graded Padé approximations to systems of functions satisfying linear differential equations with rational function coefficients. The constructions and proofs of this paper were used in the functional (nonarithmetic case) in a previous paper [Chudnovsky, D. V. & Chudnovsky, G. V. (1983) Proc. Natl. Acad. Sci. USA 80, 5158-5162].
A 1.375-approximation algorithm for sorting by transpositions.
Elias, Isaac; Hartman, Tzvika
2006-01-01
Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.
Fast and reliable method for computing free-bound emission coefficients for hydrogenic ions
Energy Technology Data Exchange (ETDEWEB)
Sarmiento, A; Canto, J
1985-12-01
An approximate formula for the computation of the free-bound emission coefficient for hydrogenic ions is presented. The approximation is obtained through a manipulation of the (free-bound) Gaunt factor which intentionally distinguish the dependence on frequency from the dependence on temperature and ionic composition. Numerical tests indicate that the derived formula is very precise, fast and easy to use, making the calculation of the free-bound contribution from an ionized region of varying temperature and ionic composition a very simple and time-saving task.
A fast and reliable method for computing free-bound emission coefficients for hydrogenic ions
International Nuclear Information System (INIS)
Sarmiento, A.; Canto, J.
1985-01-01
An approximate formula for the computation of the free-bound emission coefficient for hydrogenic ions is presented. The approximation is obtained through a manipulation of the (free-bound) Gaunt factor which intentionally distinguish the dependence on frequency from the dependence on temperature and ionic composition. Numerical tests indicate that the derived formula is very precise, fast and easy to use, making the calculation of the free-bound contribution from an ionized region of varying temperature and ionic composition a very simple and time-saving task. (author)
Regularization by Functions of Bounded Variation and Applications to Image Enhancement
International Nuclear Information System (INIS)
Casas, E.; Kunisch, K.; Pola, C.
1999-01-01
Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise
The efficiency of Flory approximation
International Nuclear Information System (INIS)
Obukhov, S.P.
1984-01-01
The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)
Computer simulation of bounded plasmas
International Nuclear Information System (INIS)
Lawson, W.S.
1987-01-01
The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail
Bounded Rationality in Transposition Processes
DEFF Research Database (Denmark)
Vollaard, Hans; Martinsen, Dorte Sindbjerg
2014-01-01
Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first that con......Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first...... that concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...
2013-03-26
...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...
Energy quantization for approximate H-surfaces and applications
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2013-07-01
Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.
Finite element approximation to a model problem of transonic flow
International Nuclear Information System (INIS)
Tangmanee, S.
1986-12-01
A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig
Spectrum of gluino bound states
International Nuclear Information System (INIS)
Chanowitz, M.; Sharpe, S.; California Univ., Berkeley
1983-01-01
Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)
Cyclotron transitions of bound ions
Bezchastnov, Victor G.; Pavlov, George G.
2017-06-01
A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Rollout sampling approximate policy iteration
Dimitrakakis, C.; Lagoudakis, M.G.
2008-01-01
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Framework for sequential approximate optimization
Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.
2004-01-01
An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python
Beyond the small-angle approximation for MBR anisotropy from seeds
International Nuclear Information System (INIS)
Stebbins, A.; Veeraraghavan, S.
1995-01-01
In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is not assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot
Information theoretic bounds for compressed sensing in SAR imaging
International Nuclear Information System (INIS)
Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo
2014-01-01
Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities
Hydration thermodynamics beyond the linear response approximation.
Raineri, Fernando O
2016-10-19
The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute
Labeling schemes for bounded degree graphs
DEFF Research Database (Denmark)
Adjiashvili, David; Rotbart, Noy Galil
2014-01-01
We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...
Bound Chains of Tilted Dipoles in Layered Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2012-01-01
of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic...... oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account....
Localized bound states of fermions interacting via massive vector bosons
International Nuclear Information System (INIS)
Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.
1988-11-01
A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
Bound-Electron Nonlinearity Beyond the Ionization Threshold
Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.
2018-05-01
We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
Relativistic treatment of fermion-antifermion bound states
International Nuclear Information System (INIS)
Lucha, W.; Rupprecht, H.; Schoeberl, F.F.
1990-01-01
We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs
Learning with Generalization Capability by Kernel Methods of Bounded Complexity
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra; Sanguineti, M.
2005-01-01
Roč. 21, č. 3 (2005), s. 350-367 ISSN 0885-064X R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : supervised learning * generalization * model complexity * kernel methods * minimization of regularized empirical errors * upper bounds on rates of approximate optimization Subject RIV: BA - General Mathematics Impact factor: 1.186, year: 2005
Testing and using the Lewin-Lieb bounds in density functional theory
Feinblum, David; Kenison, John; Burke, Kieron
Lewin and Lieb have recently proven several new bounds on the exchange-correlation energy that complement the Lieb-Oxford bound. We test these bounds for atoms, for slowly-varying gases, and for Hooke's atom, finding them usually less strict than the Lieb-Oxford bound. However, we also show that, if a generalized gradient approximation (GGA) is to guarantee satisfaction of the new bounds for all densities, new restrictions on the the exchange-correlation enhancement factor are implied. We thank Mathieu Lewin and Elliott Lieb for bringing their new bounds to our attention, and Eberhard Engel for developing the OPMKS atom code. This work was supported by NSF under Grant CHE-1112442.
The algebras of bounded and essentially bounded Lebesgue measurable functions
Directory of Open Access Journals (Sweden)
Mortini Raymond
2017-04-01
Full Text Available Let X be a set in ℝn with positive Lebesgue measure. It is well known that the spectrum of the algebra L∞(X of (equivalence classes of essentially bounded, complex-valued, measurable functions on X is an extremely disconnected compact Hausdorff space.We show, by elementary methods, that the spectrum M of the algebra ℒb(X, ℂ of all bounded measurable functions on X is not extremely disconnected, though totally disconnected. Let ∆ = { δx : x ∈ X} be the set of point evaluations and let g be the Gelfand topology on M. Then (∆, g is homeomorphic to (X, Τdis,where Tdis is the discrete topology. Moreover, ∆ is a dense subset of the spectrum M of ℒb(X, ℂ. Finally, the hull h(I, (which is homeomorphic to M(L∞(X, of the ideal of all functions in ℒb(X, ℂ vanishing almost everywhere on X is a nowhere dense and extremely disconnected subset of the Corona M \\ ∆ of ℒb(X, ℂ.
International Nuclear Information System (INIS)
Chen Changyuan; Sun Dongsheng; Lu Falin
2007-01-01
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given
A simple approximation to the bivariate normal distribution with large correlation coefficient
Albers, Willem/Wim; Kallenberg, W.C.M.
1994-01-01
The bivariate normal distribution function is approximated with emphasis on situations where the correlation coefficient is large. The high accuracy of the approximation is illustrated by numerical examples. Moreover, exact upper and lower bounds are presented as well as asymptotic results on the
Nuclear Hartree-Fock approximation testing and other related approximations
International Nuclear Information System (INIS)
Cohenca, J.M.
1970-01-01
Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt
Structure and dynamics of weakly bound complexes
International Nuclear Information System (INIS)
Skouteris, D.
1998-01-01
The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of
Shearlets and Optimally Sparse Approximations
DEFF Research Database (Denmark)
Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q
2012-01-01
Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....
Diophantine approximation and Dirichlet series
Queffélec, Hervé
2013-01-01
This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...
Approximations to camera sensor noise
Jin, Xiaodan; Hirakawa, Keigo
2013-02-01
Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.
Rational approximations for tomographic reconstructions
International Nuclear Information System (INIS)
Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas
2013-01-01
We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Voronoi Diagrams Without Bounding Boxes
Sang, E. T. K.
2015-10-01
We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).
Sensitivity analysis using probability bounding
International Nuclear Information System (INIS)
Ferson, Scott; Troy Tucker, W.
2006-01-01
Probability bounds analysis (PBA) provides analysts a convenient means to characterize the neighborhood of possible results that would be obtained from plausible alternative inputs in probabilistic calculations. We show the relationship between PBA and the methods of interval analysis and probabilistic uncertainty analysis from which it is jointly derived, and indicate how the method can be used to assess the quality of probabilistic models such as those developed in Monte Carlo simulations for risk analyses. We also illustrate how a sensitivity analysis can be conducted within a PBA by pinching inputs to precise distributions or real values
Bounded Densities and Their Derivatives
DEFF Research Database (Denmark)
Kozine, Igor; Krymsky, V.
2009-01-01
This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...... quantities of interest. To be able to utilise the evidence about the derivative it is suggested to adapt the ‘conventional’ problem statement to variational calculus and the way to do so is demonstrated. A number of examples are given throughout the paper....
Removal of bound metal fasteners
Kramer, R. F.
1981-04-01
This project explored the removal of bound metal fasteners through the use of ultrasonically assisted wrenches. Two wrenches were designed, fabricated and tested. Previous studies had indicated an increase in thread tension for a given torque application under the influence of ultrasonics. Based on this, the loosening of seized and corroded fasteners with the aid of ultrasonics was explored. Experimental data confirmed our prior analysis of the torque-tension relationship under the influence of ultrasonics; however, our progress did not satisfy the requirements necessary to loosen seized studs in a shipyard environment.
Space mappings with bounded distortion
Reshetnyak, Yu G
1989-01-01
This book is intended for researchers and students concerned with questions in analysis and function theory. The author provides an exposition of the main results obtained in recent years by Soviet and other mathematicians in the theory of mappings with bounded distortion, an active direction in contemporary mathematics. The mathematical tools presented can be applied to a broad spectrum of problems that go beyond the context of the main topic of investigation. For a number of questions in the theory of partial differential equations and the theory of functions with generalized derivatives, this is the first time they have appeared in an internationally distributed monograph.
Approximate reasoning in physical systems
International Nuclear Information System (INIS)
Mutihac, R.
1991-01-01
The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)
Face Recognition using Approximate Arithmetic
DEFF Research Database (Denmark)
Marso, Karol
Face recognition is image processing technique which aims to identify human faces and found its use in various diﬀerent ﬁelds for example in security. Throughout the years this ﬁeld evolved and there are many approaches and many diﬀerent algorithms which aim to make the face recognition as eﬀective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....
Determining Normal-Distribution Tolerance Bounds Graphically
Mezzacappa, M. A.
1983-01-01
Graphical method requires calculations and table lookup. Distribution established from only three points: mean upper and lower confidence bounds and lower confidence bound of standard deviation. Method requires only few calculations with simple equations. Graphical procedure establishes best-fit line for measured data and bounds for selected confidence level and any distribution percentile.
On semidefinite programming bounds for graph bandwidth
de Klerk, E.; Nagy, M.; Sotirov, R.
2013-01-01
In this paper, we propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds reported in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala,
Observational Bounds on Cosmic Doomsday
Energy Technology Data Exchange (ETDEWEB)
Shmakova, Marina
2003-07-11
Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t{sub c} {approx} 10{sup 10}-10{sup 11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V({phi}) = V{sub 0}(1 + {alpha}{phi}). This model can describe the present stage of acceleration of the universe if {alpha} is small enough. However, eventually the field {phi} rolls down, V({phi}) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t{sub c} {approx_equal} 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the ''doomsday'' time to tc 40 billion years at the 95% confidence level.
Quantum bounds on Bell inequalities
Pál, Károly F.; Vértesi, Tamás
2009-02-01
We have determined the maximum quantum violation of 241 tight bipartite Bell inequalities with up to five two-outcome measurement settings per party by constructing the appropriate measurement operators in up to six-dimensional complex and eight-dimensional real-component Hilbert spaces using numerical optimization. Out of these inequalities 129 have been introduced here. In 43 cases higher-dimensional component spaces gave larger violation than qubits, and in three occasions the maximum was achieved with six-dimensional spaces. We have also calculated upper bounds on these Bell inequalities using a method proposed recently. For all but 20 inequalities the best solution found matched the upper bound. Surprisingly, the simplest inequality of the set examined, with only three measurement settings per party, was not among them, despite the high dimensionality of the Hilbert space considered. We also computed detection threshold efficiencies for the maximally entangled qubit pair. These could be lowered in several instances if degenerate measurements were also allowed.
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Approximate Matching of Hierarchial Data
DEFF Research Database (Denmark)
Augsten, Nikolaus
-grams of a tree are all its subtrees of a particular shape. Intuitively, two trees are similar if they have many pq-grams in common. The pq-gram distance is an efficient and effective approximation of the tree edit distance. We analyze the properties of the pq-gram distance and compare it with the tree edit...
Approximation of Surfaces by Cylinders
DEFF Research Database (Denmark)
Randrup, Thomas
1998-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
All-Norm Approximation Algorithms
Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik
2002-01-01
A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation
Truthful approximations to range voting
DEFF Research Database (Denmark)
Filos-Ratsika, Aris; Miltersen, Peter Bro
We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...
On badly approximable complex numbers
DEFF Research Database (Denmark)
Esdahl-Schou, Rune; Kristensen, S.
We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...
Approximate reasoning in decision analysis
Energy Technology Data Exchange (ETDEWEB)
Gupta, M M; Sanchez, E
1982-01-01
The volume aims to incorporate the recent advances in both theory and applications. It contains 44 articles by 74 contributors from 17 different countries. The topics considered include: membership functions; composite fuzzy relations; fuzzy logic and inference; classifications and similarity measures; expert systems and medical diagnosis; psychological measurements and human behaviour; approximate reasoning and decision analysis; and fuzzy clustering algorithms.
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
Pythagorean Approximations and Continued Fractions
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Ultrafast Approximation for Phylogenetic Bootstrap
Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and
Approximation algorithms for a genetic diagnostics problem.
Kosaraju, S R; Schäffer, A A; Biesecker, L G
1998-01-01
We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.
On wormholes and black holes solutions of Einstein gravity coupled to a K-massless scalar field
International Nuclear Information System (INIS)
Estevez-Delgado, J; Zannias, T
2007-01-01
We investigate the nature of black holes and wormholes admitted by a K-essence model involving a massless scalar field φ, minimally coupled to gravity. Via Weyl's formalism, we show that any axial wormhole of the theory can be generated by a unique pair of harmonic functions: U(λ) = π/2 C + C arctan(λ/λ 0 ), φ(λ) = π/2 D + D arctan(λ/λ 0 ) where λ is one of the oblate coordinate, λ 0 > 0 and (C, D) real parameters. The properties of the wormholes depends crucially upon the values of the parameters (C, D). Whenever (C, D) are chosen so that 2C 2 - kD 2 = -2 the wormhole is spherical, while for the case where 2C 2 - kD 2 = -4 or 2C 2 - kD 2 = -6 the wormhole throat possesses toroidal topology. Those two families of wormholes exhaust all regular static and axisymmetric wormholes admitted by this theory. For completeness we add that whenever (C, D) satisfy 2C 2 - kD 2 = -2l with l ≥ 3/2 one still generates a spacetime possessing two asymptotically flat but the throat connecting the two ends contains a string like singularity. For the refined case where 2C 2 - kD 2 = -2l with l = 4,5, ... the resulting spacetime represents a multi-sheeted configuration which even though free of curvature singularities nevertheless the spacetime topology is distinct to so far accepted wormhole topology. Spacetimes generated by the pair (U(λ), φ(λ)) and parameters (C, D) subject to 2C 2 - kD 2 = -2l with l 2 bifurcating, regular Killing horizon necessary possesses a constant exterior scalar field. Under the assumption that the event horizon of any static black hole of this theory is a Killing horizon, the results show that the only static black hole admitted by this K-essence model, is the Schwarzschild black hole
Capacity Bounds for Parallel Optical Wireless Channels
Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim
2016-01-01
A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.
Approximate spatio-temporal top-k publish/subscribe
Chen, Lisi; Shang, Shuo
2018-01-01
Location-based publish/subscribe plays a significant role in mobile information disseminations. In this light, we propose and study a novel problem of processing location-based top-k subscriptions over spatio-temporal data streams. We define a new type of approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal messages by considering textual similarity, spatial proximity, and information freshness. Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by taking the triggering score of other subscriptions into account. The group filtering efficacy can be substantially improved by sacrificing the publishing result quality with a bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate the performance of the developed solutions.
Subquadratic medial-axis approximation in $\\mathbb{R}^3$
Directory of Open Access Journals (Sweden)
Christian Scheffer
2015-09-01
Full Text Available We present an algorithm that approximates the medial axis of a smooth manifold in $\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\mathcal{O}(n\\log^3 n$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.
Approximate spatio-temporal top-k publish/subscribe
Chen, Lisi
2018-04-26
Location-based publish/subscribe plays a significant role in mobile information disseminations. In this light, we propose and study a novel problem of processing location-based top-k subscriptions over spatio-temporal data streams. We define a new type of approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal messages by considering textual similarity, spatial proximity, and information freshness. Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by taking the triggering score of other subscriptions into account. The group filtering efficacy can be substantially improved by sacrificing the publishing result quality with a bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate the performance of the developed solutions.