WorldWideScience

Sample records for approximate first-principles study

  1. Approximate number word knowledge before the cardinal principle.

    Science.gov (United States)

    Gunderson, Elizabeth A; Spaepen, Elizabet; Levine, Susan C

    2015-02-01

    Approximate number word knowledge-understanding the relation between the count words and the approximate magnitudes of sets-is a critical piece of knowledge that predicts later math achievement. However, researchers disagree about when children first show evidence of approximate number word knowledge-before, or only after, they have learned the cardinal principle. In two studies, children who had not yet learned the cardinal principle (subset-knowers) produced sets in response to number words (verbal comprehension task) and produced number words in response to set sizes (verbal production task). As evidence of approximate number word knowledge, we examined whether children's numerical responses increased with increasing numerosity of the stimulus. In Study 1, subset-knowers (ages 3.0-4.2 years) showed approximate number word knowledge above their knower-level on both tasks, but this effect did not extend to numbers above 4. In Study 2, we collected data from a broader age range of subset-knowers (ages 3.1-5.6 years). In this sample, children showed approximate number word knowledge on the verbal production task even when only examining set sizes above 4. Across studies, children's age predicted approximate number word knowledge (above 4) on the verbal production task when controlling for their knower-level, study (1 or 2), and parents' education, none of which predicted approximation ability. Thus, children can develop approximate knowledge of number words up to 10 before learning the cardinal principle. Furthermore, approximate number word knowledge increases with age and might not be closely related to the development of exact number word knowledge. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Quantum Well States in Fe/Nb(001) Multilayers: First Principles Study

    National Research Council Canada - National Science Library

    Sliukia, Nitya N; Sen, A; Prasad, R

    2007-01-01

    A first principle study to understand the phenomena of interlayer exchange coupling in Fe/Nb multilayers using the linearized-muffin-tin-orbitals method within the generalized gradient approximation was performed...

  3. First principles study of electronic, elastic and thermal properties of lutetium intermetallics

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, S.P.; Rajagopalan, M.

    2011-01-01

    In the present work, the electronic, elastic and thermal properties of lutetium intermetallics LuX have been studied theoretically by using first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GCA)

  4. First-principles study of point-defect production in Si and SiC

    International Nuclear Information System (INIS)

    Windl, W.; Lenosky, T.J.; Kress, J.D.; Voter, A.F.

    1998-03-01

    The authors have calculated the displacement-threshold energy E(d) for point-defect production in Si and SiC using empirical potentials, tight-binding, and first-principles methods. They show that -- depending on the knock-on direction -- 64-atom simulation cells can be sufficient to allow a nearly finite-size-effect-free calculation, thus making the use of first-principles methods possible. They use molecular dynamics (MD) techniques and propose the use of a sudden approximation which agrees reasonably well with the MD results for selected directions and which allows estimates of Ed without employing an MD simulation and the use of computationally demanding first-principles methods. Comparing the results with experiment, the authors find the full self-consistent first-principles method in conjunction with the sudden approximation to be a reliable and easy method to predict E d . Furthermore, they have examined the temperature dependence of E d for C in SiC and found it to be negligible

  5. A first principle study of band structure of III-nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)

    2005-12-15

    The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.

  6. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, P.V. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Borodin, V.A., E-mail: Borodin_VA@nrcki.ru [National Research Center “Kurchatov Institute”, 123182 Moscow (Russian Federation); NRNU MEPhI, 115409 Moscow (Russian Federation)

    2017-02-15

    Highlights: • Beryllium is a functional material of future fusion reactors. • The threshold displacement energy by fast particles is studied. • Classical and first principles simulations are used. - Abstract: Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, E{sub d}, which is considered as an intrinsic material parameter. In this work the value of E{sub d} for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  7. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  8. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  9. First-principles study of complex material systems

    Science.gov (United States)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  10. First principle study of cubic ScGaN ternaries

    International Nuclear Information System (INIS)

    Adli, W.; Mecheref, R.; Sekkal, N.; Tair, F.; Amrani, B.

    2008-08-01

    The electronic properties of the Sc x Ga1- x N ternary alloy are investigated. The transition from rocksalt (B1) to zinc blende (B3) structure is found to occur rapidly after incorporating just a small fraction (less than 1%) of Ga. In the present paper, the first principles method the full potential linear muffin-tin orbitals method (FPLMTO) in its atomic sphere approximation (ASA) coupled to the technique of the empty spheres is employed. Our results concerning the electronic properties are different from those reported in literature. (author)

  11. First principles studies of electron tunneling in proteins

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  12. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  13. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  14. First-principles study of dielectric properties of cerium oxide

    International Nuclear Information System (INIS)

    Yamamoto, Takenori; Momida, Hiroyoshi; Hamada, Tomoyuki; Uda, Tsuyoshi; Ohno, Takahisa

    2005-01-01

    We have theoretically investigated the dielectric properties of fluorite CeO 2 as well as hexagonal and cubic Ce 2 O 3 by using first-principles pseudopotentials techniques within the local density approximation. Calculated electronic and lattice dielectric constants of CeO 2 are in good agreement with previous theoretical and experimental results. For Ce 2 O 3 , the hexagonal phase has a lattice dielectric constant comparable to that of CeO 2 , whereas the cubic phase has a much smaller one. We have concluded that the enhancement of the dielectric constant in CeO 2 epitaxially grown on Si is not due to its lattice expansion experimentally observed nor regular formation of oxygen vacancies in CeO 2

  15. Magnetic ground state of SrRuO3 thin film and applicability of standard first-principles approximations to metallic magnetism.

    Science.gov (United States)

    Ryee, Siheon; Han, Myung Joon

    2017-07-05

    A systematic first-principles study has been performed to understand the magnetism of thin film SrRuO 3 which lots of research efforts have been devoted to but no clear consensus has been reached about its ground state properties. The relative t 2g level difference, lattice distortion as well as the layer thickness play together in determining the spin order. In particular, it is important to understand the difference between two standard approximations, namely LDA and GGA, in describing this metallic magnetism. Landau free energy analysis and the magnetization-energy-ratio plot clearly show the different tendency of favoring the magnetic moment formation, and it is magnified when applied to the thin film limit where the experimental information is severely limited. As a result, LDA gives a qualitatively different prediction from GGA in the experimentally relevant region of strain whereas both approximations give reasonable results for the bulk phase. We discuss the origin of this difference and the applicability of standard methods to the correlated oxide and the metallic magnetic systems.

  16. First-principles study of electronic properties of Si doped FeSe{sub 0.9} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-05-23

    We have performed first-principles study of electronic and superconducting properties of FeSe{sub 0.9-x}Si{sub x} (x = 0.0, 0.05) alloys using Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). In our calculations, we used the local density approximation (LDA) for the exchange correlation potential. Our calculations show that these alloys are nonmagnetic in nature. We found that the substitution of Si at Se site into FeSe{sub 0.9} made subtle affects in the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe{sub 0.9} and FeSe{sub 0.85}Si{sub 0.05} alloys.

  17. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  18. Adsorption and Electronic Structure of Sr and Ag Atoms on Graphite Surfaces: a First-Principles Study

    Science.gov (United States)

    Luo, Xiao-Feng; Fang, Chao; Li, Xin; Lai, Wen-Sheng; Sun, Li-Feng; Liang, Tong-Xiang

    2013-06-01

    The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.

  19. A systematic first principle method to study magnetic properties of FeMo, CoMo and NiMo

    International Nuclear Information System (INIS)

    Bhattacharjee, Ashis Kumar; Touheed, Md.; Ahmed, Mesbahuddin; Halder, A.; Mookerjee, A.

    2003-06-01

    We use the first principle TB-LMTO (Tight-Binding Linear Muffin Tin Orbital) method combined with the ASM (Augmented Space Method) to take care of disorder beyond the mean field (CPA - Cohetent Potential Approximation) approximation. We analyze binary alloys between magnetic transition metals Fe, Co, Ni and non-magnetic Mo to find out the effect of disorder on electronic structure and consequently magnetic properties of the alloys. (author)

  20. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui; Zhang, Qianfan; Cui, Yi; Wang, Enge

    2010-01-01

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found

  1. Approximated treatment of the Pauli principle effects in elastic collisons

    International Nuclear Information System (INIS)

    Schechter, H.

    1984-08-01

    Exact microscopic methods like the RGM (Resonanting Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli Principle in α- 16 O elastic scattering. Using V2 and BL nucleon-nucleon interactions, nucleus-nucleus effective potentials are obtained from RGM 'exact' wave functions and also from an approximate method developed previoulsy. Using these potentials in the OCM Saito Equation phase-shifts are calculated for partial waves Λ = 0, 1, ... 11, in the energy range 0 [pt

  2. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  3. Point defect thermodynamics and diffusion in Fe3C: A first-principles study

    International Nuclear Information System (INIS)

    Chao Jiang; Uberuaga, B.P.; Srinivasan, S.G.

    2008-01-01

    The point defect structure of cementite (Fe 3 C) is investigated using a combination of the statistical mechanical Wagner-Schottky model and first-principles calculations within the generalized gradient approximation. Large 128-atom supercells are employed to obtain fully converged point defect formation energies. The present study unambiguously shows that carbon vacancies and octahedral carbon interstitials are the structural defects in C-depleted and C-rich cementite, respectively. The dominant thermal defects in C-depleted and stoichiometric cementite are found to be carbon Frenkel pairs. In C-rich cementite, however, the primary thermal excitations are strongly temperature-dependent: interbranch, Schottky and Frenkel defects dominate successively with increasing temperature. Using the nudged elastic band technique, the migration barriers of major point defects in cementite are also determined and compared with available experiments in the literature

  4. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  5. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2005-01-01

    The purpose of this paper is to provide an introduction for non-experts to first-principles electronic structure methods that are widely used in the field of condensed-matter physics, including applications to actinide materials. The methods I describe are based on density functional theory (DFT) within the local density approximation (LDA) and the generalized gradient approximation (GGA). In addition to explaining the meaning of this terminology I also describe the underlying theory itself in some detail in order to enable a better understanding of the relative strengths and weaknesses of the methods. I briefly mention some particular numerical implementations of DFT, including the linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods, as well as general methodologies that go beyond DFT and specifically address some of the weaknesses of the theory. The last third of the paper is devoted to a few selected applications that illustrate the ideas discussed in the first two-thirds. In particular, I conclude by addressing the current controversy regarding magnetic DFT calculations for actinide materials. Throughout this paper particular emphasis is placed on providing the appropriate background to enable the non-expert to gain a better appreciation of the application of first-principles electronic structure methods to the study of actinide and other materials

  6. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    Science.gov (United States)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  7. First-principles calculations of novel materials

    Science.gov (United States)

    Sun, Jifeng

    Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find

  8. Roy's safety-first portfolio principle in financial risk management of disastrous events.

    Science.gov (United States)

    Chiu, Mei Choi; Wong, Hoi Ying; Li, Duan

    2012-11-01

    Roy pioneers the concept and practice of risk management of disastrous events via his safety-first principle for portfolio selection. More specifically, his safety-first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety-first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy's setting, either leads to a trivial case or changes the problem nature completely to a target-reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill-posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding-level regulation of pension funds and modify the original safety-first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety-first asset-liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety-first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening. © 2012 Society for Risk Analysis.

  9. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  10. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    International Nuclear Information System (INIS)

    Yongbin Lee

    2006-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB 14

  11. THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W

    2005-12-15

    The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.

  12. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  13. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  14. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...

  15. Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method

    International Nuclear Information System (INIS)

    Wang, Hanfu; Jin, Hao; Chu, Weiguo; Guo, Yanjun

    2010-01-01

    The lattice dynamics and thermodynamic properties of Mg 2 Si and Mg 2 Ge are studied based on the first principles calculations. We obtain the phonon dispersion curves and phonon density of states spectra using the density functional perturbation theory with local density approximations. By employing the quasi-harmonic approximation, we calculate the temperature dependent Helmholtz free energy, bulk modulus, thermal expansion coefficient, specific heat, Debye temperature and overall Grueneisen coefficient. The results are in good agreement with available experimental data and previous theoretical studies. The thermal conductivities of both compounds are then estimated with the Slack's equation. By carefully choosing input parameters, especially the acoustic Debye temperature, we find that the calculated thermal conductivities agree fairly well with the experimental values above 80 K for both compounds. This demonstrates that the lattice thermal conductivity of simple cubic semiconductors may be estimated with satisfactory accuracy by combining the Slack's equation with the necessary thermodynamics parameters derived completely from the first principles calculations.

  16. The structural, electronic and phonon behavior of CsPbI_3: A first principles study

    International Nuclear Information System (INIS)

    Bano, Amreen; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.

    2016-01-01

    Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI_3 is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.

  17. First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions

    Science.gov (United States)

    Amoroso, Danila; Cano, Andrés; Ghosez, Philippe

    2018-05-01

    (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.

  18. First-principle study of nanostructures of functionalized graphene

    Indian Academy of Sciences (India)

    We present first-principle calculations of 2D nanostructures of graphene functionalized with hydrogen and fluorine, respectively, in chair conformation. The partial density of states, band structure, binding energy and transverse displacement of C atoms due to functionalization (buckling) have been calculated within the ...

  19. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  20. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  1. First-principles study of point defects in thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2014-01-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure

  2. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  3. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  4. First principles study of AlBi

    International Nuclear Information System (INIS)

    Amrani, B.; Achour, H.; Louhibi, S.; Tebboune, A.; Sekkal, N.

    2008-05-01

    Using the first principles method of the full potential linear augmented plane waves (FPLAPW), the structural and the electronic properties of AlBi are investigated. It is found that this compound has a small and direct semiconducting gap at Γ. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature θ D and the heat capacity C v are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. (author)

  5. First principles calculation of material properties of group IV elements and III-V compounds

    Science.gov (United States)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  6. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  7. Point defects in thorium nitride: A first-principles study

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Llois, A.M.; Mosca, H.O.

    2016-01-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  8. First-principles molecular dynamics study of Al/Alq3 interfaces

    Directory of Open Access Journals (Sweden)

    Kousuke Takeuchi et al

    2007-01-01

    Full Text Available We have carried out first-principles molecular dynamics simulations of Al deposition on tris (8-hydroxyquinoline aluminum (Alq3 layers to investigate atomic geometries and electronic properties of Al/Alq3 interfaces. Al atoms were ejected to Alq3 one by one with the kinetic energy of 37.4 kJ/mol, which approximately corresponds to the average kinetic energy of Al at the boiling temperature of metal Al. The first Al atom interacts with two of the three O atoms of meridional Alq3. Following Al atoms interact with Alq3 rather weakly and they tend to aggregate each other to form Al clusters. During the deposition process, Alq3 was not broken and its molecular structure remained essentially intact. At the interface, weak bonds between deposited Al atoms and N and C atoms were formed. The projected density of states (PDOS onto the Alq3 molecular orbitals shows gap states in between the highest occupied molecular orbitals (HOMOs and the lowest unoccupied molecular orbitals (LUMOs, which were experimentally observed by ultraviolet photoelectron spectroscopy (UPS and metastable atom electron spectroscopy (MAES. Our results show that even though the Alq3 molecular structure is retained, weak N–Al and C–Al bonds induce gap states.

  9. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  10. Analytical study of Yang–Mills theory in the infrared from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Siringo, Fabio, E-mail: fabio.siringo@ct.infn.it

    2016-06-15

    Pure Yang–Mills SU(N) theory is studied in the Landau gauge and four dimensional space. While leaving the original Lagrangian unmodified, a double perturbative expansion is devised, based on a massive free-particle propagator. In dimensional regularization, all diverging mass terms cancel exactly in the double expansion, without the need to include mass counterterms that would spoil the symmetry of the Lagrangian. No free parameters are included that were not in the original theory, yielding a fully analytical approach from first principles. The expansion is safe in the infrared and is equivalent to the standard perturbation theory in the UV. At one-loop, explicit analytical expressions are given for the propagators and the running coupling and are found in excellent agreement with the data of lattice simulations. A universal scaling property is predicted for the inverse propagators and shown to be satisfied by the lattice data. Higher loops are found to be negligible in the infrared below 300 MeV where the coupling becomes small and the one-loop approximation is under full control.

  11. First principles studies of multiferroic materials

    International Nuclear Information System (INIS)

    Picozzi, Silvia; Ederer, Claude

    2009-01-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO 3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO 3 , ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO 3 ), the magnetically induced ferroelectric polarization can be as large as a few μC cm -2 . The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  12. Leptogenesis from first principles in the resonant regime

    International Nuclear Information System (INIS)

    Garny, Mathias; Kartavtsev, Alexander; Hohenegger, Andreas

    2011-12-01

    The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff-Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff-Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results. (orig.)

  13. Leptogenesis from first principles in the resonant regime

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kartavtsev, Alexander [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Hohenegger, Andreas [Ecole Polytechnique Federale de Lausanne (Switzerland)

    2011-12-15

    The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff-Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff-Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results. (orig.)

  14. First principles calculation of thermodynamic properties of NaAlSi ternary

    International Nuclear Information System (INIS)

    Qin Jining; Lu Weijie; Zhang Di; Fan Tongxiang

    2012-01-01

    PbFCl-type NaAlSi ternary is a corrosion compound found in aluminum, which is used as a sealing material in sodium sulfur battery. To understand and control the corrosion process, it is important to predict its quantitative properties. In this study, a first-principles calculation has been carried out to calculate its equilibrium lattice parameters, bulk modulus and pressure derivative of bulk modulus by both all-electron full-potential linear augmented plane wave scheme and pseudopotential plane wave scheme within the generalized gradient approximation. The theoretical results show good agreement with the available experimental data. The thermodynamic properties, including the specific heat capacity and entropy with pressure up to 9 GPa, have been investigated for the first time by coupling of density functional perturbation theory and quasiharmonic approximation. The volume and linear thermal expansion coefficients were estimated and the results show that the linear thermal expansion on c-axis is nearly twice as large as that on a-axis within the calculated temperature.

  15. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    Science.gov (United States)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  16. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  17. Band gap of β-PtO2 from first-principles

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2012-06-01

    Full Text Available We studied the band gap of β-PtO2 using first-principles calculations based on density functional theory (DFT. The results are obtained within the framework of the generalized gradient approximation (GGA, GGA+U, GW, and the hybrid functional methods. For the different types of calculations, the calculated band gap increases from ∼0.46 eV to 1.80 eV. In particular, the band gap by GW (conventional and self-consistent calculation shows a tendency of converging to ∼1.25 ± 0.05 eV. The effect of on-site Coulomb interaction on the bonding characteristics is also analyzed.

  18. Obtaining the electrostatic screening from first principles

    International Nuclear Information System (INIS)

    Shaviv, N.J.; Shaviv, G.

    2003-01-01

    We derive the electrostatic screening effect from first principles and show the basic properties of the screening process. We in particular show that under the conditions prevailing in the Sun the number of particles in the Debye sphere is of the order of unity. Consequently; fluctuations play a dominant role in the screening process. The fluctuations lead to an effective time dependent potential. Particles with low kinetic energy lose on the average energy to the plasma and vice versa with high energy particles. We derive general conditions on the screening energy and show under what conditions the Salpeter approximation is obtained. The connection between the screening and relaxation processes in the plasma is exposed

  19. First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study

    Directory of Open Access Journals (Sweden)

    Anders Hellman

    2017-06-01

    Full Text Available Photoelectrochemistry is truly an interdisciplinary field; a natural nexus between chemistry and physics. In short, photoelectrochemistry can be divided into three sub-processes, namely (i the creation of electron-hole pairs by light absorption; (ii separation/transport on the charge carriers and finally (iii the water splitting reaction. The challenge is to understand all three processes on a microscopic scale and, perhaps even more importantly, how to combine the processes in an optimal way. This review will highlight some first-principles insights to the above sub-processes, in~particular as they occur using metal oxides. Based on these insights, challenges and future directions of first-principles methods in the field of photoelectrochemistry will be discussed.

  20. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  1. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals

    Science.gov (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-04-01

    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  2. First principle DFT study of electric field effects on the characteristics of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2017-04-01

    First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G and PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing n{sub C}=8-32 carbon atoms. Results show that application of electric fields of 4-24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.

  3. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  4. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    Science.gov (United States)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  5. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2006-01-01

    This paper provides an introduction for non-experts to first-principles electronic structure methods that are widely used in condensed-matter physics. Particular emphasis is placed on giving the appropriate background information needed to better appreciate the use of these methods to study actinide and other materials. Specifically, I describe the underlying theory sufficiently to enable an understanding of the relative strengths and weaknesses of the methods. I also explain the meaning of commonly used terminology, including density functional theory (DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods. I also briefly discuss methodologies that extend the basic theory to address specific limitations. Finally, I describe a few illustrative applications, including quantum molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects. I conclude by addressing the current controversy regarding magnetic calculations for actinide materials

  6. First-principles Study of the Electronic Structure and Optical Properties of MgH2

    Science.gov (United States)

    Alford, Ashley; Chou, Mei-Yin

    2003-03-01

    It has been noticed that magnesium might play an interesting role in recently discovered switchable-mirror systems. For example, the films of rare earth and magnesium alloys are found to be superior to the pure rare-earth samples in maximum transparency and mirror-state reflectivity [1]. Moreover, the magnesium-rich Ni-Mg alloy films turned out to be a switchable-mirror system without rare earths [2]. In both cases, pure transparent MgH2 is reversibly formed when these alloys take up hydrogen. In order to model the optical properties of these films, we need to know the electronic and optical properties of MgH2. In this work, we investigate its bonding characteristics, band structure, and dielectric properties with first-principles theoretical methods. The stability of the crystal and the bonding are studied using density functional theory and pseudopotential methods. The excited state properties (the quasiparticle spectra) are studied by many-body perturbation theory within the so-called GW approximation in which the electronic self-energy is approximated by the full Green's function (G) times the screened Coulomb interaction (W). We will report the results for both the rutile-structured alpha-MgH2 and the low-symmetry gamma-MgH2. [1] P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett. 70, 3356 (1997). [2] T. J. Richardson, J. L. Slack, R. D. armitage, R. Kostecki, B. Farangis, and M. D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).

  7. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin; Yao, Kexin; Meng, Changgong; Han, Yu

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single

  8. First-principles calculation of the magnetic properties of paramagnetic fcc iron

    International Nuclear Information System (INIS)

    Johnson, D.D.; Gyorffy, B.L.; Pinski, F.J.; Staunton, J.; Stocks, G.M.

    1985-01-01

    Using the disordered local moment picture of itinerant magnetism, we present calculations of the temperature and volume dependence of the magnetic moment and spin-spin correlations for fcc Fe in the paramagnetic state. These calculations are based on the parameter-free, first principles approach of local spin density functional theory and the coherent potential approximation is used to treat the disorder associated with the random orientation of the local moments

  9. New approaches for first-principles modelling of inelastic transport in nanoscale semiconductor devices with thousands of atoms

    DEFF Research Database (Denmark)

    Gunst, Tue; Brandbyge, Mads; Palsgaard, Mattias Lau Nøhr

    2017-01-01

    is in both methods calculated in a post-processing step to a self consistent DFT calculation. The first method is based on first order perturbation theory in the EPC self-energy within the Lowest Order Expansion (LOE) approximation. The method requires calculation of the first-principles EPC in the device......We present two different methods which both enable large-scale first-principles device simulations including electron-phonon coupling (EPC). The methods are based on Density Functional Theory and Nonequilibrium Greens Functions (DFT- NEGF) calculations of electron transport. The inelastic current...

  10. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  11. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  12. Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N

    DEFF Research Database (Denmark)

    Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui

    2016-01-01

    A complete first-principles thermodynamic model was developed and applied to hexagonal close-packed structure ε-Fe3N. The electronic structure was calculated using density functional theory and the quasiharmonic phonon approximation to determine macroscopic thermodynamic properties at finite...

  13. Electronic structure of B-doped diamond: A first-principles study

    Directory of Open Access Journals (Sweden)

    T. Oguchi

    2006-01-01

    Full Text Available Electronic structure of B-doped diamond is studied based on first-principles calculations with supercell models for substitutional and interstitial doping at 1.5–3.1 at.% B concentrations. Substitutional doping induces holes around the valence-band maximum in a rigid-band fashion. The nearest neighbor C site to B shows a large energy shift of 1s core state, which may explain reasonably experimental features in recent photoemission and X-ray absorption spectra. Doping at interstitial Td site is found to be unstable compared with that at the substitutional site

  14. First-principles study of γ-ray detector materials in perovskite halides

    Science.gov (United States)

    Im, Jino; Jin, Hosub; Stoumpos, Constantinos; Chung, Duck; Liu, Zhifu; Peters, John; Wessels, Bruce; Kanatzidis, Mercouri; Freeman, Arthur

    2013-03-01

    In an effort to search for good γ-ray detector materials, perovskite halide compounds containing heavy elements were investigated. Despite the three-dimensional network of the corner shared octahedra and the extended nature of the outermost shell, its strong ionic character leads to a large band gap, which is one of the essential criteria for γ-ray detector materials. Thus, considering high density and high atomic number, these pervoskite halides are possible candidate for γ-ray detector materials. We performed first-principles calculations to investigate electronic structures and thermodynamic properties of intrinsic defects in the selected perovskite halide, CsPbBr3. The screened-exchange local density approximation scheme was employed to correct the underestimation of the band gap in the LDA method. As a result, the calculated band gap of CsPbBr3 is found to be suitable for γ-ray detection. Furthermore, defect formation energy calculations allow us to predict thermodynamic and electronic properties of possible intrinsic defects, which affect detector efficiency and energy resolution. Supported by the office of Nonproliferation and Verification R &D under Contract No. DE-AC02-06CH11357

  15. First-principles study of the interaction and charge transfer between graphene and metals

    NARCIS (Netherlands)

    Khomyakov, Petr; Giovannetti, G.; Rusu, P.C.; Brocks, G.; van den Brink, J.; Kelly, Paul J.

    2009-01-01

    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density-functional theory. The bonding of graphene to Al, Ag, Cu, Au,

  16. Density functional studies: First principles and semiempirical calculations of clusters and surfaces

    International Nuclear Information System (INIS)

    Sinnott, S.B.

    1993-01-01

    In the research presented here, various theoretical electronic structure techniques are utilized to analyze widely different systems from silicon clusters to transition metal solids and surfaces. For the silicon clusters, first principles density functional methods are used to investigate Si N for N = 2-8. The goal is to understand the different types of bonding that can occur in such small clusters where the coordination of the atoms differs substantially from that of the stable bulk tetrahedral bonding. Such uncoordinated structures can provide a good test of more approximate theories that can be used eventually to model silicon surfaces, of obvious technological importance. For the transition metal systems, non-self-consistent electronic structure methods are used to provide an understanding of the driving force for surface relaxations. An in-depth analysis of the results is presented and the physical basis of surface relaxation within the theory is discussed. In addition, the limitations inherent in calculations of metal surface relaxation are addressed. Finally, in an effort to increase understanding of approximate methods, a novel non-self-consistent density functional electronic structure method is developed that is ∼1000 times faster computationally than more sophisticated methods. This new method is tested for a variety of systems including diatomics, mixed clusters, surfaces and bulk lattices. The strengths and weaknesses of the new theory are discussed in detail, leading to greater understanding of non-self-consistent density functional theories as a whole

  17. Quasiballistic heat removal from small sources studied from first principles

    Science.gov (United States)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  18. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  19. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  20. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  1. TOPICAL REVIEW: First principles studies of multiferroic materials

    Science.gov (United States)

    Picozzi, Silvia; Ederer, Claude

    2009-07-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  2. First-principles study of structural, electronic, linear and nonlinear optical properties of Ga{2}PSb ternary chalcopyrite

    Science.gov (United States)

    Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.

    2009-12-01

    We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.

  3. First principles study of α and δ-Pu

    International Nuclear Information System (INIS)

    Chattaraj, Debabrata; Dash, Smruti

    2017-01-01

    The structural and electronic properties of α-and δ-Pu has been investigated using state of the art first principles method. All the calculations have been performed using a plane wave based pseudopotential method under the framework of spin polarized density functional theory. The effect of relativistic spin-orbit interactions on these properties has been investigated. The calculated lattice parameters are found to be within ±1% of the experimental data. The cohesive energy of α-and δ-Pu are calculated to be -3.125 and -3.126 eV/atom. The nature of chemical bonding present in those phases of Pu is depicted by calculated density of states spectra. (author)

  4. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    Science.gov (United States)

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  5. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  6. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  7. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  8. First principles pharmacokinetic modeling: A quantitative study on Cyclosporin

    DEFF Research Database (Denmark)

    Mošat', Andrej; Lueshen, Eric; Heitzig, Martina

    2013-01-01

    renal and hepatic clearances, elimination half-life, and mass transfer coefficients, to establish drug biodistribution dynamics in all organs and tissues. This multi-scale model satisfies first principles and conservation of mass, species and momentum.Prediction of organ drug bioaccumulation...... as a function of cardiac output, physiology, pathology or administration route may be possible with the proposed PBPK framework. Successful application of our model-based drug development method may lead to more efficient preclinical trials, accelerated knowledge gain from animal experiments, and shortened time-to-market...

  9. First-principles study of thermoelectric properties of CuI

    International Nuclear Information System (INIS)

    Yadav, Manoj K; Sanyal, Biplab

    2014-01-01

    Theoretical investigations of the thermoelectric properties of CuI have been carried out employing first-principles calculations followed by the calculations of transport coefficients based on Boltzmann transport theory. Among the three different phases of CuI, viz. zinc-blende, wurtzite and rock salt, the thermoelectric power factor is found to be the maximum for the rock salt phase. We have analysed the variations of Seebeck coefficients and thermoelectric power factors on the basis of calculated electronic structures near the valence band maxima of these phases. (papers)

  10. A first-principles study of the electronic structure and stability of Be(BH4)2

    NARCIS (Netherlands)

    Setten, M.J. van; Wijs, G.A. de; Brocks, G.

    2007-01-01

    Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total energy calculations we show that - in contrast to

  11. Oxidation of InP nanowires: a first principles molecular dynamics study.

    Science.gov (United States)

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  12. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  13. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  14. Phase Transition and Thermodynamics of Ruthenium Diboride via First-Principles Calculations

    International Nuclear Information System (INIS)

    Fen, Luo; Yan, Cheng; Xiang-Rong, Chen; Guang-Fu, Ji

    2009-01-01

    The pressure induced phase transitions of RuB 2 from the OsB 2 -type structure to the ReB 2 -type structure are investigated by first-principles calculations based on the plane-wave basis set with the generalized gradient approximation for exchange and correlation. It is found that the phase transition occurs at 18.6 GPa. We predict the phase transition from the OsB 2 -type RuB 2 to the ReB 2 -type RuB 2 at high temperatures for the first time. The dependences of the heat capacity, thermal expansion coefficient, and the Grüneisen parameter on pressure and temperature for OsB 2 -type RuB 2 and ReB 2 -type RuB 2 are also investigated

  15. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  16. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  17. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  18. Vacancy-rearrangement theory in the first Magnus approximation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1984-01-01

    In the present paper we employ the first Magnus approximation (M1A), a unitarized Born approximation, in semiclassical collision theory. We have found previously that the M1A gives a substantial improvement over the first Born approximation (B1A) and can give a good approximation to a full coupled channels calculation of the mean L-shell vacancy probability per electron, p/sub L/, when the L-vacancies are accompanied by a K-shell vacancy (p/sub L/ is obtained experimentally from measurements of K/sub α/-satellite intensities). For sufficiently strong projectile-electron interactions (sufficiently large Z/sub p/ or small v) the M1A ceases to reproduce the coupled channels results, but it is accurate over a much wider range of Z/sub p/ and v than the B1A. 27 references

  19. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  20. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  1. First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene

    Science.gov (United States)

    Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair

    2018-05-01

    In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.

  2. Thermopower switching by magnetic field: first-principles calculations

    DEFF Research Database (Denmark)

    Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid

    2013-01-01

    We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...

  3. First-principles calculations of the electronic and structural properties of GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Castaño-González, E.-E. [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Seña, N. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mendoza-Estrada, V.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Dussan, A. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Universidad del Rosario, Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas (Colombia)

    2016-10-15

    In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.

  4. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  5. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.; Rungger, I.; Pemmaraju, C. D.; Schwingenschlö gl, Udo; Sanvito, S.

    2012-01-01

    such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap

  6. Heating electrons with ion irradiation: A first-principles approach

    International Nuclear Information System (INIS)

    Pruneda, J.M.; Sanchez-Portal, D.; Arnau, A.; Juaristi, J.I.; Artacho, E.

    2009-01-01

    Using time-dependent density functional theory we calculate from first-principles the rate of energy transfer from a moving charged particle to the electrons in an insulating material. The behavior of the electronic stopping power in LiF (a wide band gap insulator) versus projectile velocity displays an effective threshold velocity of 8.2 Bohr/asec for the proton, consistent with recent experimental observations. The calculated proton/antiproton stopping power ratio is 2.4 at velocities slightly above the threshold (16.5 Bohr/asec) as compared to the experimental value of 2.1. The approximations introduced in this new non-perturbative methodology are discussed, and results on the velocity dependence of the stopping power, the locality of the energy transfer, and other characteristics of the host material are presented.

  7. Molecular Electronics: Insight from First-Principles Transport Simulations

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect...

  8. First-principles study on electronic and magnetic properties of (Mn,Fe)-codoped ZnO

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cai, Ningning; Zhang, Xianlong; Yu, Zhongyuan; Gao, Tao; Wang, Shumin

    2014-01-01

    First-principle calculations have been performed to investigate the electronic and magnetic properties of (Mn,Fe)-codoped ZnO within the generalized gradient approximation (GGA) and GGA+U schemes. The formation energy of five different configurations is investigated and the ground state is demonstrated to be ferromagnetic ordering. By applying the U correction, the band gap energy of pure ZnO is close to the experimental values, while the ferromagnetic ordering of the ground state remains unchanged. The ferromagnetic stabilization is mediated by double exchange mechanism. In addition, defects corresponding to Zn-vacancy and O-vacancy cannot enhance the ferromagnetism obviously. These results indicate that (Mn,Fe)-codoped ZnO are promising magneto-electronic and spintronic materials. - Highlights: • We have considered 5 different configurations of Mn/Fe codoped bulk ZnO. • The formation energy is calculated to investigate the structural stability. • The double exchange mechanism is responsible for the ferromagnetic behavior. • Defects are not effective method to get room temperature ferromagnetism. • Mn/Fe codoped ZnO are promising ferromagnetic semiconductor materials

  9. First-principles study on electronic and magnetic properties of (Mn,Fe)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cai, Ningning; Zhang, Xianlong; Yu, Zhongyuan [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2014-02-15

    First-principle calculations have been performed to investigate the electronic and magnetic properties of (Mn,Fe)-codoped ZnO within the generalized gradient approximation (GGA) and GGA+U schemes. The formation energy of five different configurations is investigated and the ground state is demonstrated to be ferromagnetic ordering. By applying the U correction, the band gap energy of pure ZnO is close to the experimental values, while the ferromagnetic ordering of the ground state remains unchanged. The ferromagnetic stabilization is mediated by double exchange mechanism. In addition, defects corresponding to Zn-vacancy and O-vacancy cannot enhance the ferromagnetism obviously. These results indicate that (Mn,Fe)-codoped ZnO are promising magneto-electronic and spintronic materials. - Highlights: • We have considered 5 different configurations of Mn/Fe codoped bulk ZnO. • The formation energy is calculated to investigate the structural stability. • The double exchange mechanism is responsible for the ferromagnetic behavior. • Defects are not effective method to get room temperature ferromagnetism. • Mn/Fe codoped ZnO are promising ferromagnetic semiconductor materials.

  10. Structural, electronic, and vibrational properties of high-density amorphous silicon: a first-principles molecular-dynamics study.

    Science.gov (United States)

    Morishita, Tetsuya

    2009-05-21

    We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).

  11. The electronic structures and ferromagnetism of Fe-doped GaSb: The first-principle calculation study

    Science.gov (United States)

    Lin, Xue-ling; Niu, Cao-ping; Pan, Feng-chun; Chen, Huan-ming; Wang, Xu-ming

    2017-09-01

    The electronic structures and the magnetic properties of Fe doped GaSb have been investigated by the first-principles calculation based on the framework of the generalized gradient approximation (GGA) and GGA+U schemes. The calculated results indicated that Fe atoms tend to form the anti-ferromagnetic (AFM) coupling with the nearest-neighbor positions preferentially. Compared with the anti-ferromagnetic coupling, the ferromagnetic interactions occurred at the second nearest-neighbor and third nearest-neighbor sites have a bigger superiority energetically. The effect of strong electron correlation at Fe-d orbit taking on the magnetic properties predicted by GGA+U approach demonstrated that the ferromagnetic (FM) coupling between the Fe ions is even stronger in consideration of the strong electron correlation effect. The ferromagnetism in Fe doped GaSb system predicted by our investigation implied that the doping of Fe into GaSb can be as a vital routine for manufacturing the FM semiconductors with higher Curie temperature.

  12. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  13. A first-principles approach to finite temperature elastic constants

    International Nuclear Information System (INIS)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K

    2010-01-01

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni 3 Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  14. Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study

    Directory of Open Access Journals (Sweden)

    Abdullahi Lawal

    Full Text Available Antimony telluride (Sb2Te3, a layered semiconductor material, is considered a promising absorbing material for a high-performance optoelectronic device within broadband wavelengths because of remarkable features like strong optical absorbance and the narrow direct band gap. In this work, based on the first-principles approach, we investigate in detail the structural, electronic and optical properties of the hexagonal Sb2Te3 compound. The structural and electronic properties were computed using the first-principles approach, treating exchange–correlation potential with generalized gradient approximation (GGA within density functional theory (DFT. Furthermore, for accurate prediction of the band gap, we go beyond DFT and calculated band structure using GW correction. The optical properties, namely, imaginary and real parts of complex dielectric function, absorption coefficient, refractive index, reflectivity, extinction coefficient, electron energy loss function and optical conductivity are performed by quasi-particle many-body perturbation theory (MBPT via Bethe-Salpeter equation (BSE. The computed structural parameters are in good agreement with available experimental data. The obtained quasi-particle (GW correction band structure show the semiconducting character of Sb2Te3 material with a direct band gap Eg of 0.221 eV, in agreement with previously reported value (Eg = 0.210 eV while the projected density of states indicates (PDOS that the p-orbital of Sb and Te atoms are responsible for material properties near the Fermi level. To our knowledge, our first reported calculations of optical properties, with the inclusion of electron-hole effects are consistent with available experimental measurements. Consistencies of our findings with experimental data validate the effectiveness of electron-hole interaction for theoretical investigation of optical properties. Keywords: DFT, Quasi-particle many-body perturbation theory, Bethe

  15. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  16. Implementing first-year assessment principles: An analysis of selected scholarly literature

    OpenAIRE

    Theda Thomas

    2018-01-01

    Assessment plays an important role in students’ learning as students often frame their learning around their assessment tasks. Well-designed assessment can be used to facilitate first-year students making their social and academic transition to university. In 2009, Professor David Nicol prepared a framework for first-year assessment practices that included 12 principles. In this study, these principles were revisited and used to analyse papers from 2013 to 2016 in the journals: ‘Assessment & ...

  17. First principles simulations

    International Nuclear Information System (INIS)

    Palummo, M.; Reining, L.; Ballone, P.

    1993-01-01

    In this paper we outline the major features of the ''ab-initio'' simulation scheme of Car and Parrinello, focusing on the physical ideas and computational details at the basis of its efficiency and success. We briefly review the main applications of the method. We discuss the limitations of the standard scheme, as well as recent developments proposed in order to extend the reach of the method. Moreover, we consider more in detail two specific subjects. First, we describe a simple improvement (Gradient Corrections) on the basic approximation of the ''ab-initio'' simulation, i.e. the Local Density Approximation. These corrections can be easily and efficiently included in the Car-Parrinello code, bringing computed structural and cohesive properties significantly closer to their experimental values. Finally, we discuss the choice of the pseudopotential, with special attention to the possibilities and limitations of the last generation of soft pseudopotentials. (orig.)

  18. Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers

    Science.gov (United States)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    2018-06-01

    Organic materials with a high index of refraction (RI) are attracting considerable interest due to their potential application in optic and optoelectronic devices. However, most of these applications require an RI value of 1.7 or larger, while typical carbon-based polymers only exhibit values in the range of 1.3-1.5. This paper introduces an efficient computational protocol for the accurate prediction of RI values in polymers to facilitate in silico studies that can guide the discovery and design of next-generation high-RI materials. Our protocol is based on the Lorentz-Lorenz equation and is parametrized by the polarizability and number density values of a given candidate compound. In the proposed scheme, we compute the former using first-principles electronic structure theory and the latter using an approximation based on van der Waals volumes. The critical parameter in the number density approximation is the packing fraction of the bulk polymer, for which we have devised a machine learning model. We demonstrate the performance of the proposed RI protocol by testing its predictions against the experimentally known RI values of 112 optical polymers. Our approach to combine first-principles and data modeling emerges as both a successful and a highly economical path to determining the RI values for a wide range of organic polymers.

  19. Mechanical properties of layered oxysulfide CaZnOS from first principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Jun [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Feng, Ang [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, 200050 (China); Zhang, Shao-Lin; Zhang, Wei-Bin [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Yang, Woochul, E-mail: wyang@dongguk.edu [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of)

    2016-06-15

    Elastic and tensile properties of mixed-anion oxysulfide CaZnOS have been theoretically investigated by first principle method of density functional theory (DFT). Elastic constants were obtained by stress–strain relationships, and bulk structure parameters including bulk modulus, shear modulus, as well as Poisson's ratio were then calculated using Voigt-Reuses-Hill (VRH) approximation. The results of shear anisotropic factors, compressibility anisotropic factor and directional Young's modulus showed that CaZnOS is almost elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. Chemical bond anisotropy shown by Mulliken atomic charges and bond overlap populations is responsible for the elastic anisotropy behavior aforementioned. Moreover, theoretical uniaxial and biaxial tensile results showed the crystal collapsed at strain more than 12%, except in the biaxial extension where CaZnOS collapsed at strain of 7%. - Highlights: • Elastic and theoretical tensile properties of CaZnOS have been investigated by first principle method. • CaZnOS is elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. • Mulliken atomic charges and bond overlap populations are responsible for the elastic anisotropy behavior.

  20. First-principle study of Mg adsorption on Si(111) surfaces

    International Nuclear Information System (INIS)

    Min-Ju, Ying; Ping, Zhang; Xiao-Long, Du

    2009-01-01

    We have carried out first-principle calculations of Mg adsorption on Si(111) surfaces. Different adsorption sites and coverage effects have been considered. We found that the threefold hollow adsorption is energy-favoured in each coverage considered, while for the clean Si(111) surface of metallic feature, we found that 0.25 and 0.5 ML Mg adsorption leads to a semiconducting surface. The results for the electronic behaviour suggest a polarized covalent bonding between the Mg adatom and Si(111) surface. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  2. First-principles studies on the adsorption of molecular oxygen on Ba(110) surface

    International Nuclear Information System (INIS)

    Li, S.F.; Xue Xinlian; Li Pinglin; Li Xinjian; Jia Yu

    2006-01-01

    The adsorption of O 2 on Ba(110) surface is studied with first-principles calculations based on density functional theory. Our calculations predict that O 2 may prefer to dissociative adsorption on Ba(110) surface without obvious barrier. Also our results do not support the model of charge transfer from the surface to the molecule as a bond breaking mechanism. Instead, the increasing hybridization between O 2 orbitals and the d states of Ba(110) surface may play an important role in the dissociation adsorption

  3. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    International Nuclear Information System (INIS)

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-01-01

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T d ) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V xc ) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional

  4. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  5. First-principles study of the nickel–silicon binary compounds under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuhong, E-mail: zyh388@sina.com [College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hou, Hua [College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhao, Yuhui [Department of Mechanical and Electronic Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091 (China); Han, Peide [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-08-15

    Highlights: • The structural and elastic properties of Ni–Si system under pressure are firstly studied. • The lattice parameters of NiSi{sub 2} are the most sensitive to external pressure change. • Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} are mechanical stability with pressure up to 50 GPa. • The hardness of the four compounds can be improved by increasing pressure. • Electronic structures are analyzed to understand pressure effect on the seven compounds. - Abstract: The effects of high pressure on structural, stable, elastic, thermodynamic properties and electronic structures of Ni–Si binary compounds (i.e. β-Ni{sub 3}Si, γ-Ni{sub 31}Si{sub 12}, δ-Ni{sub 2}Si, θ-Ni{sub 2}Si, ε-Ni{sub 3}Si{sub 2}, ε-NiSi and α-NiSi{sub 2}) have been firstly studied by first-principles calculation based on density functional theory method within generalized gradient approximation. The calculated lattice parameters of the seven compounds at zero pressure and zero temperature agree well with the available experimental values and previous theoretical data. The values of V/V{sub 0} decrease with pressure going up to 50 GPa and the rate of change decrease gradually. The lattice parameters of NiSi{sub 2} are the most sensitive to external pressure change. Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} are mechanical stability by estimating stability criteria with pressure ranging from 0 to 50 GPa. But Ni{sub 2}Si (θ), NiSi and NiSi{sub 2} are not mechanically stable with pressure up to 10, 40 and 30 GPa, respectively. The calculated results of bulk modulus B, shear modulus G and Young’s modulus E illustrate pressure can improve the hardness of Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} compounds. In addition, ratio of shear modulus to bulk modulus G/B shows that all the considered compounds are ductile materials except NiSi. The Debye temperature Θ{sub D} of Ni{sub 3}Si

  6. Electrical properties of improper ferroelectrics from first principles

    Science.gov (United States)

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-09-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 (PTO/STO) superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit boundary conditions restore a nonpolar state. We suggest that this qualitative difference naturally provides a route to rationalizing the concept of “improper ferroelectricity” from the point of view of first-principles theory. We discuss the implications of our arguments for the design of novel multiferroic materials with enhanced functionalities and for the symmetry analysis of the phase transitions.

  7. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  8. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  9. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    Directory of Open Access Journals (Sweden)

    Dipendra Banjara

    2018-02-01

    Full Text Available We present results from first principle, local density approximation (LDA calculations of electronic, transport, and bulk properties of iron pyrite (FeS2. Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW method, as enhanced by Ekuma and Franklin (BZW-EF. We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96, using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  10. First-principles method for electron-phonon coupling and electron mobility

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n-type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full......-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part...... of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene...

  11. Reliability evaluation of thermophysical properties from first-principles calculations.

    Science.gov (United States)

    Palumbo, Mauro; Fries, Suzana G; Dal Corso, Andrea; Kürmann, Fritz; Hickel, Tilmann; Neugebauer, Jürg

    2014-08-20

    Thermophysical properties, such as heat capacity, bulk modulus and thermal expansion, are of great importance for many technological applications and are traditionally determined experimentally. With the rapid development of computational methods, however, first-principles computed temperature-dependent data are nowadays accessible. We evaluate various computational realizations of such data in comparison to the experimental scatter. The work is focussed on the impact of different first-principles codes (QUANTUM ESPRESSO and VASP), pseudopotentials (ultrasoft and projector augmented wave) as well as phonon determination methods (linear response and direct force constant method) on these properties. Based on the analysis of data for two pure elements, Cr and Ni, consequences for the reliability of temperature-dependent first-principles data in computational thermodynamics are discussed.

  12. A surprise in the first Born approximation for electron scattering

    International Nuclear Information System (INIS)

    Treacy, M.M.J.; Van Dyck, D.

    2012-01-01

    A standard textbook derivation for the scattering of electrons by a weak potential under the first Born approximation suggests that the far-field scattered wave should be in phase with the incident wave. However, it is well known that waves scattered from a weak phase object should be phase-shifted by π/2 relative to the incident wave. A disturbing consequence of this missing phase is that, according to the Optical Theorem, the total scattering cross section would be zero in the first Born approximation. We resolve this mystery pedagogically by showing that the first Born approximation fails to conserve electrons even to first order. Modifying the derivation to conserve electrons introduces the correct phase without changing the scattering amplitude. We also show that the far-field expansion for the scattered waves used in many texts is inappropriate for computing an exit wave from a sample, and that the near-field expansion also give the appropriately phase-shifted result. -- Highlights: ► The first Born approximation is usually invoked as the theoretical physical basis for kinematical electron scattering theory. ► Although it predicts the correct scattering amplitude, it predicts the wrong phase; the scattered wave is missing a prefactor of i. ► We show that this arises because the standard textbook version of the first Born approximation does not conserve electrons. ► We show how this can be fixed.

  13. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    Science.gov (United States)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along {1 1 0} direction, {1 1 0} direction and {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, and directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along direction of AlSc will easily split into two superpartials.

  14. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  15. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    Science.gov (United States)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  16. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface

  17. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    Science.gov (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  18. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  19. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui

    2010-09-23

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.

  20. Approximate first integrals of a chaotic Hamiltonian system | Unal ...

    African Journals Online (AJOL)

    Approximate first integrals (conserved quantities) of a Hamiltonian dynamical system with two-degrees of freedom which arises in the modeling of galaxy have been obtained based on the approximate Noether symmetries for the resonance ω1 = ω2. Furthermore, Kolmogorov-Arnold-Moser (KAM) curves have been ...

  1. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  2. Arsenene as a promising candidate for NO and NO{sub 2} sensor: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Can [School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn [School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu (China); Yan, Xiaohong [School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu (China); College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China)

    2017-03-26

    Based on first-principles calculations, we have studied the adsorption of CO, CO{sub 2}, N{sub 2}, NH{sub 3}, NO and NO{sub 2} molecules on the pristine arsenene monolayer. These gas molecules are held by an interaction that is intermediate between the physisorbed and chemisorbed states. Furthermore, the adsorption of NO and NO{sub 2} can produce a noticeable modifications of the density of states near the Fermi level. Interestingly, only the adsorption of NO and NO{sub 2} can lead to a magnetic moment of 1 μB. Therefore, our results can provide a theoretical basis for the potential applications of arsenene monolayer in gas sensing with electrical and magnetic methods. - Highlights: • A new type of two-dimensional single element semiconductor. • Investigated by first-principles calculations. • Easy desorption and good reversibility. • Gas sensing with electrical and magnetic methods.

  3. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    Science.gov (United States)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  4. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  5. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  6. First principles DFT study of dye-sensitized CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kalpna; Singh, Kh. S. [Department of Physics, D. J. College, Baraut -250611, U.P. (India); Kishor, Shyam, E-mail: shyam387@gmail.com [Department of Chemistry, J. V. College, Baraut -250611, U.P. (India); Josefesson, Ida; Odelius, Michael [Fysikum, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.

  7. Insights into the ammonia synthesis from first-principles

    DEFF Research Database (Denmark)

    Hellmann, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2006-01-01

    -properties, such as apparent activation energies and reaction orders, are calculated from the first-principles model. Our analysis shows that the reaction order of N-2 is unity under all considered conditions, whereas the reaction orders of H-2 and NH3 depend on reaction conditions. (c) 2006 Elsevier B.V. All rights reserved.......A new set of measurements is used to further test a recently published first-principles model for the ammonia (NH3) synthesis on an unpromoted Ru-based catalyst. A direct comparison shows an overall good agreement in NH3 productivity between the model and the experiment. In addition, macro...

  8. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study

    OpenAIRE

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Jiang, P. H.; Shi, J.

    2017-01-01

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes ({\\alpha}-, \\b{eta}-, {\\gamma}-, {\\delta}- and {\\zeta}-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the {\\alpha}-phosphorene ...

  9. Analytic representation for first-principles pseudopotentials

    International Nuclear Information System (INIS)

    Lam, P.K.; Cohen, M.L.; Zunger, A.

    1980-01-01

    The first-principles pseudopotentials developed by Zunger and Cohen are fit with a simple analytic form chosen to model the main physical properties of the potentials. The fitting parameters for the first three rows of the Periodic Table are presented, and the quality of the fit is discussed. The parameters reflect chemical trends of the elements. We find that a minimum of three parameters is required to reproduce the regularities of the Periodic Table. Application of these analytic potentials is also discussed

  10. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  11. A first-approximation urban-air-quality indicator

    Science.gov (United States)

    David M. Paproski; Julian R. Walker

    1977-01-01

    Development of the first-approximation-urban-air-quality indicator was reported by the Economic Council of Canada. The indicator takes account of ambient concentrations of five pollutants: sulfur dioxide, particulate matter, oxides of nitrogen, carbon monoxide, and total oxidants. Epidemiological evidence indicating the potential impact of these pollutants on human...

  12. A first-principle for the nervous system

    OpenAIRE

    Vadakkan, Kunjumon

    2016-01-01

    Higher brain functions such as perception and memory are first-person internal sensations whose mechanisms can have options to concurrently activate motor neurons for behavioral action. By setting up all the required constraints using available information from different levels, a theoretical examination from a first-person frame of reference led to the derivation of a first-principle of the structure-function units. These units operate in synchrony with the synaptically-connected neural circ...

  13. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    Science.gov (United States)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  14. First principles study of the optical contrast in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravati, S; Parrinello, M [Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, 6900 Lugano (Switzerland); Bernasconi, M, E-mail: marco.bernasconi@mater.unimib.i [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R Cozzi 53, I-20125, Milano (Italy)

    2010-08-11

    We study from first principles the optical properties of the phase change materials Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), GeTe and Sb{sub 2}Te{sub 3} in the crystalline phase and in realistic models of the amorphous phase generated by quenching from the melt in ab initio molecular dynamics simulations. The calculations reproduce the strong optical contrast between the crystalline and amorphous phases measured experimentally and exploited in optical data storage. It is demonstrated that the optical contrast is due to a change in the optical matrix elements across the phase change in all the compounds. It is concluded that the reduction of the optical matrix elements in the amorphous phases is due to angular disorder in p-bonding which dominates the amorphous network in agreement with previous proposals (Huang and Robertson 2010 Phys. Rev. B 81 081204) based on calculations on crystalline models.

  15. The interaction of oxygen with TiC(001): Photoemission and first-principles studies

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Liu, P.; Dvorak, J.; Jirsak, T.; Gomes, J.; Takahashi, Y.; Nakamura, K.

    2004-01-01

    High-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of oxygen with a TiC(001) surface. Atomic oxygen is present on the TiC(001) substrate after small doses of O 2 at room temperature. A big positive shift (1.5-1.8 eV) was detected for the C 1s core level. These photoemission studies suggest the existence of strong O↔C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CTiTi hollow as the most stable site for the adsorption of O. Ti and C atoms are involved in the adsorption and dissociation of the O 2 molecule. In general, the bond between O and the TiC(001) surface contains a large degree of ionic character. The carbide→O charge transfer is substantial even at high coverages (>0.5 ML) of oxygen. At 500 K and large doses of O 2 , oxidation of the carbide surface occurs with the removal of C and formation of titanium oxides. There is an activation barrier for the exchange of Ti-C and Ti-O bonds which is overcome only by the formation of C-C or C-O bonds on the surface. The mechanism for the removal of a C atom as CO gas involves a minimum of two O adatoms, and three O adatoms are required for the formation of CO 2 gas. Due to the high stability of TiC, an O adatom alone cannot induce the generation of a C vacancy in a flat TiC(001) surface

  16. Substitutional Co dopant on the GaAs(110) surface: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou; Yi, Zhijun, E-mail: zhijunyi@cumt.edu.cn

    2016-12-01

    Using the first principles ground state method, the electronic properties of single Co dopant replacing one Ga atom on the GaAs(110) surface are studied. Our calculated local density of states (LDOS) at Co site presents several distinct peaks above the valence band maximum (VBM), and this agrees with recent experiments. Moreover, the calculated STM images at bias voltages of 2 eV and −2 eV also agree with experiments. We discussed the origin of Co impurity induced distinct peaks, which can be characterized with the hybridization between Co d orbitals and p-like orbitals of surface As and Ga atoms.

  17. First principles study of CaTIO3 crystal in paraelectric and ferroelectric phases

    International Nuclear Information System (INIS)

    Hashemi, H.; Kompany, A.; Hosseini, M.

    2005-01-01

    Electronic properties of CaTiO 3 crystal in paraelectric and ferroelectric phases have been studied by first principles, using Hohenberg-kohn-sham density functional theory. In paraelectric phase the results show an indirect band gap of about at 2eV at Γ-R direction in the Brillouin zone and a strong hybridization between Ti-3d an O-2P orbital. In ferroelectric phase a direct band gap of about 1 eV is seen at ***Γ point. Up to our knowledge no data has been reported on the ferroelectric phase so far, therefore our results might be useful for the future works

  18. Generalized frameworks for first-order evolution inclusions based on Yosida approximations

    Directory of Open Access Journals (Sweden)

    Ram U. Verma

    2011-04-01

    Full Text Available First, general frameworks for the first-order evolution inclusions are developed based on the A-maximal relaxed monotonicity, and then using the Yosida approximation the solvability of a general class of first-order nonlinear evolution inclusions is investigated. The role the A-maximal relaxed monotonicity is significant in the sense that it not only empowers the first-order nonlinear evolution inclusions but also generalizes the existing Yosida approximations and its characterizations in the current literature.

  19. First-principles calculations of electronic, magnetic and optical properties of HoN doped with TM (Ti, V, Cr, Mn, Co and Ni)

    Science.gov (United States)

    Rouchdi, M.; Salmani, E.; Dehmani, M.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2018-02-01

    Using the first-principles calculations within the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), the structural, optical and magnetic properties of rare-earth nitride Ho0.95TM0.05N doped with transition metal (TM) atoms (Ti, V, Cr, Mn, Co and Ni) are investigated as a function the generalized gradient approximation and self-interaction correction (GGA-SIC) approximation. The optical properties are studied in detail by using ab-initio calculations. Using GGA-SIC we have showed that the bandgap value is in good agreement with the experimental value. Using GGA-SIC approximation for HoN, we have obtained a bandgap of 0.9 eV. Some of the dilute magnetic semiconductors (DMS) like Ho0.95TM0.05N under study exhibit a half-metallic behavior, which makes them suitable for spintronic applications. Moreover, the optical absorption spectra confirm the ferromagnetic stability based on the charge state of magnetic impurities.

  20. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  1. A first-principles and experimental study of helium diffusion in periclase MgO

    Science.gov (United States)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  2. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  3. Effects of lattice parameters on piezoelectric constants in wurtzite materials: A theoretical study using first-principles and statistical-learning methods

    Science.gov (United States)

    Momida, Hiroyoshi; Oguchi, Tamio

    2018-04-01

    Longitudinal piezoelectric constant (e 33) values of wurtzite materials, which are listed in a structure database, are calculated and analyzed by using first-principles and statistical learning methods. It is theoretically shown that wurtzite materials with high e 33 generally have small lattice constant ratios (c/a) almost independent of constituent elements, and approximately expressed as e 33 ∝ c/a - (c/a)0 with ideal lattice constant ratio (c/a)0. This relation also holds for highly-piezoelectric ternary materials such as Sc x Al1- x N. We conducted a search for high-piezoelectric wurtzite materials by identifying materials with smaller c/a values. It is proposed that the piezoelectricity of ZnO can be significantly enhanced by substitutions of Zn with Ca.

  4. Physical properties of the tetragonal CuMnAs: A first-principles study

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Carva, K.; Baláž, P.; Turek, I.

    2017-01-01

    Roč. 96, č. 9 (2017), s. 1-8, č. článku 094406. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : first-principles calculations * defects * CuMnAs * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  5. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  6. Study of the stabilization energies of halide-water clusters: An application of first-principles interaction potentials based on a polarizable and flexible model

    International Nuclear Information System (INIS)

    Ayala, Regla; Martinez, Jose M.; Pappalardo, Rafael R.; Sanchez Marcos, Enrique

    2004-01-01

    The aim of this work is to compute the stabilization energy E stab (n) of [X(H 2 O) n ] - (X≡F, Br, and I for n=1-60) clusters from Monte Carlo simulations using first-principles ab initio potentials. Stabilization energy of [X(H 2 O) n ] - clusters is defined as the difference between the vertical photodeachment energy of the cluster and the electron affinity of the isolated halide. On one hand, a study about the relation between cluster structure and the E stab (n) value, as well as the dependence of the latter with temperature is performed, on the other hand, a test on the reliability of our recently developed first-principles halide ion-water interaction potentials is carried out. Two different approximations were applied: (1) the Koopmans' theorem and (2) calculation of the difference between the interaction energy of [X(H 2 O) n ] - and [X(H 2 O) n ] clusters using the same ab initio interaction potentials. The developed methodology allows for using the same interaction potentials in the case of the ionic and neutral clusters with the proviso that the charge of the halide anion was switched off in the latter. That is, no specific parametrization of the interaction potentials to fit the magnitude under study was done. The good agreement between our predicted E stab (n) and experimental data allows us to validate the first-principles interaction potentials developed elsewhere and used in this study, and supports the fact that this magnitude is mainly determined by electrostatic factors, which can be described by our interaction potentials. No relation between the value of E stab (n) and the structure of clusters has been found. The diversity of E stab (n) values found for different clusters with similar interaction energy indicates the need for statistical information to properly estimate the stabilization energy of the halide anions. The effect of temperature in the prediction of the E stab (n) is not significant as long as it was high enough to avoid

  7. Ordered Phases in Cu2NiZn: A First-Principles Monte Carlo Study

    DEFF Research Database (Denmark)

    Simak, S.I.; Ruban, Andrei; Abrikosov, I.A.

    1998-01-01

    Monte Carlo simulations based on effective interactions obtained from first-principles calculations reveal the existence of three ordered phases in ternary Cu2NiZn: (i) "modified"-L1(0) (0-600 K), (ii) L1(2) (600-850 K), and (iii) L1(0) (850-1200 K). This is in contrast to the generally accepted...

  8. Structural, electronic and magnetic properties of Fe{sub 2}-based full Heusler alloys: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dahmane, F., E-mail: fethallah05@gmail.com [Département de SM, Institue des sciences et des technologies, Centre universitaire de Tissemsilt, 38000, Tissemsilt (Algeria); Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Mogulkoc, Y. [Department of Engineering Physics, Ankara University, Ankara (Turkey); Doumi, B.; Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 Mascara (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl-796001 (India); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Varshney, Dinesh [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe{sub 2}XAl (X=Cr, Mn, Ni) compounds in both the Hg{sub 2}CuTi and Cu{sub 2}MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu{sub 2}MnAl-type structure is energetically more stable than the Hg{sub 2}CuTi-type structure for the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds at the equilibrium volume. The full Heusler compounds Fe{sub 2}XAl (X=Cr, Mn) are half-metallic in the Cu{sub 2}MnAl-type structure. Fe{sub 2}NiAl has a metallic character in both CuHg{sub 2}Ti and AlCu{sub 2}Mn-type structures. The total magnetic moments of the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds are 1.0 and 2.0 μ{sub B}, respectively, which are in agreement with the Slater–Pauling rule M{sub tot}=Z{sub tot}− 24.

  9. First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene

    Science.gov (United States)

    Liu, Yang; An, Libao; Gong, Liang

    2018-04-01

    To enhance the interaction between Cu and graphene in graphene reinforced Cu matrix composites, the first principles calculation was carried out to study the adsorption of Cu atoms on graphene. P-type doping and n-type doping were formed, respectively, on vacancy-defected and Au-doped graphene based on band structure analysis, and this was verified by subsequent investigation on density of states. A computation on charge transfer confirmed that p-type doping could promote the electron transport between Cu and graphene, while n-type doping would prevent it. In addition, adsorption energy and Mulliken population analysis revealed that both vacancy defects and Au doping could improve the stability of the Cu-graphene system. The research conducted in this paper provides useful guidance for the preparation of Cu/graphene composites.

  10. Assessing photocatalytic power of g-C3N4 for solar fuel production: A first-principles study involving quasi-particle theory and dispersive forces.

    Science.gov (United States)

    Osorio-Guillén, J M; Espinosa-García, W F; Moyses Araujo, C

    2015-09-07

    First-principles quasi-particle theory has been employed to assess catalytic power of graphitic carbon nitride, g-C3N4, for solar fuel production. A comparative study between g-h-triazine and g-h-heptazine has been carried out taking also into account van der Waals dispersive forces. The band edge potentials have been calculated using a recently developed approach where quasi-particle effects are taken into account through the GW approximation. First, it was found that the description of ground state properties such as cohesive and surface formation energies requires the proper treatment of dispersive interaction. Furthermore, through the analysis of calculated band-edge potentials, it is shown that g-h-triazine has high reductive power reaching the potential to reduce CO2 to formic acid, coplanar g-h-heptazine displays the highest thermodynamics force toward H2O/O2 oxidation reaction, and corrugated g-h-heptazine exhibits a good capacity for both reactions. This rigorous theoretical study shows a route to further improve the catalytic performance of g-C3N4.

  11. A first-principles study of gas molecule adsorption on borophene

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available Borophene, a new two-dimensional material, was recently synthesized. The unique anisotropic structure and excellent properties of borophene have attracted considerable research interest. This paper presents a first-principles study of the adsorption of gas molecules (CO, CO2, NH3, NO, NO2 and CH4 on borophene. The adsorption configurations, adsorption energies and electronic properties of the gas molecules absorpted on borophene are determined, and the mechanisms of the interactions between the gas molecules and borophene are evaluated. We find that CO, CO2, NH3, NO and NO2 are chemisorbed on borophene, while CH4 is physisorbed on borophene. Furthermore, our calculation also indicate that CO and CO2 are chemisorbed on borophene with moderate adsorption energy and NO, NO2 and NH3 are chemisorbed on borophene via strong covalent bonds. Moreover, CO is found as an electron donor, while CO2 an electron acceptor. The chemisorption of CO and CO2 on borophene increases the electrical conductivity, so It seems that borophene has the potential to be used in high-sensitivity CO and CO2 gas sensors.

  12. Time-advance algorithms based on Hamilton's principle

    International Nuclear Information System (INIS)

    Lewis, H.R.; Kostelec, P.J.

    1993-01-01

    Time-advance algorithms based on Hamilton's variational principle are being developed for application to problems in plasma physics and other areas. Hamilton's principle was applied previously to derive a system of ordinary differential equations in time whose solution provides an approximation to the evolution of a plasma described by the Vlasov-Maxwell equations. However, the variational principle was not used to obtain an algorithm for solving the ordinary differential equations numerically. The present research addresses the numerical solution of systems of ordinary differential equations via Hamilton's principle. The basic idea is first to choose a class of functions for approximating the solution of the ordinary differential equations over a specific time interval. Then the parameters in the approximating function are determined by applying Hamilton's principle exactly within the class of approximating functions. For example, if an approximate solution is desired between time t and time t + Δ t, the class of approximating functions could be polynomials in time up to some degree. The issue of how to choose time-advance algorithms is very important for achieving efficient, physically meaningful computer simulations. The objective is to reliably simulate those characteristics of an evolving system that are scientifically most relevant. Preliminary numerical results are presented, including comparisons with other computational methods

  13. First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene

    Science.gov (United States)

    Luan, Zhaohui; Zhao, Lei; Chang, Hao; Sun, Dan; Tan, Changlong; Huang, Yuewu

    2017-11-01

    The structural, electronic and magnetic properties of Eu-doped phosphorene with different doping concentrations were investigated by first-principles calculations for the first time. The calculations show that Eu-doped phosphorene systems are stable and have the large magnetic moments of more than 6 μB by 2.7, 6.25 and 12.5 at.% doping concentrations. The major contribution to the magnetic moment stems from the 4f states of Eu-doped atom. Meanwhile, Eu-doped atom introduces the impurity bands which can be changed by different doping concentrations. In order to determine the magnetic interaction, the different configurations for two Eu atoms doping in 3 × 3 × 1 phosphorene supercell were studied, which reveals that all of the configurations tend to form ferromagnetic. These results can provide references for inducing large magnetism of two-dimensional phosphorene, which are valuable for their applications in spintronic devices and novel semiconductor materials.

  14. A first-principles study of He, Xe, Kr and O incorporation in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina)

    2015-05-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. Understanding the incorporation of fission products and oxygen is very important to predict the behavior of nuclear fuels. A first approach to this goal is the study of the incorporation energies and stability of these elements in the material. By means of first-principles calculations within the framework of density functional theory, we calculate the incorporation energies of He, Xe, Kr and O atoms in Th and C vacancy sites, in tetrahedral interstitials and in Schottky defects along the 〈1 1 1〉 and 〈1 0 0〉 directions. We also analyze atomic displacements, volume modifications and Bader charges. This kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. This should deal as a starting point towards the study of the complex behavior of fission products in irradiated ThC.

  15. Equilibration and analysis of first-principles molecular dynamics simulations of water

    Science.gov (United States)

    Dawson, William; Gygi, François

    2018-03-01

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  16. First-principles study of ternary fcc solution phases from special quasirandom structures

    International Nuclear Information System (INIS)

    Shin Dongwon; Wang Yi; Liu Zikui; Walle, Axel van de

    2007-01-01

    In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are generated at different compositions, x A =x B =x C =(1/3) and x A =(1/2), x B =x C =(1/4), whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions

  17. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  18. First-Principles Study of the Polar TiC/Ti Interface

    Institute of Scientific and Technical Information of China (English)

    Limin LIU; Shaoqing WANG; Hengqiang YE

    2003-01-01

    The interface structure, work of adhesion, and bonding character of the polar TiC/Ti interface have been examined by the first-principles density functional plane-wave pseudopotential calculations. Both Ti- and C-terminated interfaces including six different interface structures were calculated, which present quite different features. For the Ti-terminated interface, the interfacial Ti-Ti bond has a strong metallic and weak covalent character; while for the C-terminated interface, the interfacial bond is a strong polar covalent interaction between the Ti-3d and C-2p orbital.The work of adhesion of C-terminated interface is nearly 9 J/m2 stronger than that of the Ti-terminated. It is found that each termination has relatively large work of adhesion, which is consistent with other polar interfaces.

  19. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  20. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  1. First-principles calculation on electronic properties of zinc oxide by zinc–air system

    Directory of Open Access Journals (Sweden)

    Ahmad Azmin Mohamad

    2017-07-01

    Full Text Available First-principles calculations are performed to study the electronic properties of zinc oxide (ZnO formed on an anode after discharging a Zn–air system. Prior to calculation, the ZnO is characterised by X-ray diffraction using Rietveld refinement. Diffracted patterns proved the formation of single phase ZnO, while Rietveld analysis shows that the ZnO has a hexagonal wurtzite structure with lattice parameters, a = 3.244 and c = 5.199 Å. Geometry optimisation of the hexagonal wurtzite structure of the ZnO is performed using various exchange–correlation energy functionals. The local density approximation functional method is used to explain the structure, electronic band structure and density of state properties of hexagonal ZnO. The calculated energy band gap was 0.75 eV while the density of states reveals that the O 2p (the top valence band and Zn 4s (the bottom conduction band states domination.

  2. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  3. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    Science.gov (United States)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  4. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: leiw@buaa.edu.cn; Wang, Cong, E-mail: congwang@buaa.edu.cn; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-06-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  5. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Cong; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-01-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  6. Intrinsic and extrinsic spin-orbit torques from first principles

    International Nuclear Information System (INIS)

    Geranton, Guillaume

    2017-01-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag_2Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag_2Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT-based magnetic

  7. Intrinsic and extrinsic spin-orbit torques from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geranton, Guillaume

    2017-09-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT

  8. First-principles study on the creation of holes in high Tc cuprates

    International Nuclear Information System (INIS)

    Ambrosch-Draxl, C.; Sherman, E.Ya.; Auer, H.; Thonhauser, T.

    2004-01-01

    We investigate the charge redistribution in high T c cuprates as a function of pressure, composition, and doping. To this extent we have performed first-principles calculations based on density functional theory for several representatives of the Hg based cuprates. In particular, we focus on the creation of holes in the copper-oxygen planes. Conclusions are drawn about the similarities and differences between the three parameters influencing the superconducting transition temperature. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    Science.gov (United States)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  10. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  11. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  12. Rectification of graphene self-switching diodes: First-principles study

    Science.gov (United States)

    Ghaziasadi, Hassan; Jamasb, Shahriar; Nayebi, Payman; Fouladian, Majid

    2018-05-01

    The first principles calculations based on self-consistent charge density functional tight-binding have performed to investigate the electrical properties and rectification behavior of the graphene self-switching diodes (GSSD). The devices contained two structures called CG-GSSD and DG-GSSD which have metallic or semiconductor gates depending on their side gates have a single or double hydrogen edge functionalized. We have relaxed the devices and calculated I-V curves, transmission spectrums and maximum rectification ratios. We found that the DG-MSM devices are more favorable and more stable. Also, the DG-MSM devices have better maximum rectification ratios and current. Moreover, by changing the side gates widths and behaviors from semiconductor to metal, the threshold voltages under forward bias changed from +1.2 V to +0.3 V. Also, the maximum currents are obtained from 1.12 μA to 10.50 μA. Finally, the MSM and SSS type of all devices have minimum and maximum values of voltage threshold and maximum rectification ratios, but the 769-DG devices don't obey this rule.

  13. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Abraham, Jisha A. [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Department of Physics, National Defence Academy, Pune-411023 (India); Sanyal, S. P. [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linear optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.

  14. First-principles study of hydrogen storage in non-stoichiometric TiCx

    International Nuclear Information System (INIS)

    Ding, Haimin; Fan, Xiaoliang; Li, Chunyan; Liu, Xiangfa; Jiang, Dong; Wang, Chunyang

    2013-01-01

    Highlights: ► The absorption of hydrogen in non-stoichiometric TiC x is thermally favorable. ► As many as four hydrogen atoms can be trapped by a carbon vacancy. ► The diffusion of hydrogen in TiC x is difficult, especially in TiC x with high x. - Abstract: In this work, the first principles calculation has been performed to study the hydrogen storage in non-stoichiometric TiC x . It is found that hydrogen absorption in stoichiometric TiC is energetically unfavorable, while it is favorable in non-stoichiometric TiC x . This indicates that the existence of carbon vacancies is essential for hydrogenation storage in TiC x . At the same time, multiple hydrogen occupancy of the vacancy has been confirmed and it is calculated that as many as four hydrogen atoms can be trapped by a carbon vacancy. These absorbed hydrogen atoms tend to uniformly distribute around the vacancy. However, it is also found that the diffusion of hydrogen atoms in TiC x is difficult, especially in TiC x with high x.

  15. First-principles structures for the close-packed and the 7/2 motif of collagen

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Olsen, Kasper; Knapp-Mohammady, Michaela

    2012-01-01

    The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures. The stru......The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures...

  16. Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    -electron interactions are described by th=e many-body GW approximation. The conductance follows an exponential length dependence: Gn = Gc exp(-βn). The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, Gc, due to an improved alignment......The calculation of the electronic conductance of nanoscale junctions from first principles is a long-standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron...

  17. Parallelization for first principles electronic state calculation program

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Oguchi, Tamio.

    1997-03-01

    In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)

  18. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides.

    Science.gov (United States)

    Wojdeł, Jacek C; Hermet, Patrick; Ljungberg, Mathias P; Ghosez, Philippe; Íñiguez, Jorge

    2013-07-31

    We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

  19. First-principles investigation of mechanical properties of silicene, germanene and stanene

    Science.gov (United States)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  20. Study on the intrinsic defects in tin oxide with first-principles method

    Science.gov (United States)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  1. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun [Department of Physics, Govt. College Banjar, Kullu, Himanchal Pradesh, 175123 India (India); Bahadur, Amar, E-mail: abr.phys@gmail.com [Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, 228118 India (India); Mishra, Madhukar [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031 India (India); Vasudeva, Neena [Department of Physics, S. V. G. College, Ghumarwin, Bilaspur, Himanchal Pradesh, 1714021 India (India)

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  2. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  3. Thermodynamic assessment of the Sn–Sr system supported by first-principles calculations

    International Nuclear Information System (INIS)

    Zhao, Jingrui; Du, Yong; Zhang, Lijun; Wang, Aijun; Zhou, Liangcai; Zhao, Dongdong; Liang, Jianlie

    2012-01-01

    Highlights: ► All the literature data of Sn–Sr system is critically reviewed. ► First-principles calculation of enthalpy of formation is carried out for each compound. ► Thermodynamic parameters for Sn–Sr system are obtained by CALPHAD method. ► A hybrid approach of CALPHAD and first-principles calculations is recommended. - Abstract: A hybrid approach of CALPHAD and first-principles calculations was employed to perform a thermodynamic modeling of the Sn–Sr system. The experimental phase diagram and thermodynamic data available in the literature were critically reviewed. The enthalpies of formation for the 6 stoichiometric compounds (i.e. Sr 2 Sn, Sr 5 Sn 3 , SrSn, Sr 3 Sn 5 , SrSn 3 and SrSn 4 ) at 0 K were computed by means of first-principles calculations. These data were used as the experimental values in the optimization module PARROT in the subsequent CALPHAD assessment to provide thermodynamic parameters with sound physical meaning. A set of self-consistent thermodynamic parameters was finally obtained by considering reliable literature data and the first-principles computed results. Comprehensive comparisons between the calculated and measured quantities indicate that all the reliable experimental information can be satisfactorily accounted for by the present thermodynamic description.

  4. First-principles study of bandgap tuning in Ge1-xPbxSe

    Science.gov (United States)

    Lohani, Himanshu

    2018-03-01

    Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.

  5. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    International Nuclear Information System (INIS)

    Qin, Zhenzhen; Xiong, Zhihua; Chen, Lanli; Qin, Guangzhao

    2014-01-01

    A comprehensive first-principles study of the energetics, electronic, and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa x /GaN interface is found to be energetically stable under extremely Ga-rich conditions. It is worth noted that the antiferromagnetic coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of ferromagnetism would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices

  6. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  7. A unified approach to the Darwin approximation

    International Nuclear Information System (INIS)

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-01-01

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting

  8. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  9. First-principle study of the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP

    Science.gov (United States)

    Yang, H. Q.; Song, T. L.; Liang, X. X.; Zhao, G. J.

    2015-01-01

    In this work, the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP are studied by the first principle calculations. The software QUANTUM ESPRESSO and the generalized gradient approximation (GGA) for the exchange correlations have been used in the calculations. We calculate the lattice parameter, band gap and effective mass of the ternary alloy GaxIn1-xP for the Ga composition x varying from 0.0 to 1.0 by the step of 0.125. The effect of the Ga composition on the lattice parameter and the electronic density of states are discussed. The results show that the lattice parameter varies with the composition almost linearly following the Vegard's law. A direct-to-indirect band-gap crossover is found to occur close to x = 0.7. The effective masses are also calculated at Γ(000) high symmetry point along the [100] direction. The results show that the band gap and the electron effective mass vary nonlinearly with composition x.

  10. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  11. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun; Wu, Ying; Chan, C. T.; Zhang, Zhao-Qing

    2012-01-01

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  12. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun

    2012-07-24

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  13. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  14. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.

    2014-01-01

    of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  15. Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kiyoyuki Terakura

    2012-08-01

    Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.

  16. Adsorption of CO molecules on doped graphene: A first-principles study

    Directory of Open Access Journals (Sweden)

    Weidong Wang

    2016-02-01

    Full Text Available As a typical kinds of toxic gases, CO plays an important role in environmental monitoring, control of chemical processes, space missions, agricultural and medical applications. Graphene is considered a potential candidate of gases sensor, so the adsorption of CO molecules on various graphene, including pristine graphene, Nitrogen-doped graphene (N-doped graphene and Aluminum-doped graphene (Al-doped graphene, are studied by using first-principles calculations. The optimal configurations, adsorption energies, charge transfer, and electronic properties including band structures, density of states and differential charge density are obtained. The adsorption energies of CO molecules on pristine graphene and N-doped graphene are −0.01 eV, and −0.03 eV, respectively. In comparison, the adsorption energy of CO on Al-doped graphene is much larger, −2.69 eV. Our results also show that there occurs a large amount of charge transfer between CO molecules and graphene sheet after the adsorption, which suggests Al-doped graphene is more sensitive to the adsorption of CO than pristine graphene and N-doped graphene. Therefore, the sensitivity of gases on graphene can be drastically improved by introducing the suitable dopants.

  17. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    Directory of Open Access Journals (Sweden)

    Xuan L Liu

    Full Text Available The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT and phase-equilibria experiments that led to X-ray diffraction (XRD and electron probe micro-analysis (EPMA measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS calculations predict a large bcc-A2 (disordered/B2 (ordered miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  18. Understanding operational risk capital approximations: First and second orders

    Directory of Open Access Journals (Sweden)

    Gareth W. Peters

    2013-07-01

    Full Text Available We set the context for capital approximation within the framework of the Basel II / III regulatory capital accords. This is particularly topical as the Basel III accord is shortly due to take effect. In this regard, we provide a summary of the role of capital adequacy in the new accord, highlighting along the way the significant loss events that have been attributed to the Operational Risk class that was introduced in the Basel II and III accords. Then we provide a semi-tutorial discussion on the modelling aspects of capital estimation under a Loss Distributional Approach (LDA. Our emphasis is to focuss on the important loss processes with regard to those that contribute most to capital, the so called “high consequence, low frequency" loss processes. This leads us to provide a tutorial overview of heavy tailed loss process modelling in OpRisk under Basel III, with discussion on the implications of such tail assumptions for the severity model in an LDA structure. This provides practitioners with a clear understanding of the features that they may wish to consider when developing OpRisk severity models in practice. From this discussion on heavy tailed severity models, we then develop an understanding of the impact such models have on the right tail asymptotics of the compound loss process and we provide detailed presentation of what are known as first and second order tail approximations for the resulting heavy tailed loss process. From this we develop a tutorial on three key families of risk measures and their equivalent second order asymptotic approximations: Value-at-Risk (Basel III industry standard; Expected Shortfall (ES and the Spectral Risk Measure. These then form the capital approximations. We then provide a few example case studies to illustrate the accuracy of these asymptotic captial approximations, the rate of the convergence of the assymptotic result as a function of the LDA frequency and severity model parameters, the sensitivity

  19. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  20. Can the Tafel equation be derived from first principles?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2005-01-01

    A century ago, Tafel disapproved the attempts to derive the empirical equation named after him by thermodynamic methods. He noted that his observations referred to irreversible electrochemical reactions, where thermodynamics is inapplicable. This statement seems to remain valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical processes by determining rate constants and reaction orders from 'first principles', unless strictly specialized and, to a great extent, artificial models are developed. Nevertheless, in this paper an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Tafel's time

  1. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

    International Nuclear Information System (INIS)

    Carvalho, A; Jones, R; Janke, C; Goss, J P; Briddon, P R; Oeberg, S

    2008-01-01

    The self-interstitial in germanium can assume multiple configurations depending on the temperature and charge state. Here, we employ a first-principles density functional method to investigate the diffusion mechanisms of this defect. The energy barriers associated with the transformation between different structures are determined by the climbing nudged elastic band method, as a function of the charge state. The relation between the thermodynamic properties of the self-interstitial and the temperature evolution of electron radiation damage in germanium are discussed

  2. Electronic and magnetic properties of SmCrSb3 and GdCrSb3: A first principles study

    International Nuclear Information System (INIS)

    Sandeep; Ghimire, M.P.; Thapa, R.K.

    2011-01-01

    The density of states (DOS) and the magnetic moments of SmCrSb 3 and GdCrSb 3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb 3 is found to be 7.07 μ B while for GdCrSb 3 it is 8.27 μ B . The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states. - Highlights: → DOS and the magnetic moments of SmCrSb 3 and GdCrSb 3 are studied by full-FP-LAPW method. → Exchange splitting of eg and t2g of Cr-3d states and the rare-earth 4f state electrons are responsible for ground state ferromagnetism. → Rare-earth magnetic moments are greater than Cr moment indicating presence of 4f states.

  3. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  4. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  5. Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Momida

    2016-06-01

    Full Text Available We theoretically investigate the piezoelectricity of ScxAl1−xN in the entire range of x by first-principles calculations. We find that the piezoelectric constants of wurtzite-type ScxAl1−xN significantly enhance as x increases from 0 to 0.75. However, the energy stability analyses between structure phases show that the cubic-type phases become more stable than the wurtzite-type phases at x of approximately 0.5 and higher, interfering with the ability of wurtzite-type ScxAl1−xN to realize the maximum piezoelectricity. Moreover, our study on element combination dependences on piezoelectricity in A0.5B0.5N (A = Sc, Y, La and B = Al, Ga, In indicates that Sc, Y, and La have the strongest effect on the enhancement of piezoelectric constants in AlN, GaN, and InN, respectively.

  6. Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Guechi, A., E-mail: ab_guechi@yahoo.fr [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Merabet, A. [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Physics and Mechanics of Metallic Materials, Setif-1 University, 19000 Setif (Algeria); Chegaar, M. [Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria)

    2015-02-25

    Highlights: • KAsSn is interesting in the materials community due to its complex structure and narrow gap. • Physical properties of KAsSn have not taken much attention in previous studies. • The KAsSn structure is shown to be mechanically stable. • KAsSn is predicted to be brittleness and characterized by a weak elastic anisotropy. • Its high absorption in the U.V. energy range shows its use in the optoelectronic devices. - Abstract: In this work, a first-principles study of ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within the generalized gradient approximation developed by Wu–Cohen (GGA-Wc) has been performed. Based on the optimized structural parameter, the electronic structure, elastic and optical properties have been investigated. The calculated lattice constants agree reasonably with the previous results. The effect of high pressure on the structural parameters has been shown. The elastic constants were calculated and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is stable in the studied pressure regime. The single crystal elastic constants (C{sub ij}) and related properties are calculated using the static finite strain technique, moreover the polycrystalline elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter H{sub ν}, Young’s modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the Debye temperature was obtained from the average sound velocity. Electronic properties have been studied throughout the calculation of band structure, density of states and charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34 eV. Furthermore, in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, refractive index

  7. A first-principles study of phase transitions in ultrathin films of BaTiO 3

    Indian Academy of Sciences (India)

    We determine the effects of film thickness, epitaxial strain and the nature of electrodes on ferroelectric phase transitions in ultrathin films of BaTiO3 using a first-principles effective Hamiltonian in classical molecular dynamics simulations. We present results for polarization and dielectric properties as a function of temperature ...

  8. Disordered crystals from first principles I: Quantifying the configuration space

    Science.gov (United States)

    Kühne, Thomas D.; Prodan, Emil

    2018-04-01

    This work represents the first chapter of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures. We are interested in the range of temperatures, where most electronic components operate, that is, room temperature and above. The aim is a predictive first-principle formalism that combines ab-initio molecular dynamics and a finite-temperature Kubo-formula for homogeneous thermodynamic phases. The input for this formula is the ergodic dynamical system (Ω , G , dP) defining the thermodynamic crystalline phase, where Ω is the configuration space for the atomic degrees of freedom, G is the space group acting on Ω and dP is the ergodic Gibbs measure relative to the G-action. The present work develops an algorithmic method for quantifying (Ω , G , dP) from first principles. Using the silicon crystal as a working example, we find the Gibbs measure to be extremely well characterized by a multivariate normal distribution, which can be quantified using a small number of parameters. The latter are computed at various temperatures and communicated in the form of a table. Using this table, one can generate large and accurate thermally-disordered atomic configurations to serve, for example, as input for subsequent simulations of the electronic degrees of freedom.

  9. Bridging the gap between the Babinet principle and the physical optics approximation: Vectorial problem

    Science.gov (United States)

    Kubické, Gildas; Bourlier, Christophe; Delahaye, Morgane; Corbel, Charlotte; Pinel, Nicolas; Pouliguen, Philippe

    2013-09-01

    For a three-dimensional problem and by assuming perfectly electric conducting objects, this paper shows that the Babinet principle (BP) can be derived from the physical optics (PO) approximation. Indeed, following the same idea as Ufimtsev, from the PO approximation and in the far-field zone, the field scattered by an object can be split up into a field which mainly contributes around the specular direction (illuminated zone) and a field which mainly contributes around the forward direction (shadowed zone), which is strongly related to the scattered field obtained from the BP. The only difference resides in the integration surface. We show mathematically that the involved integral does not depend on the shape of the object but only on its contour. Simulations are provided to illustrate the link between BP and PO. The main gain of this work is that it provides a more complete physical insight into the connection between PO and BP.

  10. First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf and Ta) compounds

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2014-01-01

    Highlights: • The stability and elastic constants of carbides are studied by first principles. • The rules of modulus of MC compounds are discussed by their group. • The hardness of carbides is estimated in this paper at the first time. -- Abstract: The first principles calculations based on density functional theory (DFT) were adopted to investigate the stability, elastic constants, chemical bonding, Debye temperature and hardness of MC (M = Ti, V, Zr, Nb, Hf and Ta) compounds. The cohesive energy and formation enthalpy of these carbides indicate that they are thermodynamically stable structures. The population analysis was used to discuss the chemical bonding of these carbides. The elastic constants and moduli of these compounds were calculated. The results show that the bulk moduli of the carbides of transition metals from the fourth group (TiC, ZrC, HfC) are lower than the fifth group (VC, NbC, TaC). However, the Young’s moduli of the carbides from fourth group are higher than the fifth group. The hardness of compounds was estimated using a semi empirical hardness theory

  11. Fe magnetic moment formation and exchange interaction in Fe{sub 2}P: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.B., E-mail: liuxubo@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ping Liu, J.; Zhang, Qiming [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altounian, Z. [Center for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2013-03-15

    Electronic structure and magnetic properties of Fe{sub 2}P have been studied by a first-principles density functional theory calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe{sub 1} (3f) and Fe{sub 2} (3g) are 0.83 and 2.30μ{sub B}, respectively. The nearest neighbor inter-site magnetic exchange coupling parameter at the Fe{sub 1} layer (0.02 mRy) is much smaller than that at the Fe{sub 2} layer (1.29 mRy). The Fe moment at the 3f site is metastable and sensitive to the inter-site exchange interaction with its magnetic neighbors, which is responsible for the first order magnetic transition and large magneto-caloric effect around T{sub C}.

  12. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed

    2010-10-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS are estimated in the range 0 ≤ x ≤ 1 using both the standard local density approximation (LDA) as well as the generalized gradient approximations (GGA) of Wu-Cohen (WC) for the exchange-correlation potential. It is observed that the direct band gap EgΓ-Γ of CdxZn1-xS decreases nonlinearly with the compositional parameter x, as observed experimentally. It is also found that Cd s and d, S p and Zn d states play a major role in determining the electronic properties of this alloy system. Furthermore, results for complex dielectric constant ε(ω), refractive index n(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are also described in a wide range of the incident photon energy and compared with the existing experimental data. © 2010 Elsevier B.V. All rights reserved.

  13. The effects of the impurity distribution on the electrical and optical properties of Cr2+:ZnSe nanowires: First-principles study

    Directory of Open Access Journals (Sweden)

    Shenyu Dai

    2018-03-01

    Full Text Available The structural, electrical and mid-infrared optical properties of wurtzite structured ZnSe nanowires with different Chromium impurity distribution are investigated using first-principles calculation based on density-functional theory (DFT. The formation energies have been calculated to study the relative stabilities of different Cr doping positions. It is shown that when the Cr doping position shifted from the center to the edge, the splitting energy between 5T2 and 5E levels of Cr d-orbitals is decreased and a redshift is observed in the calculated infrared absorption spectra. A probable reason for these effects of the impurity distribution is discussed. Keywords: First-principles, Nanowires, Impurity distribution, Cr-doped ZnSe

  14. First-principles study of SnS electronic properties using LDA, PBE and HSE06 functionals

    Science.gov (United States)

    Ibragimova, R.; Ganchenkova, M.; Karazhanov, S.; Marstein, E. S.

    2018-03-01

    Recently, tin sulphide (SnS) has emerged as a promising alternative to conventional CIGS and CZTC for use in solar cells, possessing such properties as non-toxicity, low cost and production stability. SnS has a high theoretically predicted efficiency above 20%, but the experimentally achieved efficiency so far is as low as 4.36%. The reason for the low achieved efficiency is unclear. One of the powerful tools to get deeper insights about the nature of the problem is first-principles calculation approaches. That is why SnS has become an attractive subject for first-principles calculations recently. Previously calculated data, however, show a widespread of such fundamental value as the bandgap varying from 0.26 to 1.26 eV. In order to understand a reason for that, in this work, we concentrate on a systematic study of calculation parameters effects on the resulting electronic structure, with the particular attention paid to the influence of the exchange-correlation functional chosen for calculations. Several exchange-correlation functionals (LDA, PBE and HSE06) were considered. The systematic analysis has shown that the bandgap variation can result from a tensile/compressive hydrostatic pressure introduced by non-equilibrium lattice parameters used for the calculations. The study of the applicability of three functionals has shown that HSE06 gives the best match to both experimentally obtained bandgap and the XPS valence band spectra. LDA underestimates the bandgap but qualitatively reproduces experimentally measured valence DOS similar to that of HSE06 in contrast to PBE. PBE underestimates the bandgap and does not match to the measured XPS spectra.

  15. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  16. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  17. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan

    2011-01-01

    In this work we demonstrate that the experimentally measured area specific resistance and oxygen surface exchange of solid oxide fuel cell cathode perovskites are strongly correlated with the first-principles calculated oxygen p-band center and vacancy formation energy. These quantities...... are therefore descriptors of catalytic activity that can be used in the first-principles design of new SOFC cathodes....

  18. Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    Science.gov (United States)

    Aghajani, M.; Hadipour, H.; Akhavan, M.

    2018-05-01

    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates upon compression. These different rates can be explained by competition between the electronic screening and reduction of bond lengths.

  19. A first principle study for the comparison of phonon dispersion of armchair carbon and silicon nanotubes

    International Nuclear Information System (INIS)

    Chandel, Surjeet Kumar; Kumar, Arun; Bharti, Ankush; Sharma, Raman

    2015-01-01

    Using first principles density functional theoretical calculations, the present paper reports a systematic study of phonon dispersion curves in pristine carbon (CNT) and silicon nanotubes (SiNT) having chirality (6,6) in the armchair configuration. Some of the phonon modes are found to have negative frequencies which leads to instability of the systems under study. The number of phonon branches has been found to be thrice as much as the number of atoms. The frequency of the higher optical bands varies from 1690 to 1957 cm −1 for CNT(6,6) while it is 596 to 658 cm −1 for SiNT

  20. First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene

    International Nuclear Information System (INIS)

    Huang Juan; Chen Hong-Jin; Wu Mu-Sheng; Liu Gang; Ouyang Chu-Ying; Xu Bo

    2013-01-01

    The adsorption and diffusion of lithium on silicene are studied by using the first-principles method. It is found that the adsorption energy of Li adsorbing on silicene is significantly larger than that of Li adsorbing on graphene. With the increasing concentration of adsorbed Li atoms, the adsorption energy also increases. The diffusion barrier of Li on silicene is relatively low, which is insensitive to the concentration of adsorbed atoms

  1. First-principles study of rare-earth (RE) cobaltites (RE=Nd,Sm,Gd,Dy,Er,Lu)

    Science.gov (United States)

    Topsakal, M.; Wentzcovitch, R. M.

    2014-12-01

    The lanthanide series of the periodic table comprises 15 members ranging from Lanthanum (La) to Lutetium (Lu). Although they are more abundant than silver, and some of them are more abundant than lead, they are known as rare-earth (RE) elements. The "rare" in their name refers to the difficulty of obtaining the pure elements, not to their abundances in nature. They are never found as free metals in the Earth's crust and do not exist as pure minerals. Using first-principles plane-wave calculations, we investigate the structural and electronic properties of rare-earth cobaltites (RECoO3). Structurally consistent Hubbard U treatment was shown to essential for proper description of strongly correlated cobalt-d electrons. We successfully capture the experimentally observed structural trends and give first-principles insights on interesting phenomena related with the cobalt spin state change. It was demonstrated that increase of crystal-field splitting energy between eg-t2g orbitals and shrinking of unoccupied σ*-bonding eg bands are responsible for the increase of onset spin-state transition temperature along the series.

  2. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  3. A first-principles study of light non-metallic atom substituted blue phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sa-ke [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); Yu, Jin [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China)

    2015-11-30

    Graphical abstract: - Highlights: • All the impurities are covalently bonded to blue phosphorene (with a single vacancy). • All the substituted systems are semiconductors. • B-substituted system exhibits direct bandgap semiconductor behavior. • The band gaps with spin polarization are found in C and O-substituted systems. • Our works can paves a new route at nanoscale for novel functionalities of optical and spintronics devices. - Abstract: First-principles calculations are implemented to study the geometric, electronic and magnetic properties of light non-metallic atom (B, C, N, O and F) substituted blue phosphorene. All the substituted systems are highly stable. The B-substituted system is a direct bandgap semiconductor with a bandgap size about 1.5 eV. The C, O-substituted systems are promising systems to explore two-dimensional diluted magnetic semiconductors. Magnetism is observed for C and O substitution, while for the other impurities no magnetic moment is detected. Our works paves a new route at nanoscale for novel functionalities of optical and spintronics devices.

  4. Rectification effect about vacuum separating carbon nanotube bundle predicted by first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Y., E-mail: minshiyi@gmail.com [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Fang, J.H.; Zhong, C.G. [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Yao, K.L. [School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2012-05-07

    For the molecular spintronics transport systems, we propose that the spin current rectifier can be constructed using the nonmagnetic lead. The proposal is confirmed according to the first-principles study of the transport characteristics of a vacuum separating (15,0) carbon nanotube bundle where only one zigzag edge is hydrogenated. The strong rectification effect for spin (charge) current is obtained in the case of the magnetic parallel (anti-parallel) configuration of two zigzag edges. Our investigations indicate that such device can be used as the spin filter and the counterpart of the p–n junction in the field of molecular electronics. -- Highlights: ► We propose that nonmagnetic leads can construct spin current rectifier. ► We propose a spin diode and a filter using CNT. ► The spin and charge current all have the rectification effect in the one-dimensional spin diode.

  5. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  6. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp 2 dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction. © 2012 The Royal Society of Chemistry.

  7. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  8. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.

    2014-06-23

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  9. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.; Belabbes, Abderrezak; Ferhat, M.; Bechstedt, F.

    2014-01-01

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  10. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  11. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  12. First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.

    Science.gov (United States)

    Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun

    2017-11-01

    First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.

  13. Electric field effect of GaAs monolayer from first principles

    Directory of Open Access Journals (Sweden)

    Jiongyao Wu

    2017-03-01

    Full Text Available Using first-principle calculations, we investigate two-dimensional (2D honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field.

  14. Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods

    International Nuclear Information System (INIS)

    Music, Denis; Ahuja, Rajeev; Schneider, Jochen M.

    2006-01-01

    Using first-principles methods, we have studied the electronic structure and lattice dynamics of CaPd 3 B and compared them to isostructural MgNi 3 C. CaPd 3 B possesses less electronic states at the Fermi level, but more phonon modes at low frequencies, than MgNi 3 C. According to the phonon density of states, low frequency acoustic modes are dominated by Pd states, corresponding to Ni in MgNi 3 C. Furthermore, these Pd modes show soft phonons, which may be significant for second-order phase transitions. Based on the comparison to MgNi 3 C, we suggest that the properties of these two compounds may be similar

  15. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    Science.gov (United States)

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  16. An augmented space recursive method for the first principles study of concentration profiles at CuNi alloy surfaces

    International Nuclear Information System (INIS)

    Dasgupta, I.; Mookerjee, A.

    1995-07-01

    We present here a first principle method for the calculation of effective cluster interactions for semi-infinite solid alloys required for the study of surface segregation and surface ordering on disordered surfaces. Our method is based on the augmented space recursion coupled with the orbital peeling method of Burke in the framework of the TB-LMTO. Our study of surface segregation in CuNi alloys demonstrates strong copper segregation and a monotonic concentration profile throughout the concentration range. (author). 35 refs, 4 figs, 2 tabs

  17. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    International Nuclear Information System (INIS)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I—V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. First principles study of NH3 molecular adsorption on LiH (100) surfaces

    International Nuclear Information System (INIS)

    Lu Xiaoxia; Chen Yuhong; Dong Xiao

    2012-01-01

    The adsorption of NH 3 on LiH (100) crystal surfaces was studied by first principles method. The preferred adsorption sites, adsorption energy, dissociation energy and electronic structure of the LiH (100)/NH 3 systems were calculated separately. It is found that chemical adsorption happened mainly when NH 3 molecules are on the LiH (100) crystal surfaces. When NH 3 is adsorbed on the Li top site, NH 2 is formed on the LiH (100) crystal surfaces after loss of H atom, the calculated adsorption energy, 0.511 eV, belongs to strong chemical adsorption, then the interaction is strongest. The interaction between NH 2 and the neighboring Li, H are ionic. The covalent bonds are formed between N and H atoms in NH 2 . One H 2 molecule is formed by another H atom in NH 3 and H atom from LiH (100) crystal sur- faces. The covalent bonds are formed between H and H atoms in H 2 . (authors)

  19. Electronic and optical properties of bilayer PbI2: a first-principles study

    Science.gov (United States)

    Shen, Chenhai; Wang, Guangtao

    2018-01-01

    By employing first-principles methods, we investigate the effects of stacking patterns and interlayer coupling on the electronic structures and optical properties of bilayer (BL) PbI2. For optical properties, excitonic effects are considered. The results show that crystal-type BL PbI2 stacking pattern is the most stable bilayer structures with the equilibrium interlayer distance of 3.27 Å and a direct band structure. Moreover, for all considered patterns, the interlayer coupling can induce the band structures to transform from indirect to direct and also the band gap values to vary from 2.56 eV to 2.62 eV. In addition, our calculations show that the exciton binding energy of the most stable pattern is 0.81 eV, and excitonic effects have obvious influences on optical responses of BL PbI2. These results may be useful to future experimental studies on optoelectronic properties of two-dimensional BL PbI2 nanosheets.

  20. Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2010-05-01

    In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.

  1. A first-principles study of sodium adsorption and diffusion on phosphorene.

    Science.gov (United States)

    Liu, Xiao; Wen, Yanwei; Chen, Zhengzheng; Shan, Bin; Chen, Rong

    2015-07-07

    The structural, electronic, electrochemical as well as diffusion properties of Na doped phosphorene have been investigated based on first-principles calculations. The strong binding energy between Na and phosphorene indicates that Na could be stabilized on the surface of phosphorene without clustering. By comparing the adsorption of Na atoms on one side and on both sides of phosphorene, it has been found that Na-Na exhibits strong repulsion at the Na-Na distance of less than 4.35 Å. The Na intercalation capacity is estimated to be 324 mA h g(-1) and the calculated discharge curve indicates quite a low Na(+)/Na voltage of phosphorene. Moreover, the diffusion energy barrier of Na atoms on the phosphorene surface at both low and high Na concentrations is as low as 40-63 meV, which implies the high mobility of Na during the charge/discharge process.

  2. The distribution trends and site preferences of alloying elements in precipitates within a Zr alloy: A combined first-principles and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Luan, B.F., E-mail: bfluan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wang, J.M.; Qiu, R.S.; Tao, B.R.; He, W.J. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhang, X.Y.; Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, Q., E-mail: qingliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2016-09-05

    Energy dispersive X-ray spectroscopy in scanning transmission electron microscope (STEM-EDS) technique and first-principles calculation are jointly utilized to investigate the distribution trends and site preferences of alloying elements in the precipitates within Zr-1.0Cr-0.4Fe-0.4Mo-0.4Bi alloy. Based on selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS) results, the precipitates within the studied alloy are confirmed to be ZrCr{sub 2}-based Laves phase with FCC (C15) type structure. The STEM-EDS elemental mapping is acquired to clarify the distribution trends of alloying elements in precipitates, i.e. Fe>Mo>Bi. To better verify this distribution behavior, substitutional formation energies and equilibrium concentrations of ternary alloying elements in ZrCr{sub 2} Laves phase are calculated by first-principles. The calculated results show a good consistence with the STEM-EDS results. In addition, the site preferences of ternary alloying elements in ZrCr{sub 2} Laves phase are predicted by the calculation of transfer energies. Finally, the reasons accounting for different distribution trends and site preferences of alloying elements in ZrCr{sub 2} Laves phase are discussed in terms of density of states, which attributed to the pseudogap effect and hybridizations between atoms. - Highlights: • Clarified the distribution trends of Fe>Mo>Bi in precipitates by STEM-EDS. • Verified the experimental results by first-principles calculation. • Predicted the site preferences of alloying elements by first-principles calculation. • Hybridization and pseudogap lead to the strong distribution and site preferences.

  3. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  4. First Principles Thermodynamics of Minerals at HP–HT Conditions: MgO as a Prototypical Material

    Directory of Open Access Journals (Sweden)

    Donato Belmonte

    2017-09-01

    Full Text Available Ab initio thermodynamic properties, equation of state and phase stability of periclase (MgO, B1-type structure have been investigated in a broad P–T range (0–160 GPa; 0–3000 K in order to set a model reference system for phase equilibria simulations under deep Earth conditions. Phonon dispersion calculations performed on large supercells using the finite displacement method and in the framework of quasi-harmonic approximation highlight the performance of the Becke three-parameter Lee-Yang-Parr (B3LYP hybrid density functional in predicting accurate thermodynamic functions (heat capacity, entropy, thermal expansivity, isothermal bulk modulus and phase reaction boundaries at high pressure and temperature. A first principles Mie–Grüneisen equation of state based on lattice vibrations directly provides a physically-consistent description of thermal pressure and P–V–T relations without any need to rely on empirical parameters or other phenomenological formalisms that could give spurious anomalies or uncontrolled extrapolations at HP–HT. The post-spinel phase transformation, Mg2SiO4 (ringwoodite = MgO (periclase + MgSiO3 (bridgmanite, is taken as a computational example to illustrate how first principles theory combined with the use of hybrid functionals is able to provide sound results on the Clapeyron slope, density change and P–T location of equilibrium mineral reactions relevant to mantle dynamics.

  5. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  6. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  7. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    International Nuclear Information System (INIS)

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  8. First-principles investigation of Fe-doped MgSiO3-ilmenite

    International Nuclear Information System (INIS)

    Stashans, Arvids; Rivera, Krupskaya; Pinto, Henry P.

    2012-01-01

    First principles density functional theory and generalised gradient approximation (GGA) have been exploited to investigate Fe-doped ilmenite-type MgSiO 3 mineral. Strong electron correlation effects not included in a density-functional formalism are described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach). Microstructure of equilibrium geometries, electronic band structures as well as magnetic properties are computed and discussed in detail. Hartree-Fock methodology is used as an extra tool to study optical properties of the same system. For equilibrium state of the doped mineral we find zigzag-type atomic rearrangements around the Fe impurity. The inclusion of correlation effects leads to an improved description of the electronic properties. In particular, it is discovered that Fe incorporation produces local energy levels within the band-gap of the material. Using ΔSCF method optical absorption energies are found to be equal to 2.2 and 2.6 eV leading to light absorption at longer wavelengths compared to the undoped MgSiO 3 . Our results provide evidence on the occurrence of local magnetic moment in the region surrounding iron dopant. According to the outcomes, the Fe⇒Mg reaction can be described as substitutionally labile with Fe 2+ complex being found in the high-spin state at low pressure MgSiO 3 -ilmenite conditions.

  9. Molecular electronics: insight from first-principles transport simulations.

    Science.gov (United States)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport. Here we describe key computational ingredients and discuss these in relation to simulations for scanning tunneling microscopy (STM) experiments with C60 molecules where the experimental geometry is well characterized. We then show how molecular dynamics simulations may be combined with transport calculations to study more irregular situations, such as the evolution of a nanoscale contact with the mechanically controllable break-junction technique. Finally we discuss calculations of inelastic electron tunnelling spectroscopy as a characterization technique that reveals information about the atomic arrangement and transport channels.

  10. First-principles study of thermodynamical properties of random magnetic overlayers on fcc-Cu(001) substrate

    Czech Academy of Sciences Publication Activity Database

    Mašín, Martin; Bergqvist, L.; Kudrnovský, Josef; Kotrla, Miroslav; Drchal, Václav

    2013-01-01

    Roč. 87, č. 7 (2013), "075452-1"-"075452-7" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : Curie temperature * random overlayer * Heisenberg Hamiltonian * first principles * Monte Carlo simulations * magnon spectra Subject RIV: BE - Theoretical Physics Impact factor: 3.664, year: 2013 http://prb.aps.org/abstract/PRB/v87/i7/e075452

  11. First-principles thermodynamic calculations of diffusion characteristics of impurities in γ-iron

    International Nuclear Information System (INIS)

    Tsuru, T.; Kaji, Y.

    2013-01-01

    Because solute impurities have an effect on embrittlement through segregation under irradiation, solute stability and the influence of irradiation on the diffusion characteristics of impurities become prominent due to several acceleration effects of high irradiance circumstances in irradiated materials. In this study, the diffusion characteristics of several impurities in non-magnetic fcc iron are investigated using first-principles density functional theory (DFT) calculations. In accordance with classical diffusion and transition state theories, we nonempirically evaluated the contribution to properties of the binding energy between vacancy and each impurity and the migration enthalpy. The migration energy was calculated using the nudged elastic band method with DFT. The vacancy formation energy, including the entropic contributions to free energies in γ-iron, was evaluated by considering vibrational phonon frequencies based on frozen phonons employing the harmonic approximation for the lattice dynamics. Consequently, we confirmed that the binding energy between large-radius impurities and vacancies is larger than that with an equivalent size of the solvent element, and that the migration enthalpies of these impurities are quite small compared with self diffusion. This finding may indicate that the electronic binding states at the saddle point have a large influence on the migration of impurities

  12. First-principles studies on the effects of halogen adsorption on monolayer antimony.

    Science.gov (United States)

    Yeoh, Keat Hoe; Yoon, Tiem Leong; Ong, Duu Sheng; Lim, Thong Leng; Zuntu Abdullahi, Yusuf

    2017-09-27

    Using first-principles calculations, we carry out systematic studies on the electronic, magnetic and structural properties of halogenated β-phase antimonene. We consider two different levels of halogen adatom coverage i.e. Θ = 1/8 and Θ = 1/18. It is found that F, Cl and Br adatoms act as acceptors whereas the I adatom acts as a donor. For a high coverage of Θ = 1/8, halogenated β-phase antimonene exhibits metallic characteristics. With a lower coverage of Θ = 1/18, through the adsorption of F, Cl and Br the semiconducting unstrained antimonene becomes metallic. In contrast, I-adsorbed antimonene remains semiconducting but exhibits magnetic behavior. We further investigate the effects of bi-axial strain on the halogenated β-phase antimonene. It is found that bi-axial strain can only induce ferromagnetism on the halogenated antimonene at Θ = 1/18. However, the ferromagnetism is suppressed when the applied strain is high. We uncover that the emergence of strain-dependent magnetism is attributed to the presence of localized states in the bandgap resulting from collective effects of bi-axial strain and the adsorption of halogen atoms.

  13. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    Science.gov (United States)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  14. Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations

    Science.gov (United States)

    Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.

    2018-04-01

    The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.

  15. Fuzzy stochastic generalized reliability studies on embankment systems based on first-order approximation theorem

    Directory of Open Access Journals (Sweden)

    Wang Yajun

    2008-12-01

    Full Text Available In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM based on the harmonious finite element (HFE technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.

  16. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  17. First principles calculation of L21+A2 coherent equilibria in the Fe-Al-Ti system

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Gargano, Pablo H.; Ramirez-Caballero, Gustavo E.; Balbuena, Perla B.; Rubiolo, Gerardo H.

    2009-01-01

    By combining first-principles density functional total energy calculations and statistical mechanics the ground state and the phase equilibria at finite temperatures of the ternary system Fe-Al-Ti have been investigated. Total energy calculations have been performed by means of the Wien 2k code to establish the ground state energetic. A cluster expansion method was therewith used to describe solid solutions. At several chosen finite temperatures the cluster variation method in the irregular tetrahedron approximation was employed in order to calculate the iron rich ternary bcc equilibria. It is confirmed that there are two kinds of phase separations of the bcc phase, A2+L2 1 and B2+L2 1 .

  18. First-principles study of lithium adsorption and diffusion on graphene: the effects of strain

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Large strain is produced within graphene sheets, which serve as a critical component in lithium-ion batteries, due to the expansion of the electrodes. First-principles calculations are therefore employed to investigate the interaction of Li with strained single-layer graphene. It is found that tensile strain enhances Li binding on graphene and significantly reduces the formation energy of divacancies. In addition, Li diffusion through graphene with defects is facilitated by tensile strain, whereas diffusion parallel to the plane of pristine graphene is slightly hindered. (paper)

  19. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing

    2014-12-08

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  20. A first-principles study of group IV and VI atoms doped blue phosphorene

    Science.gov (United States)

    Bai, Ruimin; Chen, Zheng; Gou, Manman; Zhang, Yixin

    2018-02-01

    Using first-principles calculations, we have systematically investigated the structural, electronic and magnetic properties of blue phosphorene doped by group IV and VI atoms, including C, Si, Ge, Sn, O, S, Se and Te. All the doped systems are energetically stable. Only C, Si, Ge and O-substituted systems show the characteristics of spin polarization and the magnetic moments are all 1.0 μB. Moreover, we found that C, Si, Ge and O doped systems are indirect bandgap semiconductors, while Sn, S, Se and Te doped systems present metallic property. These results show that blue phosphorene can be used prospectively in optoelectronic and spintronic devices.

  1. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    Science.gov (United States)

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  2. Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji; Kawazoe, Yoshiyuki

    2009-01-01

    Plutonium dioxide (PuO 2 ) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO 2 at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO 2 were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO 2 were investigated up to 1500 K

  3. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    Science.gov (United States)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  4. First-principles calculations of a half-metallic ferromagnet zinc blende Zn1−xVxTe

    International Nuclear Information System (INIS)

    El Amine Monir, M.; Baltache, H.; Khenata, R.; Murtaza, G.; Azam, Sikander; Bouhemadou, A.; Al-Douri, Y.; Bin Omran, S.; Ali, Roshan

    2015-01-01

    First-principles calculations have been used to study the structural, elastic, electronic, magnetic and thermal properties of zinc blende Zn 1−x V x Te for x=0, 0.25, 0.50, 0.75 and 1 using the full-potential linearized augmented plane wave method (FP-LAPW) based on spin-polarized density functional theory (DFT). The electronic exchange-correlation potential is approached using the spin generalized gradient approximation (spin-GGA). The structural properties of the Zn 1−x V x Te alloys (x=0, 0.25, 0.50, 0.75 and 1) are given for the lattice constants and the bulk moduli and their pressure derivatives. The elastic constants C 11 , C 12 and C 44 are calculated using numerical first-principles calculations implemented in the WIEN2k package. An analysis of the band structures and the densities of states reveals that Zn 0.50 V 0.50 Te and Zn 0.75 V 0.25 Te exhibit a half-metallic character, while Zn 0.25 V 0.75 Te is nearly half-metallic. The band structure calculations are used to estimate the spin-polarized splitting energies Δ x (d) and Δ x (pd) produced by the V(3d)-doped and s(p)–d exchange constants N 0α (conduction band) and N 0β (valence band). The p–d hybridization reduces the magnetic moment of V from its atomic charge value of 3µ B and creates small local magnetic moments on the nonmagnetic Zn and Te sites. Finally, we present the thermal effect on the macroscopic properties of these alloys, such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model. - Highlights: • Some physical properties of Vanadium doped ZnTe have been investigated. • Structural parameters for the parent compounds compare well with the available data. • The elastic and thermal properties are studied for the first time

  5. A FIRST APPROXIMATION CALCULATION OF AIR CUSHION CHASSIS WEIGHT OF TRANSPORT AIRPLANE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article describes a first approximation of a weighted estimate of air cushion chassis. The algorithm for calculating the weight of air cushion chassis allows not only to estimate the mass of the chassis to a first approximation, but also to conduct a preliminary analysis of the influence of various parameters of the aircraft and the chassis on the weight of the aircraft at the stage of before designing. The algorithm can be expanded to include additional design decisions, such as the transformation of the fuselage, increasing the air cushion chassis canopy due to extensions, center of gravity, etc.

  6. Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jongbum Kim

    2013-12-01

    Full Text Available Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO, are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications.

  7. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Fang, C.F.; Ji, G.M. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-02-15

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  8. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    International Nuclear Information System (INIS)

    Zhao, P.; Liu, D.S.; Wang, P.J.; Zhang, Z.; Fang, C.F.; Ji, G.M.

    2011-01-01

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  9. Al{sub 3}Pd{sub 2}, a novel intermetallic compound: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    He, Pu; Fan, Changzeng, E-mail: chzfan@ysu.edu.cn; Li, Jian

    2015-11-15

    The potential crystal structures of Al{sub 3}Pd{sub 2} are explored by utilizing the newly developed particle swarm optimization (PSO) algorithm for crystal structure prediction based on first-principles calculations. In addition to the previously proposed phase (t-Al{sub 3}Pd{sub 2}), a new high-pressure phase for Al{sub 3}Pd{sub 2} was found: a C2/m symmetric structure (m-Al{sub 3}Pd{sub 2}). The calculations of the elastic constants and phonon dispersions demonstrate that the new phase is mechanically and dynamically stable. The enthalpy of the new phase is found to be lower than that of the known t-Al{sub 3}Pd{sub 2} phase at an applied pressure of approximately 13 GPa. Furthermore, we also investigated the phase transition energy barrier and the effect of temperature on the phase transition between the two Al{sub 3}Pd{sub 2} phases. Based on the predicted bulk and shear moduli, the new phase behaves in a ductile manner, which is the same as the known phase. In addition, the electronic structure and the crystal orbital Hamilton population (COHP) diagrams were also calculated to provide further understanding of the transport and bonding features of the novel phase. - Highlights: • A new C2/m symmetric structure (m-Al{sub 3}Pd{sub 2}) is uncovered. • The new phase is mechanical and dynamical stable. • The t-Al{sub 3}Pd{sub 2} phase may transform into the m-Al{sub 3}Pd{sub 2} phase. • Temperature is also beneficial for the formation of the new phase. • The new phase is found to behave in a ductile manner and metallic nature.

  10. Whether FeTe is superconductor: Insights from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Huang, GuiQin, E-mail: huangguiqin@njnu.edu.cn; Zhu, XingFeng

    2013-09-15

    Highlights: • The ground state of FeTe is in the double stripe antiferromagnetic phase. • The nesting of electron and hole at the Fermi surface is not present in FeTe. • The spin–lattice interaction can lead to the phonon softening. • The electron–phonon coupling constant λ is enhanced due to spin–phonon coupling. • Whether FeTe can be superconductor? Some discussions are made. -- Abstract: We present a first-principles pseudopotential study on the electronic structure, phonon structure and the electron–phonon interaction of stoichiometric FeTe in both the nonmagnetic and double stripe antiferromagnetic phases. Our electronic structure calculations show that the nesting effect of Fermi surface is not present in stoichiometric FeTe after considering the magnetic interaction. Comparing the phonon behavior in the double stripe antiferromagnetic phase with that in the nonmagnetic phase, we find that the spin–lattice interaction can lead to the phonon softening and increase electron–phonon coupling constant λ by about 33%, which is similar to other iron-based superconductors in the single stripe antiferromagnetic phase. We suggest that the phonon softening may have no clear contact with the specific magnetic order in the ground state. Finally, we make some discussion about whether FeTe can be superconductor combining our first-principles calculations.

  11. Photostriction and elasto-optic response in multiferroics and ferroelectrics from first principles

    Science.gov (United States)

    Yang, Yurong; Paillard, Charles; Xu, Bin; Bellaiche, L.

    2018-02-01

    The present work reviews a series of recent first-principles studies devoted to the description of the interaction of light and strain in ferroelectric and multiferroic materials. Specifically, the modelling schemes used in these works to describe the so-called photostriction and elasto-optic effects are presented, in addition to the results and analysis provided by these ab initio calculations. In particular, the large importance of the piezoelectric effect in the polar direction in the photostriction of ferroelectric materials is stressed. Similarly, the occurrence of low-symmetry phases in lead titanate thin films under tensile strain is demonstrated to result in large elasto-optic constants. In addition, first-principle calculations allow to gain microscopic knowledge of subtle effects, for instance in the case of photostriction, where the deformation potential effect in directions perpendicular to the polar axis is shown to be almost as significant as the piezoelectric effect. As a result, the numerical methods presented here could propel the design of efficient opto-mechanical devices.

  12. Lithium ion adsorption and diffusion on black phosphorene nanotube: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jin; Shi, Jing, E-mail: sjd865@jxnu.edu.cn; Hu, Yinquan; Wu, Musheng; Ouyang, Chuying; Xu, Bo

    2017-01-15

    Highlights: • Li ion storage performance of the single-walled black phosphorene nanotube was studied. • Li ion adsorption and diffusion on inside/outside wall of SWPNT was studied. • In-PNT system has higher adsorption energy and lower diffusion energy barrier. • 1-D tubular phosphorene improve Li storage performances as an anode material of LIBs. - Abstract: Li ion storage performance of the single-walled black phosphorene nanotube (PNT), which is considered as potential anode materials for high-performance Li-ion batteries (LIBs), is studied from first-principles calculations. The Li ion adsorption, diffusion and structural evolution of the one-dimensional armchair type PNT (aPNT) upon Li intercalation on the inside (in-PNT) and outside (out-PNT) surfaces were explored, comparing with that of the two-dimensional phosphorene (Psheet). A maximum Li storage capacity (at the intercalated state of Li{sub 22}P{sub 44}) is evaluated to be 432 mAh/g. It is also shown that the in-PNT system has higher adsorption energy and lower Li diffusion energy barrier compared with that of the Psheet and the out-PNT systems. The reason on why the better Li storage performance of the in-PNT is also studied from charge distribution and transfer analysis. These results suggest that PNT can be served as potential anode material for LIBs.

  13. Lithium ion adsorption and diffusion on black phosphorene nanotube: A first-principles study

    International Nuclear Information System (INIS)

    Cao, Jin; Shi, Jing; Hu, Yinquan; Wu, Musheng; Ouyang, Chuying; Xu, Bo

    2017-01-01

    Highlights: • Li ion storage performance of the single-walled black phosphorene nanotube was studied. • Li ion adsorption and diffusion on inside/outside wall of SWPNT was studied. • In-PNT system has higher adsorption energy and lower diffusion energy barrier. • 1-D tubular phosphorene improve Li storage performances as an anode material of LIBs. - Abstract: Li ion storage performance of the single-walled black phosphorene nanotube (PNT), which is considered as potential anode materials for high-performance Li-ion batteries (LIBs), is studied from first-principles calculations. The Li ion adsorption, diffusion and structural evolution of the one-dimensional armchair type PNT (aPNT) upon Li intercalation on the inside (in-PNT) and outside (out-PNT) surfaces were explored, comparing with that of the two-dimensional phosphorene (Psheet). A maximum Li storage capacity (at the intercalated state of Li_2_2P_4_4) is evaluated to be 432 mAh/g. It is also shown that the in-PNT system has higher adsorption energy and lower Li diffusion energy barrier compared with that of the Psheet and the out-PNT systems. The reason on why the better Li storage performance of the in-PNT is also studied from charge distribution and transfer analysis. These results suggest that PNT can be served as potential anode material for LIBs.

  14. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zemła, M.R., E-mail: marcin.zemla@wimpw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wróbel, J.S.; Wejrzanowski, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  15. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gygi, Francois [Univ. of California, Davis, CA (United States). Dept. of Computer Science; Galli, Giulia [Univ. of Chicago, IL (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-03

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solar energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems

  16. Diophantine approximation and Dirichlet series

    CERN Document Server

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  17. Composition-dependent properties and phase stability of Fe-Pd ferromagnetic shape memory alloys: A first-principles study

    Science.gov (United States)

    Li, Chun-Mei; Hu, Yan-Fei

    2017-12-01

    The composition-dependent properties and their correlation with the phase stability of Fe75+xPd25-x (- 10.0 ≤x ≤10.0 ) alloys are systematically investigated by using first-principles exact muffin-tin orbitals (EMTO)-coherent potential approximation (CPA) calculations. It is shown that the martensitic transformation (MT) from L 12 to body-centered-tetragonal (bct) occurs in the ordered alloys with about -5.0 ≤x ≤10.0 . In both the L 12 and bct phases, the evaluated a and c/a agree well with the available experimental data; the average magnetic moment per atom increases whereas the local magnetic moments of Fe atoms, dependent on both their positions and the structure of the alloy, decrease with increasing x. The tetragonal shear elastic constant of the L 12 phase ( C ' ) decreases whereas that of the bct phase (Cs) increases with x. The tetragonality of the martensite ( |1 -c /a | ) increases whereas its energy relative to the austenite with a negative value decreases with Fe addition. All these effects account for the increase of MT temperature (TM) with x. The MT from L 12 to bct is finally confirmed originating from the splitting of Fe 3d Eg and T2 g bands upon tetragonal distortion due to the Jahn-Teller effect.

  18. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    Science.gov (United States)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  19. First-Principles Study of Superconductivity in Ultra- thin Pb Films

    Science.gov (United States)

    Noffsinger, Jesse; Cohen, Marvin L.

    2010-03-01

    Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)

  20. First-principle calculations on the structural and electronic properties of hard C11N4

    International Nuclear Information System (INIS)

    Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli

    2014-01-01

    A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy

  1. First-principles study of the alkali earth metal atoms adsorption on graphene

    International Nuclear Information System (INIS)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-01-01

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  2. First-principles study of the alkali earth metal atoms adsorption on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sake [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); JinYu [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Zhang, Yajun [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-30

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  3. Chemical modifications and stability of phosphorene with impurities: a first principles study.

    Science.gov (United States)

    Boukhvalov, D W; Rudenko, A N; Prishchenko, D A; Mazurenko, V G; Katsnelson, M I

    2015-06-21

    We perform a systematic first-principles study of phosphorene in the presence of typical monovalent (hydrogen and fluorine) and divalent (oxygen) impurities. The results of our modeling suggest a decomposition of phosphorene into weakly bonded one-dimensional (1D) chains upon single- and double-side hydrogenation and fluorination. In spite of a sizable quasiparticle band gap (2.29 eV), fully hydrogenated phosphorene was found to be dynamically unstable. In contrast, complete fluorination of phosphorene gives rise to a stable structure, which is an indirect gap semiconductor with a band gap of 2.27 eV. We also show that fluorination of phosphorene from the gas phase is significantly more likely than hydrogenation due to the relatively low energy barrier for the dissociative adsorption of F2 (0.19 eV) compared to H2 (2.54 eV). At low concentrations, monovalent impurities tend to form regular atomic rows of phosphorene, though such patterns do not seem to be easily achievable due to high migration barriers (1.09 and 2.81 eV for H2 and F2, respectively). Oxidation of phosphorene is shown to be a qualitatively different process. Particularly, we observe instability of phosphorene upon oxidation, leading to the formation of disordered amorphous-like structures at high concentrations of impurities.

  4. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    The Anh, Le; Lam, Pham Tien; Manoharan, Muruganathan; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam; Tien Cuong, Nguyen; Mizuta, Hiroshi

    2016-01-01

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies

  5. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  6. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  7. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    Directory of Open Access Journals (Sweden)

    Muhammad Ejaz Khan

    2016-03-01

    Full Text Available We discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp2/sp3 configurations (z211 could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp2 hydrogen-passivation (z1 could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z1 ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z211 ZTHs do show characteristic corner magnetism when the size is small <2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.

  8. Detection of nucleic acids by graphene-based devices: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua [School of Physics and Electronics, Central South University, Changsha 410083 (China); School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Xu, Hui, E-mail: xuhui@csu.edu.cn, E-mail: ouyangfp06@tsinghua.org.cn; Ni, Xiang; Lin Peng, Sheng; Liu, Qi; Ping OuYang, Fang, E-mail: xuhui@csu.edu.cn, E-mail: ouyangfp06@tsinghua.org.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2014-04-07

    Based on first-principles quantum transport calculations, we design a graphene-based biosensor device, which is composed of graphene nanoribbons electrodes and a biomolecule. It is found that when different nucleobases or poly nucleobase chains are located in the nanogap, the device presents completely different transport properties, showing different current informations. And the change of currents from 2 to 5 orders of magnitude for four different nucleobases suggests a great ability of discrimination by utilizing such a device. The physical mechanism of this phenomenon originates from their different chemical composition and structure. Moreover, we also explore the coupling effect of several neighboring bases and the size effect of the nanogap on transport properties. Our results show the possibility of rapid sequencing DNA by measuring such a transverse-current of the device, and provide a new idea for sequencing DNA.

  9. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study.

    Science.gov (United States)

    Zhang, J; Liu, H J; Cheng, L; Wei, J; Liang, J H; Fan, D D; Jiang, P H; Shi, J

    2017-07-04

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes (α-, β-, γ-, δ- and ζ-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the α-phosphorene exhibits considerable anisotropic thermal transport, while it is less obvious in the other four phosphorene allotropes. The highest thermal conductivity is found in the β-phosphorene, followed by the δ-, γ- and ζ-phase. The much lower thermal conductivity of the ζ-phase can be attributed to its relatively complex atomic configuration. It is expected that the rich thermal transport properties of phosphorene allotropes can have potential applications in the thermoelectrics and thermal management.

  10. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. PMID:29657355

  11. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  12. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)

    2016-05-16

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  13. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    the first principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  14. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  15. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  16. Atomistic properties of helium in hcp titanium: A first-principles study

    International Nuclear Information System (INIS)

    Wang Yongli; Liu, Shi; Rong Lijian; Wang Yuanming

    2010-01-01

    First-principles calculations based on density functional theory have been performed to investigate the behaviors of He in hcp-type Ti. The most favorable interstitial site for He is not an ordinary octahedral or tetrahedral site, but a novel interstitial site (called FC) with a formation energy as low as 2.67 eV, locating the center of the face shared by two adjacent octahedrons. The origin was further analyzed by composition of formation energy of interstitial He defects and charge density of defect-free hcp Ti. It has also been found that an interstitial He atom can easily migrate along direction with an activation energy of 0.34 eV and be trapped by another interstitial He atom with a high binding energy of 0.66 eV. In addition, the small He clusters with/without Ti vacancy have been compared in details and the formation energies of He n V clusters with a pre-existing Ti vacancy are even higher than those of He n clusters until n ≥ 3.

  17. First-principles study of intrinsic phononic thermal transport in monolayer C3N

    Science.gov (United States)

    Gao, Yan; Wang, Haifeng; Sun, Maozhu; Ding, Yingchun; Zhang, Lichun; Li, Qingfang

    2018-05-01

    Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching 5. 5 ×1010 (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.

  18. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  19. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education

    2016-11-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.

  20. First-principles investigation of Fe-doped MgSiO{sub 3}-ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Rivera, Krupskaya [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Escuela de Geologia y Minas, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Pinto, Henry P. [Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217-0510 (United States)

    2012-06-15

    First principles density functional theory and generalised gradient approximation (GGA) have been exploited to investigate Fe-doped ilmenite-type MgSiO{sub 3} mineral. Strong electron correlation effects not included in a density-functional formalism are described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach). Microstructure of equilibrium geometries, electronic band structures as well as magnetic properties are computed and discussed in detail. Hartree-Fock methodology is used as an extra tool to study optical properties of the same system. For equilibrium state of the doped mineral we find zigzag-type atomic rearrangements around the Fe impurity. The inclusion of correlation effects leads to an improved description of the electronic properties. In particular, it is discovered that Fe incorporation produces local energy levels within the band-gap of the material. Using {Delta}SCF method optical absorption energies are found to be equal to 2.2 and 2.6 eV leading to light absorption at longer wavelengths compared to the undoped MgSiO{sub 3}. Our results provide evidence on the occurrence of local magnetic moment in the region surrounding iron dopant. According to the outcomes, the Fe Rightwards-Double-Arrow Mg reaction can be described as substitutionally labile with Fe{sup 2+} complex being found in the high-spin state at low pressure MgSiO{sub 3}-ilmenite conditions.

  1. First principles, thermal stability and thermodynamic assessment of the binary Ni-W system

    Energy Technology Data Exchange (ETDEWEB)

    Isomaeki, Iikka; Haemaelaeinen, Marko; Gasik, Michael [Aalto Univ., Espoo (Finland). School of Chemical Engineering; Braga, Maria H. [Porto Univ. (Portugal). CEMUC, Physics Engineering Dept.

    2017-12-15

    The Ni-W binary system was assessed using critically evaluated experimental data with assistance from first principles analysis and the CALPHAD method. The solution phases (liquid, fcc-A1 and bcc-A2) were modeled using the substitutional regular solution model. The recently discovered Ni{sub 8}W metastable phase was evaluated as Fe{sub 16}C{sub 2}- like martensite with three sublattices, and shown to be possibly stable according to first principles calculations. Ni{sub 8}W was also modeled as an interstitial compound, but the model is not good because the solubility of tungsten in nickel is very low, especially at low temperatures. There is no experimental evidence for such low solubility. The other binary compounds Ni{sub 4}W and Ni{sub 3}W were assessed as stoichiometric ones. Compared independent experimental and first principles data agree well with the calculated phase diagram using updated thermodynamic parameters.

  2. Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation

    Directory of Open Access Journals (Sweden)

    Tang C.

    2012-01-01

    Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.

  3. Sustainability in the Qatar national dietary guidelines, among the first to incorporate sustainability principles.

    Science.gov (United States)

    Seed, Barbara

    2015-09-01

    To present one of the first national dietary guidelines that incorporates food sustainability principles into its public health recommendations. The paper outlines recommendations and utilizes an ecological framework of policy analysis to examine context, drivers, consequences and future suggestions in establishing and maintaining sustainability principles within the Qatar Dietary Guidelines. Qatar. Population of Qatar. Qatar has produced one of the first national dietary guidelines to integrate principles of food sustainability. National interest in environmental sustainability and food security, population concern over food waste (reinforced by Islamic religious law), strong authority of the Supreme Council of Health (supported by an Emirate government), a small domestic food industry and a lack of food industry influence on the guidelines have contributed to the inclusion of sustainability principles within the document. Whether these principles will be embraced or rejected by the population in the long term will likely be determined by the Dietary Guidelines Task Force and the Supreme Council of Health's commitment to educating the population about the relevance and importance of these principles and establishing champions to advocate for them.

  4. A first-principles study of the electronic structure of the sulvanite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillen, J.M., E-mail: jorge.osorio@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia); Espinosa-Garcia, W.F. [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia)

    2012-03-15

    We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu{sub 3}VS{sub 4}, Cu{sub 3}NbS{sub 4} and Cu{sub 3}TaS{sub 4}; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors.

  5. First-principles study for the enhanced sulfur tolerance of Ni(1 1 1) surface alloyed with Pb

    Science.gov (United States)

    Zhang, Yanxing; Yang, Zongxian

    2018-04-01

    The adsorption of H2S, HS, S, H and the dissociation of H2S on the Ni2Pb/Ni (1 1 1) are systematically studied using the first-principles method based on density functional theory. It is found that H2S dissociation barriers are greatly increased by alloying with Pb atoms in the Ni(1 1 1) surface, while the barrier for H2S formation is greatly reduced. In addition, the adsorption of sulfur atom is weakened a lot. The results indicate that alloying with Pb may be a good way to increase the sulfur tolerance of Ni based anode catalysts of solid oxide fuel cells.

  6. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  7. Thermodynamic modeling of the Ca-Sn system based on finite temperature quantities from first-principles and experiment

    International Nuclear Information System (INIS)

    Ohno, M.; Kozlov, A.; Arroyave, R.; Liu, Z.K.; Schmid-Fetzer, R.

    2006-01-01

    The thermodynamic model of the Ca-Sn system was obtained, utilizing the first-principles total energies and heat capacities calculated from 0 K to the melting points of the major phases. Since the first-principles result for the formation energy of the dominating Ca 2 Sn intermetallic phase is drastically different from the reported experimental data, we performed two types of thermodynamic modeling: one based on the first-principles output and the other based on the experimental data. In the former modeling, the Gibbs energies of the intermetallic compounds were fully quantified from the first-principles finite temperature properties and the superiority of the former thermodynamic description is demonstrated. It is shown that it is the combination of finite temperature first-principle calculations and the Calphad modeling tool that provides a sound basis for identifying and deciding on conflicting key thermodynamic data in the Ca-Sn system

  8. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  9. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiwen; Guo, Xinjun; Wu, Mingyi; Sun, Qiang; Jia, Yu

    2014-01-01

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H 2 dissociation and hydrogen storage.

  10. Exfoliation of graphene flake from SiC substrate using hydrogen injection; a first-principle study

    Science.gov (United States)

    Lee, Bora; Han, Seungwu; Kim, Yong-Sung

    2009-03-01

    Recently there is an immense interest in studying graphene for investigating its unique electronic properties as well as practical applications to nanoscale devices. Up to now there are two methods to obtain graphene layers. The first one is a mechanical method in which the single graphene sheet is split off the bulk graphite crystals using adhesives. The other method is graphitization of SiC surfaces by annealing at elevated temperatures. Even though the latter approach can provide a graphene layer in a more controlled way, the exfoliation of the graphene layer still poses a big challenge. In this presentation, based on the first-principles results, we propose a novel exfoliation method using hydrogen. As a model system, the 6H-SiC(0001) 4x4 cell is used, which corresponds to the 3x3 graphene cell. We calculate the binding energy of single hydrogen atom in various places; above and below graphene surface and inside the first SiC layer. The binding energies of hydrogen are calculated for different coverages. It is found that at high coverages, the hydrogen atoms prefer to bind below the graphene surface, cutting the graphene-SiC bonds. This means that the graphene can be exfoliated in the hydrogen-rich environment. The detailed analysis including the electronic structures will be presented.

  11. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  12. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  13. First-principles calculations of mobility

    Science.gov (United States)

    Krishnaswamy, Karthik

    First-principles calculations can be a powerful predictive tool for studying, modeling and understanding the fundamental scattering mechanisms impacting carrier transport in materials. In the past, calculations have provided important qualitative insights, but numerical accuracy has been limited due to computational challenges. In this talk, we will discuss some of the challenges involved in calculating electron-phonon scattering and carrier mobility, and outline approaches to overcome them. Topics will include the limitations of models for electron-phonon interaction, the importance of grid sampling, and the use of Gaussian smearing to replace energy-conserving delta functions. Using prototypical examples of oxides that are of technological importance-SrTiO3, BaSnO3, Ga2O3, and WO3-we will demonstrate computational approaches to overcome these challenges and improve the accuracy. One approach that leads to a distinct improvement in the accuracy is the use of analytic functions for the band dispersion, which allows for an exact solution of the energy-conserving delta function. For select cases, we also discuss direct quantitative comparisons with experimental results. The computational approaches and methodologies discussed in the talk are general and applicable to other materials, and greatly improve the numerical accuracy of the calculated transport properties, such as carrier mobility, conductivity and Seebeck coefficient. This work was performed in collaboration with B. Himmetoglu, Y. Kang, W. Wang, A. Janotti and C. G. Van de Walle, and supported by the LEAST Center, the ONR EXEDE MURI, and NSF.

  14. Toward a first-principles integrated simulation of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Chang, C S; Klasky, Scott A; Cummings, Julian; Samtaney, Ravi; Shoshani, A.; Sugiyama, L.; Keyes, David E; Ku, Seung-Hoe; Park, G.; Parker, Scott; Podhorszki, Norbert; Strauss, H.; Abbasi, H.; Adams, Mark; Barreto, Roselyne D; Bateman, Glenn; Bennett, K.; Chen, Yang; D'Azevedo, Eduardo; Docan, Ciprian; Ethier, Stephane; Feibush, E.; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Jin, Chen; Khan, A.; Kritz, Arnold; Krstic, Predrag S; Lao, T.; Lee, Wei-Li; Lin, Zhihong; Lofstead, J.; Mouallem, P. A.; Nagappan, M.; Pankin, A.; Parashar, Manish; Pindzola, Michael S.; Reinhold, Carlos O; Schultz, David Robert; Schwan, Karsten; Silver, D.; Sim, A.; Stotler, D.

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles

  15. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  16. Hydrogenated and halogenated blue phosphorene as Dirac materials: A first principles study

    International Nuclear Information System (INIS)

    Sun, Minglei; Wang, Sake; Yu, Jin; Tang, Wencheng

    2017-01-01

    Highlights: • The fully hydrogenated and halogenated blue phosphorenes are 2D Dirac materials. • The Dirac cone in fluorinated and iodinated blue phosphorenes lies exactly at the Fermi level. • The mass density of hydrogenated and fluorinated blue phosphorenes is rather small. - Abstract: Using first-principles calculations, we systematically investigate the structures and electronic properties of fully hydrogenated and halogenated blue phosphorene (P_2X_2). All these systems possess Dirac cone at high-symmetry K point, which are mainly contributed by P s p_x p_y orbitals. The Dirac cone in P_2F_2 and P_2I_2 systems lies exactly at the Fermi level. Formation energy analysis denotes that all the systems are energetically stable except P_2I_2. The mass density for P_2H_2 and P_2F_2 systems is rather small. Our calculations proposed that these systems, especially P_2F_2 system, have great potential applications in future nanoelectronics.

  17. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    Science.gov (United States)

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  18. First-principles study on structure stabilities of α-S and Na-S battery systems

    Science.gov (United States)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  19. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  20. First-principle study on O–A–O dumbbell of delafossite crystal

    International Nuclear Information System (INIS)

    Jiang, H.F.; Gui, C.Y.; Zhu, Y.Y.; Wu, D.J.; Sun, S.P.; Xiong, C.; Zhu, X.B.

    2014-01-01

    Highlights: • From Cu to Ag, the increase of c parameters is attributed to electrostatic repulsion. • The difference charge density shows the bonding of Ag–O is more covalent. • Effective mass of AgAlO 2 along the [0 0 1] direction is smaller than that of CuAlO 2 . -- Abstract: Taking CuAlO 2 and AgAlO 2 for instance, O–A–O dumbbell-related electronic properties in delafossite lattice were systematically investigated by using the first-principles projector augmented wave method. Compared with CuAlO 2 , the increase of c parameter comes from the volume effect and electrostatic repulsion due to excess overlap of electron clouds between Ag and O atoms. The difference charge density demonstrates the interaction of A d z2 and O p z orbitals, and suggests the stronger covalent hybridization of Ag–O. The effective masses of these two compounds along [0 0 1] direction are remarkably different. Ag vacancy has lower formation energy relative to Cu one, which could benefit from longer c axis. The differences derived from O–A–O dumbbell could be helpful for thoroughly understanding its role in delafossite lattice

  1. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    Science.gov (United States)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  2. No surprise in the first Born approximation for electron scattering

    International Nuclear Information System (INIS)

    Lentzen, M.

    2014-01-01

    In a recent article it is argued that the far-field expansion of electron scattering, a pillar of electron diffraction theory, is wrong (Treacy and Van Dyck, 2012 [1]). It is further argued that in the first Born approximation of electron scattering the intensity of the electron wave is not conserved to first order in the scattering potential. Thus a “mystery of the missing phase” is investigated, and the supposed flaw in scattering theory is seeked to be resolved by postulating a standing spherical electron wave (Treacy and Van Dyck, 2012 [1]). In this work we show, however, that these theses are wrong. A review of the essential parts of scattering theory with careful checks of the underlying assumptions and limitations for high-energy electron scattering yields: (1) the traditional form of the far-field expansion, comprising a propagating spherical wave, is correct; (2) there is no room for a missing phase; (3) in the first Born approximation the intensity of the scattered wave is conserved to first order in the scattering potential. The various features of high-energy electron scattering are illustrated by wave-mechanical calculations for an explicit target model, a Gaussian phase object, and for a Si atom, considering the geometric conditions in high-resolution transmission electron microscopy. - Highlights: Treacy and Van Dyck (2012) argue that the far-field expansion of electron scattering is wrong. The chief theses of that former work are wrong. There is no room for the missing phase proposed by Treacy and Van Dyck. There is no violation of the intensity conservation to first order in the scattering potential. Calculations for a phase object and an atomic target confirm traditional scattering theory

  3. Valley Hall effect in disordered monolayer MoS2 from first principles

    DEFF Research Database (Denmark)

    Olsen, Thomas; Souza, Ivo

    2015-01-01

    ("unfolding") the Berry curvature from the folded Brillouin zone of the disordered supercell onto the normal Brillouin zone of the pristine crystal, and then averaging over several realizations of disorder. We use this scheme to study from first principles the effect of sulfur vacancies on the valley Hall...

  4. Hippocrates' First Aphorism: Reflections on Ageless Principles for the Practice of Medicine.

    Science.gov (United States)

    Loscalzo, Joseph

    2016-01-01

    Hippocrates' first aphorism presents a structurally simple but conceptually complex series of observations on the art and science of medicine. Its principles are timeless, relevant to physicians in antiquity as well as in the current era. This article analyzes Hippocrates' aphorism in light of Galen's and others' commentaries on it and interprets the principles espoused by Hippocrates in light of the perennial challenges of the practice of medicine.

  5. First-principles study on electronic, optic, elastic, dynamic and thermodynamic properties of RbH compound

    Directory of Open Access Journals (Sweden)

    Gulebaglan Sinem Erden

    2015-01-01

    Full Text Available We performed first-principles calculations to obtain the electronic, optical, elastic, lattice-dynamical and thermodynamic properties of RbH compound with rock salt structure. The ground-state properties, i.e., the lattice constant and the band gap were investigated using a plane wave pseudopotential method within density functional theory. The calculated lattice constant, bulk modulus, energy band gap and elastic constants are reported and compared with previous theoretical and experimental results. Our calculated results and the previous results which are obtained from literature are in a good agreement. Moreover, real and imaginary parts of complex dielectric function, reflectivity spectrum, absorption, extinction coefficient and loss function as a function of photon energy and refractive index with respect to photon wavelength were calculated. In addition, temperature dependent thermodynamic properties such as Helmholtz free energy, internal energy, entropy and specific heat have been studied.

  6. Credibility is the first principle

    International Nuclear Information System (INIS)

    Beecher, William

    2002-01-01

    The first principle of an effective public affairs program on nuclear energy is credibility. If credibility is lacking, no matter how artful the message, it will not be persuasive. There has long been a problem in the United States. For years much of the industry followed the practice, when there was an event at a nuclear power plant that resulted in an unplanned release of radioactivity, to tell the public there was 'no release' if in fact the release was below the technical specifications of what the NRC mandates as being safe. The NRC is a safety regulator. It can tell nuclear power plant operators what to do, or not do, when it comes to safety, but doesn't have the right to tell them what to say to the public. The example of an emergency exercise and the NRC press release on that occasion showed the direction how companies could be influenced to behave in order to prevent such avoidably negative news coverage, i.e. attaining credibility when public anxiety is concerned

  7. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  8. First-principles study of intrinsic defects in CdO

    Science.gov (United States)

    Zhukov, V. P.; Medvedeva, N. I.; Krasilnikov, V. N.

    2018-03-01

    Using the density functional theory (DFT) in the GGA and LSDA + U approximations, we studied the effect of cadmium atoms in the interstitial sites and vacancies in the oxygen and cadmium sublattices on the electronic structure of rock-salt cadmium oxide (CdO). Migration of cadmium atoms into interstitial sites was shown to be unlikely. In the presence of oxygen vacancies, the behavior of CdO remains semiconducting and nonmagnetic. Cadmium vacancies induce d0 ferromagnetism and spin-dependent conductivity, which is semiconducting for spin-up electrons and is p-type metallic for spin-down electrons. The formation energies and free energies were calculated for oxygen vacancies and metallic cadmium phase, which allowed an explanation to be offered for the large number of vacancies and the metallic phase formed during reduction in hydrogen atmosphere.

  9. First-principles study on band structures and electrical transports of doped-SnTe

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2016-06-01

    Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.

  10. Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mössbauer studies and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, V.V. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Kleinerman, N.M., E-mail: kleinerman@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Vershinin, A.V.; Mushnikov, N.V.; Protasov, A.V.; Stashkova, L.A. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Gorbatov, O.I. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Ruban, A.V. [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Gornostyrev, Yu.N. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation)

    2014-11-25

    Highlights: • Structure features of the formation of quasibinary solid solutions Fe–Co–Ga and Fe–Cr–Ga are found. • The first-principles calculation of mixing and solubility energies for Ga in an Fe–X alloy are given. • Ga handicaps the processes of phase separation in the Fe–Cr system and ordering in the Fe–Co system. • Preference of Ga entering in the neighborhood of a second element can help study multielement alloys. - Abstract: Investigation of Ga influence on the structure of Fe–Cr and Fe–Co alloys was performed with the use of Mössbauer spectroscopy and X-ray diffraction methods. The experimental results are compared with results of first-principles calculations of the mixing and solubility energies for Ga in an Fe–X (X = Co, Cr) alloy both in ferromagnetic and paramagnetic states. It is shown that Ga mainly goes into the solid solutions of the base alloys. In the alloys of the Fe–Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The results of the first-principles calculations testify in favor of a preferable dissolution of Ga in the FeCo regions of a multicomponent structure rather than FeCr regions, both types of regions being in the ferromagnetic state at the temperature of annealing. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe–Ga regions (or phases)

  11. Calculations of thermodynamic properties of PuO{sub 2} by the first-principles and lattice vibration

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi [Energy and Industrial Systems Department, ITOCHU Techno-Solutions Corporation, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-6080 (Japan)], E-mail: satoshi.minamoto@ctc-g.co.jp; Kato, Masato [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Konashi, Kenji [Institute for Materials Research, Tohoku University, 2145-2 Narita-chou, Oarai-chou, Ibaraki 311-1313 (Japan); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2009-03-15

    Plutonium dioxide (PuO{sub 2}) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO{sub 2} at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO{sub 2} were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO{sub 2} were investigated up to 1500 K.

  12. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    International Nuclear Information System (INIS)

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  13. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    Science.gov (United States)

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  14. A variational approach to operator and matrix Pade approximation. Applications to potential scattering and field theory

    International Nuclear Information System (INIS)

    Mery, P.

    1977-01-01

    The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed

  15. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such ......A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro......-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i......) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment (Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model (Appendix B)....

  16. First-principle optimal local pseudopotentials construction via optimized effective potential method

    International Nuclear Information System (INIS)

    Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng

    2016-01-01

    The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

  17. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    Science.gov (United States)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  18. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  19. Study of phase equilibrium of Pu2O3-PuO2 system by the first-principles calculation and CALPHAD approach

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji

    2010-01-01

    A combination of a first-principles calculation, lattice dynamics and CALPHAD (CALculation of PHAse Diagrams) modeling is proven as a powerful tool so as to evaluate the Gibbs free energy and a phase equilibrium between compounds including large amount of vacancies. In this work, non-stoichiometric PuO 2-x (dioxide) and Pu 2 O 3 (sesquioxide) has been studied. An electron cohesive energy was evaluated from a first-principles calculations to estimate total energy of the compounds and a vacancy formation energy, and the theory of statistical mechanics was applied to evaluate enthalpy/entropy change due to oxygen vacancies for the non-stoichiometry of the PuO 2 (i.e. PuO 2-x ). Then a vacancy-vacancy interaction energy was determined by fitting to the experimental data of a quantity of non-stoichiometry of the PuO 2 compounds as a function of oxygen potentials at large deviation from stoichiometry. The resulting Gibbs free energy yields phase boundary between the phases with good agreement with to the experimental data.

  20. First-principles modeling of localized d states with the GW@LDA+U approach

    Science.gov (United States)

    Jiang, Hong; Gomez-Abal, Ricardo I.; Rinke, Patrick; Scheffler, Matthias

    2010-07-01

    First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f -electron systems [H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)10.1103/PhysRevLett.102.126403] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U) , as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d -electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U . These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.

  1. Engineering drawing from first principles using AutoCAD

    CERN Document Server

    Maguire, Dennis E

    1998-01-01

    Engineering Drawing From First Principles is a guide to good draughting for students of engineering who need to learn how to produce technically accurate and detailed designs to British and International Standards. Written by Dennis Maguire, an experienced author and City and Guilds chief examiner, this text is designed for use on Further Education and University courses where a basic understanding of draughtsmanship and CAD is necessary. Although not written as an AutoCAD tutor, the book will be a useful introduction to good CAD practice.Part of the Revision and Self-Assessmen

  2. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    Science.gov (United States)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  3. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    Science.gov (United States)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  4. Adsorption properties of fission gases Xe and Kr on pristine and doped graphene: A first principle DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Vazhappilly, Tijo, E-mail: tijoj@barc.gov.in [Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ghanty, Tapan K., E-mail: tapang@barc.gov.in [Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Jagatap, B.N. [Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2017-07-15

    Graphene has excellent adsorption properties due to large surface area and has been used in applications related to gas sorption and separation. The separation of radioactive noble gases using graphene is an interesting area of research relevant to nuclear waste management. Radioactive noble gases Xe and Kr are present in the off-gas streams from nuclear fission reactors and spent nuclear fuel reprocessing plants. The entrapment of these volatile fission gases is important in the context of nuclear safety. The separation of Xe from Kr is extremely difficult, and energy intensive cryogenic distillation is generally employed. Physisorption based separation techniques using porous materials is a cost effective alternative to expensive cryogenic distillation. Thus, adsorption of noble gases on graphene is relevant for fundamental understanding of physisorption process. The properties of graphene can be tuned by doping and incorporation of defects. In this regard, we study the binding affinity of Xe and Kr in pristine and doped graphene sheets. We employ first principle calculations using density functional theory, corrected for dispersion interactions. The structural parameters obtained from the current study show excellent agreement with the available theoretical and experimental observations on similar systems. Noble gas adsorption energies on pristine graphene match very well with the available literature. Our results show that the binding energy of fission gases Xe and Kr on graphene can be considerably improved through doping the lattice with a heteroatom. - Graphical abstract: The adsorption of radioactive fission gases Xe and Kr on pristine/doped graphene is an interesting topic in the context of nuclear waste management. Previous experimental and computational studies about Xe/Kr adsorption on graphene were limited to only on pristine graphene. The doping by hetero atom changes the electronic properties of graphene and creates active sites in the lattice. Based

  5. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  6. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  7. Piezoelectricity in K1−xNaxNbO3: First-principles calculation

    International Nuclear Information System (INIS)

    Li Qiang; Zhang Rui; Lv Tian-Quan; Zheng Li-Mei

    2015-01-01

    The piezoelectric properties of K 1−x Na x NbO 3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K 1−x Na x NbO 3 , the total energy, piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K 1−x Na x NbO 3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d 33 of orthorhombic K 0.5 Na 0.5 NbO 3 reaches a maximum value. The rotated maximum of is found to be along the 50° direction away from the spontaneous polarization (close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K 0.5 Na 0.5 NbO 3 becomes easier compared with orthorhombic KNbO 3 , which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary. (paper)

  8. An inductive algorithm for smooth approximation of functions

    International Nuclear Information System (INIS)

    Kupenova, T.N.

    2011-01-01

    An inductive algorithm is presented for smooth approximation of functions, based on the Tikhonov regularization method and applied to a specific kind of the Tikhonov parametric functional. The discrepancy principle is used for estimation of the regularization parameter. The principle of heuristic self-organization is applied for assessment of some parameters of the approximating function

  9. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  10. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  11. First-principles study of helium clustering at initial stage in ThO2

    International Nuclear Information System (INIS)

    Shao Kuan; Han Han; Zhang Wei; Wang Chang-Ying; Guo Yong-Liang; Ren Cui-Lan; Huai Ping

    2017-01-01

    The clustering behavior of helium atoms in thorium dioxide has been investigated by first-principles calculations. The results show that He atoms tend to form a cluster around an octahedral interstitial site (OIS). As the concentration of He atoms in ThO 2 increases, the strain induced by the He atoms increases and the octahedral interstitial site is not large enough to accommodate a large cluster, such as a He hexamer. We considered three different Schottky defect (SD) configurations (SD 1 , SD 2 , and SD 3 . When He atoms are located in the SD sites, the strain induced by the He atoms is released and the incorporation and binding energies decrease. The He trimer is the most stable cluster in SD 1 . Large He clusters, such as a He hexamer, are also stable in the SDs. (paper)

  12. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  13. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  14. Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiong; Zhou, Le; Li, Yawei [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Sun, Qiang, E-mail: sunqiang@pku.edu.cn [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2012-08-06

    Five new metal-free dyes with acceptor–π–donor (A–π–D) structure are studied using first-principles calculation based on density functional theory. Benzothiadiazole (BTD) and triphenylamine (TPA) were chosen, respectively, as an acceptor and a donor with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) as a π linker. The linker was further modified by -CH=CH- resulting in a red-shift with improved absorption spectra caused by the smaller energy gap and the increased orbital hybridization. The designed dyes are found to exhibit wide absorption spectra, high molar extinction coefficients, desirable orbital distributions, and good energy levels alignment, and hence can have potential applications in dye-sensitized solar cells. -- Highlights: ► New metal-free dyes with A–π–D architecture. ► With wide absorption spectra and high molar extinction coefficients. ► With desirable orbital distribution and good energy levels alignment.

  15. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  16. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  17. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    NARCIS (Netherlands)

    Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1998-01-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency

  18. First-principles lattice-gas Hamiltonian revisited: O-Pd(100)

    OpenAIRE

    Kappus, Wolfgang

    2016-01-01

    The methodology of deriving an adatom lattice-gas Hamiltonian (LGH) from first principles (FP) calculations is revisited. Such LGH cluster expansions compute a large set of lateral pair-, trio-, quarto interactions by solving a set of linear equations modelling regular adatom configurations and their FP energies. The basic assumption of truncating interaction terms beyond fifth nearest neighbors does not hold when adatoms show longer range interactions, e.g. substrate mediated elastic interac...

  19. A first principles study of native defects in alpha-quartz

    CERN Document Server

    Roma, G

    2003-01-01

    We present a study of several neutral and charged oxygen and silicon defects in alpha-quartz. We performed plane waves pseudopotential calculations in the framework of density functional theory in the local density approximation. We will show the structures that we obtained for vacancies and interstitials in several charge states and the corresponding formation energies. We discuss the reciprocal dependence of formation energies of charged defects (and thus concentrations) and the electron chemical potential on each other and we determine the latter by iterative self-consistent solution of the equation imposing charge neutrality. Results on defect concentrations, their dependence on oxygen partial pressure, and self-doping effects are presented.

  20. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  1. Hydrogenated and halogenated blue phosphorene as Dirac materials: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189 (China); Wang, Sake [Department of Physics, Southeast University, Nanjing, Jiangsu 210096 (China); Yu, Jin [School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu 211189 (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189 (China)

    2017-01-15

    Highlights: • The fully hydrogenated and halogenated blue phosphorenes are 2D Dirac materials. • The Dirac cone in fluorinated and iodinated blue phosphorenes lies exactly at the Fermi level. • The mass density of hydrogenated and fluorinated blue phosphorenes is rather small. - Abstract: Using first-principles calculations, we systematically investigate the structures and electronic properties of fully hydrogenated and halogenated blue phosphorene (P{sub 2}X{sub 2}). All these systems possess Dirac cone at high-symmetry K point, which are mainly contributed by P s p{sub x} p{sub y} orbitals. The Dirac cone in P{sub 2}F{sub 2} and P{sub 2}I{sub 2} systems lies exactly at the Fermi level. Formation energy analysis denotes that all the systems are energetically stable except P{sub 2}I{sub 2}. The mass density for P{sub 2}H{sub 2} and P{sub 2}F{sub 2} systems is rather small. Our calculations proposed that these systems, especially P{sub 2}F{sub 2} system, have great potential applications in future nanoelectronics.

  2. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  3. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  4. Interaction of tetraethoxysilane with OH-terminated SiO{sub 2} (0 0 1) surface: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaodi, E-mail: dixiaodeng@gmail.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Song, Yixu, E-mail: songyixu@163.com [State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084 (China); Li, Jinchun [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Pu, Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2014-06-01

    First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO{sub 2}(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO{sub 2} film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO{sub 2} films while the other will lead to formation of disordered SiO{sub 2} films.

  5. Nonlinear Elasticity of Borocarbide Superconductor YNi2B2C: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with increasing pressure.

  6. First-principles study of the effects of segregated Ga on an Al grain boundary

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Wang Tianmin; Deng Shenghua; Shu Xiaolin; Kohyama, Masanori; Yamamoto, Ryoichi

    2006-01-01

    The effects of different amounts of segregated Ga (substitutional) on an Al grain boundary have been investigated by using a first-principles pseudopotential method. The segregated Ga is found to draw charge from the surrounding Al due to the electronegativity difference between Ga and Al, leading to a charge density reduction between Ga and Al as well as along the Al grain boundary. Such an effect can be enhanced by increasing the Ga segregation amount. With further Ga segregated, in addition to the charge-drawing effect that occurs in the Al-Ga interface, a heterogeneous α-Ga-like phase can form in the grain boundary, which greatly alters the boundary structure. These effects are suggested to be responsible for Ga-induced Al intergranular embrittlement

  7. First-principles studies of doped InTaO4 for photo catalytic applications

    International Nuclear Information System (INIS)

    Hyunju, Chang; Kijeong, Kong; Yong, Soo Choi; Youngmin, Choi; Jin-Ook, Baeg; Sang-Jin, Moon

    2006-01-01

    We have calculated electronic structure of InTaO 4 using first-principle method, in order to investigate the relationship between its electronic structures and visible light absorption. We have calculated densities of states (DOS) for various states of InTaO 4 , such as pristine, oxygen vacancy, Ni-doped, and A-doped (A = C, N, and S) states. We have found that oxygen vacancy can induce the gap states and Ni-doping can narrow the band gap by generating additional states on the top of the valence band as well as on the top of the gap states. For A-doped states, it was found that N-doping and S-doping could narrow the pristine band gap inducing the additional states above the pristine valence band, while C-doping can generate the gap states in the middle of the pristine band gap. (authors)

  8. A first-principles study on hydrogen in ZnS: Structure, stability and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Sheng-Yi, E-mail: ayikongjian@gmail.com [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Meng, Xing, E-mail: mengxingjlu@163.com [College of Physics, Jilin University, Changchun 130012 (China)

    2015-02-20

    Based on first-principles calculations, the local structures and their energetic stability for impurity hydrogen (H) in semiconductor ZnS are investigated. H is most favorable to dwell in the bond center (BC) site in ZnS. The antibonding site of Zn (AB{sub Zn}) has close energy with BC. The antibonding site of S (AB{sub S}) and interstitial (I{sub H}) site have 0.19 eV and 0.44 eV energy cost, separately. The bond strength with S and Zn determines the stability of impurity H in ZnS. Meanwhile, H is highly moveable in ZnS. At the room temperature, H can overcome the barrier to diffuse through the neighboring BC site. - Highlights: • Local structures for hydrogen in ZnS are investigated. • Impurity level of hydrogen is modulated by bonding with S or Zn. • Hydrogen is highly moveable in ZnS.

  9. ON ASYMTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR DIFFERENTIAL AND DIFFERENCE EQUATIONS

    Directory of Open Access Journals (Sweden)

    W.T. van Horssen

    2007-04-01

    Full Text Available In this paper the concept of integrating factors for differential equations and the concept of invariance factors for difference equations to obtain first integrals or invariants will be presented. It will be shown that all integrating factors have to satisfya system of partial differential equations, and that all invariance factors have to satisfy a functional equation. In the period 1997-2001 a perturbation method based on integrating vectors was developed to approximate first integrals for systems of ordinary differential equations. This perturbation method will be reviewed shortly. Also in the paper the first results in the development of a perturbation method for difference equations based on invariance factors will be presented.

  10. Exploring the nucleon structure from first principles of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-04-15

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  11. Exploring the nucleon structure from first principles of QCD

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2010-04-01

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  12. Core structure of screw dislocations in Fe from first-principles

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-11-01

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  13. Thermal Shock Experiment (TSEX): a ''proof-of-principle'' evaluation of the use of electron beam heating to simulate the thermal mechanical environment anticipated for the first wall of the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Armstrong, P.E.; Krakowski, R.A.

    1977-06-01

    The results of a ''proof-of-principle'' Thermal Shock Experiment (TSEX), designed to simulate the thermal mechanical response of insulator-metal composite first walls anticipated for pulsed high-density fusion reactors, are given. A programmable 10-kV, 1.0-A electron beam was used to pulse repeatedly (0.30-mm)Al 2 O 3 /(1.0-mm) Nb-1Zr composite samples 200 to 300 K, relative to a base-line temperature of 1000 K. The experimental goals of TSEX were established relative to the first-wall environment anticipated for the Reference Theta-Pinch Reactor (RTPR). A detailed description of the TSEX ''proof-of-principle'' apparatus, experimental procedure, and diagnostics is given. The results of extensive thermal analyses are given, which are used to estimate the thermal stresses generated. Although little or no control was exercised over the sample fabrication and thermal history, one sample experienced in excess of 800 thermal cycles of approximately 250 K at approximately 1000 K, and the results of optical and SEM examination of this specimen are presented. The resistance of this sample to macroscopic failure was truly impressive. Recommendations for the construction of an apparatus dedicated to extensive testing of first-wall composites are given on the basis of these ''proof-of-principle'' TSEX results

  14. Inverse bremsstrahlung heating beyond the first Born approximation for dense plasmas in laser fields

    International Nuclear Information System (INIS)

    Moll, M; Schlanges, M; Bornath, Th; Krainov, V P

    2012-01-01

    Inverse bremsstrahlung (IB) heating, an important process in the laser-matter interaction, involves two different kinds of interaction—the interaction of the electrons with the external laser field and the electron-ion interaction. This makes analytical approaches very difficult. In a quantum perturbative approach to the IB heating rate in strong laser fields, usually the first Born approximation with respect to the electron-ion potential is considered, whereas the influence of the electric field is taken exactly in the Volkov wave functions. In this paper, a perturbative treatment is presented adopting a screened electron-ion interaction potential. As a new result, we derive the momentum-dependent, angle-averaged heating rate in the first Born approximation. Numerical results are discussed for a broad range of field strengths, and the conditions for the applicability of a linear approximation for the heating rate are analyzed in detail. Going a step further in the perturbation series, we consider the transition amplitude in the second Born approximation, which enables us to calculate the heating rate up to the third order of the interaction strength. (paper)

  15. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  16. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  17. First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nyawere, P.W.O., E-mail: otienop98@yahoo.ca [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Department of Computing, Kabarak University, P.O. - Private Bag - 20157 Kabarak (Kenya); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Makau, N.W., E-mail: wanimak@yahoo.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Amolo, G.O., E-mail: georgeamolo862@gmail.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya)

    2014-02-01

    All the elastic constants of cubic, orthorhombic and hexagonal phases of BaF{sub 2} have been calculated using first principles methods. We have employed density-functional theory within generalized gradient approximation (GGA) using a plane-wave pseudopotentials method and a plane-wave basis set. The calculated elastic constant values for a cubic phase compare well with recent theoretical and experimental calculations. The bulk modulus derived from the elastic constant calculations of orthorhombic phase of BaF{sub 2} is 94.5 GPa and those of hexagonal phase is 161 GPa. These values are in good agreement with experimental data available. Stability of these phases of BaF{sub 2} is also estimated in different crystallographic directions.

  18. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  19. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  20. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, T C [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Svane, A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States)

    2007-04-23

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  1. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    International Nuclear Information System (INIS)

    Schulthess, T C; Temmerman, W M; Szotek, Z; Svane, A; Petit, L

    2007-01-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments

  2. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    Science.gov (United States)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  3. First principles study of structural and electronic properties of different phases of boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156 Isfahan (Iran, Islamic Republic of)

    2007-11-15

    A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.

  4. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Directory of Open Access Journals (Sweden)

    Shenoy Vivek

    2011-01-01

    Full Text Available Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

  5. On approximate reasoning and minimal models for the development of robust outdoor vehicle navigation schemes

    International Nuclear Information System (INIS)

    Pin, F.G.

    1993-01-01

    Outdoor sensor-based operation of autonomous robots has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. Two basic principles, or philosophies, and their associated methodologies are proposed in an attempt to remedy some of these difficulties. The first principle is based on the concept of ''minimal model'' for accomplishing given tasks and proposes to utilize only the minimum level of information and precision necessary to accomplish elemental functions of complex tasks. This approach diverges completely from the direction taken by most artificial vision studies which conventionally call for crisp and detailed analysis of every available component in the perception data. The paper will first review the basic concepts of this approach and will discuss its pragmatic feasibility when embodied in a behaviorist framework. The second principle which is proposed deals with implicit representation of uncertainties using Fuzzy Set Theory-based approximations and approximate reasoning, rather than explicit (crisp) representation through calculation and conventional propagation techniques. A framework which merges these principles and approaches is presented, and its application to the problem of sensor-based outdoor navigation of a mobile robot is discussed. Results of navigation experiments with a real car in actual outdoor environments are also discussed to illustrate the feasibility of the overall concept

  6. On approximate reasoning and minimal models for the development of robust outdoor vehicle navigation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1993-11-01

    Outdoor sensor-based operation of autonomous robots has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. Two basic principles, or philosophies, and their associated methodologies are proposed in an attempt to remedy some of these difficulties. The first principle is based on the concept of ``minimal model`` for accomplishing given tasks and proposes to utilize only the minimum level of information and precision necessary to accomplish elemental functions of complex tasks. This approach diverges completely from the direction taken by most artificial vision studies which conventionally call for crisp and detailed analysis of every available component in the perception data. The paper will first review the basic concepts of this approach and will discuss its pragmatic feasibility when embodied in a behaviorist framework. The second principle which is proposed deals with implicit representation of uncertainties using Fuzzy Set Theory-based approximations and approximate reasoning, rather than explicit (crisp) representation through calculation and conventional propagation techniques. A framework which merges these principles and approaches is presented, and its application to the problem of sensor-based outdoor navigation of a mobile robot is discussed. Results of navigation experiments with a real car in actual outdoor environments are also discussed to illustrate the feasibility of the overall concept.

  7. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys

    International Nuclear Information System (INIS)

    Mao, Z.; Chen, W.; Seidman, D.N.; Wolverton, C.

    2011-01-01

    First-principles density functional calculations are used to study the nucleation and stability of L1 2 -ordered precipitates in Al-Sc-Li alloys. For dilute Al alloys, there are three possible ordered L1 2 precipitates: Al 3 Sc, Al 3 Li and an Al 3 Sc/Al 3 Li core/shell structure. To calculate the nucleation behavior, information about bulk thermodynamics (both static total energies and vibrational free energies), interfacial energetics and coherency strain is required. The study finds the following: (1) the coherency strain energies for forming coherent interfaces between Al/Al 3 Sc, Al/Al 3 Li and Al 3 Sc/Al 3 Li are relatively small, owing to the small atomic size mismatches in these systems; (2) the sublattice site preferences of Sc and Li are calculated, and it is demonstrated that Sc and Li share the same sublattice sites in both Al 3 Sc(L1 2 ) and Al 3 Li(L1 2 ), in agreement with recent experimental results; (3) the calculated solubilities of Sc and Li in α-Al alloys are in good agreement with experimental values and, for Sc, agree well with prior first-principles results; (4) the interfacial energies for Al/Al 3 Sc, Al/Al 3 Li and Al 3 Sc/Al 3 Li for (1 0 0), (1 1 0) and (1 1 1) interfaces are calculated: the values of the Al/Al 3 Sc interfacial energies are significantly larger than those of the Al/Al 3 Li and Al 3 Sc/Al 3 Li interfaces; (5) combining the bulk and interfacial energies yields the nucleation barriers and critical radii for Al 3 Sc and Al 3 Li precipitates; and (6) the energetic stability of the Al 3 Sc/Al 3 Li core/shell structure is compared with individual Al 3 Sc and Al 3 Li nuclei, and the range of precipitate sizes for which the core/shell structure is energetically favored is determined quantitatively.

  8. A comparative study on magnetism in Zn-doped AlN and GaN from first-principles

    International Nuclear Information System (INIS)

    Xu, Liang; Wang, Lingling; Huang, Weiqing; Xiao, Wenzhi; Xiao, Gang

    2014-01-01

    First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μ B induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d 0 magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.

  9. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  10. Pt-decorated graphene as superior media for H2S adsorption: A first-principles study

    International Nuclear Information System (INIS)

    Ganji, Masoud Darvish; Sharifi, Narges; Ardjmand, Mahdi; Ahangari, Morteza Ghorbanzadeh

    2012-01-01

    Highlights: ► We report the first DFT study in the H 2 S/Pt–graphene system. ► The adsorption properties of H 2 S at different possible site on the surface of pristine graphene are slightly stable presenting energies from 0.02 to 0.06 eV. ► When Pt decorates the graphene sheet on the single and double sides the H 2 S adsorption energy increase to −3.2 eV. ► A single Pt atom can locate up to seven H 2 S molecules stably binded with energies from −6.73 to −0.95 eV. ► The DOS plot indicates strong hybridization between H 2 S molecules and Pt–graphene sheet. - Abstract: The adsorption mechanism of hydrogen sulfide (H 2 S) molecules on pristine and Pt-decorated graphene sheets was studied using density functional theory calculations based on local density approximation and generalized gradient approximation methods. Our calculations show that a Pt-decorated graphene system has much higher binding energy, higher net charge transfer values and shorter connecting distances than pristine graphene due to chemisorption of the H 2 S molecule. Furthermore, the calculated density of states show that orbital hybridization is visible between the H 2 S and Pt-decorated graphene sheets, while there is no evidence for hybridization between the H 2 S molecule and the pristine graphene sheet. Interestingly, we find that up to seven H 2 S molecules can stably bind to a Pt atom on each side of the graphene sheet with desirable binding energy.

  11. Schwinger variational principle applied to molecular photoionization

    International Nuclear Information System (INIS)

    Smith, M.E.

    1985-01-01

    A method based upon the Schwinger variational principle was developed to study molecular photoionization and electron-molecule scattering. Exact static-exchange solutions to the equations for the continuum orbitals are obtained within the Hartree-Fock approximation; and from these cross sections and angular distributions are derived for both of the above processes. This method was applied to photoionization of the valence levels of three different systems. The first application of this method is a study of the photoionization of the valence levels of NO. Next, vibrationally resolved branching ratios and vibrational state-specific asymmetry parameters for photoionization of the 5sigma level of CO are presented. Finally, a study of the photoionization of the 5sigma level of CO absorbed on a nickel surface is reported. Approximating this system by the linear triatomic molecule NiCO leads to cross sections and angular distributions which are in good agreement with experimental data

  12. First Principles Study of Electronic and Magnetic Structures in Double Perovskites

    Science.gov (United States)

    Ball, Molly

    films of Sr2CrReO 6, where our experimental collaborators found extraordinarily large anisotropy fields and record-breaking strain-tunable magnetocrystalline anisotropy (MCA). We employed first principles calculations that examine the dependence of MCA on strain and could identify orbital magnetism on the Re atoms as the origin of this unique phenomenon. In the last section, we introduce double perovskites as novel lead-free halide solar cell materials, with current focus on Cs2AgBiBr 6 and Cs2AgBiCl6. While organic Pb based halides that can be synthesized without expensive clean rooms have achieved within record time efficiencies that rival that of traditional semiconductor based materials, creating quite a buzz within the field of photovoltaics, their Pb content and lacking air stability represented severe roadblocks towards market introduction. Here, we show with band structure calculations that spin-orbit coupling is a much more dominant interaction than in traditional semiconductors and thus needs to be considered when designing novel materials for maximum efficiency. The results of this study have given momentum to investigate additional halides double perovskites. Finally, we will summarize and discuss the importance of computational modeling in order to explore the wide and to date little explored composition space of double perovskites, one of the currently most promising materials classes for novel devices with unique and extremely tunable properties.

  13. First-principles calculations of a half-metallic ferromagnet zinc blende Zn{sub 1−x}V{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    El Amine Monir, M.; Baltache, H. [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Azam, Sikander [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ali, Roshan [Materials Modeling Lab, Department of Physics, Post Graduate Jahanzeb College, Swat (Pakistan)

    2015-03-15

    First-principles calculations have been used to study the structural, elastic, electronic, magnetic and thermal properties of zinc blende Zn{sub 1−x}V{sub x}Te for x=0, 0.25, 0.50, 0.75 and 1 using the full-potential linearized augmented plane wave method (FP-LAPW) based on spin-polarized density functional theory (DFT). The electronic exchange-correlation potential is approached using the spin generalized gradient approximation (spin-GGA). The structural properties of the Zn{sub 1−x}V{sub x}Te alloys (x=0, 0.25, 0.50, 0.75 and 1) are given for the lattice constants and the bulk moduli and their pressure derivatives. The elastic constants C{sub 11}, C{sub 12} and C{sub 44} are calculated using numerical first-principles calculations implemented in the WIEN2k package. An analysis of the band structures and the densities of states reveals that Zn{sub 0.50}V{sub 0.50}Te and Zn{sub 0.75}V{sub 0.25}Te exhibit a half-metallic character, while Zn{sub 0.25}V{sub 0.75}Te is nearly half-metallic. The band structure calculations are used to estimate the spin-polarized splitting energies Δ{sub x}(d) and Δ{sub x}(pd) produced by the V(3d)-doped and s(p)–d exchange constants N{sub 0α} (conduction band) and N{sub 0β} (valence band). The p–d hybridization reduces the magnetic moment of V from its atomic charge value of 3µ{sub B} and creates small local magnetic moments on the nonmagnetic Zn and Te sites. Finally, we present the thermal effect on the macroscopic properties of these alloys, such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model. - Highlights: • Some physical properties of Vanadium doped ZnTe have been investigated. • Structural parameters for the parent compounds compare well with the available data. • The elastic and thermal properties are studied for the first time.

  14. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed; Ikram, Nazma; Ali, Sana Zulfiqar; Nazir, Safdar; Alay-E-Abbas, Syed Muhammad; Shaukat, Ali

    2010-01-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS

  15. First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy

    Institute of Scientific and Technical Information of China (English)

    Min Tang; Hengbo Li; Wentao Yuan; Shihui Zou; Chenghua Sun; Yong Wang

    2017-01-01

    PdCu catalysts play a key role in several hydrogen-involved processes. Among these reactions, the interaction of hydrogen with PdCu essentially determines the catalytic performance. However, the response of PdCu to surrounding hydrogen has been poorly investigated, especially for specific facets of PdCu at different environment.In this work, taking temperature and hydrogen pressure into account, we studied the hydrogen-surface interactions for four low-index surfaces of PdCu through first-principles calculations. It was found that H-PdCu adsorption strong relies on the facets, hydrogen coverage, and reaction environment (temperature and H-pressure).Our work highlights the importance of the environment on the nature of catalyst surfaces and reactions and offers a plausible way to investigate the interactions between gas and the surfaces of nanocatalysts in real reactions.

  16. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure

    International Nuclear Information System (INIS)

    Gao, G.Y.; Yao, K.L.; Liu, Z.L.; Zhang, J.; Min, Y.; Fan, S.W.

    2008-01-01

    In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of 1.00μ B per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates

  17. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    International Nuclear Information System (INIS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-01-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase. (c) 2000 The American Physical Society

  18. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  19. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.

    2006-01-01

    . Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully......Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations...

  20. Self-consistent Random Phase Approximation applied to a schematic model of the field theory; Approximation des phases aleatoires self-consistante appliquee a un modele schematique de la theorie des champs

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Thierry [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1998-12-11

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum 40 refs., 33 figs., 14 tabs.

  1. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  2. Phosphorene as an anode material for Na-ion batteries: a first-principles study.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-06-07

    We systematically investigate a novel two-dimensional nanomaterial, phosphorene, as an anode for Na-ion batteries. Using first-principles calculations, we determine the Na adsorption energy, specific capacity and Na diffusion barriers on monolayer phosphorene. We examine the main trends in the electronic structure and mechanical properties as a function of Na concentration. We find a favorable Na-phosphorene interaction with a high theoretical Na storage capacity. We find that Na-phosphorene undergoes semiconductor-metal transition at high Na concentration. Our results show that Na diffusion on phosphorene is fast and anisotropic with an energy barrier of only 0.04 eV. Owing to its high capacity, good stability, excellent electrical conductivity and high Na mobility, monolayer phosphorene is a very promising anode material for Na-ion batteries. The calculated performance in terms of specific capacity and diffusion barriers is compared to other layered 2D electrode materials, such as graphene, MoS2, and polysilane.

  3. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  4. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  5. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  6. First-Principles Study of the Li-Mg-N-H System: Compound Structures and Hydrogen Storage Properties

    Science.gov (United States)

    Michel, Kyle; Ozolins, Vidvuds

    2009-03-01

    The Li-Mg-N-H system is studied with the addition of the Li4Mg(NH)3, MgNH, and Li4NH compounds using first-principles density-functional theory (DFT) calculations. A structure for the mixed imide Li4Mg(NH)3 is proposed, belonging to the Imm2 space group. A new structure for Li2Mg(NH)2 is given that has Pca21 symmetry; this compound has been previously reported as having Iba2 symmetry. The stability of the Li4Mg-imide is studied with respect to its decomposition reactions. The static, zero-point (ZPE), and vibrational energies of all relevant compounds belonging to this system are reported along with their predicted lowest-energy structures. Dehydrogenation reactions are presented that involve these phases and which are found to be spontaneously occurring within 400 K of room temperature. It is predicted that mixing LiH, LiNH2, and Li2Mg(NH)2 at 505 K will form Li4Mg(NH)3 with the release of 2.04 wt. % H2.

  7. First-principle Simulations of Heavy Fermion Materials

    Science.gov (United States)

    Dong, Ruanchen

    Heavy fermion materials, one of the most challenging topics in condensed matter physics, pose a variety of interesting properties and have attracted extensive studies for decades. Although there has been great success in explaining many ground- state properties of solids, the well-known theoretical calculations based on density functional theory (DFT) in its popular local density approximation (LDA) fail to describe heavy fermion materials due to improper treatment of many-body correlation effects. Here with the implementations of dynamical mean-field theory (DMFT) and the Gutzwiller variational method, the computational simulation of the heavy fermion materials is explored further and better compared with experimental data. In this dissertation, first, the theoretical background of DMFT and LDA+G methods is described in detail. The rest is the application of these techniques and is basically divided into two parts. First, the continuous-time quantum Monte Carlo (CT-QMC) method combined with DMFT is used to calculate and compare both the periodic Anderson model (PAM) and the Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For spin and orbital degeneracy N = 2 case, a special particle-hole symmetric case of PAM at half-filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f-electrons directly from KLM. The method is further applied to higher degenerate cases and to the realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. Second, a series of Cerium based heavy fermion materials is studied using a combination of local

  8. Stability of Ptn cluster on free/defective graphene: A first-principles study

    Science.gov (United States)

    Yang, G. M.; Fan, X. F.; Shi, S.; Huang, H. H.; Zheng, W. T.

    2017-01-01

    With first-principles methods, we investigate the stability of isolated Ptn clusters from Sutton-Chen model and close-packed model, and their adsorption on defected graphene. The single-vacancy in graphene is found to enhance obviously the adsorption energy of Pt cluster on graphene due to the introduction of localized states near Fermi level. It is found that the close-packed model is more stable than Sutton-Chen model for the adsorption of Ptn cluster on single-vacancy graphene, except the magic number n = 13. The cluster Pt13 may be the richest one for small Pt clusters on defected graphene due to the strong adsorption on single-vacancy. The larger cluster adsorbed on defected graphene is predicted with the close-packed crystal structure. The charge is found to transfer from the Pt atom/cluster to graphene with the charge accumulation at the interface and the charge polarization on Pt cluster. The strong interaction between Pt cluster and single vacancy can anchor effectively the Pt nanoparticles on graphene and is also expected that the new states introduced near Fermi level can enhance the catalytic characteristic of Pt cluster.

  9. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kizashi [Institute for Nano Science Design Center, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and TOYOTA Physical and Chemical Research Institute, Nagakute, Aichi, 480-1192 (Japan); Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2015-01-22

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  10. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...

  11. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  12. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  13. First-principle calculations on the structural and electronic properties of hard C{sub 11}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongxu, E-mail: lidongxu@hqu.edu.cn [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Shi, Jiancheng; Lai, Mengling; Li, Rongkai [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Yu, Dongli [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-09-15

    A graphite-like C{sub 11}N{sub 4} model was built by stacking graphene and a C{sub 3}N{sub 4} triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C{sub 11}N{sub 4} is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C{sub 11}N{sub 4} was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C{sub 11}N{sub 4} is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy.

  14. Quasiclassical approximation for ultralocal scalar fields

    International Nuclear Information System (INIS)

    Francisco, G.

    1984-01-01

    It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author) [pt

  15. Anomalous doping effect in black phosphorene from first-principles calculations

    OpenAIRE

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2014-01-01

    Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with odd...

  16. Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Domoshnitsky Alexander

    2009-01-01

    Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.

  17. First-principles study on the initial decomposition process of CH3NH3PbI3

    Science.gov (United States)

    Xue, Yuanbin; Shan, Yueyue; Xu, Hu

    2017-09-01

    Hybrid perovskites are promising materials for high-performance photovoltaics. Unfortunately, hybrid perovskites readily decompose in particular under humid conditions, and the mechanisms of this phenomenon have not yet been fully understood. In this work, we systematically studied the possible mechanisms and the structural properties during the initial decomposition process of MAPbI3 (MA = CH3NH3+) using first-principles calculations. The theoretical results show that it is energetically favorable for PbI2 to nucleate and crystalize from the MAPbI3 matrix ahead of other decomposition products. Additionally, the structural instability is an intrinsic property of MAPbI3, regardless of whether the system is exposed to humidity. We find that H2O could facilitate the desorption of gaseous components, acting as a catalyst to transfer the H+ ion. These results provide insight into the cause of the instability of MAPbI3 and may improve our understanding of the properties of hybrid perovskites.

  18. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces

    Science.gov (United States)

    Wu, Qingjie; Xie, Jingpei; Wang, Changqing; Li, Liben; Wang, Aiqin; Mao, Aixia

    2018-04-01

    This paper presents a systematic study on the energetic and electronic structure of the Al(111)/6H-SiC(0001) interfaces by using first-principles calculation with density functional theory (DFT). There are all three situations for no-vacuum layer of Al/SiC superlattics, and two cases of C-terminated and Si-terminated interfaces are compared and analyzed. Through the density of states analysis, the initial information of interface combination is obtained. Then the supercells are stretched vertically along the z-axis, and the fracture of the interface is obtained, and it is pointed out that C-terminated SiC and Al interfaces have a better binding property. And, the fracture positions of C-terminated and Si-terminated interfaces are different in the process of stretching. Then, the distance variation in the process of stretching, the charge density differences, and the distribution of the electrons near the interface are analyzed. Al these work makes the specific reasons for the interface fracture are obtained at last.

  19. Novel Designs for the Audio Mixing Interface Based on Data Visualisation First Principles

    OpenAIRE

    Dewey, Christopher; Wakefield, Jonathan P.

    2016-01-01

    Given the shortcomings of current audio mixing interfaces (AMIs) this study focuses on the development of alternative AMIs based on data visualisation first principles. The elementary perceptual tasks defined by Cleveland informed the design process. Two design ideas were considered for pan: using the elementary perceptual tasks ‘scale’ to display pan on either a single or multiple horizontal lines. Four design ideas were considered for level:\\ud using ‘length’, ‘area’, ‘saturation’ or ‘scala...

  20. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  1. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  2. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  3. First-principle study on magnetic properties of Mn/Fe codoped ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongxia, E-mail: chenhongxia1@sina.com [College of Physical Science and Electronic Techniques, Yancheng Teachers University, Yancheng 224002 (China); Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-07-15

    We studied the magnetic properties of Mn/Fe codoped ZnS comparatively with and without defects using first-principle calculation. The calculated results indicate that the Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic (FiM) configuration. To obtain a ferromagnetic (FM) configuration, we consider the doped system with defects, such as S or Zn vacancy. The calculated results indicate that the doped system with Zn vacancy favors FiM states. Although the FM states of the doped system with S vacancy are more stable than the FiM states in negative charge states, the FM states are not stable enough to exist. Finally, we replaced an S atom by a C atom in the doped system. The C atom prefers to substitute the S atom connecting Mn and Fe atoms. The formation energy of this defect is -0.40 eV, showing that Mn/Fe/C codoped ZnS can be fabricated easily by experiments. Furthermore, the FM state was lower in energy than the FiM state by 114 meV. Such a large energy difference between the FM and FiM states implies that room temperature ferromagnetism could be expected in such a system. - Highlights: Black-Right-Pointing-Pointer Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic configuration with or without defects. Black-Right-Pointing-Pointer By additional C codoping, the doped system tends to stabilize in a ferromagnetic configuration. Black-Right-Pointing-Pointer Energy difference between ferrimagnetic and ferromagnetic states is 114 meV. Black-Right-Pointing-Pointer This indicates room temperature ferromagnetism can be likely in such a system.

  4. First principles study of magneto-optical properties of Fe-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Shaoqiang, Guo [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Qingyu, Hou, E-mail: by0501119@126.com [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Zhenchao, Xu [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Chunwang, Zhao [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306 (China)

    2016-12-15

    Studies on optical band gaps and absorption spectra of Fe-doped ZnO have conflicting conclusions, such as contradictory redshifted and blueshifted spectra. To solve this contradiction, we constructed models of un-doped and Fe-doped ZnO using first-principles theory and optimized the geometry of the three models. Electronic structures and absorption spectra were also calculated using the GGA+U method. Higher doping content of Fe resulted in larger volume of doped system, and higher total energy resulted in lower stability. Higher formation energy also led to more difficult doping. Meanwhile, the band gaps broadened and the absorption spectra exhibited an evident blue shift. The calculations were in good agreement with the experimental results. Given the unipolar structure of ZnO, four possible magnetic coupling configurations for Zn{sub 14}Fe{sub 2}O{sub 16} were calculated to investigate the magnetic properties. Results suggest that Fe doping can improve ferromagnetism in the ZnO system and that ferromagnetic stabilization was mediated by p–d exchange interaction between Fe-3d and O-2p orbitals. Therefore, the doped system is expected to obtain high stability and high Curie temperature of diluted magnetic semiconductor material, which are useful as theoretical bases for the design and preparation of the Fe-doped ZnO system’s magneto-optical properties. - Highlights: • A biomonitoring tool for the freshwater zone of template estuaries. • Water quality characterization related to nutrients and organic matter enrichment. • The percentage of a group of 24 tolerant species were capable of detecting the impairment of the water quality. • Characterization of morpho-functional traits of the selected tolerant species.

  5. The electronic structure and ferromagnetism of TM (TM=V, Cr, and Mn)-doped BN(5, 5) nanotube: A first-principles study

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Wan, M.; Ji, G.F.

    2008-01-01

    We study the electronic structure and ferromagnetism of V-, Cr-, and Mn-doped single-wall BN(5, 5) nanotube by using polarized spin calculations within first principles. The optimized structures show that the transition-metal atoms move outwards and the calculated electronic properties demonstrate that the isolated V-, Cr-, and Mn-doped BN(5, 5) nanotubes show half-metallicity. The total ferromagnetic moments are 2μ B , 3.02μ B , and 3.98μ B for V-, Cr-, and Mn-doped BN(5, 5), respectively. The study suggests that such transition-metal (TM)-doped nanotubes may be useful in spintronics and nanomagnets

  6. First-principles modeling of hafnia-based nanotubes.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-09-15

    Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  8. The measurement of psychological literacy: a first approximation.

    Science.gov (United States)

    Roberts, Lynne D; Heritage, Brody; Gasson, Natalie

    2015-01-01

    Psychological literacy, the ability to apply psychological knowledge to personal, family, occupational, community and societal challenges, is promoted as the primary outcome of an undergraduate education in psychology. As the concept of psychological literacy becomes increasingly adopted as the core business of undergraduate psychology training courses world-wide, there is urgent need for the construct to be accurately measured so that student and institutional level progress can be assessed and monitored. Key to the measurement of psychological literacy is determining the underlying factor-structure of psychological literacy. In this paper we provide a first approximation of the measurement of psychological literacy by identifying and evaluating self-report measures for psychological literacy. Multi-item and single-item self-report measures of each of the proposed nine dimensions of psychological literacy were completed by two samples (N = 218 and N = 381) of undergraduate psychology students at an Australian university. Single and multi-item measures of each dimension were weakly to moderately correlated. Exploratory and confirmatory factor analyses of multi-item measures indicated a higher order three factor solution best represented the construct of psychological literacy. The three factors were reflective processes, generic graduate attributes, and psychology as a helping profession. For the measurement of psychological literacy to progress there is a need to further develop self-report measures and to identify/develop and evaluate objective measures of psychological literacy. Further approximations of the measurement of psychological literacy remain an imperative, given the construct's ties to measuring institutional efficacy in teaching psychology to an undergraduate audience.

  9. Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through First Principles

    Directory of Open Access Journals (Sweden)

    Yingye Gan

    2016-01-01

    Full Text Available First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen:vacancy (O:Vac pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT.

  10. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  11. First-Principles Study of Enhanced Magnetoelectric Effects at the Fe/MgO(001) Interface

    Science.gov (United States)

    Niranjan, M. K.; Jaswal, S. S.; Tsymbal, E. Y.; Duan, C.-G.

    2010-03-01

    The magnetoelectric effect allows affecting magnetic properties of materials by electric fields with potential for technological applications such as electrically controlled magnetic data storage. In this study we explore, using first-principles methods, the magnetoelectric effect at the Fe/MgO(001) interface^,1. By explicitly introducing an electric field in our density-functional calculations we demonstrate that the magnetic moment of Fe atoms at the interface changes linearly as a function of the applied electric field with the surface magnetoelectric coefficient being strongly enhanced as compared to that for the clean Fe(001) surface.^1 The effect originates from the increased screening charge associated with a large dielectric constant of MgO. The influence of electric field on relative occupancy of the Fe-3d orbitals leads to significant change in the surface magnetocrystalline anisotropy. These results are compared with the available experimental work.^2 Our results indicate that using high-k dielectrics at the interface with ferromagnetic metals may be very effective in controlling the magnetic properties by electric fields thereby leading to interesting device applications. ^1 C.-G. Duan et al., Phys. Rev. Lett. 101, 137201 (2008). ^2 T. Maruyama et al., Nat. Nanotech., 4, 158 (2009).

  12. Negative thermal expansion in TiF{sub 3} from the first-principles prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Yuan, Peng-Fei; Wang, Fei; Sun, Qiang; Liang, Er-Jun [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Guo, Zheng-Xiao, E-mail: z.x.guo@ucl.ac.uk [Deparment of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2014-08-01

    Highlights: • Rhombohedral TiF{sub 3} as a new NTE material is predicted from first-principles calculation. • The NTE mechanism is proposed based on the analysis of vibrational properties. • The rotation coupling of TiF{sub 6} octahedra at low frequencies is most responsible for NTE. - Abstract: In negative thermal expansion (NTE) materials, rhombohedral TiF{sub 3} as a new member is predicted from first-principles calculation. The NTE behavior of rhombohedral TiF{sub 3} occurs at low temperatures. In our work, the NTE mechanism is elaborated in accordance with vibrational modes. It is confirmed that the rigid unit mode (RUM) of internal TiF{sub 6} octahedra in low-frequency optical range is most responsible for the NTE properties.

  13. First-principles study of the interactions of hydrogen with low-index surfaces of PdCu ordered alloy

    Directory of Open Access Journals (Sweden)

    Min Tang

    2017-12-01

    Full Text Available PdCu catalysts play a key role in several hydrogen-involved processes. Among these reactions, the interaction of hydrogen with PdCu essentially determines the catalytic performance. However, the response of PdCu to surrounding hydrogen has been poorly investigated, especially for specific facets of PdCu at different environment. In this work, taking temperature and hydrogen pressure into account, we studied the hydrogen-surface interactions for four low-index surfaces of PdCu through first-principles calculations. It was found that H-PdCu adsorption strong relies on the facets, hydrogen coverage, and reaction environment (temperature and H-pressure. Our work highlights the importance of the environment on the nature of catalyst surfaces and reactions and offers a plausible way to investigate the interactions between gas and the surfaces of nanocatalysts in real reactions.

  14. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    Science.gov (United States)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  15. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  16. First -principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    NARCIS (Netherlands)

    van Setten, Michiel J.; de Wijs, Gilles A.; Brocks, G.

    2008-01-01

    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the

  17. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    Science.gov (United States)

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  18. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    Science.gov (United States)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  19. First principles study of optical properties of molybdenum disulfide: From bulk to monolayer

    Science.gov (United States)

    Hieu, Nguyen N.; Ilyasov, Victor V.; Vu, Tuan V.; Poklonski, Nikolai A.; Phuc, Huynh V.; Phuong, Le T. T.; Hoi, Bui D.; Nguyen, Chuong V.

    2018-03-01

    In this paper, we theoretically study the optical properties of both bulk and monolayer MoS2 using first-principles calculations. The optical characters such as: dielectric function, optical reflectivity, and electron energy-loss spectrum of MoS2 are observed in the energy region from 0 to 15 eV. At equilibrium state the dielectric constant in the parallel E∥ x and perpendicular E∥ z directions are of 15.01 and 8.92 for bulk while they are 4.95 and 2.92 for monolayer MoS2, respectively. In the case of bulk MoS2, the obtained computational results for both real and imaginary parts of the dielectric constant are in good agreement with the previous experimental data. In the energy range from 0 to 6 eV, the dielectric functions have highly anisotropic, whereas they become isotropic when the energy is larger than 7 eV. For the adsorption spectra and optical reflectivity, both the collective plasmon resonance and (π + σ) electron plasmon peaks are observed, in which the transition in E∥ x direction is accordant with the experiment data more than the transition in E∥ z direction is. The refractive index, extinction index, and electron energy-loss spectrum are also investigated. The observed prominent peak at 23.1 eV in the energy-loss spectra is in good agreement with experiment value. Our results may provide a useful potential application for the MoS2 structures in electronic and optoelectronic devices.

  20. Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huiling; Yang, Hui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Wang, Hongxia [College of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316000 (China); Du, Xiaobo [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Yan, Yu, E-mail: yanyu@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China)

    2016-06-15

    Using first-principles calculations, we study the geometrical structure, electronic structure and magnetic properties of substitutionally doped blue phosphorene with a series of nonmetallic atoms, including F, Cl, B, N, C, Si and O. The calculated formation energies and molecular dynamics simulations indicate that F, Cl, B, N, C, Si and O doped blue phosphorene are stable. Moreover, the substitutional doping of F, Cl, B and N cannot induce the magnetism in blue phosphorene due to the saturation or pairing of the valence electron of dopant and its neighboring P atoms. In contrast, ground states of C, Si and O doped blue phosphorene are spin-polarized and the magnetic moments induced by a doping atom are all 1.0 μ{sub B}, which is attributed to the appearance of an unpaired valence electron of C and Si and the formation of a nonbonding 3p electron of a neighboring P atom around O. Furthermore, the magnetic coupling between the moments induced by two C, Si and O are found to be long-range anti-ferromagnetic and the origin of the coupling can be attributed to the p–p hybridization interaction involving polarized electrons. - Highlights: • F, Cl, B, N, C, Si and O doped blue phosphorene are stable. • Substitutional doping of C, Si and O can produce the magnetism in blue phosphorene. • Magnetic coupling between two C, Si and O is long-range anti-ferromagnetic.

  1. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  2. Prospects for first-principle calculations of scintillator properties

    International Nuclear Information System (INIS)

    Derenzo, Stephen E.; Weber, Marvin J.

    1999-01-01

    Several scintillation processes can be modeled from first principles using quantum chemistry cluster calculations and recently available high-performance computers. These processes include the formation of excitons and trapping centers, the diffusion of ionization energy (electrons and holes) through a host crystal, and the efficient capture of these carriers by an activator atom to form a luminous, non-quenched excited state. As examples of such calculations, results are presented for (1) hole transport in the known scintillator host crystal CsI, (2) hole trapping in the non-scintillator PbF 2 , (3) hole transport in the experimentally unexplored PbF 4 , and (4) the electronic nature of excited states of CsI : Tl and CsI : Na

  3. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  4. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide

    Science.gov (United States)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-11-01

    The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.

  5. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  6. A first-principles model for the freezing step in ice cream manufacture

    NARCIS (Netherlands)

    Dorneanu, B.; Bildea, C.S.; Girievink, J.; Bongers, P.M.M.; Jezowski, J.; Thullie, J.

    2009-01-01

    This contribution deals with the development of a first-principles model for ice cream formation in the freezing unit to support product design and plant operation. Conservation equations for the mass, energy and momentum, considering axial flow assumptions are taken into account. The distributed

  7. Approximate first collision probabilities for neutrons in cylindrical and cluster lattices

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1979-05-01

    Methods for calculating approximate first collision probabilities for neutrons in cylindrical and cluster lattices are presented and compared with numerical solution methods. The methods differ from those of other authors in the inclusion of anisotropic boundary conditions for both geometries. The methods, which are fast enough for routine use in multigroup and resonance subgroup calculations, have been coded in FORTRAN and included in modules of the AUS scheme for reactor neutronics calculations

  8. Unique reactivity of Fe nanoparticles-defective graphene composites toward NH x (x = 0, 1, 2, 3) adsorption: A first-principles study

    KAUST Repository

    Liu, Xin; Meng, Changgong; Han, Yu

    2012-01-01

    We investigated the electronic structure of Fe nanoparticle-graphene composites and the impact of the interfacial interaction on NH x (x = 0, 1, 2, 3) adsorption by first-principles based calculations. We found that Fe 13 nanoparticles can

  9. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  10. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    Directory of Open Access Journals (Sweden)

    Yuehua Dai

    2016-08-01

    Full Text Available The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  11. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    Ning Yang

    2017-11-01

    Full Text Available The new three-dimensional structure that the graphene connected with SWCNTs (G-CNTs, Graphene Single-Walled Carbon Nanotubes can solve graphene and CNTs′ problems. A comprehensive study of the mechanical and electrical performance of the junctions was performed by first-principles theory. There were eight types of junctions that were constituted by armchair and zigzag graphene and (3,3, (4,0, (4,4, and (6,0 CNTs. First, the junction strength was investigated. Generally, the binding energy of armchair G-CNTs was stronger than that of zigzag G-CNTs, and it was the biggest in the armchair G-CNTs (6,0. Likewise, the electrical performance of armchair G-CNTs was better than that of zigzag G-CNTs. Charge density distribution of G-CNTs (6,0 was the most homogeneous. Next, the impact factors of the electronic properties of armchair G-CNTs were investigated. We suggest that the band gap is increased with the length of CNTs, and its value should be dependent on the combined effect of both the graphene’s width and the CNTs’ length. Last, the relationship between voltage and current (U/I were studied. The U/I curve of armchair G-CNTs (6,0 possessed a good linearity and symmetry. These discoveries will contribute to the design and production of G-CNT-based devices.

  12. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  13. First-principles study on half-metallic zinc-blende CrS and its (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin, E-mail: hnsqxb@163.com [Department of Mathematics and Information Sciences, North China university of Water Resources and Electric Power, Zhengzhou 450011 (China); Chen, Leiming [Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, 450015 (China)

    2016-11-01

    Half-metallic magnets with complete (100%) spin polarization have attracted growing interest due to the potential in spintronic applications. In this paper, we use the first-principles calculations to explain the seeming contradiction between the recent experimental ferromagnetism (Demper et al., 2012 [22]) and the previous theoretical antiferromagnetic ground state for half-metallic zinc-blende CrS, and the experimental ferromagnetism of zinc-blende CrS arises from the substrate effect. We also show that both Cr- and S-terminated (001) surfaces of CrS preserve the bulk half-metallicity. The calculated surface energy indicates that the S-terminated (001) surface is more stable than the Cr-terminated (001) surface within the whole effective Cr chemical potentials, and thus the S-terminated (001) surface is more likely than the Cr-terminated (001) surface when the CrS thin films are grown on ZnSe substrate.

  14. First-principles studies of doped InTaO{sub 4} for photo catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hyunju, Chang; Kijeong, Kong; Yong, Soo Choi; Youngmin, Choi; Jin-Ook, Baeg; Sang-Jin, Moon [Korea Research Institute of Chemical Technology, Daejeon, (Korea, Republic of)

    2006-05-15

    We have calculated electronic structure of InTaO{sub 4} using first-principle method, in order to investigate the relationship between its electronic structures and visible light absorption. We have calculated densities of states (DOS) for various states of InTaO{sub 4}, such as pristine, oxygen vacancy, Ni-doped, and A-doped (A = C, N, and S) states. We have found that oxygen vacancy can induce the gap states and Ni-doping can narrow the band gap by generating additional states on the top of the valence band as well as on the top of the gap states. For A-doped states, it was found that N-doping and S-doping could narrow the pristine band gap inducing the additional states above the pristine valence band, while C-doping can generate the gap states in the middle of the pristine band gap. (authors)

  15. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  16. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    Science.gov (United States)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  17. Self-consistent Random Phase Approximation applied to a schematic model of the field theory

    International Nuclear Information System (INIS)

    Bertrand, Thierry

    1998-01-01

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum

  18. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    International Nuclear Information System (INIS)

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  19. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    Science.gov (United States)

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; Carter, Emily A.

    2016-01-01

    Because of lithium’s possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. We predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDβ , β =0.25 , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid-solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. We also observe formation of some D2 molecules at high D concentrations.

  20. Glass polymorphism in amorphous germanium probed by first-principles computer simulations

    Science.gov (United States)

    Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.

    2016-01-01

    The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.

  1. First-principles prediction of Tl/SiC for valleytronics

    KAUST Repository

    Xu, Zhen; Zhang, Qingyun; Shen, Qian; Cheng, Yingchun; Schwingenschlö gl, Udo; Huang, Wei

    2017-01-01

    Recently, monolayer Tl on a Si or Ge substrate has been proposed for potential valleytronic systems. However, the band gaps of these systems are less than 0.1 eV, which is too small to be applied because an electric field or magnetic doping will reduce the band gaps further for the systems to become metallic. Here, we investigate SiC as an alternative substrate. By first-principles calculations we demonstrate that monolayer Tl can be grown on SiC. There are two valleys around the K/K′ points and the Berry curvature shows that the two valleys are inequivalent, indicating valley pseudospin. Moreover, due to the larger band gap of SiC (3.3 eV), the band gap of the Tl/SiC system is 0.6 eV, which is large enough for valley manipulation. Furthermore, we demonstrate that Cr doping can achieve valley polarization. Our study shows that the Tl/SiC system is promising for valleytronic applications.

  2. First-principles prediction of Tl/SiC for valleytronics

    KAUST Repository

    Xu, Zhen

    2017-09-22

    Recently, monolayer Tl on a Si or Ge substrate has been proposed for potential valleytronic systems. However, the band gaps of these systems are less than 0.1 eV, which is too small to be applied because an electric field or magnetic doping will reduce the band gaps further for the systems to become metallic. Here, we investigate SiC as an alternative substrate. By first-principles calculations we demonstrate that monolayer Tl can be grown on SiC. There are two valleys around the K/K′ points and the Berry curvature shows that the two valleys are inequivalent, indicating valley pseudospin. Moreover, due to the larger band gap of SiC (3.3 eV), the band gap of the Tl/SiC system is 0.6 eV, which is large enough for valley manipulation. Furthermore, we demonstrate that Cr doping can achieve valley polarization. Our study shows that the Tl/SiC system is promising for valleytronic applications.

  3. Silicene on metal substrates: A first-principles study on the emergence of a hierarchy of honeycomb structures

    International Nuclear Information System (INIS)

    Kaltsas, D.; Tsetseris, L.; Dimoulas, A.

    2014-01-01

    Experimental studies have reported several types of Si monolayer structures that are formed on metal surfaces. These structures typically show the topology of a honeycomb bonding network, but differ in terms of corrugation and surface coverage. Using first-principles calculations, we identify atomic-scale mechanisms that underlie the appearance of different configurations as coverage increases during Si deposition on silver. The key point is that any extra Si adatoms that land on preformed silicene films can be incorporated in the honeycomb network and form bonds with underlying Ag atoms. As a result, the corrugation profile changes, giving rise to varying overlayer geometries. We also show that the same set of mechanisms control the appearance of silicene films on an iridium substrate. The results address available experimental data, but also probe the stability and properties of silicene wetting films that have not been observed yet.

  4. First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys

    International Nuclear Information System (INIS)

    Gouda, Mohammed K.; Gepreel, Mohamed A. H.; Nakamura, Koichi

    2015-01-01

    Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus

  5. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.

    Science.gov (United States)

    Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H

    2008-05-01

    To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.

  6. First-principles momentum-dependent local ansatz wavefunction and momentum distribution function bands of iron

    International Nuclear Information System (INIS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-01-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)

  7. Thermodynamic modeling of the Co–Hf system supported by key experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingxu [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong, E-mail: shhliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German Cooperation Group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Cheng, Kaiming; Tang, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Ou, Pengfei [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Sundman, Bo [INSTN, CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German Cooperation Group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Zheng, Feng [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2015-05-20

    Highlights: • Heat contents of Co{sub 2}Hf and CoHf{sub 2} were measured by drop calorimetry. • Enthalpy of formation for Co{sub 23}Hf{sub 6} was computed via first-principles calculations. • Co–Hf system was assessed by means of CALPHAD approach. • Order–disorder model is used to describe B2 (CoHf) and A2 (βHf). • Glass forming range of the Co–Hf amorphous alloys was predicted. - Abstract: Phase equilibria and thermodynamic properties of the Co–Hf system were investigated via calorimetric measurements, first-principles calculations and thermodynamic modeling. Heat contents of Co{sub 2}Hf and CoHf{sub 2} were measured by drop calorimetry from 300 to 1200 °C. The enthalpy of formation for Co{sub 23}Hf{sub 6} at 0 K was computed via first-principles calculations. Based on the experimental measurements and first-principles calculations from the present work and the literature, the Co–Hf system was assessed by means of CALPHAD (CALculation of PHAse Diagram) approach. The excess Gibbs energy of solution phases was modeled with Redlich–Kister polynomial. Sublattice models were employed to describe the homogeneity ranges of Co{sub 2}Hf, CoHf and CoHf{sub 2}. The order–disorder transition between B2 (CoHf) and A2 (βHf) phases was taken into account in the current optimization. Using the optimized parameters, glass forming range (GFR) of the Co–Hf amorphous alloys was predicted to be 15–75 at.% Hf, which is in satisfactory agreement with the experimental observation.

  8. First-principles modeling of interfaces between solids with large lattice mismatch: The prototypical CoO(111)/Ni(111) interface

    KAUST Repository

    Grytsiuk, Sergii

    2012-11-28

    In this work we investigate the CoO(111)/Ni(111) interface by first-principles calculations, focusing on its structure and stability. To satisfy the approximate 5:6 ratio of the CoO and Ni lattice constants, we construct a supercell with 5×5 Co (O) and 6×6 Ni atoms per layer in the bulk regions. For the interface Ni layer and the adjacent Ni layer we consider different configurations and study the binding energy. We show for an ideal CoO interface terminated by 5×5 O atoms that the structure is more stable if there are 5×5 Ni atoms next to it instead of 6×6 as in the bulk. In addition, we observe that a transition layer with 31 or 33 Ni atoms located between the interface 5×5 Ni and bulk 6×6 Ni layers (which partially reflects the structures of both these layers) enhances the stability of the CoO/Ni interface. The electronic and magnetic modifications induced by the interface formation are discussed.

  9. First-principles modeling of interfaces between solids with large lattice mismatch: The prototypical CoO(111)/Ni(111) interface

    KAUST Repository

    Grytsyuk, Sergiy; Peskov, Maxim; Schwingenschlö gl, Udo

    2012-01-01

    In this work we investigate the CoO(111)/Ni(111) interface by first-principles calculations, focusing on its structure and stability. To satisfy the approximate 5:6 ratio of the CoO and Ni lattice constants, we construct a supercell with 5×5 Co (O) and 6×6 Ni atoms per layer in the bulk regions. For the interface Ni layer and the adjacent Ni layer we consider different configurations and study the binding energy. We show for an ideal CoO interface terminated by 5×5 O atoms that the structure is more stable if there are 5×5 Ni atoms next to it instead of 6×6 as in the bulk. In addition, we observe that a transition layer with 31 or 33 Ni atoms located between the interface 5×5 Ni and bulk 6×6 Ni layers (which partially reflects the structures of both these layers) enhances the stability of the CoO/Ni interface. The electronic and magnetic modifications induced by the interface formation are discussed.

  10. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    Science.gov (United States)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  11. First-principles study of strong correlation effects in pyrochlore iridates

    Energy Technology Data Exchange (ETDEWEB)

    Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)

    2016-07-01

    The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.

  12. Phases of Ca from first principles

    International Nuclear Information System (INIS)

    Qiu, S L; Marcus, P M

    2009-01-01

    Structures and properties of many of the phases of Ca under pressure are calculated from first principles by a systematic procedure that minimizes total energy E with respect to structure under the constraint of constant volume V. The minima of E are followed on successive sweeps of lattice parameters for 11 of 14 Bravais symmetries for one-atom-per-cell structures. The structures include the four orthorhombic phases. Also included are the hexagonal close-packed and cubic diamond phases with two atoms per primitive cell. No uniquely orthorhombic phases are found; all one-atom orthorhombic phases over a mega-bar pressure range are identical to higher-symmetry phases. The simple cubic phase is shown to be stable where it is the ground state. The number of distinct one-atom phases reduces to five plus the two two-atom phases. For each of these phases the Gibbs free energy at pressure p, G(p), is calculated for a non-vibrating lattice; the functions G(p) give the ground state at each p, the relative stabilities of all phases and the thermodynamic phase transition pressures for all phase transitions over a several-megabar range.

  13. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Mark A. [Iowa State Univ., Ames, IA (United States)

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.

  14. Bias changing molecule–lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study

    International Nuclear Information System (INIS)

    Min, Y.; Fang, J.H.; Zhong, C.G.; Dong, Z.C.; Zhao, Z.Y.; Zhou, P.X.; Yao, K.L.

    2015-01-01

    A first-principles study of the transport properties of 3,13-dimercaptononacene–6,21-dione molecule sandwiched between two gold leads is reported. The strong effect of negative differential resistance with large peak-to-valley ratio of 710% is present under low bias. We found that bias can change molecule–lead couple and induce low bias negative differential resistance for electrons acceptor, which may promise the potential applications in molecular devices with low-power dissipation in the future. - Highlights: • Acceptor is constructed to negative differential resistor (NDR). • NDR effect is present under low bias. • Bias change molecule–lead couple and induce NDR effect

  15. Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study

    Science.gov (United States)

    Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent

    Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.

  16. Principles governing medical first aid to workers exposed to internal contamination

    International Nuclear Information System (INIS)

    Jammet, H.; Nenot, J.C.

    1976-01-01

    The growing use of radionuclides, whether at hospital, laboratory or nuclear facility level, increases the risk of internal contamination. Not only that, some particularly dangerous elements are being handled more and more frequently. Hence the importance of therapeutic concepts based on the general principles governing action to be taken in cases of internal contamination. These principles should be applicable without the nature of the contaminant having to be taken into account, and irrespective of whether it is transferable and of the route of entry, i.e. healthy skin, wound or bronchial tree. The basic principle is the concept of urgency: ''blind'' treatment should be applied merely on the supposition of internal contamination. It is desirable, moreover, that the first aid should be given at the site of the accident. Hence, the product used should be non-toxic under normal conditions of use and should be simple to apply, as, for example, the administration of an aerosol. It is not until later that the doctor should undertake treatment in the proper sense of the term, the emergency treatment having afforded him sufficient time to carry out the preliminary examination required to gain an exact idea of the internal contamination. (author)

  17. Audio interfaces should be designed based on data visualisation first principles

    OpenAIRE

    Dewey, Christopher; Wakefield, Jonathan P.

    2016-01-01

    Audio mixing interfaces (AMIs) commonly conform to a small number of paradigms. These paradigms have\\ud significant shortcomings. Data visualisation first principles should be employed to consider alternatives. Existing AMI\\ud paradigms are discussed and concepts of image theory and elementary perceptual elements outlined. AMIs should be evaluated by usability experiments however performing these properly is time-consuming. There are many data visualisation options and combinations. Collabora...

  18. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  19. First-principles study on lithium removal from Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Yukinori; Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Nagao, Miki; Kanno, Ryoji [Department of Electronic Chemistry, Tokyo Institute of Technology, Nagatsuda, Midori, Yokohama 226-8502 (Japan)

    2009-04-01

    A systematic first-principles calculation based on density functional theory is carried out to discuss the redox mechanism of Li{sub 2}MnO{sub 3}. The lattices of structural models having C2/m- and C2/c-type stacking sequences can be regarded as hexagonal, while their symmetry is monoclinic. Different stacking sequences of [Mn{sub 2/3}Li{sub 1/3}] layers do not cause differences in the energy or crystallographic structure, suggesting a disordered stacking sequence. A calculation for Li{sub 2-x}MnO{sub 3} assuming topotactic lithium removal indicates that lithium removal can occur at a potential of about 4.6 V with a wide potential plateau. The electronic structure of Li{sub 2-x}MnO{sub 3} shows that the manganese ions remain in the charge state of Mn{sup 4+} and the charge of the removed lithium ions is compensated by the oxidation of oxygen. (author)

  20. First-principles study of amorphous Ga4Sb6Te3 phase-change alloys

    Science.gov (United States)

    Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco

    2015-05-01

    First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.