WorldWideScience

Sample records for approximate analytical solution

  1. Approximate analytical solutions of Klein-Gordon equation with Hulthen potentials for nonzero angular momentum

    International Nuclear Information System (INIS)

    Chen Changyuan; Sun Dongsheng; Lu Falin

    2007-01-01

    Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given

  2. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  3. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    Science.gov (United States)

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  4. Approximate Analytic Solutions for the Two-Phase Stefan Problem Using the Adomian Decomposition Method

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Qin

    2014-01-01

    Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.

  5. Approximate analytical solution of two-dimensional multigroup P-3 equations

    International Nuclear Information System (INIS)

    Matausek, M.V.; Milosevic, M.

    1981-01-01

    Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (orig./RW) [de

  6. Approximate analytical solution of two-dimensional multigroup P-3 equations

    International Nuclear Information System (INIS)

    Matausek, M.V.; Milosevic, M.

    1981-01-01

    Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (author)

  7. Approximate and analytical solutions for solute transport from an injection well into a single fracture

    International Nuclear Information System (INIS)

    Chen, C.S.; Yates, S.R.

    1989-01-01

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases

  8. Analytical approaches for the approximate solution of a nonlinear fractional ordinary differential equation

    International Nuclear Information System (INIS)

    Basak, K C; Ray, P C; Bera, R K

    2009-01-01

    The aim of the present analysis is to apply the Adomian decomposition method and He's variational method for the approximate analytical solution of a nonlinear ordinary fractional differential equation. The solutions obtained by the above two methods have been numerically evaluated and presented in the form of tables and also compared with the exact solution. It was found that the results obtained by the above two methods are in excellent agreement with the exact solution. Finally, a surface plot of the approximate solutions of the fractional differential equation by the above two methods is drawn for 0≤t≤2 and 1<α≤2.

  9. Approximate analytical solution of diffusion equation with fractional time derivative using optimal homotopy analysis method

    Directory of Open Access Journals (Sweden)

    S. Das

    2013-12-01

    Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.

  10. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  11. Symbolic computation of analytic approximate solutions for nonlinear fractional differential equations

    Science.gov (United States)

    Lin, Yezhi; Liu, Yinping; Li, Zhibin

    2013-01-01

    The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad

  12. Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary

    Science.gov (United States)

    Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing

    2016-04-01

    An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.

  13. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.

    Science.gov (United States)

    Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni

    2002-01-01

    Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.

  14. Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method

    International Nuclear Information System (INIS)

    Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A

    2009-01-01

    A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.

  15. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  16. Symbolic computation of analytic approximate solutions for nonlinear differential equations with initial conditions

    Science.gov (United States)

    Lin, Yezhi; Liu, Yinping; Li, Zhibin

    2012-01-01

    The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.

  17. Approximate, analytic solutions of the Bethe equation for charged particle range

    OpenAIRE

    Swift, Damian C.; McNaney, James M.

    2009-01-01

    By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...

  18. Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources

    Science.gov (United States)

    Barrett, Steven R. H.; Britter, Rex E.

    Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean

  19. Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution

    DEFF Research Database (Denmark)

    Pedersen, Thomas Quistgaard

    In this paper we derive an approximate analytical solution to the optimal con- sumption and portfolio choice problem of an infinitely-lived investor with power utility defined over the difference between consumption and an external habit. The investor is assumed to have access to two tradable......-linearized surplus consumption ratio. The "difference habit model" implies that the relative risk aversion is time-varying which is in line with recent ev- idence from the asset pricing literature. We show that accounting for habit a¤ects both the myopic and intertemporal hedge component of optimal asset demand......, and introduces an additional component that works as a hedge against changes in the investor's habit level. In an empirical application, we calibrate the model to U.S. data and show that habit formation has significant effects on both the optimal consumption and portfolio choice compared to a standard CRRA...

  20. The approximate analytical solution of the internal problem of conductive and laminar free convection

    Directory of Open Access Journals (Sweden)

    M. I. Popov

    2016-01-01

    Full Text Available The approximate analytical solution of a problem about nonstationary free convection in the conductive and laminar mode of the Newtonian liquid in square area at the instantaneous change of temperature of a sidewall and lack of heat fluxes is submitted on top and bottom the bases. The equations of free convection in an approximation of Oberbeka-Bussinesk are linearized due to neglect by convective items. For reduction of number of hydrothermal parameters the system is given to the dimensionless look by introduction of scales for effect and explanatory variables. Transition from classical variables to the variables "whirlwind-a flow function" allowed to reduce system to a nonstationary heat conduction equation and a nonstationary nonuniform biharmonic equation, and the first is not dependent on the second. The decision in the form of a flow function is received by application integral a sine - Fourier transforms with terminating limits to a biharmonic equation at first on a variable x, and then on a variable y. The flow function has an appearance of a double series of Fourier on sine with coefficients in an integral form. Coefficients of a row represent integrals from unknown functions. On the basis of a hypothesis of an express type of integrals coefficients are calculated from the linear equation system received from boundary conditions on partial derivatives of function. Dependence of structure of a current on Prandtl's number is investigated. The cards of streamlines and isolines of components of speed describing development of a current from the moment of emergence before transition to a stationary state are received. The schedules of a field of vectors of speeds in various time illustrating dynamics of a current are provided. Reliability of a hypothesis of an express type of integral coefficients is confirmed by adequacy to physical sense and coherence of the received results with the numerical solution of a problem.

  1. Analytic Approximation of the Solutions of Stochastic Differential Delay Equations with Poisson Jump and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2012-01-01

    Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.

  2. An approximate and an analytical solution to the carousel-pendulum problem

    Energy Technology Data Exchange (ETDEWEB)

    Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr

    2009-09-15

    We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)

  3. Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2008-01-01

    Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.

  4. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  5. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  6. Approximate analytical solutions in the analysis of elastic structures of complex geometry

    Science.gov (United States)

    Goloskokov, Dmitriy P.; Matrosov, Alexander V.

    2018-05-01

    A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.

  7. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  8. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  9. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    Science.gov (United States)

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  10. Approximately analytical solutions of the Manning-Rosen potential with the spin-orbit coupling term and spin symmetry

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2008-01-01

    In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential

  11. Approximate Analytical Solutions for Mathematical Model of Tumour Invasion and Metastasis Using Modified Adomian Decomposition and Homotopy Perturbation Methods

    Directory of Open Access Journals (Sweden)

    Norhasimah Mahiddin

    2014-01-01

    Full Text Available The modified decomposition method (MDM and homotopy perturbation method (HPM are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.

  12. Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations

    International Nuclear Information System (INIS)

    Yang Pei; Li Zhibin; Chen Yong

    2010-01-01

    In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)

  13. Approximate analytical solutions to the condensation-coagulation equation of aerosols

    DEFF Research Database (Denmark)

    Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik

    2016-01-01

    to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate...

  14. Linear analytical solution to the phase diversity problem for extended objects based on the Born approximation

    NARCIS (Netherlands)

    Andrei, R.M.; Smith, C.S.; Fraanje, P.R.; Verhaegen, M.; Korkiakoski, V.A.; Keller, C.U.; Doelman, N.J.

    2012-01-01

    In this paper we give a new wavefront estimation technique that overcomes the main disadvantages of the phase diversity (PD) algorithms, namely the large computational complexity and the fact that the solutions can get stuck in a local minima. Our approach gives a good starting point for an

  15. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  16. An approximate analytical solution for the energy distribution of beta particles transmitted through metal foils

    International Nuclear Information System (INIS)

    Gurler, O.; Yalcin, S.; Gultekin, A.; Kaynak, G.; Gundogdu, O.

    2006-01-01

    The energy distributions of beta particles which penetrated a certain matter thickness were studied experimentally and theoretically by using a surface barrier solid state detector. A valid theoretical expression based on average values between energy and distance traveled during the slowing down of the electron was obtained. Two analytical expressions were proposed; one for the energy distribution of monoenergetic electrons which penetrated a certain matter thickness, and one for the response function in the detector for monoenergetic electrons detected with its entire energy. Response functions of the detector for beta particles emitted from 204 Tl isotope which penetrated a certain matter thickness were obtained for two different aluminum thicknesses, and the results were discussed by comparing with experimental energy spectra

  17. An approximate analytical solution for the energy distribution of beta particles transmitted through metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Gurler, O. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey)]. E-mail: ogurler@uludag.edu.tr; Yalcin, S. [Gazi University Kastamonu, Education Faculty, 37200 Kastamonu (Turkey); Gultekin, A. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey); Kaynak, G. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey); Gundogdu, O. [School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2006-04-15

    The energy distributions of beta particles which penetrated a certain matter thickness were studied experimentally and theoretically by using a surface barrier solid state detector. A valid theoretical expression based on average values between energy and distance traveled during the slowing down of the electron was obtained. Two analytical expressions were proposed; one for the energy distribution of monoenergetic electrons which penetrated a certain matter thickness, and one for the response function in the detector for monoenergetic electrons detected with its entire energy. Response functions of the detector for beta particles emitted from {sup 204}Tl isotope which penetrated a certain matter thickness were obtained for two different aluminum thicknesses, and the results were discussed by comparing with experimental energy spectra.

  18. 39 (APPROXIMATE ANALYTICAL SOLUTION)

    African Journals Online (AJOL)

    Rotating machines like motors, turbines, compressors etc. are generally subjected to periodic forces and the system parameters remain more or less constant. ... parameters change and, consequently, the natural frequencies too, due to reasons of changing gyroscopic moments, centrifugal forces, bearing characteristics,.

  19. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    Science.gov (United States)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  20. Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example of cadmium.

    Science.gov (United States)

    Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe

    2018-04-01

    The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  2. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  3. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  4. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad

    2013-09-01

    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  5. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  6. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  7. Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    International Nuclear Information System (INIS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Pade approximations via the analytical inversion method

    International Nuclear Information System (INIS)

    Aboanber, A E; Nahla, A A

    2002-01-01

    A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases

  9. Analytical inversions in remote sensing of particle size distributions. IV - Comparison of Fymat and Box-McKellar solutions in the anomalous diffraction approximation

    Science.gov (United States)

    Fymat, A. L.; Smith, C. B.

    1979-01-01

    It is shown that the inverse analytical solutions, provided separately by Fymat and Box-McKellar, for reconstructing particle size distributions from remote spectral transmission measurements under the anomalous diffraction approximation can be derived using a cosine and a sine transform, respectively. Sufficient conditions of validity of the two formulas are established. Their comparison shows that the former solution is preferable to the latter in that it requires less a priori information (knowledge of the particle number density is not needed) and has wider applicability. For gamma-type distributions, and either a real or a complex refractive index, explicit expressions are provided for retrieving the distribution parameters; such expressions are, interestingly, proportional to the geometric area of the polydispersion.

  10. Approximative analytic study of fermions in magnetar's crust; ultra-relativistic plane waves, Heun and Mathieu solutions and beyond

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-10-01

    Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.

  11. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  12. Approximate analytic theory of the multijunction grill

    International Nuclear Information System (INIS)

    Hurtak, O.; Preinhaelter, J.

    1991-03-01

    An approximate analytic theory of the general multijunction grill is developed. Omitting the evanescent modes in the subsidiary waveguides both at the junction and at the grill mouth and neglecting multiple wave reflection, simple formulae are derived for the reflection coefficient, the amplitudes of the incident and reflected waves and the spectral power density. These quantities are expressed through the basic grill parameters (the electric length of the structure and phase shift between adjacent waveguides) and two sets of reflection coefficients describing wave reflections in the subsidiary waveguides at the junction and at the plasma. Approximate expressions for these coefficients are also given. The results are compared with a numerical solution of two specific examples; they were shown to be useful for the optimization and design of multijunction grills.For the JET structure it is shown that, in the case of a dense plasma,many results can be obtained from the simple formulae for a two-waveguide multijunction grill. (author) 12 figs., 12 refs

  13. An approximate analytical approach to resampling averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, M.

    2004-01-01

    Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr...... for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method achieves good accuracy....

  14. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  15. Approximate solutions of the Wei Hua oscillator using the Pekeris ...

    Indian Academy of Sciences (India)

    The approximate analytical bound-state solutions of the Schrödinger equation for the. Wei Hua oscillator are carried out in N-dimensional space by taking Pekeris approximation scheme to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained using the conventional Nikiforov–Uvarov ...

  16. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  17. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-15

    diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.

  18. A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2016-01-01

    diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future. PMID:28042172

  19. Approximate analytical modeling of leptospirosis infection

    Science.gov (United States)

    Ismail, Nur Atikah; Azmi, Amirah; Yusof, Fauzi Mohamed; Ismail, Ahmad Izani

    2017-11-01

    Leptospirosis is an infectious disease carried by rodents which can cause death in humans. The disease spreads directly through contact with feces, urine or through bites of infected rodents and indirectly via water contaminated with urine and droppings from them. Significant increase in the number of leptospirosis cases in Malaysia caused by the recent severe floods were recorded during heavy rainfall season. Therefore, to understand the dynamics of leptospirosis infection, a mathematical model based on fractional differential equations have been developed and analyzed. In this paper an approximate analytical method, the multi-step Laplace Adomian decomposition method, has been used to conduct numerical simulations so as to gain insight on the spread of leptospirosis infection.

  20. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  1. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  2. Approximate analytical methods for solving ordinary differential equations

    CERN Document Server

    Radhika, TSL; Rani, T Raja

    2015-01-01

    Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods.The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete descripti

  3. Analytical Evaluation of Beam Deformation Problem Using Approximate Methods

    DEFF Research Database (Denmark)

    Barari, Amin; Kimiaeifar, A.; Domairry, G.

    2010-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified......, and this process produces noise in the obtained answers. This paper deals with the solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Perturbation, Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM) and Variational...... Iteration Method (VIM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate for systems of non-linear differential equation....

  4. Approximative solutions of stochastic optimization problem

    Czech Academy of Sciences Publication Activity Database

    Lachout, Petr

    2010-01-01

    Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf

  5. Analytic solutions of a class of nonlinearly dynamic systems

    International Nuclear Information System (INIS)

    Wang, M-C; Zhao, X-S; Liu, X

    2008-01-01

    In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently

  6. Analytic approximations for inside-outside interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Gyulassy, M. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-07-30

    Analytical expressions for pion interferometry are derived illustrating the competing effects of various non-ideal aspects of inside-outside cascade dynamics at energies {proportional to}200 AGeV. (orig.).

  7. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  8. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  9. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao

    2014-01-01

    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  10. Approximated solutions to Born-Infeld dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  11. Approximated solutions to Born-Infeld dynamics

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Nigro, Mauro

    2016-01-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  12. Analytic Solutions of Special Functional Equations

    Directory of Open Access Journals (Sweden)

    Octav Olteanu

    2013-07-01

    Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.

  13. Analytic solution for a quartic electron mirror

    Energy Technology Data Exchange (ETDEWEB)

    Straton, Jack C., E-mail: straton@pdx.edu

    2015-01-15

    A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.

  14. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  15. Approximated solutions to the Schroedinger equation

    International Nuclear Information System (INIS)

    Rico, J.F.; Fernandez-Alonso, J.I.

    1977-01-01

    The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)

  16. A new analytical approximation to the Duffing-harmonic oscillator

    International Nuclear Information System (INIS)

    Fesanghary, M.; Pirbodaghi, T.; Asghari, M.; Sojoudi, H.

    2009-01-01

    In this paper, a novel analytical approximation to the nonlinear Duffing-harmonic oscillator is presented. The variational iteration method (VIM) is used to obtain some accurate analytical results for frequency. The accuracy of the results is excellent in the whole range of oscillation amplitude variations.

  17. Analytical approximations to seawater optical phase functions of scattering

    Science.gov (United States)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  18. Analytic Solutions and Resonant Solutions of Hyperbolic Partial Differential Equations

    Science.gov (United States)

    Wagenmaker, Timothy Roger

    This dissertation contains two main subject areas. The first deals with solutions to the wave equation Du/Dt + a Du/Dx = 0, where D/Dt and D/Dx represent partial derivatives and a(t,x) is real valued. The question I studied, which arises in control theory, is whether solutions which are real analytic with respect to the time variable are dense in the space of all solutions. If a is real analytic in t and x, the Cauchy-Kovalevsky Theorem implies that the solutions real analytic in t and x are dense, since it suffices to approximate the initial data by polynomials. The same positive result is valid when a is continuously differentiable and independent of t. This is proved by regularization in time. The hypothesis that a is independent of t cannot be replaced by the weaker assumption that a is real analytic in t, even when it is infinitely smooth. I construct a(t,x) for which the solutions which are analytic in time are automatically periodic in time. In particular these solutions are not dense in the space of all solutions. The second area concerns the resonant interaction of oscillatory waves propagating in a compressible inviscid fluid. An asymptotic description given by Andrew Majda, Rodolfo Rosales, and Maria Schonbek (MRS) involves the genuinely nonlinear quasilinear hyperbolic system Du/Dt + D(uu/2)/Dt + v = 0, Dv/Dt - D(vv/2)/Dt - u = 0. They performed many numerical simulations which indicated that small amplitude solutions of this system tend to evade shock formation, and conjectured that "smooth initial data with a sufficiently small amplitude never develop shocks throughout a long time interval of integration.". I proved that for smooth periodic U(x), V(x) and initial data u(0,x) = epsilonU(x), v(0,x) = epsilonV(x), the solution is smooth for time at least constant times | ln epsilon| /epsilon. This is longer than the lifetime order 1/ epsilon of the solution to the decoupled Burgers equations. The decoupled equation describes nonresonant interaction of

  19. Precise analytic approximations for the Bessel function J1 (x)

    Science.gov (United States)

    Maass, Fernando; Martin, Pablo

    2018-03-01

    Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.

  20. Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1993-01-01

    A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)

  1. Approximation of Analytic Functions by Bessel's Functions of Fractional Order

    Directory of Open Access Journals (Sweden)

    Soon-Mo Jung

    2011-01-01

    Full Text Available We will solve the inhomogeneous Bessel's differential equation x2y″(x+xy′(x+(x2-ν2y(x=∑m=0∞amxm, where ν is a positive nonintegral number and apply this result for approximating analytic functions of a special type by the Bessel functions of fractional order.

  2. Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels

    DEFF Research Database (Denmark)

    Khorunzhina, Natalia; Richard, Jean-Francois

    The objective of the paper is that of constructing finite Gaussian mixture approximations to analytically intractable density kernels. The proposed method is adaptive in that terms are added one at the time and the mixture is fully re-optimized at each step using a distance measure that approxima...

  3. Analytic bounds and approximations for annuities and Asian options

    NARCIS (Netherlands)

    Vanduffel, S.; Shang, Z.; Henrard, L.; Dhaene, J.; Valdez, E.A.

    2008-01-01

    Even in case of the Brownian motion as most natural rate of return model it appears too difficult to obtain analytic expressions for most risk measures of constant continuous annuities. In literature the so-called comonotonic approximations have been proposed but these still require the evaluation

  4. A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, Manfred

    2003-01-01

    We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages...

  5. Approximate solutions: ramps and periodic variations. Chapter 5

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of reactor regulation is generally to maintain reactor power at the demand power, or to vary it slowly to attain a new demand power. On the other hand, the purpose of reactor shutdown systems (SDS) is to insert rapidly, on actuation, a large negative reactivity in order to minimize an overpower, or limit the energy released during a transient, so that fuel failure is improbable. Control mechanisms are therefore characterized by: their reactivity worth (mk), which must exceed the reactivity effect which the mechanism is designed to compensate; and their insertion rate (mk/s), which must be at least as fast as the effect to be controlled. Table 5.1 gives a summary of the various control mechanisms in a CANDU 6 reactor. The reactivity worth shown for each mechanism is the static reactivity change associated with full movement of the device. In reality, the dynamic reactivity will vary in a continuous manner, not suddenly, as assumed in the previous chapter. The realistic simulation of a reactivity insertion in the reactor must then take into account the rate of insertion of reactivity, which is governed by the insertion speed of the mechanism. We have seen in the previous chapter that it is possible to solved analytically the point-kinetics equations for constant reactivity. We could generalize these solutions to step-wise reactivity variations by linking together the analytic solutions to for a sequence of step changes. This approach is not necessarily the best from a numerical point of view. By introducing one or more simplifying assumptions, it will be possible to obtain an analytical solution of arbitrary variations in reactivity or in the external source. These assumptions will undoubtedly limit the applicability of the results, but the approximate solutions obtained will allow us to describe the reactor behaviour analytically. (author)

  6. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    International Nuclear Information System (INIS)

    Vavilov, S; Fofanof, O; Koshkin, G; Udod, V

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses. (paper)

  7. Approximate solution methods in engineering mechanics

    International Nuclear Information System (INIS)

    Boresi, A.P.; Cong, K.P.

    1991-01-01

    This is a short book of 147 pages including references and sometimes bibliographies at the end of each chapter, and subject and author indices at the end of the book. The test includes an introduction of 3 pages, 29 pages explaining approximate analysis, 41 pages on finite differences, 36 pages on finite elements, and 17 pages on specialized methods

  8. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  9. Analytic Approximation to Radiation Fields from Line Source Geometry

    International Nuclear Information System (INIS)

    Michieli, I.

    2000-01-01

    Line sources with slab shields represent typical source-shield configuration in gamma-ray attenuation problems. Such shielding problems often lead to the generalized Secant integrals of the specific form. Besides numerical integration approach, various expansions and rational approximations with limited applicability are in use for computing the value of such integral functions. Lately, the author developed rapidly convergent infinite series representation of generalized Secant Integrals involving incomplete Gamma functions. Validity of such representation was established for zero and positive values of integral parameter a (a=0). In this paper recurrence relations for generalized Secant Integrals are derived allowing us simple approximate analytic calculation of the integral for arbitrary a values. It is demonstrated how truncated series representation can be used, as the basis for such calculations, when possibly negative a values are encountered. (author)

  10. Analytic solution of integral equations for molecular fluids

    International Nuclear Information System (INIS)

    Cummings, P.T.

    1984-01-01

    We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)

  11. Analytic plane wave solutions for the quaternionic potential step

    International Nuclear Information System (INIS)

    De Leo, Stefano; Ducati, Gisele C.; Madureira, Tiago M.

    2006-01-01

    By using the recent mathematical tools developed in quaternionic differential operator theory, we solve the Schroedinger equation in the presence of a quaternionic step potential. The analytic solution for the stationary states allows one to explicitly show the qualitative and quantitative differences between this quaternionic quantum dynamical system and its complex counterpart. A brief discussion on reflected and transmitted times, performed by using the stationary phase method, and its implication on the experimental evidence for deviations of standard quantum mechanics is also presented. The analytic solution given in this paper represents a fundamental mathematical tool to find an analytic approximation to the quaternionic barrier problem (up to now solved by numerical method)

  12. Insight solutions are correct more often than analytic solutions

    Science.gov (United States)

    Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark

    2016-01-01

    How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960

  13. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S.

    2009-01-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  14. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br

    2009-07-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  15. Analytical solution of population balance equation involving ...

    Indian Academy of Sciences (India)

    This paper presents an effective analytical simulation to solve population .... considering spatial dependence and growth, based on the so-called LPA formulation as .... But the particle size distribution is defined so that n(v,t) dx is the number of ..... that was made beforehand in the construction of the analytical solutions ...

  16. An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    M. Bishehniasar

    2017-01-01

    Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.

  17. Approximate analytical solution of the Dirac equation for pseudospin symmetry with modified Po schl-Teller potential and trigonometric Scarf II non-central potential using asymptotic iteration method

    International Nuclear Information System (INIS)

    Pratiwi, B N; Suparmi, A; Cari, C; Yunianto, M; Husein, A S

    2016-01-01

    We apllied asymptotic iteration method (AIM) to obtain the analytical solution of the Dirac equation in case exact pseudospin symmetry in the presence of modified Pcischl- Teller potential and trigonometric Scarf II non-central potential. The Dirac equation was solved by variables separation into one dimensional Dirac equation, the radial part and angular part equation. The radial and angular part equation can be reduced into hypergeometric type equation by variable substitution and wavefunction substitution and then transform it into AIM type equation to obtain relativistic energy eigenvalue and wavefunctions. Relativistic energy was calculated numerically by Matlab software. And then relativistic energy spectrum and wavefunctions were visualized by Matlab software. The results show that the increase in the radial quantum number n_r causes decrease in the relativistic energy spectrum. The negative value of energy is taken due to the pseudospin symmetry limit. Several quantum wavefunctions were presented in terms of the hypergeometric functions. (paper)

  18. Analytic solutions of nonlinear Cournot duopoly game

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2005-01-01

    Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.

  19. Analytical construction of peaked solutions for the nonlinear ...

    African Journals Online (AJOL)

    These results demonstrate the existence of peaked pulses propagating through a pair plasma. The algebraic decay rate of the pulses are determined analytically, as well. The method discussed here can be applied to approximate solutions to similar nonlinear partial differential equations of nonlinear Schrödinger type.

  20. Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem

    KAUST Repository

    Younis, Mohammad I.

    2014-01-01

    We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions

  1. ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

    2013-01-01

    I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

  2. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells

    Science.gov (United States)

    Bakker, Mark

    2001-05-01

    An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.

  3. Analytical solution for a coaxial plasma gun: Weak coupling limit

    International Nuclear Information System (INIS)

    Dietz, D.

    1987-01-01

    The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature

  4. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  5. Approximation of entropy solutions to degenerate nonlinear parabolic equations

    Science.gov (United States)

    Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu

    2017-12-01

    We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.

  6. Approximate solution fuzzy pantograph equation by using homotopy perturbation method

    Science.gov (United States)

    Jameel, A. F.; Saaban, A.; Ahadkulov, H.; Alipiah, F. M.

    2017-09-01

    In this paper, Homotopy Perturbation Method (HPM) is modified and formulated to find the approximate solution for its employment to solve (FDDEs) involving a fuzzy pantograph equation. The solution that can be obtained by using HPM is in the form of infinite series that converge to the actual solution of the FDDE and this is one of the benefits of this method In addition, it can be used for solving high order fuzzy delay differential equations directly without reduction to a first order system. Moreover, the accuracy of HPM can be detected without needing the exact solution. The HPM is studied for fuzzy initial value problems involving pantograph equation. Using the properties of fuzzy set theory, we reformulate the standard approximate method of HPM and obtain the approximate solutions. The effectiveness of the proposed method is demonstrated for third order fuzzy pantograph equation.

  7. Surface solitons in waveguide arrays: Analytical solutions.

    Science.gov (United States)

    Kominis, Yannis; Papadopoulos, Aristeidis; Hizanidis, Kyriakos

    2007-08-06

    A novel phase-space method is employed for the construction of analytical stationary solitary waves located at the interface between a periodic nonlinear lattice of the Kronig-Penney type and a linear or nonlinear homogeneous medium as well as at the interface between two dissimilar nonlinear lattices. The method provides physical insight and understanding of the shape of the solitary wave profile and results to generic classes of localized solutions having either zero or nonzero semi-infinite backgrounds. For all cases, the method provides conditions involving the values of the propagation constant of the stationary solutions, the linear refractive index and the dimensions of each part in order to assure existence of solutions with specific profile characteristics. The evolution of the analytical solutions under propagation is investigated for cases of realistic configurations and interesting features are presented such as their remarkable robustness which could facilitate their experimental observation.

  8. The big bang and inflation united by an analytic solution

    International Nuclear Information System (INIS)

    Bars, Itzhak; Chen, Shih-Hung

    2011-01-01

    Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of the spectral index, and the amplitude of scalar perturbations within the constraints given by the WMAP 7 years data. The model simultaneously describes the big bang and inflation connected by a specific time delay between them so that these two events are regarded as dependent on each other. In solving the Friedmann equations, we have utilized an essential Weyl symmetry of our theory in 3+1 dimensions which is a predicted remaining symmetry of 2T-physics field theory in 4+2 dimensions. This led to a new method of obtaining analytic solutions in the 1T field theory which could in principle be used to solve more complicated theories with more scalar fields. Some additional distinguishing properties of the solution includes the fact that there are early periods of time when the slow-roll approximation is not valid. Furthermore, the inflaton does not decrease monotonically with time; rather, it oscillates around the potential minimum while settling down, unlike the slow-roll approximation. While the model we used for illustration purposes is realistic in most respects, it lacks a mechanism for stopping inflation. The technique of obtaining analytic solutions opens a new window for studying inflation, and other applications, more precisely than using approximations.

  9. Approximate variational solutions of the Grad-Shafranov equation

    International Nuclear Information System (INIS)

    Ludwig, G.O.

    2001-01-01

    Approximate solutions of the Grad-Schlueter-Shafranov equation based on variational methods are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared with direct variational results for a low aspect ratio tokamak equilibrium. (author)

  10. Analytic vortex solutions on compact hyperbolic surfaces

    International Nuclear Information System (INIS)

    Maldonado, Rafael; Manton, Nicholas S

    2015-01-01

    We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. (paper)

  11. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    Science.gov (United States)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  12. An analytical approximation scheme to two-point boundary value problems of ordinary differential equations

    International Nuclear Information System (INIS)

    Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector

    2007-01-01

    A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)

  13. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    Science.gov (United States)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in

  14. Solution of the Chew-Low equations in the quadratic approximation

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zharkov, A.Yu.

    1982-01-01

    Within the framework of the iteration scheme for constructing the general solution of the Chew-Low equations as suggested earlier the second order power contributions are found. In contrast to the linear approximation obtained before the quadratic approximation includes an infinite number of poles on the complex plane of the uniformizing variable w. It is shown that taking into account the second order corrections in the general solution allows us to select the class of solutions possessing the Born pole at w=0. The most cumbersome part of analytical computations has been carried out by computer using the algebraic system REDUCE-2

  15. Explicit analytical solution of a pendulum with periodically varying length

    International Nuclear Information System (INIS)

    Yang Tianzhi; Fang Bo; Li Song; Huang Wenhu

    2010-01-01

    A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper, we use the homotopy analysis method to explore the approximate solution to this system. The method can easily self-adjust and control the convergence region. By applying the method to the governing equation of the pendulum, we obtain the approximation solution in a closed form. It is shown by the numerical method that the homotopy analysis method supplies a more accurate analytical solution for predicting the long-term behaviour of the pendulum. We believe that this system may be a good example for undergraduate and graduate students for better understanding of nonlinear oscillations.

  16. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  17. Approximating the Analytic Fourier Transform with the Discrete Fourier Transform

    OpenAIRE

    Axelrod, Jeremy

    2015-01-01

    The Fourier transform is approximated over a finite domain using a Riemann sum. This Riemann sum is then expressed in terms of the discrete Fourier transform, which allows the sum to be computed with a fast Fourier transform algorithm more rapidly than via a direct matrix multiplication. Advantages and limitations of using this method to approximate the Fourier transform are discussed, and prototypical MATLAB codes implementing the method are presented.

  18. Approximate solutions of some problems of scattering of surface ...

    Indian Academy of Sciences (India)

    A Choudhary

    Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.

  19. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Analytical solution of strongly nonlinear Duffing oscillators

    OpenAIRE

    El-Naggar, A.M.; Ismail, G.M.

    2016-01-01

    In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...

  1. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    Science.gov (United States)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  2. Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava

    CERN Document Server

    Rassias, Michael

    2014-01-01

    This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.

  3. Triangular dislocation: an analytical, artefact-free solution

    Science.gov (United States)

    Nikkhoo, Mehdi; Walter, Thomas R.

    2015-05-01

    Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.

  4. Analytical approximations for the amplitude and period of a relaxation oscillator

    Directory of Open Access Journals (Sweden)

    Golkhou Vahid

    2009-01-01

    Full Text Available Abstract Background Analysis and design of complex systems benefit from mathematically tractable models, which are often derived by approximating a nonlinear system with an effective equivalent linear system. Biological oscillators with coupled positive and negative feedback loops, termed hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the subject of comprehensive computational studies. Analytical approximations have identified criteria for sustained oscillations, but have not linked the observed period and phase to compact formulas involving underlying molecular parameters. Results We present, to our knowledge, the first analytical expressions for the period and amplitude of a classic model for the animal circadian clock oscillator. These compact expressions are in good agreement with numerical solutions of corresponding continuous ODEs and for stochastic simulations executed at literature parameter values. The formulas are shown to be useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for noise (10× less sensitive to protein decay rates, efficiency (2× more efficient, and dynamic range (30 to 60 decibel increase. The dynamic range is enhanced at its lower end by a new concentration scale defined by the crossing point of the activator and repressor, rather than from a steady-state expression level. Conclusion Analytical expressions for oscillator dynamics provide a physical understanding for the observations from numerical simulations and suggest additional properties not readily apparent or as yet unexplored. The methods described here may be applied to other nonlinear oscillator designs and biological circuits.

  5. Analytical solution of strongly nonlinear Duffing oscillators

    Directory of Open Access Journals (Sweden)

    A.M. El-Naggar

    2016-06-01

    Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.

  6. Approximate solution for the reactor neutron probability distribution

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1985-01-01

    Several authors have studied the Kolmogorov equation for a fission-driven chain-reacting system, written in terms of the generating function G(x,y,z,t) where x, y, and z are dummy variables referring to the neutron, delayed neutron precursor, and detector-count populations, n, m, and c, respectively. Pal and Zolotukhin and Mogil'ner have shown that if delayed neutrons are neglected, the solution is approximately negative binomial for the neutron population. Wang and Ruby have shown that if the detector effect is neglected, the solution, including the effect of delayed neutrons, is approximately negative binomial. All of the authors assumed prompt-neutron emission not exceeding two neutrons per fission. An approximate method of separating the detector effect from the statistics of the neutron and precursor populations has been proposed by Ruby. In this weak-coupling limit, it is assumed that G(x,y,z,t) = H(x,y)I(z,t). Substitution of this assumption into the Kolmogorov equation separates the latter into two equations, one for H(x,y) and the other for I(z,t). Solution of the latter then gives a generating function, which indicates that in the weak-coupling limit, the detector counts are Poisson distributed. Ruby also showed that if the detector effect is neglected in the equation for H(x,y), i.e., the detector efficiency is set to zero, then the resulting equation is identical with that considered by Wang and Ruby. The authors present here an approximate solution for H(x,y) that does not set the detector efficiency to zero

  7. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  8. Dataset concerning the analytical approximation of the Ae3 temperature

    Directory of Open Access Journals (Sweden)

    B.L. Ennis

    2017-02-01

    The dataset includes the terms of the function and the values for the polynomial coefficients for major alloying elements in steel. A short description of the approximation method used to derive and validate the coefficients has also been included. For discussion and application of this model, please refer to the full length article entitled “The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel” 10.1016/j.actamat.2016.05.046 (Ennis et al., 2016 [1].

  9. Approximate solution to neutron transport equation with linear anisotropic scattering

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1983-01-01

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  10. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations

    KAUST Repository

    Castrillon, Julio

    2016-03-02

    In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped onto a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined region in CN with respect to the random variables. A sparse grid stochastic collocation method is then used to compute the mean and variance of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and compared to those obtained in numerical experiments.

  11. Fall with linear drag and Wien's displacement law: approximate solution and Lambert function

    International Nuclear Information System (INIS)

    Vial, Alexandre

    2012-01-01

    We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for undergraduate students, as they show that some transcendental equations found in physics may be solved without purely numerical methods. Moreover, as will be seen in the case of Wien's displacement law, solutions based on series expansion can be very accurate even with few terms. (paper)

  12. Approximate solutions of common fixed-point problems

    CERN Document Server

    Zaslavski, Alexander J

    2016-01-01

    This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space · dynamic string-averaging version of the proximal...

  13. Analytical solutions for ozone generation by point to plane corona discharge

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    A recent mathematical model developed for ozone production is tackled analytically by asymptotic approximation. The results obtained are compared with existing numerical solutions. The comparison shows good agreement. (author). 3 refs, 1 fig

  14. Fatigue crack extension in nozzle junctions; comparison of analytical approximations with experimental data

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.; Ruijtenbeek, M.G. van de

    1975-01-01

    The fracture mechanics based stress intensity factor (K-factor) concept has obtained wide-spread acceptance as a tool for quantitative analysis of both fatigue crack growth and instable fracture. The present study discusses the applicability of various simple analytical approximations by comparing results with experimental data. A semi-analytical procedure has been developed whose main characteristics are: the true stress distribution perpendicular to the crack plane for the uncracked structure is used as input data; an extended version of the Shah and Kobayashi solution for elliptical cracks, loaded on their surfaces by tractions described by fourth order double symmetrical polynomials fit through the data of previous step is used to calculate full K-factor variations along the crack fronts; several corrections, a.o. to correct for free surfaces and for a corner radius are incorporated. The experiments concern careful monitoring crack growth rates (da/dN) under uniaxial fatigue loading of precracked nozzle-on-plate models, a.o. using a closed T.V. circuit. Resulting da/dN versus crack length (a) curves are converted into K versus a curves using da/dN versus ΔK curves for the same material (ASTM A 508 C12) obtained by standard procedures. Comparison of theoretical and experimental data yields the conclusion that: simple analytical approximations as sometimes recommended in literature may largely overestimate or underestimate K-factors for nozzle corner cracks; a computer program based on the semi-analytical procedure yields results within seconds of CPU-time once the input data have been generated. These results compare well with experimental and available finite element data for the range of crack depths of practical concern

  15. Recovery of uranium from analytical waste solution

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Anitha, M.; Singh, D.K.

    2016-01-01

    Dispersion fuels are considered as advance fuel for the nuclear reactor. Liquid waste containing significant quantity of uranium gets generated during chemical characterization of dispersion fuel. The present paper highlights the effort in devising a counter current solvent extraction process based on the synergistic mixture of D2EHPA and Cyanex 923 to recover uranium from such waste solutions. A typical analytical waste solution was found to have the following composition: U 3 O 8 (∼3 g/L), Al: 0.3 g/L, V: 15 ppm, Phosphoric acid: 3M, sulphuric acid : 1M and nitric acid : 1M. The aqueous solution is composed of mixture of either 3M phosphoric acid and 1M sulphuric acid or 1M sulphuric acid and 1M nitric acid, keeping metallic concentrations in the above mentioned range. Different organic solvents were tested. Based on the higher extraction of uranium with synergistic mixture of 0.5M D2EHPA + 0.125M Cyanex 923, it was selected for further investigation in the present work

  16. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    Science.gov (United States)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  17. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens

    International Nuclear Information System (INIS)

    Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.

    2012-01-01

    An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))

  18. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  19. On Approximate Solutions of Functional Equations in Vector Lattices

    Directory of Open Access Journals (Sweden)

    Bogdan Batko

    2014-01-01

    Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.

  20. Explicit analytical solution of the nonlinear Vlasov Poisson system

    International Nuclear Information System (INIS)

    Skarka, V.; Mahajan, S.M.; Fijalkow, E.

    1993-10-01

    In order to describe the time evolution of an inhomogeneous collisionless plasma the nonlinear Vlasov equation is solved perturbatively, using the subdynamics approach and the diagrammatic techniques. The solution is given in terms of a double perturbation series, one with respect to the nonlinearities and the other with respect to the interaction between particles. The infinite sum of interaction terms can be performed exactly due to the property of dynamical factorization. Following the methodology, the exact solution in each order with respect to nonlinearities is computed. For a choice of initial perturbation the first order exact solution is numerically integrated in order to find the local density excess. The approximate analytical solution is found to be in excellent agreement with exact numerical integration as well as with ab initio numerical simulations. Analytical computation gives a better insight into the problem and it has the advantage to be simpler, and also accessible in some range of parameters where it is difficult to find numerical solutions. (author). 27 refs, 12 figs

  1. Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis

    Directory of Open Access Journals (Sweden)

    Przemysław Korohoda

    2013-01-01

    Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.

  2. Bessel collocation approach for approximate solutions of Hantavirus infection model

    Directory of Open Access Journals (Sweden)

    Suayip Yuzbasi

    2017-11-01

    Full Text Available In this study, a collocation method is introduced to find the approximate solutions of Hantavirus infection model which is a system of nonlinear ordinary differential equations. The method is based on the Bessel functions of the first kind, matrix operations and collocation points. This method converts Hantavirus infection model into a matrix equation in terms of the Bessel functions of first kind, matrix operations and collocation points. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the suggested scheme are demonstrated by numerical applications and all numerical calculations have been done by using a program written in Maple.

  3. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  4. Analytic structure of solutions to multiconfiguration equations

    Energy Technology Data Exchange (ETDEWEB)

    Fournais, Soeren [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Arhus C (Denmark); Hoffmann-Ostenhof, Maria [Fakultaet fuer Mathematik, Universitaet Wien, Nordbergstrasse 15, A-1090 Vienna (Austria); Hoffmann-Ostenhof, Thomas [Institut fuer Theoretische Chemie, Waehringerstrasse 17, Universitaet Wien, A-1090 Vienna (Austria); Soerensen, Thomas Oestergaard [Department of Mathematics, Imperial College London, Huxley Building, 180 Queen' s Gate, London SW7 2AZ (United Kingdom)], E-mail: fournais@imf.au.dk, E-mail: Maria.Hoffmann-Ostenhof@univie.ac.at, E-mail: thoffman@esi.ac.at, E-mail: t.sorensen@imperial.ac.uk

    2009-08-07

    We study the regularity at the positions of the (fixed) nuclei of solutions to (non-relativistic) multiconfiguration equations (including Hartree-Fock) of Coulomb systems. We prove the following: let {l_brace}{psi}{sub 1}, ..., {psi}{sub M}{r_brace} be any solution to the rank-M multiconfiguration equations for a molecule with L fixed nuclei at R{sub 1},...,R{sub L} element of R{sup 3}. Then, for any j in {l_brace}1, ..., M{r_brace}, k in {l_brace}1, ..., L{r_brace}, there exists a neighborhood U{sub j,k} subset or equal R{sup 3} of R{sub k}, and functions {psi}{sup (1)}{sub j,k}, {psi}{sup (2)}{sub j,k}, real analytic in U{sub j,k}, such that {phi}{sub j}(x)={phi}{sub j,k}{sup (1)}(x)+|x-R{sub k}|{phi}{sub j,k}{sup (2)}(x), x element of U{sub j,k}. A similar result holds for the corresponding electron density. The proof uses the Kustaanheimo-Stiefel transformation, as applied in [9] to the study of the eigenfunctions of the Schroedinger operator of atoms and molecules near two-particle coalescence points.

  5. A new way of obtaining analytic approximations of Chandrasekhar's H function

    International Nuclear Information System (INIS)

    Vukanic, J.; Arsenovic, D.; Davidovic, D.

    2007-01-01

    Applying the mean value theorem for definite integrals in the non-linear integral equation for Chandrasekhar's H function describing conservative isotropic scattering, we have derived a new, simple analytic approximation for it, with a maximal relative error below 2.5%. With this new function as a starting-point, after a single iteration in the corresponding integral equation, we have obtained a new, highly accurate analytic approximation for the H function. As its maximal relative error is below 0.07%, it significantly surpasses the accuracy of other analytic approximations

  6. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  7. Analytic approximation for the modified Bessel function I -2/3(x)

    Science.gov (United States)

    Martin, Pablo; Olivares, Jorge; Maass, Fernando

    2017-12-01

    In the present work an analytic approximation to modified Bessel function of negative fractional order I -2/3(x) is presented. The validity of the approximation is for every positive value of the independent variable. The accuracy is high in spite of the small number (4) of parameters used. The approximation is a combination of elementary functions with rational ones. Power series and assymptotic expansions are simultaneously used to obtain the approximation.

  8. The quasi-diffusive approximation in transport theory: Local solutions

    International Nuclear Information System (INIS)

    Celaschi, M.; Montagnini, B.

    1995-01-01

    The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs

  9. New analytic solutions of stochastic coupled KdV equations

    International Nuclear Information System (INIS)

    Dai Chaoqing; Chen Junlang

    2009-01-01

    In this paper, firstly, we use the exp-function method to seek new exact solutions of the Riccati equation. Then, with the help of Hermit transformation, we employ the Riccati equation and its new exact solutions to find new analytic solutions of the stochastic coupled KdV equation in the white noise environment. As some special examples, some analytic solutions can degenerate into these solutions reported in open literatures.

  10. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min, E-mail: kevin.heng@csh.unibe.ch, E-mail: joao.mendonca@csh.unibe.ch, E-mail: lee@physik.uzh.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  11. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    Science.gov (United States)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  12. Fast and Analytical EAP Approximation from a 4th-Order Tensor

    Directory of Open Access Journals (Sweden)

    Aurobrata Ghosh

    2012-01-01

    Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  13. Fast and Analytical EAP Approximation from a 4th-Order Tensor.

    Science.gov (United States)

    Ghosh, Aurobrata; Deriche, Rachid

    2012-01-01

    Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.

  14. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  15. Semi-analytic solution to planar Helmholtz equation

    Directory of Open Access Journals (Sweden)

    Tukač M.

    2013-06-01

    Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.

  16. Solutions to the linearized Navier-Stokes equations for channel flow via the WKB approximation

    Science.gov (United States)

    Leonard, Anthony

    2017-11-01

    Progress on determining semi-analytical solutions to the linearized Navier-Stokes equations for incompressible channel flow, laminar and turbulent, is reported. Use of the WKB approximation yields, e.g., solutions to initial-value problem for the inviscid Orr-Sommerfeld equation in terms of the Bessel functions J+ 1 / 3 ,J- 1 / 3 ,J1 , and Y1 and their modified counterparts for any given wave speed c = ω /kx and k⊥ ,(k⊥2 =kx2 +kz2) . Of particular note to be discussed is a sequence i = 1 , 2 , . . . of homogeneous inviscid solutions with complex k⊥ i for each speed c, (0 < c <=Umax), in the downstream direction. These solutions for the velocity component normal to the wall v are localized in the plane parallel to the wall. In addition, for limited range of negative c, (- c * <= c <= 0) , we have found upstream-traveling homogeneous solutions with real k⊥(c) . In both cases the solutions for v serve as a source for corresponding solutions to the inviscid Squire equation for the vorticity component normal to the wall ωy.

  17. Analytical solution of population balance equation involving ...

    Indian Academy of Sciences (India)

    This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various ...

  18. Analytical approximation of the erosion rate and electrode wear in micro electrical discharge machining

    International Nuclear Information System (INIS)

    Kurnia, W; Tan, P C; Yeo, S H; Wong, M

    2008-01-01

    Theoretical models have been used to predict process performance measures in electrical discharge machining (EDM), namely the material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR). However, these contributions are mainly applicable to conventional EDM due to limits on the range of energy and pulse-on-time adopted by the models. This paper proposes an analytical approximation of micro-EDM performance measures, based on the crater prediction using a developed theoretical model. The results show that the analytical approximation of the MRR and TWR is able to provide a close approximation with the experimental data. The approximation results for the MRR and TWR are found to have a variation of up to 30% and 24%, respectively, from their associated experimental values. Since the voltage and current input used in the computation are captured in real time, the method can be applied as a reliable online monitoring system for the micro-EDM process

  19. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    Science.gov (United States)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  20. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    Science.gov (United States)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  1. Analytical solutions of the electrostatically actuated curled beam problem

    KAUST Repository

    Younis, Mohammad I.

    2014-01-01

    This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We

  2. An accurate approximate solution of optimal sequential age replacement policy for a finite-time horizon

    International Nuclear Information System (INIS)

    Jiang, R.

    2009-01-01

    It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.

  3. Analytical solution of one dimensional temporally dependent ...

    African Journals Online (AJOL)

    user

    transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.

  4. Analytical solutions of one-dimensional advection–diffusion

    Indian Academy of Sciences (India)

    Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal finite initially solute free domain,for two dispersion problems.In the first one,temporally dependent solute dispersion along uniform flow in homogeneous domain is studied.In the second problem the ...

  5. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  6. Analytic solutions of topologically disjoint systems

    DEFF Research Database (Denmark)

    Armstrong, J. R.; Volosniev, A. G.; Fedorov, D. V.

    2015-01-01

    We describe a procedure to solve an up to $2N$ problem where the particles are separated topologically in $N$ groups with at most two particles in each. Arbitrary interactions are allowed between the (two) particles within one group. All other interactions are approximated by harmonic oscillator...

  7. Variation Iteration Method for The Approximate Solution of Nonlinear ...

    African Journals Online (AJOL)

    In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...

  8. Analytic approximations to nonlinear boundary value problems modeling beam-type nano-electromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics

    2017-06-01

    Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

  9. Analytic approximations for the elastic moduli of two-phase materials

    DEFF Research Database (Denmark)

    Zhang, Z. J.; Zhu, Y. K.; Zhang, P.

    2017-01-01

    Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...

  10. Analytical expression for the nonsinglet structure functions at small x in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, Michael

    2004-01-01

    A simple analytic expression for the nonsinglet structure function f NS is given. The expression is derived from the result of Ermolaev, Manaenkov, and Ryskin obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD

  11. Analytical approximate equations for the resistivity and its temperature coefficient in thin polycrystalline metallic films

    International Nuclear Information System (INIS)

    Tellier, C.R.; Tosser, A.J.

    1977-01-01

    In the usual thickness range of sputtered metallic films, analytical linearized approximate expressions of polycrystalline film resistivity and its t.c.r. are deduced from the Mayadas-Shatzkes theoretical equations. A good experimental fit is observed for Al rf sputtered metal films. (orig.) [de

  12. Delay in a tandem queueing model with mobile queues: An analytical approximation

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; de Haan, Roland; Boucherie, Richardus J.; van Ommeren, Jan C.W.

    In this paper, we analyze the end-to-end delay performance of a tandem queueing system with mobile queues. Due to state-space explosion, there is no hope for a numerical exact analysis for the joint-queue-length distribution. For this reason, we present an analytical approximation that is based on

  13. Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method

    International Nuclear Information System (INIS)

    Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A.

    2008-01-01

    He's homotopy perturbation method is used to calculate higher-order approximate periodic solutions of a nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(x). We find He's homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 1.56% for all values of oscillation amplitude, while this relative error is 0.30% for the second iteration and as low as 0.057% when the third-order approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that He's homotopy perturbation method is very effective and convenient

  14. Higher-order approximate solutions to the relativistic and Duffing-harmonic oscillators by modified He's homotopy methods

    International Nuclear Information System (INIS)

    Belendez, A; Pascual, C; Fernandez, E; Neipp, C; Belendez, T

    2008-01-01

    A modified He's homotopy perturbation method is used to calculate higher-order analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The He's homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. The approximate formulae obtained show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation, including the limiting cases of amplitude approaching zero and infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 1.6% for small and large values of oscillation amplitude, while this relative error is 0.65% for two iterations with two harmonics and as low as 0.18% when three harmonics are considered in the second approximation. For the Duffing-harmonic oscillator the relative error is as low as 0.078% when the second approximation is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance methods reveals that the former is very effective and convenient

  15. Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback

    Science.gov (United States)

    Al Noufaey, K. S.

    2018-06-01

    This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.

  16. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  17. Efficient solution of parabolic equations by Krylov approximation methods

    Science.gov (United States)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  18. Application of modified analytical function for approximation and computer simulation of diffraction profile

    International Nuclear Information System (INIS)

    Marrero, S. I.; Turibus, S. N.; Assis, J. T. De; Monin, V. I.

    2011-01-01

    Data processing of the most of diffraction experiments is based on determination of diffraction line position and measurement of broadening of diffraction profile. High precision and digitalisation of these procedures can be resolved by approximation of experimental diffraction profiles by analytical functions. There are various functions for these purposes both simples, like Gauss function, but no suitable for wild range of experimental profiles and good approximating functions but complicated for practice using, like Vougt or PersonVII functions. Proposed analytical function is modified Cauchy function which uses two variable parameters allowing describing any experimental diffraction profile. In the presented paper modified function was applied for approximation of diffraction lines of steels after various physical and mechanical treatments and simulation of diffraction profiles applied for study of stress gradients and distortions of crystal structure. (Author)

  19. An analytical approximation for the prediction of transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.

    2010-01-01

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  20. An analytical approximation for the prediction of transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro (IFRJ), RJ (Brazil); Martinez, Aquilino S. [COPPE/UFRJ, RJ (Brazil). Programa de Engenharia Nuclear

    2010-05-15

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  1. Analytic solutions for marginal deformations in open superstring field theory

    International Nuclear Information System (INIS)

    Okawa, Y.

    2007-04-01

    We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)

  2. Analytic solutions of QCD motivated Hamiltonians at low energy

    International Nuclear Information System (INIS)

    Yepez, T.; Amor, A.; Hess, P.O.; Szczepaniak, A.; Civitarese, O.

    2011-01-01

    A model Hamiltonian, motivated by QCD, is investigated in order to study only the quark sector, then only the gluon sector and finally both together. Restricting to the pure quark sector and setting the mass of the quarks to zero, we find analytic solutions, involving two to three orbitals. Allowing the mass of the quarks to be different to zero, we find semi-analytic solutions involving an arbitrary number of orbitals. Afterwards, we indicate on how to incorporate gluons. (author)

  3. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  4. Approximation solutions for indifference pricing under general utility functions

    NARCIS (Netherlands)

    Chen, An; Pelsser, Antoon; Vellekoop, M.H.

    2008-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  5. Approximate Solutions for Indifference Pricing under General Utility Functions

    NARCIS (Netherlands)

    Chen, A.; Pelsser, A.; Vellekoop, M.

    2007-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  6. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  7. Analytic solution of the lifeguard problem

    Science.gov (United States)

    De Luca, Roberto; Di Mauro, Marco; Naddeo, Adele

    2018-03-01

    A simple version due to Feynman of Fermat’s principle is analyzed. It deals with the path a lifeguard on a beach must follow to reach a drowning swimmer. The solution for the exact point, P(x, 0) , at the beach-sea boundary, corresponding to the fastest path to the swimmer, is worked out in detail and the analogy with light traveling at the air-water boundary is described. The results agree with the known conclusion that the shortest path does not coincide with the fastest one. The relevance of the subject for a basic physics course, at an advanced high school level, is pointed out.

  8. Analytical solutions to SSC coil end design

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Fulton, H.J.; Lee, G.C.; Cook, J.M.

    1989-03-01

    As part of the SCC magnet effort, Fermilab will build and test a series of one meter model SSC magnets. The coils in these magnets will be constructed with several different end configurations. These end designs must satisfy both mechanical and magnetic criteria. Only the mechanical problem will be addressed. Solutions will attempt to minimize stresses and provide internal support for the cable. Different end designs will be compared in an attempt to determine which is most appropriate for the SSC dipole. The mathematics required to create each end configuration will be described. The computer aided design, programming and machine technology needed to make the parts will be reviewed. 2 refs., 10 figs

  9. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  10. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    Science.gov (United States)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  11. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    Science.gov (United States)

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  12. Speciation—targets, analytical solutions and markets

    Science.gov (United States)

    Łobiński, Ryszard

    1998-02-01

    An analysis of speciation-relevant issues leads to the conclusion that, despite the rapidly increasing number of reports, the field has reached a level of virtual stagnation in terms of research originality and market perspectives. A breakthrough is in sight but requires an advanced interdisciplinary collaboration of chemists-analysts with clinicians, ecotoxicologists and nutricionists aimed at the definition of metal (metalloid)-dependent problems relevant to human health. The feedback from analytical chemists will be stimulated by a wider availability of efficient HPLC (CZE)-inductively coupled plasma mass spectrometry (ICP MS) interfaces, chromatographic software for ICP AES and MS and sensitive on-line methods for compound identification (electrospray MS/MS). The maturity of purge and trap thermal desorption techniques and capillary GC chromatography is likely to be reflected by an increasing number of commercial dedicated systems for small molecules containing Hg, Pb, Sn and metalloids. The pre-requisite of success for such systems is the integration of a sample preparation step (based on focused low-power microwave technology) into the marketed set-up.

  13. Analytical approximations to the Hotelling trace for digital x-ray detectors

    Science.gov (United States)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  14. Analytical solutions of advection-dispersion equation for varying ...

    African Journals Online (AJOL)

    Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a semi-infinite domain while in the second case the dispersion and the velocity ...

  15. Analytical solutions for one-dimensional advection–dispersion ...

    Indian Academy of Sciences (India)

    We present simple analytical solutions for the unsteady advection–dispersion equations describing the pollutant concentration (, ) in one dimension. The solutions are obtained by using Laplace transformation technique. In this study we divided the river into two regions ≤ 0 and ≥0 and the origin at = 0.

  16. Analytical solutions in the two-cavity coupling problem

    International Nuclear Information System (INIS)

    Ayzatsky, N.I.

    2000-01-01

    Analytical solutions of precise equations that describe the rf-coupling of two cavities through a co-axial cylindrical hole are given for various limited cases.For their derivation we have used the method of solution of an infinite set of linear algebraic equations,based on its transformation into dual integral equations

  17. On Analytic Solution of resonant Mixing for Solar Neutrino Oscillations

    OpenAIRE

    Masatoshi, ITO; Takao, KANEKO; Masami, NAKAGAWA; Department of Physics, Meijo University; Department of Physics, Meijo University; Department of Physics, Meijo University

    1988-01-01

    Behavior of resonant mixing in matter-enhancing region for solar neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein mechanism, is reanalyzed by means of an analytic treatment recently proposed. We give solutions in terms of confluent hypergeometric functions, which agree with "exact" solutions of coupled differential equations.

  18. Analytical Solutions of the KDV-KZK Equation

    Science.gov (United States)

    Gan, W. S.

    The KdV-KZK equation for fluids developed by me was presented at the ICSV 11 in St. Petersburg in July 2004. In this paper, I made an attempt on the analytical solutions of this equation using the perturbation method. Some physical interpretation of the solutions is given. A brief introduction to KdV-KZK equation for solids is given

  19. Transmission Line Adapted Analytical Power Charts Solution

    Science.gov (United States)

    Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu

    2017-08-01

    The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.

  20. Solute transport in aquifers: The comeback of the advection dispersion equation and the First Order Approximation

    Science.gov (United States)

    Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.

    2017-12-01

    Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.

  1. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  2. A comprehensive analytical solution of the nonlinear pendulum

    International Nuclear Information System (INIS)

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions and starts with the solution of a pendulum that swings over. Due to a meticulous sign correction term, this solution is also valid if the pendulum does not swing over.

  3. An analytical solution for improved HIFU SAR estimation

    International Nuclear Information System (INIS)

    Dillon, C R; Vyas, U; Christensen, D A; Roemer, R B; Payne, A

    2012-01-01

    Accurate determination of the specific absorption rates (SARs) present during high intensity focused ultrasound (HIFU) experiments and treatments provides a solid physical basis for scientific comparison of results among HIFU studies and is necessary to validate and improve SAR predictive software, which will improve patient treatment planning, control and evaluation. This study develops and tests an analytical solution that significantly improves the accuracy of SAR values obtained from HIFU temperature data. SAR estimates are obtained by fitting the analytical temperature solution for a one-dimensional radial Gaussian heating pattern to the temperature versus time data following a step in applied power and evaluating the initial slope of the analytical solution. The analytical method is evaluated in multiple parametric simulations for which it consistently (except at high perfusions) yields maximum errors of less than 10% at the center of the focal zone compared with errors up to 90% and 55% for the commonly used linear method and an exponential method, respectively. For high perfusion, an extension of the analytical method estimates SAR with less than 10% error. The analytical method is validated experimentally by showing that the temperature elevations predicted using the analytical method's SAR values determined for the entire 3D focal region agree well with the experimental temperature elevations in a HIFU-heated tissue-mimicking phantom. (paper)

  4. Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED

    International Nuclear Information System (INIS)

    Kernemann, A.; Stefanis, N.G.

    1989-01-01

    A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations

  5. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations

    KAUST Repository

    Castrillon, Julio; Nobile, Fabio; Tempone, Raul

    2016-01-01

    In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem

  6. The analytical solution to the 1D diffusion equation in heterogeneous media

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Nigg, D.W.

    2011-01-01

    The analytical solution to the time-independent multigroup diffusion equation in heterogeneous plane cylindrical and spherical media is presented. The solution features the simplicity of the one-group formulation while addressing the complication of multigroup diffusion in a fully heterogeneous medium. Beginning with the vector form of the diffusion equation, the approach, based on straightforward mathematics, resolves a set of coupled second order ODEs. The analytical form is facilitated through matrix diagonalization of the neutron interaction matrix rendering the multigroup solution as a series of one-group solutions which, when re-assembled, gives the analytical solution. Customized Eigenmode solutions of the one-group diffusion operator then represent the homogeneous solution in a uniform spatial domain. Once the homogeneous solution is known, the particular solution naturally emerges through variation of parameters. The analytical expression is then numerically implemented through recurrence. Finally, we apply the theory to assess the accuracy of a second order finite difference scheme and to a 1D slab BWR reactor in the four-group approximation. (author)

  7. Analytic Solution to Shell Boundary – Value Problems

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.

  8. Analytical Solution of General Bagley-Torvik Equation

    OpenAIRE

    William Labecca; Osvaldo Guimarães; José Roberto C. Piqueira

    2015-01-01

    Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomoge...

  9. Analytical solution to the hybrid diffusion-transport equation

    International Nuclear Information System (INIS)

    Nanneh, M.M.; Williams, M.M.R.

    1986-01-01

    A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)

  10. On the General Analytical Solution of the Kinematic Cosserat Equations

    KAUST Repository

    Michels, Dominik L.

    2016-09-01

    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.

  11. On the General Analytical Solution of the Kinematic Cosserat Equations

    KAUST Repository

    Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Hossain, Zahid; Riedel-Kruse, Ingmar H.; Weber, Andreas G.

    2016-01-01

    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.

  12. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature

  13. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-07-11

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.

  14. Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference.

    Directory of Open Access Journals (Sweden)

    Giorgos Minas

    2017-07-01

    Full Text Available In order to analyse large complex stochastic dynamical models such as those studied in systems biology there is currently a great need for both analytical tools and also algorithms for accurate and fast simulation and estimation. We present a new stochastic approximation of biological oscillators that addresses these needs. Our method, called phase-corrected LNA (pcLNA overcomes the main limitations of the standard Linear Noise Approximation (LNA to remain uniformly accurate for long times, still maintaining the speed and analytically tractability of the LNA. As part of this, we develop analytical expressions for key probability distributions and associated quantities, such as the Fisher Information Matrix and Kullback-Leibler divergence and we introduce a new approach to system-global sensitivity analysis. We also present algorithms for statistical inference and for long-term simulation of oscillating systems that are shown to be as accurate but much faster than leaping algorithms and algorithms for integration of diffusion equations. Stochastic versions of published models of the circadian clock and NF-κB system are used to illustrate our results.

  15. Enhancement accuracy of approximated solutions of the nonlinear singular integral equations of Chew-Low type

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nguen Mong; Khoromskij, B.N.

    1979-01-01

    The ways of enhancement of the accuracy of approximate solutions of the Chew-Low type equation are considered. Difference schemes are proposed which allow one to obtain solution expansion in degrees of lattice step. On the basis of the expansion by the Richardson method the refinement of approximated solutions is made. Besides, the iteration process is constructed which reduces immediately to the solution of enhanced accuracy. The efficiency of the methods proposed is illustrated by numerical examples

  16. Analytical solutions for systems of partial differential-algebraic equations.

    Science.gov (United States)

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  17. Analytical Solution of General Bagley-Torvik Equation

    Directory of Open Access Journals (Sweden)

    William Labecca

    2015-01-01

    Full Text Available Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomogeneous case is solved without restrictions in boundary and initial conditions. The generalized Mittag-Leffler functions with three parameters are used and the solutions presented are expressed in terms of Wiman’s functions and their derivatives.

  18. Analytical solution for Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G.

    2009-01-01

    In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.

  19. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    International Nuclear Information System (INIS)

    Roteta, M.; Baro, J.; Fernandez-Varea, J.M.; Salvat, F.

    1994-01-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi-analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections are calculated directly from a simple analytical expression. Atomic cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within equal 1%, in the energy range from 1 KeV to 1 GeV. The complete source listing of the program PHOTAC is included

  20. Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation

    International Nuclear Information System (INIS)

    Ye, Caier; Zhang, Weiguo

    2015-01-01

    Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis

  1. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  2. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    Energy Technology Data Exchange (ETDEWEB)

    Roteta, M; Baro, J; Fernandez-Varea, J M; Salvat, F

    1994-07-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs.

  3. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    International Nuclear Information System (INIS)

    Roteta, M.; Baro, J.; Fernandez-Varea, J. M.; Salvat, F.

    1994-01-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs

  4. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  5. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  6. Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films

    Science.gov (United States)

    Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.

    2017-12-01

    By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.

  7. Decision Exploration Lab : A Visual Analytics Solution for Decision Management

    NARCIS (Netherlands)

    Broeksema, Bertjan; Baudel, Thomas; Telea, Alex; Crisafulli, Paolo

    2013-01-01

    We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business

  8. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  9. A hybrid ICT-solution for smart meter data analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2016-01-01

    data processing, and using the machine learning toolkit, MADlib, for doing in-database data analytics in PostgreSQL database. This paper evaluates the key technologies of the proposed ICT-solution, and the results show the effectiveness and efficiency of using the system for both batch and online...

  10. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  11. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  12. Approximate solution of the Saha equation - temperature as an explicit function of particle densities

    International Nuclear Information System (INIS)

    Sato, M.

    1991-01-01

    The Saha equation for a plasma in thermodynamic equilibrium (TE) is approximately solved to give the temperature as an explicit function of population densities. It is shown that the derived expressions for the Saha temperature are valid approximations to the exact solution. An application of the approximate temperature to the calculation of TE plasma parameters is also described. (orig.)

  13. Analytical solutions to orthotropic variable thickness disk problems

    Directory of Open Access Journals (Sweden)

    Ahmet N. ERASLAN

    2016-02-01

    Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation

  14. Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach

    International Nuclear Information System (INIS)

    Darmani, G.; Setayeshi, S.; Ramezanpour, H.

    2012-01-01

    In this paper an efficient computational method based on extending the sensitivity approach (SA) is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations (DDEs), the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach. (general)

  15. Analytic study of nonperturbative solutions in open string field theory

    International Nuclear Information System (INIS)

    Bars, I.; Kishimoto, I.; Matsuo, Y.

    2003-01-01

    We propose an analytic framework to study the nonperturbative solutions of Witten's open string field theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts. The first one describes the spectrum of two identical half strings which are independent from each other. The second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order in the midpoint correction. An infinite number of solutions are classified in terms of projection operators. Among them, there exists only one stable solution which is identical to the standard butterfly state. We include the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which can be formally summed to the complete exact solution

  16. Capacity of the circular plate condenser: analytical solutions for large gaps between the plates

    International Nuclear Information System (INIS)

    Rao, T V

    2005-01-01

    A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to O(τ -(2N+1) ) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to O(τ -9 ). Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the O(τ -9 ) approximation predicts the capacity extremely well for any τ ≥ 2 and an O(τ -3 ) approximation gives, for all practical purposes, results of adequate accuracy for τ ≥ 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to O(τ -6 ) for τ ≥ 2

  17. On the Partial Analytical Solution of the Kirchhoff Equation

    KAUST Repository

    Michels, Dominik L.

    2015-09-01

    We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.

  18. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  19. On the Partial Analytical Solution of the Kirchhoff Equation

    KAUST Repository

    Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Sobottka, Gerrit A.; Weber, Andreas G.

    2015-01-01

    We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.

  20. Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem

    KAUST Repository

    Younis, Mohammad I.

    2014-08-17

    We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data in the literature and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximations they are based on. In such cases, multi-mode reduced order models need to be utilized.

  1. An accurate analytical solution of a zero-dimensional greenhouse model for global warming

    International Nuclear Information System (INIS)

    Foong, S K

    2006-01-01

    In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs

  2. Contribution to analytical solution of neutron slowing down problem in homogeneous and heterogeneous media

    International Nuclear Information System (INIS)

    Stefanovic, D.B.

    1970-12-01

    The objective of this work is to describe the new analytical solution of the neutron slowing down equation for infinite monoatomic media with arbitrary energy dependence of cross section. The solution is obtained by introducing Green slowing down functions instead of starting from slowing down equations directly. The previously used methods for calculation of fission neutron spectra in the reactor cell were numerical. The proposed analytical method was used for calculating the space-energy distribution of fast neutrons and number of neutron reactions in a thermal reactor cell. The role of analytical method in solving the neutron slowing down in reactor physics is to enable understating of the slowing down process and neutron transport. The obtained results could be used as standards for testing the accuracy od approximative and practical methods

  3. Analytical Solutions of Fractional Differential Equations Using the Convenient Adomian Series

    Directory of Open Access Journals (Sweden)

    Xiang-Chao Shi

    2014-01-01

    Full Text Available Due to the memory trait of the fractional calculus, numerical or analytical solution of higher order becomes very difficult even impossible to obtain in real engineering problems. Recently, a new and convenient way was suggested to calculate the Adomian series and the higher order approximation was realized. In this paper, the Adomian decomposition method is applied to nonlinear fractional differential equation and the error analysis is given which shows the convenience.

  4. Mutual capture of dipolar molecules at low and very low energies. I. Approximate analytical treatment.

    Science.gov (United States)

    Nikitin, E E; Troe, J

    2010-09-16

    Approximate analytical expressions are derived for the low-energy rate coefficients of capture of two identical dipolar polarizable rigid rotors in their lowest nonresonant (j(1) = 0 and j(2) = 0) and resonant (j(1) = 0,1 and j(2) = 1,0) states. The considered range extends from the quantum, ultralow energy regime, characterized by s-wave capture, to the classical regime described within fly wheel and adiabatic channel approaches, respectively. This is illustrated by the table of contents graphic (available on the Web) that shows the scaled rate coefficients for the mutual capture of rotors in the resonant state versus the reduced wave vector between the Bethe zero-energy (left arrows) and classical high-energy (right arrow) limits for different ratios δ of the dipole-dipole to dispersion interaction.

  5. Analytical solution of the PNP equations at AC applied voltage

    International Nuclear Information System (INIS)

    Golovnev, Anatoly; Trimper, Steffen

    2012-01-01

    A symmetric binary polymer electrolyte subjected to an AC voltage is considered. The analytical solution of the Poisson–Nernst–Planck equations (PNP) is found and analyzed for small applied voltages. Three distinct time regimes offering different behavior can be discriminated. The experimentally realized stationary behavior is discussed in detail. An expression for the external current is derived. Based on the theoretical result a simple method is suggested of measuring the ion mobility and their concentration separately. -- Highlights: ► Analytical solution of Poisson–Nernst–Planck equations. ► Binary polymer electrolyte subjected to an external AC voltage. ► Three well separated time scales exhibiting different behavior. ► The experimentally realized stationary behavior is discussed in detail. ► A method is proposed measuring the mobility and the concentration separately.

  6. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  7. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  8. Hydraulic modeling of riverbank filtration systems with curved boundaries using analytic elements and series solutions

    Science.gov (United States)

    Bakker, Mark

    2010-08-01

    A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.

  9. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    Science.gov (United States)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  10. Analytical approximation of the nanoscale dose distribution in an irradiated medium with an embedded nanoparticle

    International Nuclear Information System (INIS)

    Chernov, V; Barboza-Flores, M; Chernov, G

    2012-01-01

    In this work we propose an analytical approach describing the dose distribution around a NP embedded in a medium. The approach describes the following sequence of events: The homogenous and isotropic creation of secondary electrons under incident photon fluence; travel of the created electrons toward the NP surface and their escaping from the NP with different energies and angles; deposition of energy in surrounding medium. The radial dose distribution around the NP was found as the average energy deposited by the escaped electrons in a spherical shell at a distance r from the NP center normalized to its mass. The continuous slowing down approximation and the assumption that created electrons travel in a straight-line path were used. As result, a set of analytical expressions describing the dose distribution was derived. The expressions were applied to the calculation of the dose distribution around spherical gold NPs of different size embedded in water. It was shown that the dose distribution is close to the 1/r 2 dependence and practically independent of the NP radius.

  11. A study of density effects in plasmas using analytical approximations for the self-consistent potential

    Science.gov (United States)

    Poirier, M.

    2015-06-01

    Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.

  12. Analytic solution of the Starobinsky model for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)

    2017-07-15

    We prove that the field equations of the Starobinsky model for inflation in a Friedmann-Lemaitre-Robertson-Walker metric constitute an integrable system. The analytical solution in terms of a Painleve series for the Starobinsky model is presented for the case of zero and nonzero spatial curvature. In both cases the leading-order term describes the radiation era provided by the corresponding higher-order theory. (orig.)

  13. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  14. Muonium hyperfine structure : An analytical solution to perturbative calculations

    International Nuclear Information System (INIS)

    Wotzasek, C.J.; Gregorio, M.A.; Reinecke, S.

    1982-01-01

    The purely coulombian contribution to the terms of order E sub(F) (α 2 m sub(e)/m sub(μ))ln α - 1 of the hyperfine splitting of muonium is computed. Results agree with those of other authors. The goal of the work was twofold: first, to confirm that contribution; second, and perhaps more important, to check the analytic solution of the relativistic coulombian problem of the Bethe-Salpeter equation with instantaneous kernel. (Author) [pt

  15. Logical gaps in the approximate solutions of the social learning game and an exact solution.

    Science.gov (United States)

    Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan

    2014-01-01

    After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.

  16. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  17. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    International Nuclear Information System (INIS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  18. Analytical solutions of the electrostatically actuated curled beam problem

    KAUST Repository

    Younis, Mohammad I.

    2014-07-24

    This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximation. In such cases, multi-mode reduced order models are shown to yield accurate results. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    International Nuclear Information System (INIS)

    Bozkaya, Uğur; Sherrill, C. David

    2016-01-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C 10 H 22 ), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  20. Analytic solution of pseudocolloid migration in fractured rock

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Lee, W.W.L.; Chambre, P.L.

    1989-06-01

    A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig

  1. Analytical Solution for 2D Inter-Well Porous Flow in a Rectangular Reservoir

    Directory of Open Access Journals (Sweden)

    Junfeng Ding

    2018-04-01

    Full Text Available Inter-well fluid flows through porous media are commonly encountered in the production of groundwater, oil, and geothermal energy. In this paper, inter-well porous flow inside a rectangular reservoir is solved based on the complex variable function theory combined with the method of mirror images. In order to derive the solution analytically, the inter-well flow is modeled as a 2D flow in a homogenous and isotropic porous medium. The resulted exact analytical solution takes the form of an infinite series, but it can be truncated to give high accuracy approximation. In terms of nine cases of inter-well porous flow associated with enhanced geothermal systems, the applications of the obtained analytical solution are demonstrated, and the convergence properties of the truncated series are investigated. It is shown that the convergent rate of the truncated series increases with the symmetric level of well distribution inside the reservoir, and the adoption of Euler transform significantly accelerates the convergence of alternating series cases associated with asymmetric well distribution. In principle, the analytical solution proposed in this paper can be applied to other scientific and engineering fields, as long as the involved problem is governed by 2D Laplace equation in a rectangular domain and subject to similar source/sink and boundary conditions, i.e., isolated point sources/sinks and uniform Dirichlet or homogeneous Neumann boundary conditions.

  2. Loglinear Approximate Solutions to Real-Business-Cycle Models: Some Observations

    Science.gov (United States)

    Lau, Sau-Him Paul; Ng, Philip Hoi-Tak

    2007-01-01

    Following the analytical approach suggested in Campbell, the authors consider a baseline real-business-cycle (RBC) model with endogenous labor supply. They observe that the coefficients in the loglinear approximation of the dynamic equations characterizing the equilibrium are related to the fundamental parameters in a relatively simple manner.…

  3. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    Science.gov (United States)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  4. Small-scale engagement model with arrivals: analytical solutions

    International Nuclear Information System (INIS)

    Engi, D.

    1977-04-01

    This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied

  5. Analytical solution of a stochastic content-based network model

    International Nuclear Information System (INIS)

    Mungan, Muhittin; Kabakoglu, Alkan; Balcan, Duygu; Erzan, Ayse

    2005-01-01

    We define and completely solve a content-based directed network whose nodes consist of random words and an adjacency rule involving perfect or approximate matches for an alphabet with an arbitrary number of letters. The analytic expression for the out-degree distribution shows a crossover from a leading power law behaviour to a log-periodic regime bounded by a different power law decay. The leading exponents in the two regions have a weak dependence on the mean word length, and an even weaker dependence on the alphabet size. The in-degree distribution, on the other hand, is much narrower and does not show any scaling behaviour

  6. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  7. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [CEFET QUIMICA de Nilopolis/RJ, 21941-914 Rio de Janeiro (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Goncalves, Alessandro C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)

    2009-09-15

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.

  8. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.; Goncalves, Alessandro C.

    2009-01-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.

  9. Analytic solutions for neutrino momenta in decay of top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Betchart, Burton A., E-mail: bbetchar@pas.rochester.edu; Demina, Regina, E-mail: regina@pas.rochester.edu; Harel, Amnon, E-mail: amnon.harel@cern.ch

    2014-02-01

    We employ a geometric approach to analytically solve equations of constraint on the decay of top quarks involving leptons. The neutrino momentum is found as a function of the 4-vectors of the associated bottom quark and charged lepton, the masses of the top quark and W boson, and a single parameter, which constrains it to an ellipse. We show how the measured imbalance of momenta in the event reduces the solutions for neutrino momenta to a discrete set, in the cases of one or two top quarks decaying to leptons. The algorithms can be implemented concisely with common linear algebra routines. -- Highlights: • Neutrino momentum from top quark decay is constrained to an ellipse. • We find analytically the best neutrino momenta given the momentum imbalance. • A reference implementation of the algorithms is included.

  10. Analytical solution of Mori's equation with secant hyperbolic memory

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Pathak, K.N.

    1993-07-01

    The equation of motion of the auto-correlation function has been solved analytically using a secant-hyperbolic form of the memory function. The analytical results obtained for the long time expansion together with the short time expansion provide a good description over the whole time domain as judged by their comparison with the numerical solution of Mori's equation of motion. We also find that the time evolution of the auto-correlation function is determined by a single parameter τ which is related to the frequency sum rules up to the fourth order. The auto-correlation function has been found to show simple decaying or oscillatory behaviour depending on whether the parameter τ is greater than or less than some critical values. Similarities as well as differences in time evolution of the auto-correlation have been discussed for exponential, secant-hyperbolic and Gaussian approaches of the memory function. (author). 16 refs, 5 figs

  11. Biological and analytical studies of peritoneal dialysis solutions

    Directory of Open Access Journals (Sweden)

    N. Hudz

    2018-04-01

    Full Text Available The purpose of our work was to conduct biological and analytical studies of the peritoneal dialysis (PD solutions containing glucose and sodium lactate and establish correlations between cell viability of the Vero cell line and values of analytical indexes of the tested solutions. The results of this study confirm the cytotoxicity of the PD solutions even compared with the isotonic solution of sodium chloride, which may be due to the low pH of the solutions, presence of glucose degradation products (GDPs and high osmolarity of the solutions, and unphysiological concentrations of glucose and sodium lactate. However, it is not yet known what factors or their combination and to what extent cause the cytotoxicity of PD solutions. In the neutral red (NR test the weak, almost middle (r = -0.496 and 0.498, respectively and unexpected correlations were found between reduced viability of monkey kidney cells and increased pH of the PD solutions and between increased cell viability and increased absorbance at 228 nm of the tested PD solutions. These two correlations can be explained by a strong correlation (r = -0.948 between a decrease in pH and an increase in the solution absorbance at 228 nm. The opposite effect was observed in the MTT test. The weak, but expected correlations (r = 0.32 and -0.202, respectively were found between increased cell viability and increased pH in the PD solutions and between decreased cell viability and increased absorbance at 228 nm of the tested PD solutions. The middle and weak correlations (r = 0.56 and 0.29, respectively were detected between increased cell viability and increased lactate concentration in the NR test and MTT test. The data of these correlations can be partially explained by the fact that a correlation with a coefficient r = -0.34 was found between decreased pH in the solutions and increased lactate concentration. The very weak correlations (0.138 and 0.196, respectively were found between increased cell

  12. Numerical and analytical solutions for problems relevant for quantum computers

    International Nuclear Information System (INIS)

    Spoerl, Andreas

    2008-01-01

    Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)

  13. Establishment of Approximate Analytical Model of Oil Film Force for Finite Length Tilting Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2015-01-01

    Full Text Available Tilting pad bearings offer unique dynamic stability enabling successful deployment of high-speed rotating machinery. The model of dynamic stiffness, damping, and added mass coefficients is often used for rotordynamic analyses, and this method does not suffice to describe the dynamic behaviour due to the nonlinear effects of oil film force under larger shaft vibration or vertical rotor conditions. The objective of this paper is to present a nonlinear oil force model for finite length tilting pad journal bearings. An approximate analytic oil film force model was established by analysing the dynamic characteristic of oil film of a single pad journal bearing using variable separation method under the dynamic π oil film boundary condition. And an oil film force model of a four-tilting-pad journal bearing was established by using the pad assembly technique and considering pad tilting angle. The validity of the model established was proved by analyzing the distribution of oil film pressure and the locus of journal centre for tilting pad journal bearings and by comparing the model established in this paper with the model established using finite difference method.

  14. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  15. The Pathwise Numerical Approximation of Stationary Solutions of Semilinear Stochastic Evolution Equations

    International Nuclear Information System (INIS)

    Caraballo, T.; Kloeden, P.E.

    2006-01-01

    Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions

  16. Analytical solution of the toroidal constant tension solenoid

    International Nuclear Information System (INIS)

    Gralnick, S.L.; Tenney, F.H.

    1975-01-01

    The coil shape is determined by requiring that the curvature of the flexible conductor be proportional to the distance from the toroidal axis. The resulting second order differential equation for the coil coordinates can be integrated once but for the second and final integration no closed form has been found and the integration has been done numerically. This solution of this differential equation is analytical in terms of an absolutely and uniformly convergent infinite series. The series converges quite rapidly and in practice ignoring all but the first five terms of the series introduces an error of less than 2 percent

  17. Analytical solutions for tsunami runup on a plane beach

    DEFF Research Database (Denmark)

    Madsen, Per A.; Schäffer, Hemming Andreas

    2010-01-01

    wavetrains generated by monopole and dipole disturbances in the deep ocean. The evolution of these wavetrains, while travelling a considerable distance over a constant depth, is influenced by weak dispersion and is governed by the linear Korteweg-De Vries (KdV) equation. This process is described......) of the wave, which is not realistic for geophysical tsunamis. To resolve this problem, we first derive analytical solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown of single waves, where the duration and the wave height can be specified separately. The formulation is then extended...

  18. Analytical Solution of a Generalized Hirota-Satsuma Equation

    Science.gov (United States)

    Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.

    A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.

  19. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M

    2014-01-01

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  20. An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    H. Salmani

    2015-01-01

    Full Text Available It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.

  1. A Method for Generating Approximate Similarity Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mazhar Iqbal

    2014-01-01

    Full Text Available Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically. However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate similarity solutions to different cases of an initial-boundary value problem of unsteady gas flow through a semi-infinite porous medium.

  2. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  3. An analytical longitudinal dielectric function of primitive electrolyte solutions and its application in predicting thermodynamic properties

    International Nuclear Information System (INIS)

    Xiao, Tiejun

    2015-01-01

    In this paper, the longitudinal dielectric function ϵ_l(k) of primitive electrolyte solutions is discussed. Starting from a modified mean spherical approximation, an analytical dielectric function in terms of two parameters is established. These two parameters can be related to the first two decay parameters k_1_,_2 of the dielectric response modes of the bulk system, and can be determined using constraints of k_1_,_2 from statistical theories. Furthermore, a combination of this dielectric function and the molecular Debye-Hückel theory[J. Chem. Phys. 135(2011)104104] leads to a self-consistent mean filed description of electrolyte solutions. Our theory reveals a relationship between the microscopic structure parameters of electrolyte solutions and the macroscopic thermodynamic properties, which is applied to concentrated electrolyte solutions.

  4. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    Science.gov (United States)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  5. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

    Science.gov (United States)

    Ito, Kazufumi

    1987-01-01

    The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

  6. Closed form analytic solutions describing glow discharge plasma

    International Nuclear Information System (INIS)

    Pai, S.T.; Guo, X.M.; Zhou, T.D.

    1996-01-01

    On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics

  7. Approximate solution of generalized Ginzburg-Landau-Higgs system via homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Lu Juhong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Dept. of Information Engineering, Coll. of Lishui Professional Tech., Zhejiang (China); Zheng Chunlong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Shanghai Inst. of Applied Mathematics and Mechanics, Shanghai Univ., SH (China)

    2010-04-15

    Using the homotopy perturbation method, a class of nonlinear generalized Ginzburg-Landau-Higgs systems (GGLH) is considered. Firstly, by introducing a homotopic transformation, the nonlinear problem is changed into a system of linear equations. Secondly, by selecting a suitable initial approximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg-Landau-Higgs system is derived. Finally, another type of homotopic transformation to the generalized Ginzburg-Landau-Higgs system reported in previous literature is briefly discussed. (orig.)

  8. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method

    International Nuclear Information System (INIS)

    Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.

    2009-01-01

    The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.

  9. The soliton solution of the PHI24 field theory in the Hartree approximation

    International Nuclear Information System (INIS)

    Altenbokum, M.

    1984-01-01

    In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de

  10. Approximate solution to the Kolmogorov equation for a fission chain-reacting system

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1986-01-01

    An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution

  11. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  12. Determinant formula for solutions of the Garnier system and Padé approximation

    International Nuclear Information System (INIS)

    Mano, Toshiyuki

    2012-01-01

    It is known that a class of special solutions of the Garnier system is expressed by a determinant formula in terms of a certain specialization of the Schur functions with rectangular-shape partitions. Y Yamada showed that such a determinant formula for rational solutions of Riccati type can be derived by making use of the Padé approximation. In this paper, we extend Yamada’s method. We derive a determinant formula for transcendental solutions of Riccati type by showing that the Padé approximation can be utilized in order to construct a Schlesinger transformation between isomonodromic deformations. In addition, we show that this method is effective in generic solutions of the Garnier system and derive a determinant structure of them. (paper)

  13. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    Science.gov (United States)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  14. Approximative analytic eigenvalues for orbital excitations in the case of a coulomb potential plus linear and quadratic radial terms

    International Nuclear Information System (INIS)

    Rekab, S.; Zenine, N.

    2006-01-01

    We consider the three dimensional non relativistic eigenvalue problem in the case of a Coulomb potential plus linear and quadratic radial terms. In the framework of the Rayleigh-Schrodinger Perturbation Theory, using a specific choice of the unperturbed Hamiltonian, we obtain approximate analytic expressions for the eigenvalues of orbital excitations. The implications and the range of validity of the obtained analytic expression are discussed

  15. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Ratchata Theinchai

    2016-01-01

    Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  16. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    OpenAIRE

    Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera

    2016-01-01

    We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  17. Numerical solution of the ekpyrotic scenario in the moduli space approximation

    International Nuclear Information System (INIS)

    Soerensen, Torquil MacDonald

    2005-01-01

    A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices

  18. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    Science.gov (United States)

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  19. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  20. ANALYTICAL SOLUTIONS FOR RADIATIVE TRANSFER: IMPLICATIONS FOR GIANT PLANET FORMATION BY DISK INSTABILITY

    International Nuclear Information System (INIS)

    Boss, Alan P.

    2009-01-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  1. The KASY synthesis programme for the approximative solution of the 3-dimensional neutron diffusion equation

    International Nuclear Information System (INIS)

    Buckel, G.; Wouters, R. de; Pilate, S.

    1977-01-01

    The synthesis code KASY for an approximate solution of the three-dimensional neutron diffusion equation is described; the state of the art as well as envisaged program extensions and the application to tasks from the field of reactor designing are dealt with. (RW) [de

  2. Solution of multigroup diffusion equations in cylindrical configuration by local polynomial approximation

    International Nuclear Information System (INIS)

    Jakab, J.

    1979-05-01

    Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)

  3. Approximated and User Steerable tSNE for Progressive Visual Analytics

    NARCIS (Netherlands)

    Pezzotti, N.; Lelieveldt, B.P.F.; van der Maaten, L.J.P.; Hollt, T.; Eisemann, E.; Vilanova Bartroli, A.

    2016-01-01

    Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and

  4. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  5. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    International Nuclear Information System (INIS)

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-01-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99m Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99 Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH) 3 . The precipitate of Gd(OH) 3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99 Mo and 99m Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  6. Analytical solutions of the Dirac equation under Hellmann–Frost–Musulin potential

    International Nuclear Information System (INIS)

    Onate, C.A.; Onyeaju, M.C.; Ikot, A.N.

    2016-01-01

    The approximate analytical solutions of the Dirac equation with Hellmann–Frost–Musulin potential have been studied by using the generalized parametric Nikiforov–Uvarov (NU) method for arbitrary spin–orbit quantum number k under the spin and pseudospin symmetries. The Hellmann–Frost–Musulin potential is a superposition potential that consists of Yukawa potential, Coulomb potential, and Frost–Musulin potential. As a particular case, we found the energy levels of the non-relativistic limit of the spin symmetry. The energy equation of Yukawa potential, Coulomb potential, Hellmann potential and Frost–Musulin potential are obtained. Energy values are generated for some diatomic molecules.

  7. Analytical solutions of the Dirac equation under Hellmann–Frost–Musulin potential

    Energy Technology Data Exchange (ETDEWEB)

    Onate, C.A., E-mail: oaclems14@physicist.net [Physics Department, University of Benin (Nigeria); Onyeaju, M.C.; Ikot, A.N. [Theoretical Physics Group, Physics Department, University of Port Harcourt (Nigeria)

    2016-12-15

    The approximate analytical solutions of the Dirac equation with Hellmann–Frost–Musulin potential have been studied by using the generalized parametric Nikiforov–Uvarov (NU) method for arbitrary spin–orbit quantum number k under the spin and pseudospin symmetries. The Hellmann–Frost–Musulin potential is a superposition potential that consists of Yukawa potential, Coulomb potential, and Frost–Musulin potential. As a particular case, we found the energy levels of the non-relativistic limit of the spin symmetry. The energy equation of Yukawa potential, Coulomb potential, Hellmann potential and Frost–Musulin potential are obtained. Energy values are generated for some diatomic molecules.

  8. An analytical expression for the non-singlet structure functions at small χ in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, M.

    2004-01-01

    A simple analytic expression for the non-singlet structure function fns is given. The expression is derived from the result of B. I. Ermolaev et al. (1996) obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD. (orig.)

  9. In-core LOCA-s: analytical solution for the delayed mixing model for moderator poison concentration

    International Nuclear Information System (INIS)

    Firla, A.P.

    1995-01-01

    Solutions to dynamic moderator poison concentration model with delayed mixing under single pressure tube / calandria tube rupture scenario are discussed. Such a model is described by a delay differential equation, and for such equations the standard ways of solution are not directly applicable. In the paper an exact, direct time-domain analytical solution to the delayed mixing model is presented and discussed. The obtained solution has a 'marching' form and is easy to calculate numerically. Results of the numerical calculations based on the analytical solution indicate that for the expected range of mixing times the existing uniform mixing model is a good representation of the moderator poison mixing process for single PT/CT breaks. However, for postulated multi-pipe breaks ( which is very unlikely to occur ) the uniform mixing model is not adequate any more; at the same time an 'approximate' solution based on Laplace transform significantly overpredicts the rate of poison concentration decrease, resulting in excessive increase in the moderator dilution factor. In this situation the true, analytical solution must be used. The analytical solution presented in the paper may also serve as a bench-mark test for the accuracy of the existing poison mixing models. Moreover, because of the existing oscillatory tendency of the solution, special care must be taken in using delay differential models in other applications. (author). 3 refs., 3 tabs., 8 figs

  10. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  11. Revisiting the Fundamental Analytical Solutions of Heat and Mass Transfer: The Kernel of Multirate and Multidimensional Diffusion

    Science.gov (United States)

    Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.

    2017-11-01

    There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.

  12. Approximate solution of the transport equation by methods of Galerkin type

    International Nuclear Information System (INIS)

    Pitkaranta, J.

    1977-01-01

    Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form

  13. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  14. Some approximating formulae to the solution of an abstract evolution problem

    International Nuclear Information System (INIS)

    Ngongo, M.E.

    1991-12-01

    We consider discrete semigroups of operators associated with the first two primary sub-families of A-acceptable Norsett's rational approximations to e q , S 1 (γ;q) and S 2 (γ;q) with q is an element of C and γ a real parameter, and construct approximating formulae to the solution of an abstract evolution problem. The study of convergence is reduced to exploiting previous fundamental results of the author for this class of semigroups and this results, for associated numerical schemes, in a convergence independent of the regularity of the data of the problem. (author). 17 refs, 3 tabs

  15. Approximate solutions to the deep bed filtration problem; Solucoes aproximadas para o problema de deposicao profunda

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julio M.; Marchesin, Dan [Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The deep bed filtration problem is closely related to secondary oil recovery. In this work we derive explicit solutions to two filtration problems. The filtration function varies non-linearly with the Darcy speed and linearly with the deposition, but very little. The first solution is built by the method of perturbations and although it is only an approximation it is available in multiple symmetries, including the radial geometry used in the field. The main motivation is the validation of numerical methods. The second solution is exact but it is only available in the linear symmetry, i.e., laboratory geometry. We use it to verify the accuracy of the first solution, but it can also be used to simulate the deposition in experiments. (author)

  16. Criteria for the reliability of numerical approximations to the solution of fluid flow problems

    International Nuclear Information System (INIS)

    Foias, C.

    1986-01-01

    The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs

  17. Analytic self-similar solutions of the Oberbeck–Boussinesq equations

    International Nuclear Information System (INIS)

    Barna, I.F.; Mátyás, L.

    2015-01-01

    In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtonian–Navier–Stokes — with Boussinesq approximation — and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field shows a strongly damped single periodic oscillation which can mimic the appearance of Rayleigh–Bénard convection cells. Finally, it is discussed how our result may be related to nonlinear or chaotic dynamical regimes

  18. Exact analytic solutions for Mikheyev-Smirnov-Wolfenstein level crossings

    International Nuclear Information System (INIS)

    Noetzold, D.

    1987-01-01

    An exact formula for the transition probability in level-crossing phenomena is derived for a general case, ranging from adiabatic to sudden crossings. This is done in the context of neutrino flavor oscillations for the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where hitherto only numerical or approximate solutions were obtained. The matter density or level splitting is assumed to be governed by a hyperbolic-tangent function which, however, can change arbitrarily fast between two constant values. For example, in context of the MSW effect this furnishes a nice fit to the solar density determining the level crossing of solar neutrinos. In the quasiadiabatic limit the exact Landau-Zener factor can be read off, correcting some expressions obtained so far. Even in the opposite limit of a sudden level crossing a conversion is found, which can have far-reaching consequences for neutrino detection on Earth

  19. Analytical Solution and Physics of a Propellant Damping Device

    Science.gov (United States)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.

  20. A method for the approximate solutions of the unsteady boundary layer equations

    International Nuclear Information System (INIS)

    Abdus Sattar, Md.

    1990-12-01

    The approximate integral method proposed by Bianchini et al. to solve the unsteady boundary layer equations is considered here with a simple modification to the scale function for the similarity variable. This is done by introducing a time dependent length scale. The closed form solutions, thus obtained, give satisfactory results for the velocity profile and the skin friction to a limiting case in comparison with the results of the past investigators. (author). 7 refs, 2 figs

  1. Solución aproximada de sistemas diferenciales mixtos Approximated solution of differentials mixed systems

    Directory of Open Access Journals (Sweden)

    Jorge I. Castaño–Bedoya

    2009-12-01

    Full Text Available En este artículo se propone encontrar una solución aproximada para problemas de valor en la frontera y problemas de valor inicial de un sistema diferencial utilizando el método de los desarrollos de Fer.In this paper we propose to find an approximate solution to boundary value problems and initial value differential system problems using the method of Fer developments.

  2. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  3. Using trees to compute approximate solutions to ordinary differential equations exactly

    Science.gov (United States)

    Grossman, Robert

    1991-01-01

    Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.

  4. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Science.gov (United States)

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  5. Solutions to aggregation-diffusion equations with nonlinear mobility constructed via a deterministic particle approximation

    OpenAIRE

    Fagioli, Simone; Radici, Emanuela

    2018-01-01

    We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...

  6. Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix

    CSIR Research Space (South Africa)

    Vlok, JD

    2012-08-14

    Full Text Available offers largely simplified computation and provides statistics such as the mean value and region of support of the largest eigenvalue distribution. Numeric results from the literature are compared with the approximation and Monte Carlo simulation results...

  7. Communication: Analytic continuation of the virial series through the critical point using parametric approximants

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Nathaniel S., E-mail: nsbsma@rit.edu [School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623 (United States); Schultz, Andrew J., E-mail: ajs42@buffalo.edu; Kofke, David A., E-mail: kofke@buffalo.edu [Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260 (United States); Weinstein, Steven J., E-mail: sjweme@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  8. Communication: Analytic continuation of the virial series through the critical point using parametric approximants.

    Science.gov (United States)

    Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  9. Technique for approximate analytical calculating the internuclear cascade initiated by medium-energy nucleons in accelerator shields

    International Nuclear Information System (INIS)

    Kazarnovskij, M.V.; Matushko, G.K.; Matushko, V.L.; Par'ev, Eh.Ya.; Serezhnikov, S.V.

    1981-01-01

    The problem on propagation of the internuclear cascade initiated by nucleons of 0.1-1 GeV energy in accelerator schielding is solved approximately in the analytical form. Analytical expressions for the function of spatial, angular and energy distribution of the flux density of nucleons with the energy above 20 MeV and some functionals from it are obtained. The results of the calculations obtained by the developed methods are compared with calculations obtained by the method of direct simulation. It is shown that at the atomic mass of shielding material [ru

  10. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey

    2014-06-24

    Full-waveform inversion (FWI) in practical applications is currently used to invert the direct arrivals (diving waves, no reflections) using relatively long offsets. This is driven mainly by the high nonlinearity introduced to the inversion problem when reflection data are included, which in some cases require extremely low frequency for convergence. However, analytical insights into diving waves have lagged behind this sudden interest. We use analytical formulas that describe the diving wave’s behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena reveal the high dependence of diving-wave imaging on the gradient and the initial velocity. The analytical image point residual equation can be further used to scan for the best-fit linear velocity model, which is now becoming a common sight as an initial velocity model for FWI. We determined the accuracy and versatility of these analytical formulas through numerical tests.

  11. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  12. Analytical solutions for peak and residual uplift resistance of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Oswell, J.M. [Naviq Consulting Inc., Calgary, AB (Canada)

    2010-07-01

    Frost heave can occur on cold pipelines that traverse unfrozen, non permafrost terrain. The stresses experienced by the pipeline are partly a function of the strength of the soil on the non heaving side of the frozen-unfrozen interface. This paper proposed three analytical solutions to estimate the soil uplift resistance by considering the pipeline and soil to act similar to a strip footing, a punching shear failure, and by considering the formation of horizontal crack emanating from the spring line of the pipe. Peak uplift resistance and residual uplift resistance were discussed. Results for full scale pipe and for laboratory scale model pipes were presented, with particular reference to cover depth, temperature and crack width; and limits to residual uplift resistance. It was concluded that the peak uplift resistance and the residual uplift resistance are generally independent and controlled by different factors. The peak resistance is related directly to pipe diameter, and less strongly dependent on springline depth. It is also strongly dependent on soil temperature. However, the residual uplift resistance is strongly dependent on burial depth, weakly dependent on pipe displacement rate and also on soil temperature. 15 refs., 19 figs.

  13. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  14. The Analytic Solution of Schroedinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    International Nuclear Information System (INIS)

    Hu Xianquan; Luo Guang; Cui Lipeng; Niu Lianbin; Li Fangyu

    2009-01-01

    The analytic solution of the radial Schroedinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schroedinger equation is V(r) = α 1 r 8 + α 2 r 3 + α 3 r 2 + β 3 r -1 + β 2 r -3 + β 1 r -4 . Generally speaking, there is only an approximate solution, but not analytic solution for Schroedinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schroedinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schroedinger equation; and lastly, they discuss the solutions and make conclusions. (general)

  15. Solution of the isotopic depletion equation using decomposition method and analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: fprata@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  16. Solution of the isotopic depletion equation using decomposition method and analytical solution

    International Nuclear Information System (INIS)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S.

    2011-01-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  17. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    Science.gov (United States)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  18. An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.

    Science.gov (United States)

    Burden, Conrad J; Tang, Yurong

    2016-12-01

    We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Exact and approximate Fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET.

    Science.gov (United States)

    Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis

    2007-07-01

    This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.

  20. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    Science.gov (United States)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  1. Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions

    Science.gov (United States)

    Cuccurullo, G.; Giordano, L.; Metallo, A.

    2017-11-01

    Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.

  2. A simple analytic approximation to the Rayleigh-Bénard stability threshold

    NARCIS (Netherlands)

    Prosperetti, Andrea

    2011-01-01

    The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It is found that truncating the series to just the first term gives an excellent explicit approximation to the marginal stability relation between the Rayleigh number and the wave number of the

  3. An analytical solution for the Marangoni mixed convection boundary layer flow

    DEFF Research Database (Denmark)

    Moghimi, M. A.; Kimiaeifar, Amin; Rahimpour, M.

    2010-01-01

    In this article, an analytical solution for a Marangoni mixed convection boundary layer flow is presented. A similarity transform reduces the Navier-Stokes equations to a set of nonlinear ordinary differential equations, which are solved analytically by means of the homotopy analysis method (HAM...... the convergence of the solution. The numerical solution of the similarity equations is developed and the results are in good agreement with the analytical results based on the HAM....

  4. Similarity solution and Runge Kutta method to a thermal boundary layer model at the entrance region of a circular tube: The Lévêque Approximation

    Directory of Open Access Journals (Sweden)

    Ali Belhocine

    2018-01-01

    Full Text Available In the thermal entrance region, a thermal boundary layer develops and also reaches the circular tube center. The fully developed region is the zone in which the flow is both hydrodynamically and thermally developed. The heat flux will be higher near the inlet because the heat transfer coefficient is highest at the tube inlet where the thickness of the thermal boundary layer is zero and decreases gradually to the fully developed value. In this paper, the assumptions implicit in Leveque's approximation are re-examined, and the analytical solution of the problem with additional boundary conditions, for the temperature field and the boundary layer thickness through the long tube is presented. By defining a similarity variable, the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This report gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form, and presents a similarity solution. The analytical solutions are then checked against numerical solution programming by Fortran code obtained via using Runge-Kutta fourth order (RK4 method. Finally, others important thermal results obtained from this analysis, such as; approximate Nusselt number in the thermal entrance region was discussed in detail.

  5. Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System.

    Science.gov (United States)

    Johnson, Marcus; Kamalapurkar, Rushikesh; Bhasin, Shubhendu; Dixon, Warren E

    2015-08-01

    An approximate online equilibrium solution is developed for an N -player nonzero-sum game subject to continuous-time nonlinear unknown dynamics and an infinite horizon quadratic cost. A novel actor-critic-identifier structure is used, wherein a robust dynamic neural network is used to asymptotically identify the uncertain system with additive disturbances, and a set of critic and actor NNs are used to approximate the value functions and equilibrium policies, respectively. The weight update laws for the actor neural networks (NNs) are generated using a gradient-descent method, and the critic NNs are generated by least square regression, which are both based on the modified Bellman error that is independent of the system dynamics. A Lyapunov-based stability analysis shows that uniformly ultimately bounded tracking is achieved, and a convergence analysis demonstrates that the approximate control policies converge to a neighborhood of the optimal solutions. The actor, critic, and identifier structures are implemented in real time continuously and simultaneously. Simulations on two and three player games illustrate the performance of the developed method.

  6. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.

    Science.gov (United States)

    Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia

    2016-02-01

    The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Iterative approximation of the solution of a monotone operator equation in certain Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1988-01-01

    Let X=L p (or l p ), p ≥ 2. The solution of the equation Ax=f, f is an element of X is approximated in X by an iteration process in each of the following two cases: (i) A is a bounded linear mapping of X into itself which is also bounded below; and, (ii) A is a nonlinear Lipschitz mapping of X into itself and satisfies ≥ m |x-y| 2 , for some constant m > 0 and for all x, y in X, where j is the single-valued normalized duality mapping of X into X* (the dual space of X). A related result deals with the iterative approximation of the fixed point of a Lipschitz strictly pseudocontractive mapping in X. (author). 12 refs

  8. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  9. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  10. Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions

    Science.gov (United States)

    Chardon, Gilles; Daudet, Laurent

    2013-11-01

    This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.

  11. Accuracy of approximations of solutions to Fredholm equations by kernel methods

    Czech Academy of Sciences Publication Activity Database

    Gnecco, G.; Kůrková, Věra; Sanguineti, M.

    2012-01-01

    Roč. 218, č. 14 (2012), s. 7481-7497 ISSN 0096-3003 R&D Projects: GA ČR GAP202/11/1368; GA MŠk OC10047 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 “Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : approximate solutions to integral equations * radial and kernel-based networks * Gaussian kernels * model complexity * analysis of algorithms Subject RIV: IN - Informatics, Computer Science Impact factor: 1.349, year: 2012

  12. Approximate Solution of Nonlinear Klein-Gordon Equation Using Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2016-01-01

    Full Text Available The nonlinear Klein-Gordon equation (KGE models many nonlinear phenomena. In this paper, we propose a scheme for numerical approximation of solutions of the one-dimensional nonlinear KGE. A common approach to find a solution of a nonlinear system is to first linearize the equations by successive substitution or the Newton iteration method and then solve a linear least squares problem. Here, we show that it can be advantageous to form a sum of squared residuals of the nonlinear problem and then find a zero of the gradient. Our scheme is based on the Sobolev gradient method for solving a nonlinear least square problem directly. The numerical results are compared with Lattice Boltzmann Method (LBM. The L2, L∞, and Root-Mean-Square (RMS values indicate better accuracy of the proposed method with less computational effort.

  13. Approximate solutions of the hyperchaotic Rössler system by using the Bessel collocation scheme

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2015-02-01

    Full Text Available The purpose of this study is to give a Bessel polynomial approximation for the solutions of the hyperchaotic Rössler system. For this purpose, the Bessel collocation method applied to different problems is developed for the mentioned system. This method is based on taking the truncated Bessel expansions of the functions in the hyperchaotic Rössler systems. The suggested secheme converts the problem into a system of nonlinear algebraic equations by means of the matrix operations and collocation points, The accuracy and efficiency of the proposed approach are demonstrated by numerical applications and performed with the help of a computer code written in Maple. Also, comparison between our method and the differential transformation method is made with the accuracy of solutions.

  14. Approximate solution of space and time fractional higher order phase field equation

    Science.gov (United States)

    Shamseldeen, S.

    2018-03-01

    This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.

  15. Scattering of particles with inclusions. Modeling and inverse problem solution in the Rayleigh-Gans approximation

    International Nuclear Information System (INIS)

    Otero, F A; Frontini, G L; Elicabe, G E

    2011-01-01

    An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.

  16. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    Science.gov (United States)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  17. Simple analytical approximation for rotationally inelastic rate constants based on the energy corrected sudden scaling law

    International Nuclear Information System (INIS)

    Smith, N.; Pritchard, D.E.

    1981-01-01

    We have recently demonstrated that the energy corrected sudden (ECS) scaling law of De Pristo et al. when conbined with the power law assumption for the basis rates k/sub l/→0proportional[l(l+1)]/sup -g/ can accurately fit a wide body of rotational energy transfer data. We develop a simple and accurate approximation to this fitting law, and in addition mathematically show the connection between it and our earlier proposed energy based law which also has been successful in describing both theoretical and experimental data on rotationally inelastic collisions

  18. An approximate JKR solution for a general contact, including rough contacts

    Science.gov (United States)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  19. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  20. Analytical solutions of steady-state conjugate heat transfer in ducts with turbulent flow

    International Nuclear Information System (INIS)

    Cerqueira, Djane R.; Jian Su

    2007-01-01

    In this work, we present an approximate analytical solution of the steady-state conjugate heat transfer of turbulent forced convection in a circular pipe with wall axial heat conduction and external convective boundary conditions. Improved lumped differential approach based on two points Hermite approximation for integrals was applied to reduce the heat conduction equation in the solid into a second-order ordinary differential equation for the radially averaged solid temperature. The energy equation in the fluid was solved by applying the generalized integral transform technique (GITT). The Sturm-Lioville eigenproblem for fluid energy equation in the cylindrical coordinate system was solved by the sign-count method. The truncated system of N ordinary differential equations for transformed potentials of the fluid temperature and the second-order ordinary differential equation for radially averaged solid temperature formed a homogeneous system of N+2 ordinary differential equations, which was solved analytically. The effects of the fluid-solid thermal conductivity ratio on the Nusselt number, the average fluid and solid temperatures, and the fluid-solid interface temperature were investigated. (author)

  1. SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water

    Energy Technology Data Exchange (ETDEWEB)

    Tuomanen, S; Moskvin, V; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derived the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.

  2. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  3. Approximate solutions of dual fuzzy polynomials by feed-back neural networks

    Directory of Open Access Journals (Sweden)

    Ahmad Jafarian

    2012-11-01

    Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.

  4. On the use of analytical approximate expressions for the transfer rate in excitation transfer kinetics

    International Nuclear Information System (INIS)

    Kusba, J.; Sipp, B.

    1985-01-01

    We present a discussion about the range of validity of the usual approximate transfer rate expressions used in the description of the kinetics of diffusion-modulated excitation transfer, for a reactive interaction of exponential functional form. We simulate the features of energy transfer by a numerical inversion of the exact Laplace transform of the transfer rate. It is shown that for high diffusion coefficients of the order of 10 -5 cm 2 s -1 , the kinetics may be well reproduced, even at short times, by the asymptotic form of the transfer rate. For slow molecular displacements, the short time static regime is brought to direct observation, but the transfer rate approaches is asymptotic value at a much later time

  5. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.

  6. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: psharma@rtu.ac.in; Parashar, Sandeep Kumar, E-mail: parashar2@yahoo.com [Mechanical Engineering Department, Rajasthan Technical University, Kota (India)

    2016-05-06

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  7. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-03-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than

  8. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-06-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the

  9. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution

    International Nuclear Information System (INIS)

    St John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel

  10. Perturbed invariant subspaces and approximate generalized functional variable separation solution for nonlinear diffusion-convection equations with weak source

    Science.gov (United States)

    Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng

    2018-03-01

    In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.

  11. Laser driven electron-positron pair creation-kinetic theory versus analytical approximations

    International Nuclear Information System (INIS)

    Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.

    2013-01-01

    The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation.

    Science.gov (United States)

    Franssens, G; De Maziére, M; Fonteyn, D

    2000-08-20

    A new derivation is presented for the analytical inversion of aerosol spectral extinction data to size distributions. It is based on the complex analytic extension of the anomalous diffraction approximation (ADA). We derive inverse formulas that are applicable to homogeneous nonabsorbing and absorbing spherical particles. Our method simplifies, generalizes, and unifies a number of results obtained previously in the literature. In particular, we clarify the connection between the ADA transform and the Fourier and Laplace transforms. Also, the effect of the particle refractive-index dispersion on the inversion is examined. It is shown that, when Lorentz's model is used for this dispersion, the continuous ADA inverse transform is mathematically well posed, whereas with a constant refractive index it is ill posed. Further, a condition is given, in terms of Lorentz parameters, for which the continuous inverse operator does not amplify the error.

  13. Auto-Baecklund Transformation and Analytic Solutions of (2+1)-Dimensional Boussinesq Equation

    International Nuclear Information System (INIS)

    Liu Guanting

    2008-01-01

    Using the truncated Painleve expansion, symbolic computation, and direct integration technique, we study analytic solutions of (2+1)-dimensional Boussinesq equation. An auto-Baecklund transformation and a number of exact solutions of this equation have been found. The set of solutions include solitary wave solutions, solitoff solutions, and periodic solutions in terms of elliptic Jacobi functions and Weierstrass wp function. Some of them are novel.

  14. Solution of two-dimensional equations of neutron transport in 4P0-approximation of spherical harmonics method

    International Nuclear Information System (INIS)

    Polivanskij, V.P.

    1989-01-01

    The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs

  15. Analytical approximations for the long-term decay behavior of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Malbrain, C.M.; Deutch, J.M.; Lester, R.K.

    1982-01-01

    Simple analytical approximations are presented that describe the radioactivity and radiogenic decay heat behavior of high-level wastes (HLWs) from various nuclear fuel cycles during the first 100,000 years of waste life. The correlations are based on detailed computations of HLW properties carried out with the isotope generation and depletion code ORIGEN 2. The ambiguities encountered in using simple comparisons of the hazards posed by HLWs and naturally occurring mineral deposits to establish the longevity requirements for geologic waste disposal schemes are discussed

  16. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    International Nuclear Information System (INIS)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-01-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses

  17. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)

    2016-08-15

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses

  18. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    Science.gov (United States)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-08-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions

  19. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  20. Analytic continuation of solutions of some nonlinear convolution partial differential equations

    Directory of Open Access Journals (Sweden)

    Hidetoshi Tahara

    2015-01-01

    Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.

  1. New analytical solutions for nonlinear physical models of the ...

    Indian Academy of Sciences (India)

    In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...

  2. On analytical solution of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Scheffel, J.

    2001-04-01

    An analytical method for solving the dissipative, nonlinear and non-stationary Navier-Stokes equations is presented. Velocity and pressure is expanded in power series of cartesian coordinates and time. The method is applied to 2-D incompressible gravitational flow in a bounded, rectangular domain

  3. Approximate solutions of the two-dimensional integral transport equation by collision probability methods

    International Nuclear Information System (INIS)

    Sanchez, Richard

    1977-01-01

    A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr

  4. Analytical solution for the transport equation for neutral particles in cylindrical and Cartesian geometry

    International Nuclear Information System (INIS)

    Goncalves, Glenio Aguiar

    2003-01-01

    In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)

  5. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    International Nuclear Information System (INIS)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-01-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere

  6. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  7. A globally convergent and closed analytical solution of the Blasius equation with beneficial applications

    Science.gov (United States)

    Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong

    2017-06-01

    For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.

  8. Structural stability of solutions to the Riemann problem for a non-strictly hyperbolic system with flux approximation

    Directory of Open Access Journals (Sweden)

    Meina Sun

    2016-05-01

    Full Text Available We study the Riemann problem for a non-strictly hyperbolic system of conservation laws under the linear approximations of flux functions with three parameters. The approximated system also belongs to the type of triangular systems of conservation laws and this approximation does not change the structure of Riemann solutions to the original system. Furthermore, it is proven that the Riemann solutions to the approximated system converge to the corresponding ones to the original system as the perturbation parameter tends to zero.

  9. Approximate solutions for radial travel time and capture zone in unconfined aquifers.

    Science.gov (United States)

    Zhou, Yangxiao; Haitjema, Henk

    2012-01-01

    Radial time-of-travel (TOT) capture zones have been evaluated for unconfined aquifers with and without recharge. The solutions of travel time for unconfined aquifers are rather complex and have been replaced with much simpler approximate solutions without significant loss of accuracy in most practical cases. The current "volumetric method" for calculating the radius of a TOT capture zone assumes no recharge and a constant aquifer thickness. It was found that for unconfined aquifers without recharge, the volumetric method leads to a smaller and less protective wellhead protection zone when ignoring drawdowns. However, if the saturated thickness near the well is used in the volumetric method a larger more protective TOT capture zone is obtained. The same is true when the volumetric method is used in the presence of recharge. However, for that case it leads to unreasonableness over the prediction of a TOT capture zone of 5 years or more. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  10. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  11. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.

  12. Analytical solution of groundwater waves in unconfined aquifers with ...

    Indian Academy of Sciences (India)

    Selva Balaji Munusamy

    2017-07-29

    Jul 29, 2017 ... higher-order Boussinesq equation. The homotopy perturbation solution is derived using a virtual perturbation .... reality, seepage face formation is common for tide–aquifer interaction problems. To simplify the complexity of the.

  13. A family of analytical solutions of a nonlinear diffusion-convection equation

    Science.gov (United States)

    Hayek, Mohamed

    2018-01-01

    Despite its popularity in many engineering fields, the nonlinear diffusion-convection equation has no general analytical solutions. This work presents a family of closed-form analytical traveling wave solutions for the nonlinear diffusion-convection equation with power law nonlinearities. This kind of equations typically appears in nonlinear problems of flow and transport in porous media. The solutions that are addressed are simple and fully analytical. Three classes of analytical solutions are presented depending on the type of the nonlinear diffusion coefficient (increasing, decreasing or constant). It has shown that the structure of the traveling wave solution is strongly related to the diffusion term. The main advantage of the proposed solutions is that they are presented in a unified form contrary to existing solutions in the literature where the derivation of each solution depends on the specific values of the diffusion and convection parameters. The proposed closed-form solutions are simple to use, do not require any numerical implementation, and may be implemented in a simple spreadsheet. The analytical expressions are also useful to mathematically analyze the structure and properties of the solutions.

  14. Analytical Solution of Pantograph Equation with Incommensurate Delay

    Science.gov (United States)

    Patade, Jayvant; Bhalekar, Sachin

    2017-08-01

    Pantograph equation is a delay differential equation (DDE) arising in electrodynamics. This paper studies the pantograph equation with two delays. The existence, uniqueness, stability and convergence results for DDEs are presented. The series solution of the proposed equation is obtained by using Daftardar-Gejji and Jafari method and given in terms of a special function. This new special function has several properties and relations with other functions. Further, we generalize the proposed equation to fractional-order case and obtain its solution.

  15. Selecting analytical tools for characterization of polymersomes in aqueous solution

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Ogbonna, Anayo; Larsen, Nanna

    2015-01-01

    Selecting the appropriate analytical methods for characterizing the assembly and morphology of polymer-based vesicles, or polymersomes are required to reach their full potential in biotechnology. This work presents and compares 17 different techniques for their ability to adequately report size....../purification. Of the analytical methods tested, Cryo-transmission electron microscopy and atomic force microscopy (AFM) turned out to be advantageous for polymersomes with smaller diameter than 200 nm, whereas confocal microscopy is ideal for diameters >400 nm. Polymersomes in the intermediate diameter range can be characterized...... using freeze fracture Cryo-scanning electron microscopy (FF-Cryo-SEM) and nanoparticle tracking analysis (NTA). Small angle X-ray scattering (SAXS) provides reliable data on bilayer thickness and internal structure, Cryo-TEM on multilamellarity. Taken together, these tools are valuable...

  16. Approximate analytical solutions of the pseudospin symmetric Dirac equation for exponential-type potentials

    Science.gov (United States)

    Gately, Iain; Benjamin, Jonathan

    2018-04-01

    As a discipline that has grown up in the eyes of the camera, maritime and underwater archaeology has struggled historically to distinguish itself from early misrepresentations of it as adventure-seeking, treasure hunting and underwater salvage as popularized in the 1950s and 1960s. Though many professional archaeologists have successfully moved forward from this history through broader theoretical engagement and the development of the discipline within anthropology, public perception of archaeology under water has not advanced in stride. Central to this issue is the portrayal of underwater archaeology within popular culture and the representational structures from the 1950s and 1960s persistently used to introduce the profession to the public, through the consumption of popular books and especially television. This article explores representations of maritime and underwater archaeology to examine how the discipline has been consumed by the public, both methodologically and theoretically, through media. In order to interrogate this, we first examine maritime and underwater archaeology as a combined sub-discipline of archaeology and consider how it has been defined historically and in contemporary professional practice. Finally, we consider how practitioners can take a proactive approach to portray their work and convey archaeological media to the public. In this respect, we aim to advance the theoretical discussion in a way so as to reduce further cases whereby archaeology is accidentally misappropriated or deliberately hijacked.

  17. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  18. Analytical solution using computer algebra of a biosensor for detecting toxic substances in water

    Science.gov (United States)

    Rúa Taborda, María. Isabel

    2014-05-01

    In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.

  19. Unsteady analytical solutions to the Poisson–Nernst–Planck equations

    International Nuclear Information System (INIS)

    Schönke, Johannes

    2012-01-01

    It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)

  20. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  1. Analytical Solutions for Predicting Underwater Explosion Gas Bubble Behaviour

    Science.gov (United States)

    2010-11-01

    décrit différents modèles analytiques élaborés antérieurement pour prévoir la croissance et l’implosion radiales en champ libre des bulles gazeuses...9.80665 Air pressure (kPa), Pair 101.325 101.325 4.4 Code Development The visualization software IDL was used to develop a code for calculating the...models and assumptions provide better predictions. Using the visualization software IDL the various analytical models and similitude equations, a code

  2. Selecting analytical tools for characterization of polymersomes in aqueous solution

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Ogbonna, Anayo; Larsen, Nanna

    2015-01-01

    /purification. Of the analytical methods tested, Cryo-transmission electron microscopy and atomic force microscopy (AFM) turned out to be advantageous for polymersomes with smaller diameter than 200 nm, whereas confocal microscopy is ideal for diameters >400 nm. Polymersomes in the intermediate diameter range can be characterized...... using freeze fracture Cryo-scanning electron microscopy (FF-Cryo-SEM) and nanoparticle tracking analysis (NTA). Small angle X-ray scattering (SAXS) provides reliable data on bilayer thickness and internal structure, Cryo-TEM on multilamellarity. Taken together, these tools are valuable...

  3. Towards an analytic solution of QCD: The glueball mass gap

    International Nuclear Information System (INIS)

    West, G.B.

    1987-01-01

    Certain general features and beliefs concerning quantum chromodynamics are reviewed with he view to seeing whether the theory sense and whether its physical spectrum can be determined. A typical Green's function is represented as an expansion around the minima of the action, each term of which is divergent and requires renormalization. It is shown that even after renormalization, each of the series generated by expansion around a minimum is divergent and requires a summability procedure to make sense. The causality and analyticity of the resulting Green's function is then discussed. The ideas thus developed are shown to determine the position of the first singularity of the Green's function

  4. Two-dimensional analytical solution for nodal calculation of nuclear reactors

    International Nuclear Information System (INIS)

    Silva, Adilson C.; Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2017-01-01

    Highlights: • A proposal for a coarse mesh nodal method is presented. • The proposal uses the analytical solution of the two-dimensional neutrons diffusion equation. • The solution is performed homogeneous nodes with dimensions of the fuel assembly. • The solution uses four average fluxes on the node surfaces as boundary conditions. • The results show good accuracy and efficiency. - Abstract: In this paper, the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G). The spatial domain of reactor core is divided into a set of nodes with uniform nuclear parameters. To determine iteratively the multiplication factor and the neutron flux in the reactor we combine the analytical solution of the neutron diffusion equation with an iterative method known as power method. The analytical solution for different types of regions that compose the reactor is obtained, such as fuel and reflector regions. Four average fluxes in the node surfaces are used as boundary conditions for analytical solution. Discontinuity factors on the node surfaces derived from the homogenization process are applied to maintain averages reaction rates and the net current in the fuel assembly (FA). To validate the results obtained by the analytical solution a relative power density distribution in the FAs is determined from the neutron flux distribution and compared with the reference values. The results show good accuracy and efficiency.

  5. Applicability of the Analytical Solution to N-Person Social Dilemma Games

    Directory of Open Access Journals (Sweden)

    Ugo Merlone

    2018-05-01

    Full Text Available The purpose of this study is to present an analysis of the applicability of an analytical solution to the N−person social dilemma game. Such solution has been earlier developed for Pavlovian agents in a cellular automaton environment with linear payoff functions and also been verified using agent based simulation. However, no discussion has been offered for the applicability of this result in all Prisoners' Dilemma game scenarios or in other N−person social dilemma games such as Chicken or Stag Hunt. In this paper it is shown that the analytical solution works in all social games where the linear payoff functions are such that each agent's cooperating probability fluctuates around the analytical solution without cooperating or defecting with certainty. The social game regions where this determination holds are explored by varying payoff function parameters. It is found by both simulation and a special method that the analytical solution applies best in Chicken when the payoff parameter S is slightly negative and then the analytical solution slowly degrades as S becomes more negative. It turns out that the analytical solution is only a good estimate for Prisoners' Dilemma games and again becomes worse as S becomes more negative. A sensitivity analysis is performed to determine the impact of different initial cooperating probabilities, learning factors, and neighborhood size.

  6. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Science.gov (United States)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  7. Analytical travelling wave solutions and parameter analysis for the ...

    Indian Academy of Sciences (India)

    done in the past few decades to improve this equation. Especially, in ... For exam- ple, the solutions of DS equation could describe the interaction between a ... In this paper, we consider the following (2+1)-dimensional Davey–Stewartson-type.

  8. General scalar-tensor cosmology: analytical solutions via noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-02-15

    We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)

  9. Analytical solutions of weakly coupled map lattices using recurrence relations

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)

    2009-07-20

    By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.

  10. Analytic method for solitary solutions of some partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr

    2007-10-22

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.

  11. Analytic method for solitary solutions of some partial differential equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2007-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation

  12. An analytic solution for the enrichment of uranium hexafluoride in long countercurrent centrifuges

    International Nuclear Information System (INIS)

    Raetz, E.

    1977-01-01

    The paper describes an analytic solution for the enrichment and the separative power of long countercurrent centrifuges. Equations to derive optimal operation parameters like feed and feed input height are derived and solved. (orig.) [de

  13. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  14. Piecewise linear emulator of the nonlinear Schroedinger equation and the resulting analytic solutions for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Theodorakis, Stavros

    2003-01-01

    We emulate the cubic term Ψ 3 in the nonlinear Schroedinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a δ function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Ψ 3 one. In particular, it can be used for the nonlinear Schroedinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions

  15. Theoretical study of the countercurrent in an ultracentrifuge-approximate solution of the countercurrent equations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R.

    1975-03-15

    Integrating the linearized Navier-Stokes equations linearized along the whole length of the centrifuge, we get a differential relation between the mean axial velocity and the centrifugal and viscosity forces on the ends. Then, these equations are integrated near the ends by a boundary layer approximation method. We assume that outside the boundary layer, the axial velocity reaches its mean value. So we obtain on the first hand the repartition of all physical quantities in the boundary layer, on the second hand a differential equation between the mean axial velocity and the boundary conditions imposed on the ends. This equation, valid both for the mechanical and thermal counter-current is solved numerically. Its solution shows the existence of a second boundary layer close to the wall of the tube. The present theory extends Martin's one in that it takes into account: (1) the action of pressure forces; (2) zero velocity on the wall with no transport; (3) the interaction between mechanical and thermal effects which tend to decrease the efficiency and the intensity of the counter-current. (author)

  16. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations

    International Nuclear Information System (INIS)

    Momani, Shaher

    2006-01-01

    Non-perturbative analytical solutions for the generalized Burgers equation with time- and space-fractional derivatives of order α and β, 0 < α, β ≤ 1, are derived using Adomian decomposition method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed

  17. Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations

    Directory of Open Access Journals (Sweden)

    U. Filobello-Nino

    2015-01-01

    Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.

  18. A Novel Method for Analytical Solutions of Fractional Partial Differential Equations

    OpenAIRE

    Mehmet Ali Akinlar; Muhammet Kurulay

    2013-01-01

    A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as...

  19. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    International Nuclear Information System (INIS)

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  20. The presentation of explicit analytical solutions of a class of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Feng Jinshun; Guo Mingpu; Yuan Deyou

    2009-01-01

    In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.

  1. Analytical solution for dynamic pressurization of viscoelastic fluids

    International Nuclear Information System (INIS)

    Hashemabadi, S.H.; Etemad, S.Gh.; Thibault, J.; Golkar Naranji, M.R.

    2003-01-01

    The flow of simplified Phan-Thien-Tanner model fluid between parallel plates is studied analytically for the case where the upper plate moves at constant velocity. Two forms of the stress coefficient, linear and exponential, are used in the constitutive equation. For the linear stress coefficient, the dimensionless pressure gradient, the velocity profile and the product of friction factor and Reynolds number are obtained for a wide range of flow rate, Deborah number and elongational parameter. The results indicate the strong effects of the viscoelastic parameter on the velocity profile, the extremum of the velocity, and the friction factor. A correlation for the maximum pressure rise in single screw extruders is proposed. For the exponential stress coefficient, only velocity profiles were obtained and compared with velocity profiles obtained with the linear stress coefficient

  2. Analytic electrostatic solution of an axisymmetric accelerator gap

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1995-01-01

    Numerous computer codes calculate beam dynamics of particles traversing an accelerating gap. In order to carry out these calculations the electric field of a gap must be determined. The electric field is obtained from derivatives of the scalar potential which solves Laplace's equation and satisfies the appropriate boundary conditions. An integral approach for the solution of Laplace's equation is used in this work since the objective is to determine the potential and fields without solving on a traditional spatial grid. The motivation is to quickly obtain forces for particle transport, and eliminate the need to keep track of a large number of grid point fields. The problem then becomes one of how to evaluate the appropriate integral. In this work the integral solution has been converted to a finite sum of easily computed functions. Representing the integral solution in this manner provides a readily calculable formulation and avoids a number of difficulties inherent in dealing with an integral that can be weakly convergent in some regimes, and is, in general, highly oscillatory

  3. Analytical solution to the coupled evolution of multidimensional NMR data

    International Nuclear Information System (INIS)

    Mueller, Geoffrey A.

    2009-01-01

    A substantial time savings in the collection of multidimensional NMR data can be achieved by coupling the evolution of nuclei in the indirect dimensions. In order to save time, the sampling of the indirect dimensions is inherently incomplete. Therefore, many algorithms and samplings schemes have been developed aimed at separating the coevolved frequencies into analyzable data with limited artifacts. This paper extends the use of circulant matrices to describe coupled evolution with convolutions. By understanding the data in terms of convolutions, there is an exact solution to the inversion problem of extracting the orthogonal vectors from the coupled dimensions. Previously, this inversion problem has been solved using peak coordinates extracted from spectra. In contrast, the method described here uses spectra directly. This solution suggests a simple sampling scheme of collecting N orthogonal spectra, and N + 1 projections at specific projection angles, however, the theory developed can be extended generally to arbitrary projection angles. The circulant matrix methodology is demonstrated for simulated and real data. Further, an algorithm for separating overlapped signals in the detected dimension is presented. The algorithm involves the forward calculation of the coupled spectra from the orthogonal spectra, followed by back calculation of the orthogonal spectra from the coupled spectra, thus permitting rigorous cross-validation. This algorithm is shown to be robust in that erroneous solutions give rise to large artifacts

  4. On the analytical solution of the SN equation in a rectangle assuming an exponential exiting angular flux boundary

    International Nuclear Information System (INIS)

    Goncalez, Tifani T.; Segatto, Cynthia F.; Vilhena, Marco Tullio

    2011-01-01

    In this work, we report an analytical solution for the set of S N equations for the angular flux, in a rectangle, using the double Laplace transform technique. Its main idea comprehends the steps: application of the Laplace transform in one space variable, solution of the resulting equation by the LTS N method and reconstruction of the double Laplace transformed angular flux using the inversion theorem of the Laplace transform. We must emphasize that we perform the Laplace inversion by the LTS N method in the x direction, meanwhile we evaluate the inversion in the y direction performing the calculation of the corresponding line integral solution by the Stefest method. We have also to figure out that the application of Laplace transform to this type of boundary value problem introduces additional unknown functions associated to the partial derivatives of the angular flux at boundary. Based on the good results attained by the nodal LTS N method, we assume that the angular flux at boundary is also approximated by an exponential function. By analytical we mean that no approximation is done along the solution derivation except for the exponential hypothesis for the exiting angular flux at boundary. For sake of completeness, we report numerical comparisons of the obtained results against the ones of the literature. (author)

  5. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    Science.gov (United States)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and

  6. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading

    International Nuclear Information System (INIS)

    Zaslawsky, M.; Kennedy, W.N.

    1992-01-01

    Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately

  7. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  8. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    International Nuclear Information System (INIS)

    Kotler, Z.; Neria, E.; Nitzan, A.

    1991-01-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)

  9. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    OpenAIRE

    Pan, E.; Chen, J.Y.; Bevis, M.; Bordoni, Andrea; Barletta, Valentina Roberta; Tabrizi, A. Molavi

    2015-01-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in ...

  10. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  11. Analytical solutions for Dirac and Klein-Gordon equations using Backlund transformations

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge R.; Borges, Volnei, E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio, E-mail: marciophd@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos Interdisciplinares

    2015-07-01

    This work presents a new analytical method for solving Klein-Gordon type equations via Backlund transformations. The method consists in mapping the Klein-Gordon model into a first order system of partial differential equations, which contains a generalized velocity field instead of the Dirac matrices. This system is a tensor model for quantum field theory whose space solution is wider than the Dirac model in the original form. Thus, after finding analytical expressions for the wave functions, the Maxwell field can be readily obtained from the Dirac equations, furnishing a self-consistent field solution for the Maxwell-Dirac system. Analytical and numerical results are reported. (author)

  12. An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil

    Directory of Open Access Journals (Sweden)

    Shirish Vichare

    2010-07-01

    Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.

  13. Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

    Science.gov (United States)

    Bozkaya, Uğur

    2018-03-15

    Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    Science.gov (United States)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  15. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  16. New integrable models and analytical solutions in f (R ) cosmology with an ideal gas

    Science.gov (United States)

    Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos

    2018-01-01

    In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.

  17. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  18. Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers

    Directory of Open Access Journals (Sweden)

    Belkacem Meziane

    2008-01-01

    Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.

  19. Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations

    International Nuclear Information System (INIS)

    Chiroli, C.; Levi, A.C.

    1976-01-01

    In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)

  20. Approximate Solutions of Delay Differential Equations with Constant and Variable Coefficients by the Enhanced Multistage Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    D. Olvera

    2015-01-01

    Full Text Available We expand the application of the enhanced multistage homotopy perturbation method (EMHPM to solve delay differential equations (DDEs with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.

  1. Analytical SN solutions in heterogeneous slabs using symbolic algebra computer programs

    International Nuclear Information System (INIS)

    Warsa, J.S.

    2002-01-01

    A modern symbolic algebra computer program, MAPLE, is used to compute solutions to the well-known analytical discrete ordinates, or S N , solutions in one-dimensional, slab geometry. Symbolic algebra programs compute the solutions with arbitrary precision and are free of spatial discretization error so they can be used to investigate new discretizations for one-dimensional slab, geometry S N methods. Pointwise scalar flux solutions are computed for several sample calculations of interest. Sample MAPLE command scripts are provided to illustrate how easily the theory can be translated into a working solution and serve as a complete tool capable of computing analytical S N solutions for mono-energetic, one-dimensional transport problems

  2. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple time scales method

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.

  3. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    International Nuclear Information System (INIS)

    Pappas, George

    2009-01-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.

  4. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2009-10-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.

  5. On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem

    Directory of Open Access Journals (Sweden)

    Soheil Salahshour

    2015-02-01

    Full Text Available In this paper, we apply the concept of Caputo’s H-differentiability, constructed based on the generalized Hukuhara difference, to solve the fuzzy fractional differential equation (FFDE with uncertainty. This is in contrast to conventional solutions that either require a quantity of fractional derivatives of unknown solution at the initial point (Riemann–Liouville or a solution with increasing length of their support (Hukuhara difference. Then, in order to solve the FFDE analytically, we introduce the fuzzy Laplace transform of the Caputo H-derivative. To the best of our knowledge, there is limited research devoted to the analytical methods to solve the FFDE under the fuzzy Caputo fractional differentiability. An analytical solution is presented to confirm the capability of the proposed method.

  6. Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Smith, D.R.; Reiman, A.H.

    2004-01-01

    We present analytic, high-beta (β ∼ O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current

  7. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    OpenAIRE

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the ...

  8. NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics

    CERN Document Server

    Goldstein, M; Haussmann, W; Hayman, W; Rogge, L

    1992-01-01

    This volume consists of the proceedings of the NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics, which was held at Hanstholm, Denmark. These proceedings include the main invited talks and contributed papers given during the workshop. The aim of these lectures was to present a selection of results of the latest research in the field. In addition to covering topics in approximation by solutions of partial differential equations and quadrature formulae, this volume is also concerned with related areas, such as Gaussian quadratures, the Pompelu problem, rational approximation to the Fresnel integral, boundary correspondence of univalent harmonic mappings, the application of the Hilbert transform in two dimensional aerodynamics, finely open sets in the limit set of a finitely generated Kleinian group, scattering theory, harmonic and maximal measures for rational functions and the solution of the classical Dirichlet problem. In ...

  9. An approximate solution of the two-group critical problem for reflected slabs

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Garcia, R.D.M.

    1977-01-01

    A new approximation is developed to solve two group slab problems involving two media where one of the media is infinite. The method consists in combining the P sub(L) approximation with invariance principles. Several numerical results are reported for the critical slab problem [pt

  10. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.

    2013-01-25

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  11. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.; Schotting, R.; Leijnse, A.

    2013-01-01

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  12. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: An exact analytical solution

    Science.gov (United States)

    Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar

    2018-06-01

    We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.

  13. ABOUT SOME APPROXIMATIONS TO THE CLOSED SET OF NOT TRIVIAL SOLUTIONS OF THE EQUATIONS OF GINZBURG - LANDAU

    Directory of Open Access Journals (Sweden)

    A. A. Fonarev

    2014-01-01

    Full Text Available Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg - Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg - Landau's equations are critical points of a functional of a superconductor free energy.

  14. A functional-type a posteriori error estimate of approximate solutions for Reissner-Mindlin plates and its implementation

    Science.gov (United States)

    Frolov, Maxim; Chistiakova, Olga

    2017-06-01

    Paper is devoted to a numerical justification of the recent a posteriori error estimate for Reissner-Mindlin plates. This majorant provides a reliable control of accuracy of any conforming approximate solution of the problem including solutions obtained with commercial software for mechanical engineering. The estimate is developed on the basis of the functional approach and is applicable to several types of boundary conditions. To verify the approach, numerical examples with mesh refinements are provided.

  15. An improved analytic solution for analysis of particle trajectories in fibrous, two-dimensional filters

    International Nuclear Information System (INIS)

    Marshall, H.; Sahraoui, M.; Kaviany, M.

    1994-01-01

    The Kuwabara solution for creeping fluid flow through periodic arrangement of cylinders is widely used in analytic and numerical studies of fibrous filters. Numerical solutions have shown that the Kuwabara solution has systematic errors, and when used for the particle trajectories in filters it results in some error in the predicted filter efficiency. The numerical solutions, although accurate, preclude further analytic treatments, and are not as compact and convenient to use as the Kuwabara solution. By reexamining the outer boundary conditions of the Kuwabara solution, a correction term to the Kuwabara solution has been derived to obtain an extended solution that is more accurate and improves prediction of the filter efficiency. By comparison with the numerical solutions, it is shown that the Kuwabara solution is the high porosity asymptote, and that the extended solution has an improved porosity dependence. A rectification is explained that can make particle collection less efficient for periodic, in-line arrangements of fibers with particle diffusion or body force. This rectification also results in the alignment of particles with inertia (i.e., high Stokes number particles)

  16. Homogenized blocked arcs for multicriteria optimization of radiotherapy: Analytical and numerical solutions

    International Nuclear Information System (INIS)

    Fenwick, John D.; Pardo-Montero, Juan

    2010-01-01

    Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is

  17. Analytic solutions of the multigroup space-time reactor kinetics equations

    International Nuclear Information System (INIS)

    Lee, C.E.; Rottler, S.

    1986-01-01

    The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)

  18. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    Directory of Open Access Journals (Sweden)

    Jie Peng

    Full Text Available The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  19. A single continuum approximation of the solute transport in fractured porous media

    International Nuclear Information System (INIS)

    Jeong, J.T.; Lee, K.J.

    1992-01-01

    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)

  20. On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2016-04-01

    Full Text Available In this paper, we consider the local fractional decomposition method, variational iteration method, and differential transform method for analytic treatment of linear and nonlinear local fractional differential equations, homogeneous or nonhomogeneous. The operators are taken in the local fractional sense. Some examples are given to demonstrate the simplicity and the efficiency of the presented methods.

  1. ANALYTIC SOLUTION FOR SELF-REGULATED COLLECTIVE ESCAPE OF COSMIC RAYS FROM THEIR ACCELERATION SITES

    International Nuclear Information System (INIS)

    Malkov, M. A.; Diamond, P. H.; Sagdeev, R. Z.; Aharonian, F. A.; Moskalenko, I. V.

    2013-01-01

    Supernova remnants (SNRs), as the major contributors to the galactic cosmic rays (CRs), are believed to maintain an average CR spectrum by diffusive shock acceleration regardless of the way they release CRs into the interstellar medium (ISM). However, the interaction of the CRs with nearby gas clouds crucially depends on the release mechanism. We call into question two aspects of a popular paradigm of the CR injection into the ISM, according to which they passively and isotropically diffuse in the prescribed magnetic fluctuations as test particles. First, we treat the escaping CR and the Alfvén waves excited by them on an equal footing. Second, we adopt field-aligned CR escape outside the source, where the waves become weak. An exact analytic self-similar solution for a CR ''cloud'' released by a dimmed accelerator strongly deviates from the test-particle result. The normalized CR partial pressure may be approximated as P(p,z,t)=2[|z| 5/3 +z dif 5/3 (p,t)] -3/5 exp[-z 2 /4D ISM (p)t], where p is the momentum of CR particle, and z is directed along the field. The core of the cloud expands as z dif ∝√(D NL (p)t) and decays in time as p∝2z -1 dif (t). The diffusion coefficient D NL is strongly suppressed compared to its background ISM value D ISM : D NL ∼ D ISM exp (– Π) ISM for sufficiently high field-line-integrated CR partial pressure, Π. When Π >> 1, the CRs drive Alfvén waves efficiently enough to build a transport barrier (p≈2/∣z∣— p edestal ) that strongly reduces the leakage. The solution has a spectral break at p = p br , where p br satisfies the equation D NL (p br ) ≅ z 2 /t.

  2. On Direct Transformation Approach to Asymptotical Analytical Solutions of Perturbed Partial Differential Equation

    International Nuclear Information System (INIS)

    Liu Hongzhun; Pan Zuliang; Li Peng

    2006-01-01

    In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.

  3. On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin

    2011-01-01

    An analytical solution for non-orthogonal stagnation point for the steady flow of a viscous and incompressible fluid is presented. The governing nonlinear partial differential equations for the flow field are reduced to ordinary differential equations by using similarity transformations existed...... in the literature and are solved analytically by means of the Homotopy Analysis Method (HAM). The comparison of results from this paper and those published in the literature confirms the precise accuracy of the HAM. The resulting analytical equation from HAM is valid for entire physical domain and effective...

  4. Solutions of the Low equation in the no-crossing approximation

    International Nuclear Information System (INIS)

    Kumar, K.S.; Nogami, Y.

    1979-01-01

    In solving the Low equation for the Chew-Low model, if the crossing term is dropped a ghost state appears in the repulsive channels for a sufficiently large coupling constant. Ernst et al. suggested recently that this difficulty could be avoided by adopting a solution with a Castillejo-Dalitz-Dyson (CDD) pole in its denominator. Contrary to this suggestion, we show that the inclusion of the CDD pole, rather than avoiding the difficulty, only compounds it. We also reexamine Dyson's interpretation of the ''redundant'' CDD solutions, and point out that the Low equation we study possesses solutions to which Dyson's interpretation does not seem to apply

  5. Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method

    International Nuclear Information System (INIS)

    Song Lina; Wang Weiguo

    2010-01-01

    In this Letter, an enhanced Adomian decomposition method which introduces the h-curve of the homotopy analysis method into the standard Adomian decomposition method is proposed. Some examples prove that this method can derive successfully approximate rational Jacobi elliptic function solutions of the fractional differential equations.

  6. A New Approach for the Approximations of Solutions to a Common Fixed Point Problem in Metric Fixed Point Theory

    Directory of Open Access Journals (Sweden)

    Ishak Altun

    2016-01-01

    Full Text Available We provide sufficient conditions for the existence of a unique common fixed point for a pair of mappings T,S:X→X, where X is a nonempty set endowed with a certain metric. Moreover, a numerical algorithm is presented in order to approximate such solution. Our approach is different to the usual used methods in the literature.

  7. A Novel Method for Analytical Solutions of Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Akinlar

    2013-01-01

    Full Text Available A new solution technique for analytical solutions of fractional partial differential equations (FPDEs is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general fractional differential equation.

  8. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    Science.gov (United States)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  9. Comparison of analytical transport and stochastic solutions for neutron slowing down in an infinite medium

    International Nuclear Information System (INIS)

    Jahshan, S.N.; Wemple, C.A.; Ganapol, B.D.

    1993-01-01

    A comparison of the numerical solutions of the transport equation describing the steady neutron slowing down in an infinite medium with constant cross sections is made with stochastic solutions obtained from tracking successive neutron histories in the same medium. The transport equation solution is obtained using a numerical Laplace transform inversion algorithm. The basis for the algorithm is an evaluation of the Bromwich integral without analytical continuation. Neither the transport nor the stochastic solution is limited in the number of scattering species allowed. The medium may contain an absorption component as well. (orig.)

  10. Verification of T2VOC using an analytical solution for VOC transport in vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.

  11. Domains of analyticity for response solutions in strongly dissipative forced systems

    International Nuclear Information System (INIS)

    Corsi, Livia; Feola, Roberto; Gentile, Guido

    2013-01-01

    We study the ordinary differential equation εx ¨ +x . +εg(x)=εf(ωt), where g and f are real-analytic functions, with f quasi-periodic in t with frequency vector ω. If c 0 ∈R is such that g(c 0 ) equals the average of f and g′(c 0 ) ≠ 0, under very mild assumptions on ω there exists a quasi-periodic solution close to c 0 with frequency vector ω. We show that such a solution depends analytically on ε in a domain of the complex plane tangent more than quadratically to the imaginary axis at the origin

  12. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  13. On progress of the solution of the stationary 2-dimensional neutron diffusion equation: a polynomial approximation method with error analysis

    International Nuclear Information System (INIS)

    Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.

    2015-01-01

    Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)

  14. On progress of the solution of the stationary 2-dimensional neutron diffusion equation: a polynomial approximation method with error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2015-07-01

    Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)

  15. Analytical solutions to the electromagnetic field in a cylindrical shell excited by external axial current

    International Nuclear Information System (INIS)

    Jing, Wu; Chun-Yan, Xiao

    2010-01-01

    The solutions to the electromagnetic field excited by a long axial current outside a conductive and magnetic cylindrical shell of finite length are studied in this paper. The more accurate analytical solutions are obtained by solving the proper boundary value problems by the separation variable method. Then the solutions are simplified according to asymptotic formulas of Bessel functions. Compared with the accurate solutions, the simplified solutions do not contain the Bessel functions and the inverse operation of the singular matrix, and can be calculated out fast by computers. The simplified solutions are more suitable for the cylindrical shell of high permeability and conductivity excited by a high frequency source. Both of the numerical results and the physical experimental results validate the simplified solutions obtained. (classical areas of phenomenology)

  16. Exact and approximate solutions for the one-dimensional transfer of polarized radiation, and applications to X-ray pulsars

    International Nuclear Information System (INIS)

    Meszaros, P.; Nagel, W.; Ventura, J.

    1979-11-01

    Theoretical studies of the radiation from hot, strongly magnetized plasmas, as encountered in pulsars, require a knowledge of solutions to the transfer equations for polarized radiation. We present here an analytic solution of the radiative transfer equations for one-dimensional propagation across a homogeneous slab of finite depth, as well as for a semi-infinite atmosphere. Absorption, scattering and mode-exchange between the two polarizations is included, the role of this latter being crucial. A physical discussion of the solutions for certain limiting cases, and an interpretation in terms of probabilistic (quantum escape approach) arguments, fully corrobrates these solutions, and provides a better intuitive feel for the behaviour of the radiated spectra. Whereas our analytic solutions are valid for any birefringent medium (not necessarily magnetic), our numerical examples and the qualitative discussion presented refer to the particular problem of the radiation from X-ray pulsars. Large scale qualitative changes from the nonmagnetic spectra aae found, which affect both the continum and the spectral lines. (orig.) 891 WL/orig. 892 RDG

  17. New Analytical Solution of the Equilibrium Ampere's Law Using the Walker's Method: a Didactic Example

    Science.gov (United States)

    Sousa, A. N. Laurindo; Ojeda-González, A.; Prestes, A.; Klausner, V.; Caritá, L. A.

    2018-02-01

    This work aims to demonstrate the analytical solution of the Grad-Shafranov (GS) equation or generalized Ampere's law, which is important in the studies of self-consistent 2.5-D solution for current sheet structures. A detailed mathematical development is presented to obtain the generating function as shown by Walker (RSPSA 91, 410, 1915). Therefore, we study the general solution of the GS equation in terms of the Walker's generating function in details without omitting any step. The Walker's generating function g( ζ) is written in a new way as the tangent of an unspecified function K( ζ). In this trend, the general solution of the GS equation is expressed as exp(- 2Ψ) = 4| K '( ζ)|2/cos2[ K( ζ) - K( ζ ∗)]. In order to investigate whether our proposal would simplify the mathematical effort to find new generating functions, we use Harris's solution as a test, in this case K( ζ) = arctan(exp( i ζ)). In summary, one of the article purposes is to present a review of the Harris's solution. In an attempt to find a simplified solution, we propose a new way to write the GS solution using g( ζ) = tan( K( ζ)). We also present a new analytical solution to the equilibrium Ampere's law using g( ζ) = cosh( b ζ), which includes a generalization of the Harris model and presents isolated magnetic islands.

  18. assessment of concentration of air pollutants using analytical and numerical solution of the atmospheric diffusion equation

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2011-01-01

    The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.

  19. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    Science.gov (United States)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  20. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    Science.gov (United States)

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  1. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    Directory of Open Access Journals (Sweden)

    Qianqian Duan

    2014-01-01

    Full Text Available This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  2. Analytical solution for a linearly graded-index-profile planar waveguide.

    Science.gov (United States)

    Touam, T; Yergeau, F

    1993-01-20

    An analytical solution is presented for the TE modes of a planar waveguide structure comprising a high-index guiding layer and a buried layer with a profile such that the square of the index varies linearly and matches the substrate and high-index guiding layer. The electric-field profiles and the dispersion relation are obtained and discussed, and a solution by the WKB method is compared.

  3. Analytical solution of point kinetic equations for sub-critical systems

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro C.

    2013-01-01

    This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)

  4. Peculiarities of solutions to the Chew Low equation in the no crossing approximation

    International Nuclear Information System (INIS)

    Ernst, D.J.

    1978-01-01

    We show that the canonical presciption for finding a solution to the static Chew-Low theory of the pion-nucleon interaction breaks down for physically acceptable values of the coupling constant and form factor, if crossing symmetry is dropped. The difficulty is associated with the appearance of a pole (whose behavior is similar to a 'ghost state' pole) in the scattering amplitude in repulsive channels. We show that solutions without this pole can be obtained by including CDD poles in the denominator function, giving rise to a zero in the amplitude or the positive real axis. (orig.) [de

  5. Hybrid Approximation of Solutions of Nonlinear Operator Equations and Application to Equation of Hammerstein-Type

    International Nuclear Information System (INIS)

    Ofoedu, Eric U.; Malonza, David M.

    2010-07-01

    In this paper we study the hybrid iterative scheme to find a common element of a set of solutions of generalized mixed equilibrium problem, a set of common fixed points of finite family of weak relatively nonexpansive mapping, and null spaces of finite family of γ-inverse strongly monotone mappings in a 2-uniformly convex and uniformly smooth real Banach space. Our results extend, improve and generalize the results of several authors which were announced recently. An application of our theorem to the solution of equations of Hammerstein-type is of independent interest. (author)

  6. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    OpenAIRE

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand unc...

  7. Solution of the kinetic equation in the P3-approximation in a plane geometry

    International Nuclear Information System (INIS)

    Vlasov, Yu.A.

    1975-01-01

    A method and a program are described for solving single-velocity kinetic equations of neutron transfer for the plane geometry in the finite-difference approximation. A difference high-accuracy scheme and a matrix factorization method are used for the differential-difference equation systems. The program is written in the ALGOL-60 language and is adapted for M-20, M-220, M-222 and BESM-4 computers

  8. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.

    Science.gov (United States)

    Goličnik, Marko

    2011-01-01

    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.

  9. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  10. Approximate treatment of two soliton solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Mihaly, L.

    1979-05-01

    The so called breather solution of the sine-Gordon equation is phenomenologically described by an appropri.ately choosen potential acting between two particles. For some applications the method proves to be equivalent to other classical and quantum calculations. (author)

  11. A Closed-Form Approximation Solution for an Inventory Model with Supply Disruptions and Non-ZIO Reorder Policy

    Directory of Open Access Journals (Sweden)

    David Heimann

    2007-08-01

    Full Text Available In supply chains, domestic and global, a producer must decide on an optimal quantity of items to order from suppliers and at what inventory level to place this order (the EOQ problem. We discuss how to modify the EOQ in the face of failures and recoveries by the supplier. This is the EOQ with disruption problem (EOQD. The supplier makes transitions between being capable and not being capable of filling an order in a Markov failure and recovery process. The producer adjusts the reorder point and the inventories to provide a margin of safety. Numerical solutions to the EOQD problem have been developed. In addition, a closed-form approximate solution has been developed for the zero inventory option (ZIO, where the inventory level on reordering is set to be zero. This paper develops a closed-form approximate solution for the EOQD problem when the reorder point can be non-zero, obtaining for that situation an optimal reorder quantity and optimal reorder point that represents an improvement on the optimal ZIO solution. The paper also supplies numerical examples demonstrating the cost savings against the ZIO situation, as well as the accuracy of the approximation technique.

  12. An analytic solution of the static problem of inclined risers conveying fluid

    KAUST Repository

    Alfosail, Feras

    2016-05-28

    We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht

  13. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)

    1991-02-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).

  14. Analytic solutions for colloid transport with time- or depth-dependent retention in porous media

    Science.gov (United States)

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for...

  15. Analytic solution for one-dimensional diffusion of radionuclides from a waste package

    International Nuclear Information System (INIS)

    Oliver, D.L.

    1985-01-01

    This work implements an analytical solution for diffusion of radionuclides from a cylindrical waste form through the packing material into the surrounding host rock. Recent interest in predicting the performance of a proposed geological repository for nuclear waste has led to the development of several computer programs to predict the performance of such a repository for the next several millenia. These numerical codes are generally designed to accommodate a broad spectrum of geometrical configurations and repository conditions in order to accurately predict the behavior of the radionuclides in the repository environment. Confidence in such general purpose codes is gained by verifying the numerical modeling and the software through comparison of the numerical predictions generated by these computer codes with analytical solutions to reasonably complex problems. The analysis discussed herein implements the analytic solution, proposed by J.C. Jaeger in 1941 for radial diffusion through two concentric circular cylinders. Jaeger's solution was applied to the problem of diffusional mass transfer from a long cylindrical waste form and subsequently into the surrounding geological formation. Analytic predictions of fractional release rates, including the effects of sorption, were generated

  16. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    Science.gov (United States)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  17. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    Science.gov (United States)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  18. An analytic solution for one-dimensional diffusion of radionuclides from a waste package

    International Nuclear Information System (INIS)

    1985-01-01

    This work implements an analytical solution for diffusion of radionuclides from a cylindrical waste form through the packing material into the surrounding host rock. Recent interest in predicting the performance of a proposed geological repository for nuclear waste has led to the development of several computer programs to predict the performance of such a repository for the next several millenia. These numerical codes are generally designed to accommodate a broad spectrum of geometrical configurations and repository conditions in order to accurately predict the behavior of the radionuclides in the repository environment. Confidence in such general purpose codes is gained by verifying the numerical modeling and the software through comparison of the numerical predictions generated by these computer codes with analytical solutions to reasonably complex problems. The analysis discussed herein implements the analytic solution, proposed by J.C. Jaeger in 1941 for radial diffusion through two concentric circular cylinders. Jaeger's solution was applied to the problem of diffusional mass transfer from a long cylindrical waste form and subsequently into the surrounding geological formation. Analytic predictions of fractional release rates, including the effects of sorption, were generated. 6 refs., 2 figs., 2 tabs

  19. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  20. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    NARCIS (Netherlands)

    Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries

    2006-01-01

    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap