WorldWideScience

Sample records for approved iron nanoparticles

  1. Missing Fe: hydrogenated iron nanoparticles

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2016-01-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the ISM have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles posses magnetic and electric moments and should interact with electromagnetic fields in the ISM. Fe_nH_m nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and Fe_nH_m in the ISM.

  2. Tannin biosynthesis of iron oxide nanoparticles

    Science.gov (United States)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  3. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ji(r)í Hradil; Alexander Pisarev; Michal Babi(c); Daniel Horák

    2007-01-01

    Dextran-modified iron oxide nanoparticles were prepared by precipitation of Fe(Ⅱ) and Fe(Ⅲ) salts with ammonium hydroxide by two methods.Iron oxide was precipitated either in the presence of dextran solution, or the dextran solution was added after precipitation. In the second method,the iron oxide particle size and size distribution could be controlled depending on the concentration of dextran in the solution. The nanoparticles were characterized by size-exclusion chromatography, transmission electron microscopy and dynamic light scattering. Optimal conditions for preparation of stable iron oxide colloid particles were determined. The dextran/iron oxide ratio 0-0.16 used in precipitation of iron salts can be recommended for synthesis of nanoparticles suitable for biomedical applications, as the colloid does not contain excess dextran and does not coagulate.

  4. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.;

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  5. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  6. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  7. Radiation stability of iron nanoparticles irradiated with accelerated iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus); Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Remnev, G.E., E-mail: remnev06@mail.ru [Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Kvasov, N.T.; Safronov, I.V.; Shymanski, V.I. [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus)

    2015-07-01

    Highlights: • Dynamic processes in nanoparticles after ion irradiation were studied. • The mechanism of the enhanced radiation stability of nanoparticles was showed. • The criteria of the enhanced radiation stability of nanoparticles was proposed. - Abstract: In the present work the dynamic processes occurring in a nanoscale iron particle exposed to irradiation with iron ions of different energies are studied in detailed. It is shown that the elastic and thermoelastic crystal lattice responses to irradiation form force factors affecting the evolution of defect-impurity system, which, in turn, leads to a decrease in the number of structural defects. Quantitative estimations of the spatial distribution of defects resulting in their migration to the surface were obtained. Such self-organization of nanoparticles exposed to ionizing radiation can be used as a basis for the production of radiation-resistant nanostructured materials capable of sustaining a long-term radiation influence.

  8. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe3O4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe3O4) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g−1 and 131 emu g−1, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  9. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  10. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    Science.gov (United States)

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...

  13. Characterization of tetraethylene glycol passivated iron nanoparticles

    Science.gov (United States)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; da Silva, Sebastião William; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-10-01

    The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90-120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe3O4) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron-iron oxide were 145 emu g-1 and 131 emu g-1, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  14. Fabrication of iron-platinum ferromagnetic nanoparticles

    Science.gov (United States)

    Elkins, Kevin Eugene

    Fabrication of chemically disordered FePt particles ranging from 2--9 nm with a precision of 1 nm has been achieved through modification of key process variables including surfactant concentration, heating rates and the type of iron precursor. In addition, the shape evolution of the FePt nanoparticles during particle growth can be manipulated to give cubic or rod geometries through changes to the surfactant injection sequence and solvent system. The primary method for synthesis of the disordered FePt nanoparticles is the polyol reduction reported by Fievet et al., which has been modified and used extensively for synthesis of differing nanoparticle systems. Our procedures use platinum acetylacetonate, iron pentacarbonyl or ferric acetylacetonate as precursors for the FePt alloy, oleic acid and oleyl amine for the surfactants, 1,2-hexadecanediol to assist with the reduction of the precursors and either dioctyl ether or phenyl ether for the solvent system. For iron pentacarbonyl based reactions, adjustment of heating rates to reflux temperatures from 1--15°C per minute allows control of FePt particle diameters from 3--8 nm. Substitution of iron pentacarbonyl with ferric acetylacetonate as the iron source results in 2 nm particles. A high platinum to surfactant ratio of 10 to 1 will yield 9 nm FePt particles when iron pentacarbonyl is used as the precursor. For use of these particles in advanced applications, the synthesized particles must be transformed to the L1o phase through annealing at temperatures above 500°C. Inhibition of particle sintering can be avoided through dispersion in a NaCl matrix at a weight ratio of 400 to 1 salt to fcc FePt particles. Production of L1o FePt nanoparticles with high magnetic anisotropy with this process has been successful, allowing the original size and size distribution of the particles.

  15. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  16. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  17. Synchrotron speciation data for zero-valent iron nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include...

  18. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, FuYi, E-mail: fyjiang@ytu.edu.cn [School of Environment and Materials Engineering, Yantai University, Yantai, Peoples Republic of China (China); Li, XiaoYi [School of Environment and Materials Engineering, Yantai University, Yantai, Peoples Republic of China (China); Zhu, Yuan [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Peoples Republic of China (China); Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, Peoples Republic of China (China); Tang, ZiKang, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Peoples Republic of China (China); Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, Peoples Republic of China (China)

    2014-06-15

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe{sub 3}O{sub 4} with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  19. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  20. Evaluation of Tumor Angiogenesis by MRI Study Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mansour Ashoor

    2010-05-01

    Full Text Available Angiogenesis is the growth of new blood vessels from existing ones and it is a perquisite for the growth, invasion and metastasis of solid tumors. This complex process involves multiple steps and pathways dependent on the local balance between positive and negative regulatory factors, as well as interactions among the tumor, its vasculature and the surrounding extracellular tissue matrix. Tumors lay dormant yet viable, unable to grow beyond 2-3 mm3 in size without angiogenesis."nWith the development of novel therapies for treat-ment of several diseases, directed noninvasive imaging strategies will be critical for defining the pathophysiology of angiogenesis. Imaging modalities used to detect angiogenesis include PET, SPECT, MRI, CT, US and near-infrared optical imaging. For these modalities, methods have been developed to measure blood volume, blood flow and several other semi quantitative and quantitative kinetic hemodynamic parameters such as vascular permeability. Characteristic molecular makers of angiogenesis may be visualized with the aid of molecular imaging agents such as VEGFs or the α vß3 integrin. "nMRI is a practical modality for assessing angiogenesis over time because it is already widely used clinically to assess tumor growth and for response evaluation. Anatomical information can be co registered with functional and molecular information within a single imaging method. Moreover, MRI does not involve ionizing radiation and the commonly used contrast agent has low toxicity. "nSuper paramagnetic iron oxides (SPIO are FDA-approved contrast agents for use in magnetic reson-ance (MR imaging. Most of the administered SPIO end up in the reticuloendotelial system via endocytosis and the iron core released from the SPIO is utilized in normal iron metabolism pathways. We utilize the paramagnetic characteristics of SPIO to improve the contrast of the image in MRI."nFor the first time we will introduce a method for evaluating angiogenesis

  1. Biomineralization of iron phosphate nanoparticles in yeast cells

    International Nuclear Information System (INIS)

    Amorphous iron phosphate nanoparticles mineralized in yeast cells are studied by transmission electron microscopy, Fourier transform infrared spectrograph and micro electrophoresis. Iron phosphate nanoparticles in yeast cells show uniform morphology with extensive surface roughness and disperse well. The size distribution of iron phosphate is about 50-200 nm. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages between iron phosphate nanoparticles with protein macromolecules in yeast cells. The mechanism of biomineralization was simply discussed by chemical bonds and surface charges.

  2. Oral exposure to polystyrene nanoparticles affects iron absorption

    Science.gov (United States)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  3. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    Science.gov (United States)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  4. Synthesis and Magnetic Characterization of Graphite-Coated Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. M. Espinoza-Rivas

    2016-01-01

    Full Text Available Graphite-coated iron nanoparticles were prepared from magnetite nanoparticles by chemical vapour deposition (CVD under methane and hydrogen atmosphere. After being purified from carbon excess, graphite-coated iron nanoparticles were tested for morphological and magnetic properties. It was found that, during the thermal process, magnetite nanoparticles 6 nm in size coalesce and transform into graphite-coated iron 200 nm in size, as revealed by scanning electron microscopy (SEM. Raman characterization assessed that high-quality graphite coats the iron core. Magnetic measurements revealed the phase change (magnetite to iron as an increase in the saturation magnetization from 50 to 165 emu/g after the CVD process.

  5. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    Science.gov (United States)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  6. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Jií; Hradil

    2007-01-01

    [1]Anger,S.,Caldwell,K.,Mehnert,W.,& Muller,R.(1999).Coating of nanoparticles:Analysis of adsorption using sedimentation field-flow fractionation(SdFFF).Proceedings of International Symposium of Controlled Release of Bioactivated Materials,26,599-600.[2]Bonnemain,B.(1998).Superparamagnetic agents in magnetic resonance imaging:Physicochemical characteristics and clinical applications-A review.Journal of Drug Targeting,6(3),167-174.[3]Bootz,A.,Vogel,V.,Schubert,D.,& Kreuter,J.(2004).Comparison of scanning electron microscopy,dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.European Journal of Pharmaceutics and Biopharmaceutics,57(2),369-375.[4]Browarzik,D.(1997).Continuous kinetics of dextran degradation.Journal of Macromolecular Science Pure and Applied Chemistry,34(3),397-404.[5]Cabasso,I.,& Yuan,Y.(1996).Nanoparticles in polymer and polymer dendrimers.In J.Fendler & I.Dekany (Eds.),NATO ASI Series.Part 18Nanoparticles in Solids and Solutions (pp.131-153).[6]Chastellain,M.,Petri,A.,& Hofmann,H.(2004).Particle size investigation of a multistep synthesis of PVA coated superparamagnetic nanoparticles.Journal of Colloid Interface Science,278(2),353-360.[7]Chmela,E.,Tijssen,R.,Blom,M.T.,Gardeniers,H.J.G.E.,& van den Berg,A.(2002).A chip system for size separation of macromolecules and particles by hydrodynamic chromatography.Analytical Chemistry,74(14),3470-3475.[8]Confer,D.R.,& Logan,B.E.(1997).Molecular weight distribution of hydrolysis product during the biodegradation of model macromolecules in suspended and biofilm cultures.Ⅱ:Dextran and dextrin.Water Research,31(9),2137-2145.[9]Griffiths,C.H.,O'Horo,M.P.,& Smith,T.W.(1979).The structure,magnetic characterization and oxidation of colloidal iron dispersions.Journal of Applied Physics,50(11),7108-7115.[10]Gupta,A.K.,& Gupta,M.(2005).Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,26

  7. Iron oxide and gold nanoparticles in cancer therapy

    Science.gov (United States)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  8. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  9. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Hadjipanayis, Costas G. [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Chen, Hongwei [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Li, Wanfeng [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Mao, Hui [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Machaidze, Revaz [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Tzitzios, Vasilis [Institute of Materials Science, “Demokritos” 15310 Athens (Greece); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States)

    2013-04-15

    We report the use of metallic iron-based nanoparticles for magnetic resonance imaging (MRI) applications. Core/shell structured iron-based nanoparticles prepared by thermally decomposing organo-metallic compounds of iron at high temperature in the presence of hydrophobic surfactants were coated and stabilized in the aqueous solvent using the newly developed polysiloxane PEO–b–PγMPS (poly(ethylene oxide)–block–poly (γ methacryloxypropyl trimethyl oxysilane)) diblock copolymers. Particles are well suspended in water and retain their core–shell morphology after coating with the copolymer. In comparison to the conventionally used iron-oxide nanoparticles, core/shell structured iron/iron-oxide nanoparticles offer a much stronger T{sub 2} shortening effect than that of iron-oxide with the same core size due to their better magnetic properties. -- Highlights: ► Core/shell Fe/Fe-oxide nanoparticles were synthesized by organo-metallic synthesis. ► Water dispersibility was obtained by coating particles with a polysiloxane diblock copolymer. ► In comparison to Fe-oxide, Fe/Fe-oxide nanoparticles offer a much stronger T{sub 2} shortening effect.

  10. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  11. Synthesis, Characterization, and Cytotoxicity of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Kanagesan

    2013-01-01

    Full Text Available In order to study the response of human breast cancer cells' exposure to nanoparticle, iron oxide (α-Fe2O3 nanoparticles were synthesized by a simple low temperature combustion method using Fe(NO33·9H2O as raw material. X-ray diffraction studies confirmed that the resultant powders are pure α-Fe2O3. Transmission electron microscopy study revealed the spherical shape of the primary particles, and the size of the iron oxide nanoparticles is in the range of 19 nm. The magnetic hysteresis loops demonstrated that the sample exposed ferromagnetic behaviors with a relatively low coercivity. The cytotoxicity of α-Fe2O3 nanoparticle was also evaluated on human breast cancer cells to address the current deficient knowledge of cellular response to nanoparticle exposure.

  12. Synthesis of Carbon Encapsulated Mono- and Multi-Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Reza Sanaee

    2015-01-01

    Full Text Available Core–shell nanostructures of carbon encapsulated iron nanoparticles (CEINPs show unique properties and technological applications, because carbon shell provides extreme chemical stability and protects pure iron core against oxidation without impairing the possibility of functionalization of the carbon surface. Enhancing iron core magnetic properties and, in parallel, improving carbon shell sealing are the two major challenges in the synthesis of CEINPs. Here, we present the synthesis of both CEINPs and a new carbon encapsulated multi-iron nanoparticle by a new modified arc discharge reactor. The nanoparticle size, composition, and crystallinity and the magnetic properties have been studied. The morphological properties were observed by scanning electron microscopy and transmission electron microscopy. In order to evaluate carbon shell protection, the iron cores were characterized by selected area diffraction and fast Fourier transform techniques as well as by electron energy loss and energy dispersive X-ray spectroscopies. Afterward, the magnetic properties were investigated using a superconducting quantum interference device. As main results, spherical, oval, and multi-iron cores were controllably synthesized by this new modified arc discharge method. The carbon shell with high crystallinity exhibited sufficient protection against oxidation of pure iron cores. The presented results also provided new elements for understanding the growth mechanism of iron core and carbon shell.

  13. Preparation and Characterization of Natural Zeolite Modified with Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available This study is aimed at investigating the structural and morphological characterization of natural and modified zeolite obtained from the state of Oaxaca (Mexico. Iron nanoparticles were used for the zeolite modification. The iron nanoparticles were loaded on the zeolite surface by homogeneous nucleation. Adsorption kinetic models of pseudo first and second order were surveyed. The characterization of pristine and modified zeolite was performed by Fourier transform infrared (FTIR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. From the results, three main phases were identified: clinoptilolite, mordenite, and feldspar. We could also determine the adsorption capacity of the zeolites by means of adsorption kinetic models.

  14. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    OpenAIRE

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics,...

  15. The responses of immune cells to iron oxide nanoparticles.

    Science.gov (United States)

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. PMID:26817529

  16. Preparation of iron oxide-entrapped chitosan nanoparticles for stem cell labeling.

    Science.gov (United States)

    Chaleawlert-Umpon, Saowaluk; Mayen, Varissaporn; Manotham, Krissanapong; Pimpha, Nuttaporn

    2010-01-01

    This study intended to prepare iron oxide nanoparticle-entrapped chitosan (CS) nanoparticles for stem cell labeling. The nanoparticles were synthesized by polymerizing iron oxide nanoparticle-associated methacrylic acid monomer in the presence of CS. TEM revealed that the well-defined iron oxide nanoparticles were successfully encapsulated inside the CS nanoparticles. The effect of CS at different [NH(2)]/[COOH] molar ratios on particle size, surface charge, thermal stability and magnetic properties was determined systematically. Internalization and localization of the coated nanoparticles were evaluated by atomic absorption spectrometry and confocal laser scanning microscopy. The Kusa O cell line was chosen as a stem cell model. Interestingly, the uptake of iron oxide-entrapped CS nanoparticles was remarkably enhanced under magnetization and the nanoparticles were mostly located inside cellular compartments. It can be concluded that the iron oxide-entrapped CS nanoparticles have a strong potential for stem cell labeling. PMID:20537238

  17. Mussel-Inspired Polydopamine Coated Iron Oxide Nanoparticles for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Xiangling Gu

    2015-01-01

    Full Text Available Mussel-inspired polydopamine (PDA coated iron oxide nanoparticles have served as a feasible, robust, and functional platform for various biomedical applications. However, there is scarcely a systemic paper reviewed about such functionalising nanomaterials to date. In this review, the synthesis of iron oxide nanoparticles, the mechanism of dopamine self-oxidation, the interaction between iron oxide and dopamine, and the functionality and the safety assessment of dopamine modified iron oxide nanoparticles as well as the biomedical application of such nanoparticles are discussed. To enlighten the future research, the opportunities and the limitations of functionalising iron oxide nanoparticles coated with PDA are also analyzed.

  18. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  19. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  20. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.;

    2002-01-01

    magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting......We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  1. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.

    Science.gov (United States)

    Bharde, Atul A; Parikh, Rasesh Y; Baidakova, Maria; Jouen, Samuel; Hannoyer, Baetrice; Enoki, Toshiaki; Prasad, B L V; Shouche, Yogesh S; Ogale, Satish; Sastry, Murali

    2008-06-01

    The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used. PMID:18454562

  2. Mercury removal in wastewater by iron oxide nanoparticles

    Science.gov (United States)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  3. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramimoghadam, Donya; Bagheri, Samira, E-mail: samira_bagheri@um.edu.my; Hamid, Sharifah Bee Abd

    2014-11-15

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants.

  4. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays.

    Science.gov (United States)

    Rudin, Thomas; Pratsinis, Sotiris E

    2012-06-13

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe(2)O(3) while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles.

  5. Evaluation of iron oxide nanoparticle biocompatibility.

    Science.gov (United States)

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications. PMID:21589646

  6. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  7. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy

    Science.gov (United States)

    Tuchina, Elena S.; Kozina, Kristina V.; Shelest, Nikita A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2014-03-01

    The main goal of this study was to investigate the sensitivity of microorganisms to combined action of blue light and iron oxide nanoparticles. Two strains of Staphylococcus aureus - methicillin-sensitive and meticillin-resistant were used. As a blue light source LED with spectral maximum at 405 nm was taken. The light exposure was ranged from 5 to 30 min. The Fe2O3 (diameter ˜27 nm), Fe3O4 nanoparticles (diameter ˜19 nm), and composite Fe2O3/TiO2 nanoparticles (diameter ˜100 nm) were synthesized. It was shown that irradiation by blue light caused from 20% to 88% decrease in the number of microorganisms treated with nanoparticles. Morphological changes in bacterial cells after phototreatment were analyzed using scanning electron microscope.

  8. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Directory of Open Access Journals (Sweden)

    He Quanguo

    2008-01-01

    Full Text Available Abstract Surface functionalized magnetic iron oxide nanoparticles (NPs are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  9. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  10. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery.

    Science.gov (United States)

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  11. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  12. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Daldrup-Link, Heike E. [Technical University Munich, Department of Diagnostic Radiology, Munich (Germany); Bonaterra, Gabriel [Ruprecht-Karls-University, Institute of Anatomy and Cell Biology, Heidelberg (Germany); Rudelius, Martina [Technical University Munich, Department of Pathology, Munich (Germany)

    2004-10-01

    To evaluate the capacity of human monocytes to phagocytose various approved iron oxide based magnetic resonance (MR) contrast agents and to optimize in vitro labeling of these cells. Human monocytes were incubated with two superparamagnetic iron oxide particles (SPIO) as well as two ultrasmall SPIO (USPIO) at varying iron oxide concentrations and incubation times. Iron uptake in monocytes was proven by histology, quantified by atomic emission absorption spectrometry and depicted with T2* weighted fast field echo (FFE) MR images at 1.5 T. Additionally, induction of apoptosis in iron oxide labeled monocytes was determined by YO-PRO-1 staining. Cellular iron uptake was significantly (P<0.01) higher after incubation with SPIO compared with USPIO. For SPIO, the iron oxide uptake was significantly (P<0.01) higher after incubation with the ionic Ferucarbotran as compared with the non-ionic Ferumoxides. Efficient cell labeling was achieved after incubation with Ferucarbotran at concentrations {>=}500 {mu}g Fe/ml and incubation times {>=}1 h, resulting in a maximal iron oxide uptake of up to 50 pg Fe/cell without impairment of cell viability. In vitro labeling of human monocytes for MR imaging is most effectively obtained with the approved SPIO Ferucarbotran. Potential subsequent in vivo cell tracking applications comprise, e.g. specific targeting of inflammatory processes. (orig.)

  13. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro

    International Nuclear Information System (INIS)

    To evaluate the capacity of human monocytes to phagocytose various approved iron oxide based magnetic resonance (MR) contrast agents and to optimize in vitro labeling of these cells. Human monocytes were incubated with two superparamagnetic iron oxide particles (SPIO) as well as two ultrasmall SPIO (USPIO) at varying iron oxide concentrations and incubation times. Iron uptake in monocytes was proven by histology, quantified by atomic emission absorption spectrometry and depicted with T2* weighted fast field echo (FFE) MR images at 1.5 T. Additionally, induction of apoptosis in iron oxide labeled monocytes was determined by YO-PRO-1 staining. Cellular iron uptake was significantly (P<0.01) higher after incubation with SPIO compared with USPIO. For SPIO, the iron oxide uptake was significantly (P<0.01) higher after incubation with the ionic Ferucarbotran as compared with the non-ionic Ferumoxides. Efficient cell labeling was achieved after incubation with Ferucarbotran at concentrations ≥500 μg Fe/ml and incubation times ≥1 h, resulting in a maximal iron oxide uptake of up to 50 pg Fe/cell without impairment of cell viability. In vitro labeling of human monocytes for MR imaging is most effectively obtained with the approved SPIO Ferucarbotran. Potential subsequent in vivo cell tracking applications comprise, e.g. specific targeting of inflammatory processes. (orig.)

  14. Size dependent magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Jhunu; Haik, Yousef. E-mail: haik@eng.fsu.edu; Chen, C.-J.Ching-Jen

    2003-02-01

    {gamma}Fe{sub 2}O{sub 3} nanoparticles has been synthesized by a combination of chemical and ultrasonication procedure and further stabilized with surfactant. Their magnetic properties are compared with the different fractions (10-12, 20-30, 100-150 nm) of commercially available iron oxide. The sizes obtained from the scanning transmission electron micrographs are correlated with the magnetic properties of the particles.

  15. Heterobifunctional PEG Ligands for Bioconjugation Reactions on Iron Oxide Nanoparticles

    OpenAIRE

    Maarten Bloemen; Thomas Van Stappen; Pieter Willot; Jeroen Lammertyn; Guy Koeckelberghs; Nick Geukens; Ann Gils; Thierry Verbiest

    2014-01-01

    Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex envi...

  16. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brullot, W., E-mail: ward.brullot@fys.kuleuven.be [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Reddy, N.K. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Wouters, J.; Valev, V.K.; Goderis, B. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Vermant, J. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Verbiest, T. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium)

    2012-06-15

    Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials. - Highlights: Black-Right-Pointing-Pointer Ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Black-Right-Pointing-Pointer Magnetic, optical, magneto-optical, thermal and rheological characterization of ferrofluids. Black-Right-Pointing-Pointer Tunable properties of versatile polyethylene glycol stabilized ferrofluids.

  17. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  18. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  19. Synthesis of Functionalized Iron Oxide Nanoparticle with Amino Pyridine Moiety and Studies on Their Catalytic Behavior

    OpenAIRE

    Girija, D.; Naik, Halehatty S. Bhojya; Kumar, B. Vinay; Sudhamani, C. N.

    2011-01-01

    Aim: The main objective of this paper is to study the synthesis of functionalized iron oxide nanoparticle and its reactivity towards chromene synthesis Study design: Functionalized iron oxide nanoparticle study. Place and duration of study: Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, between December 2009 and July 2010. Methodology: This paper describes synthesis of stable functionalized iron oxide nanoparticles ...

  20. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Hosny KM

    2015-01-01

    Full Text Available Khaled Mohamed Hosny,1,2 Zainy Mohammed Banjar,3 Amani H Hariri,4 Ali Habiballah Hassan5 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 3Department of Clinical Biochemistry, Faculty of medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 4Consultant Obstetrics and Gynecology, Hera Genaral Hospital, Makkah, Saudi Arabia; 5Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In

  1. Mussel-Inspired Polydopamine Coated Iron Oxide Nanoparticles for Biomedical Application

    OpenAIRE

    Xiangling Gu; Yancong Zhang; Hanwen Sun; Xinfeng Song; Chunhua Fu; Pingxuan Dong

    2015-01-01

    Mussel-inspired polydopamine (PDA) coated iron oxide nanoparticles have served as a feasible, robust, and functional platform for various biomedical applications. However, there is scarcely a systemic paper reviewed about such functionalising nanomaterials to date. In this review, the synthesis of iron oxide nanoparticles, the mechanism of dopamine self-oxidation, the interaction between iron oxide and dopamine, and the functionality and the safety assessment of dopamine modified iron oxide n...

  2. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    Directory of Open Access Journals (Sweden)

    Wahajuddin

    2012-07-01

    Full Text Available Wahajuddin,1,2 Sumit Arora21Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Rae Bareli, IndiaAbstract: A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite or Fe3O4 (magnetite particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to

  3. Iron oxide nanoparticles for magnetically assisted patterned coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Gianina; Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Draganescu, Dan; Popa, Marcel I.

    2015-08-15

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe{sub 3}O{sub 4} particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe{sup 3+}/Fe{sup 2+} ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5–5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings. - Highlights: • Magnetite nanoparticles bearing variable hydrophobic functionality were synthesized. • Partial oxidation in alkaline solution is proved to be the optimum synthesis method. • Nanoparticle assembly in magnetic field produced films with hierarchical roughness. • Coating patterning is controlled by surfactant nature and magnetic field strength. • Possible applications in composite films with ice-phobic properties are suggested.

  4. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; Ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  5. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  6. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.

  7. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  8. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ► Organo-montmorillonite supported iron nanoparticles were found to be more efficient in the removal of Cr(VI) than unsupported iron nanoparticles. ► The iron nanoparticles were accommodated by the sectional structure of the clay minerals which were helpful to protect the nanoparticles from aggregating. ► XPS and XANES provided some direct information about the reduction mechanisms. ► The structure of the supported iron nanoparticles was stable in the reaction with Cr(VI). - Abstract: Iron nanoparticles exhibit greater reactivity than micro-sized Fe0, and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe0 was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  9. Polymer/Iron Oxide Nanoparticle Composites—A Straight Forward and Scalable Synthesis Approach

    OpenAIRE

    Jens Sommertune; Abhilash Sugunan; Anwar Ahniyaz; Rebecca Stjernberg Bejhed; Anna Sarwe; Christer Johansson; Christoph Balceris; Frank Ludwig; Oliver Posth; Andrea Fornara

    2015-01-01

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl...

  10. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells.

    Science.gov (United States)

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEON(LA-BSA)), or with dextran (SEON(DEX)). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEON(LA-BSA), SEON(DEX) or SEON(LA). Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  11. Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maarten Bloemen

    2014-02-01

    Full Text Available Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. Its magnetic and magneto-optical properties were investigated by vibrating sample magnetometry and Faraday rotation measurements. The luminescent characteristics of the material, in solution and incorporated in a polymer thin film, were probed by fluorescence experiments.

  12. PREPARATION AND CHARACTERIZATION OF IRON OXIDE NANOPARTICLES ON DISACCHARIDE TEMPLATES

    Directory of Open Access Journals (Sweden)

    B ANILREDDY

    2013-09-01

    Full Text Available We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharidetemplates. Interaction between iron sulfate and template has been carried out in aqueous phase,followed by the selective and controlled removal of the template to achieve narrow distribution ofparticle size. Particles of iron oxide obtained have been characterized for their stability in solventmedia, size, size distribution and crystallinity and it was found that when the negative value of thezeta potential increases, particle size decreases. A narrow particle size distribution with D100 = 275nm was obtained with chitosan and starch templates. SEM measurements further confirm the particlesize measurement. Diffuse reflectance UV–VIS spectra values show that the template is completelyremoved from the final iron oxide particles and powder XRD measurements show that the peaks ofthe diffractogram are in agreement with the theoretical data of hematite. The salient observations ofour study shows that there occurs a direct correlation between zeta potential, polydispersity index,band gap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. Alarge negative zeta potential was found to be advantageous for achieving lower particle sizes, as theparticles remained discrete without agglomeration.

  13. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    Science.gov (United States)

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  14. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  15. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  16. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    Science.gov (United States)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  17. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  18. Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfehani

    2016-07-01

    Full Text Available Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were encapsulated by a PEG-phospholipid. The suspension of iron oxide nanoparticles was prepared using the culture media and cell viability was determined by MTT assay. Results: MTT assay was used to examine the cytotoxicity of iron oxide nanoparticle s. Royan B1 cells were treated with medium containing different concentrations (10, 20, 30, 40, 50, and 60µg/ml of the iron oxide nanoparticle. Cell viability was determined at 12 and 24 hours after treatment which showed significant decreases when concentration and time period increased. Conclusion: The main mechanism of nanoparticles action is still unknown, but in vivo and in vitro studies in different environments suggest that they are capable of producing reactive oxygen species (ROS. Therefore, they may have an effect on the concentration of intracellular calcium, activation of transcription factors, and changes in cytokine. The results of this study show that the higher concentration and duration of treatment of cells with iron oxide nanoparticles increase the rate of cell death.

  19. Electron magnetic resonance and Moessbauer studies on iron doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, Maria Nicoleta, E-mail: mgrecu@infim.ro; Constantinescu, Serban Gr.; Ghica, Daniela; Tarabasanu-Mihaila, Doina; Diamandescu, Lucian [National Institute of Materials Physics (Romania)

    2012-03-15

    Iron doped (0.25-7.5% molar) hydrothermal nano-SnO{sub 2} was characterized by electron magnetic resonance (EMR) and Moessbauer spectroscopies. Only a small fraction of transition metal ions are in magnetic ordered state, contrary to the similar crystallographic compound TiO{sub 2}. Temperature dependences of spectra suggest that by increasing iron concentration, or annealing temperature, iron ions migrate to nanoparticles surfaces forming disordered iron oxides.

  20. Tunability of Size and Magnetic Moment of Iron Oxide Nanoparticles Synthesized by Forced Hydrolysis

    Directory of Open Access Journals (Sweden)

    Ben Sutens

    2016-07-01

    Full Text Available To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-pot synthesis method resulting in monodisperse superparamagnetic iron oxide nanoparticles with a controllable size and magnetic moment using cost-effective reagents. The obtained nanoparticles were thoroughly characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared (FT-IR measurements. Furthermore, the influence of the size on the magnetic moment of the nanoparticles is analyzed by superconducting quantum interference device (SQUID magnetometry. To emphasize the potential use in biomedical applications, magnetic heating experiments were performed.

  1. Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Maarten Bloemen

    Full Text Available Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability and advanced functionality is crucial.

  2. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests. (topical review — magnetism, magnetic materials, and interdisciplinary research)

  3. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    Science.gov (United States)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y. F.; Hoopes, P. J.

    2007-02-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe 3O 4 particles (100-190 emu/g) can be twice as high, and the coercivity (H C) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  4. Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Arpit; Jain, Navin; Manju Barathi L [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India); Akhtar, Mohd Sayeed [Jimma University, Department of Applied Microbiology, College of Natural Sciences (Ethiopia); Yun, Yeoung-Sang [Chonbuk National University, Division of Environmental and Chemical Engineering (Korea, Republic of); Panwar, Jitendra, E-mail: drjitendrapanwar@yahoo.co.in [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India)

    2013-11-15

    In the present study, extracellular synthesis of iron oxide nanoparticles (IONPs) was achieved using Aspergillus japonicus isolate AJP01. The isolate demonstrated its ability to hydrolyze the precursor salt solution, a mixture of iron cyanide complexes, under ambient conditions. Hydrolysis of these complexes released ferric and ferrous ions, which underwent protein-mediated coprecipitation and controlled nucleation resulting in the formation of IONPs. Transmission electron microscopy, selected area electron diffraction pattern, energy dispersive spectroscopy and grazing incidence X-ray diffraction analysis confirmed the mycosynthesis of IONPs. The synthesized particles were cubic in shape with a size range of 60–70 nm with crystal structure corresponding to magnetite. Scanning electron microscopy analysis revealed the absence of IONPs on fungal biomass surface, indicating the extracellular nature of synthesis. Fourier transform infrared spectroscopy confirmed the presence of proteins on as-synthesised IONPs, which may confer their stability. Preliminary investigation indicated the role of proteins in the synthesis and stabilization of IONPs. On the basis of present findings, a probable mechanism for synthesis of IONPs is suggested. The simplicity and versatility of the present approach can be utilized for the synthesis of other nanomaterials.

  5. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shichuan; Zhang, Tonglai; Tang, Runze; Qiu, Hao [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Caiqin [Shandong Special Industry Group Co., Ltd, Shandong 255201 (China); Zhou, Zunning [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-04-01

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (M{sub s}) of 97.979 emu/g and retentivity (M{sub r}) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material. - Highlights: • A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work. • The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes. • The superparamagnetic NaCit–Fe{sub 3}O{sub 4} samples have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. • The relevant formation mechanisms of the two types of samples are proposed.

  6. Toxicity and Biodistribution of Activated and Non-activated Intravenous Iron Oxide Nanoparticles

    OpenAIRE

    Tate, JA; Ogden, JA; Strawbridge, RR; Pierce, ZE; Hoopes, PJ

    2009-01-01

    The use of nanoparticles in medical treatment has prompted the question of their safety. In this study, the pathophysiology and biodistribution of three different concentrations of intravenously-delivered dextran-coated Fe3O4 iron oxide nanoparticles (IONP) were evaluated in mice. Some groups of mice were exposed to an AC magnetic field (AMF) at levels comparable with those proposed for cancer treatments. Iron biodistribution analysis for both AMF and non-AMF treated mice was performed for al...

  7. Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria

    OpenAIRE

    Liu, Li-Hong; Dietsch, Hervé; Schurtenberger, Peter; Yan, Mingdi

    2009-01-01

    We report a versatile approach for the immobilization of unmodified monosaccharides onto iron oxide nanoparticles. Covalent coupling of the carbohydrate onto iron oxide nanoparticle surfaces was accomplished by the CH insertion reaction of photochemically activated phosphate-functionalized perfluorophenylazides (PFPAs), and the resulting glyconanoparticles were characterized by IR, TGA, and TEM. The surface-bound d-mannose showed the recognition ability towards Concanavalin A and Escherichia ...

  8. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating methods which can be used only for bulk tissue level treatments. In a mixture of normal and NP

  9. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  10. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils;

    2013-01-01

    An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2′,7′-dichlorofluorescein (DCF) anchored to the surface of iron(iii) oxide nanoparticles to create iron(ii) surface atoms via...

  11. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Carmen Bautista, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Puerto Morales, Maria del [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Serna, Carlos J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)]. E-mail: sabino@icmm.csic.es

    2005-05-15

    The favoured mechanism of adsorption of dextran on the surface of maghemite nanoparticles (5 nm) prepared by laser pyrolysis seems to be the collective hydrogen bonding between dextran hydroxyl groups and iron oxide particle surface. After heating, the formation of a surface complex between the polysaccharide oxygen atoms and the surface iron atoms gave rise to a stronger bonding.

  12. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea)

    Science.gov (United States)

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  13. Magnetic field calculations for iron oxide nanoparticles for MRI

    Science.gov (United States)

    Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia

    2014-11-01

    The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 μg/ml, and PEGCOOH 6000(10nm) with 300 μg/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.

  14. Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles

    Science.gov (United States)

    Armijo, Leisha M.; Ahuré-Powell, Louise A.; Wereley, Norman M.

    2015-05-01

    Magnetorheology of a magnetorheological ferrofluid (MRFF) was investigated to study the role of a ferromagnetic nanoparticle (NP) additive in magnetorheological fluids (MRFs). Iron nitride (Fe16N2) NPs, nominally within the diameter range of ˜16-45 nm (spherical NPs) and ˜30-66 nm (cubic NPs), were coated with carboxy-polyethylene glycol (carboxy-PEG) and dispersed in silicone oil in order to produce a magnetic carrier fluid or ferrofluid for two solids loadings: 2 vol. % and 5 vol. %. Conventional spherical carbonyl iron (CI) particles, varying in diameter from 6 to 10 μm, were suspended in the ferrofluid at 25 vol. % solids loading. Rheological properties of the MRFF synthesized with the carboxy-PEG-based ferromagnetic carrier fluid were compared to the MRF synthesized with silicone oil to determine how ferrofluid can influence dynamic viscosity and yield stress. Rheological measurements of both MRF and MRFF samples were carried out using a Paar Physica 300 rheometer to estimate the field-off viscosity and to measure flow curves (i.e., shear stress vs. shear rate) as a function of magnetic field. A Bingham-plastic model was used to characterize the flow curves, and results show that there is an increase in the dynamic viscosity of the MRFF over the MRF. The ferromagnetic carrier fluid greatly increases yield stress as only 2 vol. % of added carboxy-PEG NPs improves the yield stress performance by almost 5%. A second MRFF sample synthesized with 5 vol. % of added carboxy-PEG NPs contained in the ferrofluid significantly enhanced the yield stress performance by 13% over the MRF at the same CI solids loading (25 vol. %).

  15. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    Science.gov (United States)

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  16. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles.

    Science.gov (United States)

    Neubauer, Elisabeth; Schenkeveld, Walter D C; Plathe, Kelly L; Rentenberger, Christian; von der Kammer, Frank; Kraemer, Stephan M; Hofmann, Thilo

    2013-09-01

    The quantities of natural organic matter (NOM) and associated iron (Fe) in soil extracts are known to increase with increasing extractant pH. However, it was unclear how the extraction pH affects Fe speciation for particles below 30 nm. We used flow field-flow fractionation (FlowFFF) and transmission electron microscopy (TEM) to investigate the association of Fe and trace elements with NOM and nanoparticulate iron (oxy)hydroxides in podzol extracts. For extracts prepared at the native soil pH (~4), and within a 1-30 nm size range, Fe was associated with NOM. In extracts with a pH≥7 from the E and B soil horizons, Fe was associated with NOM as well as with iron (oxy)hydroxide nanoparticles with a size of approximately 10 nm. The iron (oxy)hydroxide nanoparticles may have either formed within the soil extracts in response to the increase in pH, or they were mobilized from the soil. Additionally, pH shift experiments showed that iron (oxy)hydroxides formed when the native soil pH (~4) was increased to 9 following the extraction. The iron (oxy)hydroxide nanoparticles aggregated if the pH was decreased from 9 to 4. The speciation of Fe also influenced trace element speciation: lead was partly associated with the iron (oxy)hydroxides (when present), while copper binding to NOM remained unaffected by the presence of iron (oxy)hydroxide nanoparticles. The results of this study are important for interpreting the representativeness of soil extracts prepared at a pH other than the native soil pH, and for understanding the changes in Fe speciation that occur along a pH gradient.

  17. Structures and Properties of Nanometer Size Materials Ⅲ. Structures and Physical Properties of Iron Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    李小华; 马美华

    2005-01-01

    Molecular dynamics computer simulation has been carded out to study the structure and physical properties of iron nanoparticles with 331 to 2133 Fe atoms or with diameter from 2.3 to 4.3 nm. The core of liquid nanodroplets has the similar structure of the bulk molten iron liquid that has an average coordination number around 10.5 and the packing density around 0.45, although the closest Fe-Fe distance is slightly longer in the bulk liquid. Most of the iron nanoparticles formed from the cooling of molten nanodroplets have the same body center cubic crystal structure as it was observed in the bulk under the normal temperature and pressure. Lattice contraction was observed for iron nanoparticles. An amorphous solid and an HCP like solid were obtained accidentally during the quenching runs on Fe331 nanoparticles. The physical properties of iron nanoparticles such as molar volume, density, thermal expansion coefficient, melting point, heat of fusion, heat capacity and diffusion coefficient were estimated based on the results obtained from this simulation. The dependence of physical properties on the nanoparticle sizes was addressed.

  18. Arc-Discharge Synthesis of Iron Encapsulated in Carbon Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. Chaitoglou

    2014-01-01

    Full Text Available The objective of the present work is to improve the protection against the oxidation that usually appears in core@shell nanoparticles. Spherical iron nanoparticles coated with a carbon shell were obtained by a modified arc-discharge reactor, which permits controlling the diameter of the iron core and the carbon shell of the particles. Oxidized iron nanoparticles involve a loss of the magnetic characteristics and also changes in the chemical properties. Our nanoparticles show superparamagnetic behavior and high magnetic saturation owing to the high purity α-Fe of core and to the high core sealing, provided by the carbon shell. A liquid iron precursor was injected in the plasma spot dragged by an inert gas flow. A fixed arc-discharge current of 40 A was used to secure a stable discharge, and several samples were produced at different conditions. Transmission electron microscopy indicated an iron core diameter between 5 and 9 nm. Selected area electron diffraction provided evidences of a highly crystalline and dense iron core. The magnetic properties were studied up to 5 K temperature using a superconducting quantum interference device. The results reveal a superparamagnetic behaviour, a narrow size distribution (σg=1.22, and an average diameter of 6 nm for nanoparticles having a blocking temperature near 40 K.

  19. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature

    Science.gov (United States)

    Balasubramanian, C.; Joseph, B.; Orpe, PB; Saini, NL; Mukherjee, S.; Dziedzic-Kocurek, K.; Stanek, J.; Di Gioacchino, D.; Marcelli, A.

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications.

  20. Fibroporous polytetrafluoroethylene modified with iron nanoparticles: Structure and electronic and magnetic properties

    Science.gov (United States)

    Vasil'kov, A. Yu.; Suzdalev, I. P.; Maksimov, Yu. V.; Nikitin, L. N.; Naumkin, A. V.; Abramchuk, S. S.; Tolstopyatov, E. M.; Grakovich, P. N.

    2013-06-01

    A method for synthesizing iron-containing nanocomposite based on fibroporous polytetrafluoroethylene (PTFE) is described. Fibroporous PTFE obtained under the radiation of a CO2 laser on block PTFE is modified in supercritical carbon dioxide (sc CO2) to form micro- and nanoporous structures. Porous fluoropolymer is treated with a solution of bis(toluene)iron(0) obtained by metal-vapor synthesis (MVS). The composition and structure of iron-containing fluoropolymer is studied by transmission electron microscopy and X-ray photoelectron and Mössbauer spectroscopy. Fe nanoparticles with an average size of 9 nm, consisting of ˜30% FeO and ˜70% Fe3+, are registered in the sample. Fe0 nanoparticles are stabilized in fluoropolymer pores and are coated with nanoparticles of nonstoichiometric iron oxides that have superparamagnetic properties.

  1. One-pot size and shape controlled synthesis of DMSO capped iron oxide nanoparticles

    Indian Academy of Sciences (India)

    Debanjan Guin; Sunkara V Manorama; S Radha; A K Nigam

    2006-11-01

    We report here the capping of iron oxide nanoparticles with dimethyl sulfoxide (DMSO) to make chloroform soluble iron oxide nanoparticles. Size and shape of the capped iron oxide nanoparticles are well controlled by simply varying the reaction parameters. The synthesized nanocrystallites were characterized by thermal analysis (TG–DTA), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) for evaluating phase, structure and morphology. 1H NMR spectra of the synthesized samples confirm DMSO, and the capping of DMSO on the ferrite samples. Shift of the S=O stretching frequency in Fourier transformed infrared (FTIR) spectra indicates that the bonding between DMSO and ferrite is through an oxygen moiety. The magnetic measurements of all the synthesized samples were investigated with a SQUID magnetometer which shows that the magnetic properties are strongly dependent on the size as well as shape of the iron oxide.

  2. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio early life stages.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhu

    Full Text Available Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology.

  3. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    Directory of Open Access Journals (Sweden)

    Rosická Dana

    2011-01-01

    Full Text Available Abstract Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  4. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  5. New findings about iron oxide nanoparticles and their different effects on murine primary brain cells

    Directory of Open Access Journals (Sweden)

    Neubert J

    2015-03-01

    Full Text Available Jenni Neubert,1 Susanne Wagner,2 Jürgen Kiwit,3 Anja U Bräuer,1,* Jana Glumm1,3,* 1Institute of Cell Biology and Neurobiology, Center for Anatomy, 2Institute for Radiology, Charité-Universitaetsmedizin Berlin, 3Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany *These authors contributed equally to this work Abstract: The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to. Keywords: microglia, hippocampal neurons, degeneration, morphology, nanoparticles 

  6. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia inermis and Gardenia jasminoides Leaves Extract

    Directory of Open Access Journals (Sweden)

    Tayyaba Naseem

    2015-01-01

    Full Text Available Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metallic nanoparticles has accumulated an ultimate interest over the last decade due to their distinctive properties that make them applicable in various fields of science and technology. Metal nanoparticles that are synthesized by using plants have emerged as nontoxic and ecofriendly. In this study a very cheap and simple conventional heating method was used to obtain the iron nanoparticles (FeNPs using the leaves extract of Lawsonia inermis and Gardenia jasminoides plant. The iron nanoparticles were characterized by thermal gravimetric analysis (TGA, Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray diffraction (XRD. The antibacterial activity was studied against Escherichia coli, Salmonella enterica, Proteus mirabilis, and Staphylococcus aureus by using well-diffusion method.

  7. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  8. Heat-Affected Behavior of the Magnetic Properties of Iron Nano-Particles

    Institute of Scientific and Technical Information of China (English)

    柳刚; 吕楠; 秦伯雄; 范荣焕; 郭院波

    2004-01-01

    The high surface energy makes metal nano-particles reactive and easy to get oxidized or burned in the open air, which results in decreasing or entirely losing their functions and properties. In this paper, the mag netic property behavior of iron nano-particle, which is one kind of the typical magnetic nano-materials, has been investigated. The iron nano-particles were heated to different temperatures in an open-air stove. After that, they were firstly examined by TEM to observe the changes of their outline of shapes and then measured by VSM to trace the changes of their magnetic properties. The test results show that iron nano-particles can keep their magnetic property with saturation magnetic induction intensity B, around 136-161 emu/g, remanent magnetic induction intensity Br around 14.8-17.4 emu/g and coercive force Hc around 290-302 Oe when the temperature goes up to 523 K. The explanation to such outstanding oxidization-proof ability has been given that there exists a single crystal and lattice-shared Gamma-Fe2O3 shell covering the pure iron core, which prevents the spherical iron nano-particles from further oxidization.

  9. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    Science.gov (United States)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  10. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wydra, Robert J.; Kruse, Anastasia M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Bae, Younsoo [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506 (United States); Anderson, Kimberly W. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Hilt, J. Zach, E-mail: hilt@engr.uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe{sub 3}O{sub 4}) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. - Highlights: • Utilized atomic transfer radical polymerization (ATRP) to coat iron oxide nanoparticles with PEG • Investigated the surface coating by surface characterization methods • Demonstrated the potential use of nanoparticles for cancer therapy applications.

  11. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Svoboda, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic); Šantavá, Eva [Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Štěpánek, František, E-mail: Frantisek.Stepanek@vscht.cz [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-04-15

    A new non-solution mediated approach to the synthesis of iron oxide nanoparticles directly from solid FeCl{sub 2} salt precursors has been developed. The method is rapid, simple and scalable. The structural properties and the phase of the resulting iron oxide particles has been determined by a range of methods including XRD, FT-IR and Mössbauer spectroscopy, and the phase is shown to be maghemite (γ-Fe{sub 2}O{sub 3}). The magnetic properties of the iron oxide particles have been measured using SQUID, confirming superparamagnetic behaviour of the powder and a saturation magnetization of 53.0 emu g{sup −1} at 300 K. Aqueous dispersions at increasing concentrations were prepared and their heating rate under a 400 kHz alternating magnetic field measured. The specific absorption rate (SAR) of the iron oxide was found to be 84.8 W g{sup −1}, which makes the material suitable for the formulation of ferrofluids or ferrogels with RF heating properties. - Graphical Abstract: Superparamagnetic iron oxide nanoparticles obtained by a novel vapour phase approach. Highlights: ► Novel vapour phase (non-solvent) approach for iron oxide nanoparticle synthesis. ► Attractive alternative approach to the present co-precipitation method. ► Better magnetic properties with high coercivity of nanoparticles. ► A high specific absorption rate (SAR) for hyperthermia applications.

  12. Study of iron oxide nanoparticles in soil for remediation of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Heather J., E-mail: heather.shipley@utsa.edu; Engates, Karen E.; Guettner, Allison M. [University of Texas at San Antonio, Department of Civil and Environmental Engineering (United States)

    2011-06-15

    There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 {mu}g/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 {mu}g/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.

  13. Comparative study of antibacterial action of iron and copper nanoparticles on clinical Staphylococcus aureus strains

    Directory of Open Access Journals (Sweden)

    I.V. Babushkina

    2010-03-01

    Full Text Available Research objective is to study antibacterial action of nanoparticles of iron and copper on polyantibiotically resistant clinical Staphylococcus aureus strains. Materials and methods include antibacterial action of nanoparticles of copper and iron on 10 Staphylococcus au¬reus strains, isolated from patients with purulent complications stayed in the in-patient department of traumatology and orthopedics. Solutions of powders of iron and copper have been prepared directly before the experiment in concentra¬tion from 0,001 to 1 mg/ml. it has been revealed that the influence of nanoparticles on growth of clinical strains and the intensity of antibacterial effect depends on the form of nanoparticles, their concentration and action time. concentration of 0,1 mg/ml and 1 mg/ ml of iron nanoparticles has provoked the decrease in quantity of microbe cells from 3 to 34 % (p <0,01. in smaller concentrations the reliable antibacterial effect has not been observed. Antibacterial activity of copper nanoparticles has been expressed in a wide range of concentrations from 0,001 mg/ml to 1 mg/ml, even during short-term action (30 minutes it has provoked reduction of quantity of the microbe cells grown on the firm nutrient medium, 97-100 % in comparison with the control (p <0,001. in conclusion it is to point out that copper nanoparticles have more expressed inhibitory effect on growth of clini��cal strains of golden staphylococcus than iron nanoparticle suspension. inhibition degree depends on superdispersed powder dosage and incubation period

  14. Iron nanoparticles grown in a carbon arc discharge

    NARCIS (Netherlands)

    Zhang, G.L.; du Marchie van Voorthuysen, E.H.; Szymanski, K.; Boom, G; Verwerft, M.G M; Jonkman, H.T.; Niesen, L

    1996-01-01

    Iron particles, encapsulated by graphite layers, were produced by means of the Kratschmer are discharge method in an iron pentacarbonyl atmosphere. The Mossbauer effect is dominated by the vibration of the particles as a whole. Superparamagnetism is dominant for iron oxide particles. No endohedral i

  15. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Science.gov (United States)

    Hajesmaeelzadeh, Farzaneh; Shanehsazzadeh, Saeed; Grüttner, Cordula; Daha, Fariba Johari; Oghabian, Mohammad Ali

    2016-01-01

    Objective(s): Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene glycol (PEG) on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness). Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles. PMID:27081461

  16. Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice.

    Science.gov (United States)

    Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min

    2016-09-01

    Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with (89)Zr, a long half-life (78.4h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with (89)Zr directly at pH5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The (89)Zr-MP was stable in human plasma and PBS for at least 48h. The half-life of (89)Zr-MP was about 15.70±1.74h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that (89)Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy. PMID:27359110

  17. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    Science.gov (United States)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  18. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    Science.gov (United States)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  19. Studies on the effects of zerovalent iron nanoparticles on bacteria from the mangrove ecosystem.

    Science.gov (United States)

    Kharangate-Lad, Amrita; Pereira, Flancy; Fernandes, Julio; Bhosle, Saroj

    2016-01-01

    Zerovalent iron (ZVI) nanoparticles are gaining popularity in bioremediation of contaminated ground water and antimicrobial studies. In this study, ZVI nanoparticles were synthesized by borohydride method. The effect of these nanoparticles to alter the cell surface hydrophobicity of mangrove bacteria was studied by bacterial adhesion to hydrocarbon assay. The effect of these nanoparticles on the growth and extracellular polymeric substances (EPS) of a novel bacterial strain Halobacillus trueperi MXM-16 from mangroves was evaluated by growing the culture in the presence of ZVI nanoparticles and SEM. The change in the emulsifying ability of the cell-free supernatant of Halobacillus trueperi MXM-16 when grown in media amended with ZVI nanoparticles was also investigated by spectrophotometric analysis.

  20. Use of PEI-coated Magnetic Iron Oxide Nanoparticles as Gene Vectors

    Institute of Scientific and Technical Information of China (English)

    韦卫中; 徐春芳; 吴华

    2004-01-01

    To evaluate the feasibility of using polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (polyMAG-1000) as gene vectors. The surface characteristics of the nanoparticles were observed with scanning electron microscopy. The ability of the nanoparticles to combine with and protect DNA was investigated at different PH values after polyMAG-1000 and DNA were combined in different ratios. The nanoparticles were tested as gene vectors with in vitro transfection models. Under the scanning electron microscope the nanoparticles were about 100 nm in diameter.The nanoparticles could bind and condense DNA under acid, neutral and alkaline conditions, and they could transfer genes into cells and express green fluorescent proteins (GFP). The transfection efficiency was highest (51 %) when the ratio of nanoparticles to DNA was 1:1 (v:w). In that ratio, the difference in transfection efficiency was marked depending on whether a magnetic field was present or not: about 10 % when it was absent but 51 % when it was present. The magnetic iron oxide nanoparticles coated with PEI may potentially be used as gene vectors.

  1. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    Science.gov (United States)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  2. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe3O4), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  3. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kayal, S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ramanujan, R.V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-04-06

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe{sub 3}O{sub 4}), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  4. Biologically Inspired Design of Biocompatible Iron Oxide Nanoparticles for Biomedical Applications

    OpenAIRE

    Demirer, Gözde S.; Okur, Aysu C; Kızılel, Seda

    2015-01-01

    During the last couple of decades considerable research efforts have been directed towards the synthesis and coating of iron oxide nanoparticles (IONPs) for biomedical applications. To address the current limitations, recent studies have focused on the design of new generation nanoparticle systems whose internalization and targeting capabilities have been improved through surface modifications. This review covers the most recent challenges and advances in the development of IONPs with enhance...

  5. Numerical prediction of diffusion and electric field-induced iron nanoparticle transport

    OpenAIRE

    Gomes, Helena I.; Rodríguez-Maroto, José Miguel; Ribeiro, Alexandra B.; Pamukcu, Sibel; Dias-Ferreira, Celia

    2014-01-01

    Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, a...

  6. Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions.

    Science.gov (United States)

    Mandel, K; Straßer, M; Granath, T; Dembski, S; Sextl, G

    2015-02-18

    A process is reported to obtain a nanoparticle sol from co-precipitated iron oxide particles without using any surfactant. The sol - a true ferrofluid - is not only stable over a wide range of pH but also in physiological solutions. This is a decisive step towards biomedical applications where nanoparticle agglomeration could so far only be prevented by using unwanted surfactants. PMID:25580829

  7. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions. PMID:27357559

  8. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  9. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefanie; Sommer, Anja [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany); Distel, Luitpold V.R. [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany); Neuhuber, Winfried [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany); Kryschi, Carola, E-mail: kryschi@chemie.uni-erlangen.de [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  10. Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release.

    Science.gov (United States)

    Soares, Paula I P; Sousa, Ana Isabel; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-11-20

    In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion.

  11. Morphological dependence of passive epitaxial oxide films on nanoparticles of iron

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Nanoparticles of iron passivated by thin oxide films are {110} rhombic dodecahedra truncated by {100} planes with various degree of truncation.The degree of truncation is defined as the ratio of the edge length of the truncated part to the full edge length of the rhombic dodecahedron.Uyeda and coworkers have shown that nanoparticles with low degree of truncation are bounded by six small {100} and twelve large {110} facets while nanoparticles with high degree of truncation are bounded by large {100} and small {110} facets[1].

  12. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  13. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  14. Chromenone-conjugated magnetic iron oxide nanoparticles. Toward conveyable DNA binders.

    Science.gov (United States)

    Yousuf, Sameena; Enoch, Israel V M V; Paulraj, Mosae Selvalumar; Dhanaraj, Premnath

    2015-11-01

    Magnetic nanoparticles can transport drug and possibly target cancer. DNA-binding of ligands loaded in dextran coated magnetic nanoparticles, could aid their better target-specific binding. In this work, we report the loading of chromenones onto aminoethylamino-modified dextran coated iron oxide nanoparticles, their loading efficiency, and openness for binding to DNA. The magnetic behavior, the size, and the morphology of the nanoparticles are analyzed. The crystallite size of the magnetic nanoparticles is around 40 nm. The chromenones are present on the surface of the dextran shell, as revealed by their cyclodextrin-binding characteristics, which is a new approach in comprehending the accessibility of the surface-bound molecules by macromolecules. The mode of binding of the chromenones to DNA is not altered on surface loading on dextran shell, although the binding strength is generally diminished, compared to the strength of binding of the free chromenones to DNA.

  15. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  16. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  17. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Science.gov (United States)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  18. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces

    Directory of Open Access Journals (Sweden)

    Monica Thukkaram

    2014-01-01

    Full Text Available Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.

  19. Synthesis of porous superparamagnetic iron oxides from colloidal nanoparticles: Effect of calcination temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Wei; Xu, Jing; Ding, Wei; Wang, Yajie; Zheng, Wenping; Wu, Feng; Li, Jinjun, E-mail: ljjcbacademy@163.com

    2015-03-01

    Nanostructured iron oxides with superparamagnetism were synthesized from colloidal particles of hydrous iron oxide. The synthesis procedure involved preparation of acetone-nanoparticle composite and calcination of the composite in air or nitrogen. The effects of calcination temperature and atmosphere on the properties of the products were investigated. Powder X-ray diffraction, {sup 57}Fe Mössbauer spectra, transmission electron microscopy, nitrogen sorption, thermal analysis and vibrating-sample magnetometry were applied to characterize the materials. The products calcined in flowing air are composed of nanoparticles, while those calcined in flowing nitrogen contain nanosheets. The former has larger specific surface areas, whereas the latter has stronger saturation magnetization in external magnetic field. Increasing calcination temperature reduced the specific surface area of the product, whereas enhanced its saturation magnetization. Furthermore, the iron oxides with superparamagnetism showed good affinity to arsenite, and therefore they could be potential adsorbents for arsenic remediation in water. - Highlights: • Nanostructured superparamagnetic iron oxides were synthesized from colloidal nanoparticles. • Calcination in air led to formation of nanoparticles. • Calcination in nitrogen led to formation of nanosheets. • The superparamagnetic materials had high adsorption capabilities for arsenite.

  20. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent

    NARCIS (Netherlands)

    Hosseini, F.; Panahifar, A.; Adeli, M.; Amiri, H.; Lascialfari, A.; Orsini, F.; Doschak, M.R.; Mahmoudi, M.

    2013-01-01

    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized and coated with pseudopolyrotaxanes (PPRs) and proposed as a novel hybrid nanostructure for medical imaging and drug delivery. PPRs were prepared by addition of alpha-cyclodextrin rings to functionalized polyethylene glycol (PEG) c

  1. Whole Body Retention and Distribution of Orally-Adminsitered Radiolabeled Zerovalent Iron nanoparticles in Mice

    Science.gov (United States)

    Zerovalent iron nanoparticles (nZVI) are used for in situ remediation of contaminated ground water, raising the possibility that nZVI particles or their altered residues could contaminate the ground water. Therefore, it is important to study their effects on humans and other orga...

  2. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    Science.gov (United States)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of S1) High-Resolution Transmission Electron Microscopy (HRTEM) image of iron oxide nanoparticles, (S2) Superconducting Quantum Interference Device (SQUID) measurement of magnetization of super paramagnetic iron oxide nanoparticles, (S3) Fourier Transform Infrared Spectroscopy (FT-IR) spectra of Fe-Si-COO- synthesised using Grignard reagents (S4) FT-IR spectra of iron oxide nanoparticles

  3. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    Science.gov (United States)

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  4. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications.

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    Full Text Available The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs and impact of hydrophilic polymer polyvinyl alcohol (PVA coating concentration as well as anticancer drug doxorubicin (DOX loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4 structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.

  5. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Science.gov (United States)

    Naghdi, Samira; Rhee, Kyong Yop; Jaleh, Babak; Park, Soo Jin

    2016-02-01

    Iron oxide (Fe2O3) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe2O3 nanoparticles and GO/Fe2O3 composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe2O3 nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe2O3 morphology and particle size. In the absence of urea, the Fe2O3 nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe2O3 showed that the intensity ratio of D band to G band (ID/IG) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe2O3 and Fe2O3 were compared using the Brunauer-Emmett-Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe2O3 nanoparticles. However, the increase in urea concentration led to decreased thermal stability of the Fe2O3 nanoparticles. The magnetic properties of Fe2O3 nanoparticles were characterized by a vibrating sample magnetometer and results revealed that the magnetic properties of Fe2O3 nanoparticles are affected by the morphology.

  6. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  7. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thanh Huong; Lam Thi Kieu Giang; Nguyen Thanh Binh; Le Quoc Minh [Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: nthuong@ims.vast.ac.vn

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N{sub 2} atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe{sup 2+} and Fe{sup 3+}. The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  8. Zero Valent Iron Nanoparticle Assisted Electrocoagulation of Arsenic with electromagnetic Separation of Solids

    Directory of Open Access Journals (Sweden)

    Nuñez P.

    2013-04-01

    Full Text Available A new arsenic removal process was designed combining: 1 iron nanoparticle addition, b electrocoagulation, and c electromagnetic separation. Results showed that arsenic could be removed with more than 99 % efficiency from liquid waste samples. Parameters that were found to have importance on the process were: a nanoparticle dosage, b electric voltage drop during electrocoagulation, b pH of the solution, d arsenic concentration, and e electromagnetic field distribution during solid separation. Arsenic could efficiently be removed by iron nanoparticles during electrocoagulation. Afterwards the arsenic containing particles were separated from the solution by electromagnetic fields. This new process could be a feasible alternative to conventional arsenic treatment in liquid waste streams.

  9. Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    In-Kyu Park

    2013-07-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents.

  10. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas;

    2012-01-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed...... polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333–20 000 Da PEG coatings that resulted in larger hydrodynamic size......, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (Mw) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating Mw of 10 000 Da...

  11. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells

    DEFF Research Database (Denmark)

    Maxwell, Dustin J; Bonde, Jesper; Hess, David A;

    2008-01-01

    or in vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34(+) cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles......The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enables dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined...... culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores...

  12. Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications.

    Science.gov (United States)

    Remya, N S; Syama, S; Sabareeswaran, A; Mohanan, P V

    2016-09-10

    Advancement in the field of nanoscience and technology has alarmingly raised the call for comprehending the potential health effects caused by deliberate or unintentional exposure to nanoparticles. Iron oxide magnetic nanoparticles have an increasing number of biomedical applications and hence a complete toxicological profile of the nanomaterial is therefore a mandatory requirement prior to its intended usage to ensure safety and to minimize potential health hazards upon its exposure. The present study elucidates the toxicity of in house synthesized Dextran stabilized iron oxide nanoparticles (DINP) in a regulatory perspective through various routes of exposure, its associated molecular, immune, genotoxic, carcinogenic effects and bio distribution profile. Synthesized ferrite nanomaterials were successfully coated with dextran (behavior changes or visible pathological lesions. Furthermore no anticipated health hazards are likely to be associated with the use of DINP and could be concluded that the synthesized DINP is nontoxic/safe to be used for biomedical applications. PMID:27451271

  13. Synthesis and Antibacterial and Antibiofilm Activity of Iron Oxide Glycerol Nanoparticles Obtained by Coprecipitation Method

    Directory of Open Access Journals (Sweden)

    Simona Liliana Iconaru

    2013-01-01

    Full Text Available The glycerol iron oxide nanoparticles (GIO-NPs were obtained by an adapted coprecipitation method. The X-ray diffraction (XRD studies demonstrate that GIO-NPs were indexed into the spinel cubic lattice with a lattice parameter of 0.835 nm. The refinement of XRD spectra indicated that no other phases except maghemite were detected. The adsorption of glycerol on iron oxide nanoparticles was investigated by Fourier transform infrared (FTIR spectroscopy. On the other hand, this work implicated the use of GIO-NPs in antibacterial studies. The results indicate that, in the case of P. aeruginosa  1397 biofilms, at concentrations from 0.01 mg/mL to 0.625 mg/mL, the glycerol iron oxide inhibits the ability of this strain to develop biofilms on the inert substratum.

  14. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    Science.gov (United States)

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  15. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  16. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, S., E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, A.M.; Moradi, S.E. [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Emami, S. [Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-03-01

    Highlights: • Synthesis and characterization of (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the capability of (Fe{sub 3}O{sub 4}@MIL-100(Fe)) for the removal of methyl red. • Studying the adsorption kinetic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the adsorption thermodynamic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Introduction of a sorbent with high capacity for MR removal. - Abstract: The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe{sub 3}O{sub 4}@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe{sub 3}O{sub 4}@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity.

  17. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. PMID:27037068

  18. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    Science.gov (United States)

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  19. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    Science.gov (United States)

    Bietenbeck, Michael; Florian, Anca; Faber, Cornelius; Sechtem, Udo; Yilmaz, Ali

    2016-01-01

    Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed. PMID:27486321

  20. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Directory of Open Access Journals (Sweden)

    Farzaneh Hajesmaeelzadeh

    2016-02-01

    Full Text Available Objective(s:Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness. Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles.

  1. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge

    Directory of Open Access Journals (Sweden)

    Schweiger Christoph

    2012-07-01

    Full Text Available Abstract Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate. The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar. This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.

  2. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles.

    Science.gov (United States)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J Zach

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe3O4 nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. PMID:27287099

  3. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Paula S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)], E-mail: pferreira@lnls.br; Martins, Tatiana M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil); Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); D' Souza-Li, Lilia [Laboratorio de Endocrinologia Pediatrica da Faculdade de Ciencias Medicas (FCM), UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Li, Li M. [Departamento de Neurologia da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Metze, Konradin; Adam, Randall L. [Grupo interdisciplinar ' Patologia Analitica Celular' , Departamento de Anatomia Patologica da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Knobel, Marcelo [Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); Zanchet, Daniela [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)

    2008-05-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac){sub 3} in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements.

  4. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohith Vinod, K.; Sakar, M.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai-600025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  5. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59Fe, 14C-oleic acid, and 111In. Results: Mouse biodistributions showed 111In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59Fe than 111In in liver and spleen, but lower levels of 14C. Conclusions: While there is some degree of dissociation between the 111In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  6. Adsorption of hemoglobin, fatty acid and glucose to iron nanoparticles as a mean for drug delivery

    Directory of Open Access Journals (Sweden)

    Azadeh Amirnasr

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Recent research in biomedicine has documented the application of iron-based nano-particles in supplying the human body with essential nutrients or in drug delivery systems.   In this work, the possibility of using iron nanoparticles sorption of biomaterial, such as hemoglobin, cholesterol, triglyceride, serum albumin, and glucose, to cure some specific syndromes have been studies. Bradford assay was used for protein adsorption measurement in supernatant, and FTIR was used for studying the ligands attached to iron nanoparticle. Cholesterol kit and Triglyceride kit were used to measure the cholesterol and triglyceride in supernatant. The result showed that glucose was adsorbed, and the remaining polysaccharide left in supernatant was 42%. Also sorption of triglyceride, cholesterol and serum albumin by nanoparticles was 69%, 73.3% and 87% respectively. FTIR showed hemoglobin being adsorbed to nanoparticles as a ligand. These results indicate that iron nano particles have the capability of being used as a delivery system for biomaterials.  

  7. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    Science.gov (United States)

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species. PMID:26441224

  8. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles

    Science.gov (United States)

    Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P.

    2015-10-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m2 g-1, compared to approx. 4 m2 g-1 for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  9. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications

    International Nuclear Information System (INIS)

    Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si–H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing. - Highlights: ► A modified co-precipitation method to prepare dispersive iron oxide magnetic nano-particles. ► Coating the nano-particle with different silicas. ► Estimating the numbers of iron oxide and 3-aminopropylsilica in the coated particles. ► Silica coating may help to protect iron oxide nano-particles from

  10. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  11. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N; Mary, A; Swalih, P.K.A; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A; Anantharaman, A

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  12. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  13. Influence of rare earth nanoparticles and inoculants on performance and microstructure of high chromium cast iron

    Institute of Scientific and Technical Information of China (English)

    HOU Yuncheng; WANG You; PAN Zhaoyi; YU Lili

    2012-01-01

    The high chromium cast irons (HCCIs) with rare earth (RE) nanoparticles or inoculants were fabricated in the casting process.The phase compositions and microstructure were analyzed by X-ray diffraction (XRD) and optical microscopy (OM),respectively.The hardness and impact toughness were tested by Rockwel-hardmeter and impacting test enginery.And then,the morphology of fracture was researched by scanning electron microscopy (SEM).The results demonstrated that the phase compositions of HCCIs with addition of RE nanoparticles or inoculants which were M7C3 carbides + α -Fe did not change obviously.However,the prime M7C3 carbides morphology had great changes with the increase of RE nanoparticles,which changed from long lath to granular or island shape.When the content of RE nanoparticles was 0.4 wt.%,the microstructure of high chromium cast iron was refined greatly.The microstructure of carbides was coarser when the addition of RE nanoparticles was higher than 0.4 wt.%.The hardness and impact toughness of HCCIs were improved by addition of RE nanoparticles or inoculants.The impact toughness of HCCIs was increased 36.4% with RE nanoparticles of 0.4 wt.%,but the hardness changed slightly.In addition,the adding of RE nanoparticles or inoculants could reduce the degree of the brittle fracture.Fracture never seemed regular,instead,containing lots of laminates and dimples with the increase of the RE nanoparticles.The results also indicated that the optimal addition amonnt of the RE nanoparticles was 0.4%,under this composition,the microstructure and mechanical property achieved the best cooperation.In addition,through the study of erosion wear rate,when adding 0.4% RE nanoparticles into the HCCIs,the erosion wear rate got the minimum 0.32×10-3 g/mm2,which could increase 51.5% compared with that without any RE nanoparticles.

  14. Use of triethylene glycol monobutyl ether in synthesis of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Beyaz, Seda [Department of Chemistry, Balikesir University, Balikesir 10145 (Turkey); Ozel, Fatmahan [Department of Physics, Balikesir University, Balıkesir 10145 (Turkey); Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Department of Physics, Balikesir University, Balıkesir 10145 (Turkey); Tanrisever, Taner [Department of Chemistry, Balikesir University, Balikesir 10145 (Turkey)

    2014-06-01

    Superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of iron–oleate complex using triethylene glycol monobutyl ether (TREGBE) as solvent for the first time for more mass of the nanoparticles. The effect of TREGBE on the properties of the nanoparticles was compared with that of 1-hexadecene. The impact of oleic acid concentration on the properties of the nanoparticles was also studied. On the use of TREGBE as compared with 1-hexadecene, the average crystal size reduced from 9.1±2.1 to 8.2±0.7 nm whereas the saturation magnetization (M{sub s}) increased from 53.6 to 58.0 emu/g. Moreover, more products can be synthesized using TREGBE. Besides, the interactions between particle surfaces and TREGBE are weaker than that of 1-hexadecene according to gravimetric analysis results. X-ray diffraction analysis revealed that crystallinity and particle size scaled up with increasing oleic acid amount in TREGBE. The electron microscopy showed that dot-shaped particles turned into irregular particles with increasing amount of oleic acid molecules using TREGBE. The results disclosed that TREGBE is quite a suitable solvent to synthesize the superparamagnetic iron oxide nanoparticles with the desired size and M{sub s} for more mass production at low temperature. - Highlights: • Superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of iron–oleate complex. • On the use of TREGBE, the average crystal size reduced from 9.1±2.1 to 8.2±0.7 nm. • The crystallinity and particle size scaled up with increasing oleic acid amount in TREGBE. • The saturation magnetization M{sub s} increased from 53.6 to 58.0 emu/g with the use of TREGBE. • The dot-shaped particles turned into irregular particles with increasing oleic acid molecules using TREGBE.

  15. Polymer Films with Ion-Synthesized Cobalt and Iron Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    The current paper presents an overview and analysis of data obtained on a few sets of polymer samples implanted by iron and cobalt. The low-energy (40 keV) implantations were carried out into polyimide and polyethyleneterephthalate with fluences between 2.5x10e16-1.5x10e17 cm-2. The samples were...

  16. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  17. Combination of cold atmospheric plasma and iron nanoparticles in breast cancer: gene expression and apoptosis study

    Directory of Open Access Journals (Sweden)

    Jalili A

    2016-09-01

    Full Text Available Azam Jalili,1 Shiva Irani,1 Reza Mirfakhraie2 1Department of Biology, Science and Research Branch, Islamic Azad University, 2Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran Background: Current cancer treatments have unexpected side effects of which the death of normal cells is one. In some cancers, iron nanoparticles (NPs can be subjected to diagnosis and passive targeting treatment. Cold atmospheric plasma (CAP has a proven induction of selective cell death ability. In this study, we have attempted to analyze the synergy between CAP and iron NPs in human breast adenocarcinoma cells (MCF-7.Materials and methods: In vitro cytotoxicity of CAP treatment and NPs in cells measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and cell death was shown by 4',6-diamidino-2-phenylindole and annexin V staining. Fluctuations in BAX and BCL-2 gene expression were investigated by means of real-time polymerase chain reaction.Results: MTT assay results showed that combination of plasma and iron NPs decreased the viability of cancer cells significantly (P<0.05. Real-time analysis showed that the combination therapy induced shifting the BAX/BCL-2 ratio in favor of apoptosis.Conclusion: Our data indicate that synergy between CAP and iron NPs can be applied in breast cancer treatment selectively. Keywords: breast cancer, cold atmospheric plasma, iron nanoparticles, BAX, BCL-2

  18. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    Science.gov (United States)

    Geppert, Mark; Hohnholt, Michaela C.; Thiel, Karsten; Nürnberger, Sylvia; Grunwald, Ingo; Rezwan, Kurosch; Dringen, Ralf

    2011-04-01

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg - 1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  19. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, Mark; Hohnholt, Michaela C; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Thiel, Karsten; Grunwald, Ingo [Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Strasse 12, D-28359 Bremen (Germany); Nuernberger, Sylvia [Department of Traumatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Rezwan, Kurosch, E-mail: ralf.dringen@uni-bremen.de [Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen (Germany)

    2011-04-08

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 {mu}M iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg{sup -1} protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 deg. C was drastically lowered compared to cells that had been incubated at 37 deg. C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 deg. C, but not in cells exposed to the nanoparticles at 4 deg. C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  20. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    International Nuclear Information System (INIS)

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 μM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg-1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 deg. C was drastically lowered compared to cells that had been incubated at 37 deg. C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 deg. C, but not in cells exposed to the nanoparticles at 4 deg. C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  1. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  2. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  3. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

    Science.gov (United States)

    Zariwala, M Gulrez; Elsaid, Naba; Jackson, Timothy L; Corral López, Francisco; Farnaud, Sebastien; Somavarapu, Satyanarayana; Renshaw, Derek

    2013-11-18

    Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery. PMID:24012860

  4. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  5. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    Science.gov (United States)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  6. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles (SPIONs) are one of the most versatile and safe nanoparticles in a wide variety of biomedical applications. In the past decades, considerable efforts have been made to investigate the potential adverse biological effects and safety issues associated with SPIONs, which is essential for the development of next-generation SPIONs and for continued progress in translational research. In this mini review, we summarize recent developments in toxicity studies on SPIONs, focusing on the relationship between the physicochemical properties of SPIONs and their induced toxic biological responses for a better toxicological understanding of SPIONs. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  7. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  8. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei;

    2014-01-01

    of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR......). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide‐based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts....

  9. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.;

    2009-01-01

    Magnetic nanoparticles (MNP) can be used as contrast-enhancing agents to visualize tumors by magnetic resonance imaging (MRI). Here we describe an easy synthesis method of magnetic nanoparticles coated with polyethylene glycol (PEG) and demonstrate size-dependent accumulation in murine tumors...... following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...

  10. The efficiency of magnetic carbon activated by iron oxide nanoparticles in removing of Cu (II) from aqueous solutions

    OpenAIRE

    Salehe Salehnia; Behnam Barikbin; Hadighe Dorri

    2016-01-01

    Background and Aim: Copper ions, due to forming complexes with organic and mineral compounds, can have worrying effects on health and environment. In the present study, the effect of powdered magnetic carbon activated by iron-oxide nanoparticles in removing of CU (V; II) from aqueous solutions was assessed. Materials and Methods: This experimental study aimed at determining the effect of powdered magnetic carbon activated  by iron-oxide nanoparticles  parameters including PH, co...

  11. Scalable fractionation of iron oxide nanoparticles using a CO{sub 2} gas-expanded liquid system

    Energy Technology Data Exchange (ETDEWEB)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B., E-mail: croberts@eng.auburn.edu [Auburn University, Department of Chemical Engineering (United States)

    2015-10-15

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO{sub 2} gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  12. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    Science.gov (United States)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  13. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  14. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

    Science.gov (United States)

    Blanco-Andujar, Cristina; Walter, Aurelie; Cotin, Geoffrey; Bordeianu, Catalina; Mertz, Damien; Felder-Flesch, Delphine; Begin-Colin, Sylvie

    2016-07-01

    Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools. PMID:27389703

  15. Dispersion of Iron Nanoparticles by Polymer-Based Hybrid Material for Reduction of Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Syed Wasim Ali

    2015-01-01

    Full Text Available A gel type acrylic acid resin, based on ethyl acrylate-co-1,7-octadiene, has been synthesized by suspension polymerization at 20% cross-linking and subsequent hydrolysis by H2SO4. Capacity of the resin was observed to be 8.90 meq/g or 3.28 meq/mL. The iron nanoparticles used in this study were synthesized by ferrous sulphate method by using LiBH4 as a reductant and characterized by SEM, TEM, XRD, surface area, and electrical properties. Later, the resin was applied for the dispersion of iron nanoparticles over its surface for the reduction of Cr(VI and subsequent adsorption of Fe(III and Cr(III as byproducts. In the column studies the reduction of Cr(VI and the adsorption of Cr(III and Fe(III have been observed up to 240 μmole/L.

  16. T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis

    Directory of Open Access Journals (Sweden)

    Riju Bhavesh

    2015-11-01

    Full Text Available Iron oxide nanoparticles have long been studied as a T2 contrast agent in MRI due to their superparamagnetic behavior. T1-based positive contrast, being much more favorable for clinical application due to brighter and more accurate signaling is, however, still limited to gadolinium- or manganese-based imaging tools. Though being the only available commercial positive-contrast agents, they lack an efficient argument when it comes to biological toxicity and their circulatory half-life in blood. The need arises to design a biocompatible contrast agent with a scope for easy surface functionalization for long circulation in blood and/or targeted imaging. We hereby propose an extremely fast microwave synthesis for fluorescein-labeled extremely-small iron oxide nanoparticles (fdIONP, in a single step, as a viable tool for cell labeling and T1-MRI. We demonstrate the capabilities of such an approach through high-quality magnetic resonance angiographic images of mice.

  17. Magnetic Particle Imaging with Tailored Iron Oxide Nanoparticle Tracers

    OpenAIRE

    Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Arami, Hamed; Saritas, Emine U.; Croft, Laura R.; Konkle, Justin; Goodwill, Patrick W.; Halkola, Aleksi; Rahmer, Jürgen; Borgert, Jörn; Steven M. Conolly; Krishnan, Kannan M

    2014-01-01

    Magnetic Particle Imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2*-weighted imaging that are suboptimal for MPI. Here, we describe new tracers tailored to MPI's unique physics,...

  18. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia

    OpenAIRE

    Gonzales-Weimuller, Marcela; Zeisberger, Matthias; Krishnan, Kannan M

    2009-01-01

    Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ~15nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously...

  19. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    OpenAIRE

    Bloemen, Maarten; Brullot, Ward; Luong, Thien Tai; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-01-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane excha...

  20. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Xinying Wu

    2010-05-01

    Full Text Available Xinying Wu1, Yanbin Tan1, Hui Mao2, Minming Zhang11Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; 2Department of Radiology, Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, USAAbstract: Iron oxide nanoparticles (IONPs have been employed for hyperthermia treatments, stem cell therapies, cell labeling, and imaging modalities. The biocompatibility and cytotoxic effects of iron oxide nanoparticles when used in biomedical applications, however, are an ongoing concern. Endothelial cells have a critical role in this research dealing with tumors, cardiovascular disease and inflammation. However, there is little information dealing with the biologic effects of IONPs on the endothelial cell. This paper deals with the influence of dextran and citric acid coated IONPs on the behavior and function of human umbilical vein endothelial cells (HUVECs. After exposing endothelial cells to IONPs, dose-dependent effects on HUVECs viability, cytoskeleton and function were determined. Both citric acid and dextran coated particles appeared to be largely internalized by HUVECs through endocytosis and contribute to eventual cell death possibly by apoptosis. Cytoskeletal structures were greatly disrupted, as evidenced by diminished vinculin spots, and disorganized actin fiber and tubulin networks. The capacity of HUVECs to form a vascular network on Matrigel™ diminished after exposure to IONPs. Cell migration/invasion were inhibited significantly even at very low iron concentrations (0.1 mM. The results of this study indicate the great importance of thoroughly understanding nanoparticle-cell interactions, and the potential to exploit this understanding in tumor therapy applications involving IONPs as thermo/chemoembolization agents.Keywords: iron oxide nanoparticles, cytotoxicity, in vitro test, cytoskeleton, human umbilical vein endothelial cell

  1. Magnetic iron oxide nanoparticles as long wavelength photoinitiators for free radical polymerization

    OpenAIRE

    Yar, Yasemin; Acar, Funda Havva Yağcı; Dadashi-Silab, Sajjad; Yagci, Yusuf

    2015-01-01

    Iron oxide nanoparticles (Fe3O4 NPs) capped with lauric acid agents were synthesized and their photocatalytic activity was investigated in free radical photopolymerization of vinyl monomers. These NPs were able to release charge carriers (electron-hole pairs) upon photoexcitation through which the capping agents or an additional amine co-initiator acting as the hole acceptor underwent oxidation to eventually form the initiating radicals. In lauric acid coated Fe3O4 NPs, electron transfer foll...

  2. At the frontier between heterogeneous and homogeneous catalysis : hydrogenation of olefins and alkynes with soluble iron nanoparticles

    NARCIS (Netherlands)

    Rangheard, Claudine; Julián Fernández, César de; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; Vries, Johannes G. de

    2010-01-01

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C–C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl3 reduced by 3

  3. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni.

    Science.gov (United States)

    Chun, Chan Lan; Baer, Donald R; Matson, Dean W; Amonette, James E; Penn, R Lee

    2010-07-01

    The association of a secondary metal with iron particles affects redox reactivity in engineered remediation systems. However, the structural characteristics of the metal additives and mechanism responsible for changes in reactivity have not been fully elucidated. Here, we synthesized iron nanoparticles with Cu, Pd, and Ni content ranging from 0-2 mol % via a solution deposition process (SDP), hydrogen reduction process (HRP), or hydrogen reduction of ferrihydrite coprecipitated with the metal cations (HRCO). Results from solid-state characterization show that the synthesis methods produced similar iron core/magnetite shell particles but produced substantial differences in terms of the distribution of the metal additives. In SDP, the metal additives were heterogeneously distributed on the surface of the particles. The metal additives were clearly discernible in TEM images as spherical nanoparticles (5-20 nm) on the HRP and HRCO particles. Because the metals were integral to the synthesis process, we hypothesize that the metal additive is present as solute within the iron core of the HRCO particles. Kinetic batch experiments of carbon tetrachloride (CT) degradation were performed to quantitatively compare the redox reactivity of the particles. Overall, metal additives resulted in enhanced pseudo-first-order rate constants of CT degradation (k(O,CT)) compared to that of the iron nanoparticles. For the bimetallic iron nanoparticles prepared by SDP and HRP, k(O,CT) increased with the concentration of metal additives. The values of chloroform yield (Y(CF)) were independent of the identity and amount of metal additives. However, both k(O,CT) and Y(CF) of the HRCO iron particles were significantly increased. Results suggest that it is the distribution of the metal additives that most strongly impacts reactivity and product distribution. For example, for materials with ca. 0.9 mol % Ni, reactivity and Y(CF) varied substantially (HRCO > SDP > HRP), and HRCO-NiFe resulted in

  4. TREG coated iron oxide nanoparticles as contrast agent for MRI in-vivo use

    Science.gov (United States)

    Gutierrez-Garcia, Eric; Hidalgo-Tobon, Silvia; Lopez, Ciro; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery; De Celis Alonso, Benito; Dies Suarez, Pilar; Obregon, Manuel; Perez-Pena, Mario; Platas-Neri, Diana; Mendez-Rojas, Miguel

    2014-11-01

    Super-paramagnetic iron oxide nanoparticles (SPIONs) are of interest due to their great potential applications in diverse fields such as biomedicine. In this work we have prepared SPION nanoparticles using the polyol technique and characterized the magnetic properties of them for MRI in-vivo use. Nanoparticle preparation: All reagents were purchased from commercial sources (Sigma-Aldrich, St. Louis, USA) Iron (III) acetylacetonate, [Fe(acac)3], was used as the iron oxide precursor and thermally decomposed at high temperatures in triethyleneglycol (TREG). Nano-sized magnetite particles were prepared by an adaptation of the method proposed by Wei Cai et al[1-3]. A healthy rabbit was scanned on a clinical 1.5 T Philips MR scanner. Images were taken in 2D mode with a mFFE sequence. Relaxation time T2 was obtained from the MR images using a Matlab algorithm where the signal intensity decay was calculated at each image and then adjusted to a mono-exponential curve. Images were obtained before contrast injection, 24 hours and 36 hours following SPIONs administration. Signal decay at different Echo times for the prepared magnetic SPIONs, before and after contrast injection was measured. It was visualized a concentration of the agent contrast in brain and liver and the results were compared with images obtained from histopathology.

  5. Surfaces of a colloidal iron nanoparticle in its chemical environment: a DFT description.

    Science.gov (United States)

    Fischer, Guntram; Poteau, Romuald; Lachaize, Sébastien; Gerber, Iann C

    2014-10-01

    Describing and understanding surface chemistry on the atomic scale is of primary importance in predicting and rationalize nanoparticle morphology as well as their physical and chemical properties. Here we present the results of comprehensive density functional theory studies on the adsorption of several small organic species, representing the major species (H2, Cl2, HCl, NH3, NH4Cl, and CH3COOH), present in the reaction medium during colloidal iron nanoparticle synthesis on various low-index iron surface models, namely, (100), (110), (111), (211), and (310). All of the tested ligands strongly interact with the proposed surfaces. Surface energies are calculated and ligand effects on the morphologies are presented, including temperature effects, based on a thermodynamic approach combined with the Wulff construction scheme. The importance of taking into account vibrational contributions during the calculation of surface energies after adsorption is clearly demonstrated. More importantly, we find that thermodynamic ligand effects can be ruled out as the unique driving force in the formation of recently experimentally observed iron cubic nanoparticles.

  6. Magnetic Iron Oxide Nanoparticles Mediated Gene Therapy for Cancer An In Vitro Study

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aim of this study was to evaluate the feasibility and efficacy of using TRAIL gene to treat breast cancer mediated with a novel carrier - magnetic iron oxide nanoparticles (polyMAG-1000) coated with PEI. The magnetic iron oxide nanoparticles were used as gene carrier to transfect TRAIL gene into MCF-7 cells. The polyMAG-1000 without TRAIL gene was transfected into the tumor cells as negative control. TRAIL gene transfection with liposome as carrier served as positive control. The apoptosis of cells was detected with TUNEL method. The apoptosis ratio of tumor cells was measured with flow cytometry (FCM). It was found that the apoptosis occurred in the tumor cells after transfection of TRAIL gene mediated by both polyMAG-1000 and liposome. The apoptosis ratio in the group with polyMAG-1000 as gene carrier was (25.11±2.85) %, whereas it was (5.06±1.05) % in the control group with polyMAG-1000 (P<0.01). The apoptosis ratio was as low as (18.31±2.44) % in the group with liposome as gene carrier (P<0.05, as compared with the group with polyMAG-1000 as gene carrier). It is suggested that TRAIL gene may induce apoptosis in MCF-7 breast cancer cells. The magnetic iron oxide nanoparticles coated with PEI may be a potential gene carrier with high transfection efficacy for cancer gene therapy.

  7. Evaluation of the photocatalytic activity of iron oxide nanoparticles functionalized with titanium dioxide

    Science.gov (United States)

    Herrera, A.; Reyes, A.; Colina-Márquez, J.

    2016-02-01

    Photocatalytic activity of iron oxide (IO) nanoparticles functionalized with TiO2 was evaluated through photodegradation of phenol under UV irradiation. For this, magnetic nanoparticles were synthesized by co-precipitation method obtaining aggregates with a size of 46nm. The IO nanoparticles were encapsulated in a polysiloxane matrix and then functionalized with TiO2 at 25°C (sample A: 0.1g TiO2 and B: 0.3g TiO2). Photodegradation experiments were carried out for six hours at pH 3.0 using concentrations of IO-TiO2 nanoparticles of 0.2, 0.5, and 1.0g/L. A maximum amount of 89% of phenol photodegradation was achieved by using 0.2g/L of the IO-TiO2-B sample. In addition, it was evaluated the possibility to re-using the nanomaterial after magnetic separation. For this, 0.2g/L of B sample were submitted for five cycles of photodegradation. A stable photocatalytic activity was observed as well as the nanoparticles were regenerated by calcination among cycles, which suggests the versatility of these nanoparticles for the photodegradation of organic pollutants.

  8. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    Science.gov (United States)

    Ali, A.; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Israr, M. Q.; Sadaf, J. R.; Ahmed, E.; Nur, O.; Willander, M.

    2013-02-01

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness -500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe3O4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe3O4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe3O4 nanoparticles based urea biosensor depicts good sensitivity with ~42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  9. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    International Nuclear Information System (INIS)

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness −500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe3O4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe3O4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe3O4 nanoparticles based urea biosensor depicts good sensitivity with ∼42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  10. The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells

    Science.gov (United States)

    Zhang, Song; Chen, Xiangjian; Gu, Chunrong; Zhang, Yu; Xu, Jindan; Bian, Zhiping; Yang, Di; Gu, Ning

    2009-01-01

    Recently, magnetic nanoparticles of iron oxide (Fe3O4, γ-Fe2O3) have shown an increasing number of applications in the field of biomedicine, but some questions have been raised about the potential impact of these nanoparticles on the environment and human health. In this work, the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) with the same crystal structure, magnetic properties, and size distribution was designed, prepared, and characterized by transmission electronic microscopy, powder X-ray diffraction, zeta potential analyzer, vibrating sample magnetometer, and Fourier transform Infrared spectroscopy. Then, we have investigated the effect of the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) on smooth muscle cells (SMCs). Cellular uptake of nanoparticles by SMC displays the dose, the incubation time and surface property dependent patterns. Through the thin section TEM images, we observe that DMSA-Fe2O3 is incorporated into the lysosome of SMCs. The magnetic nanoparticles have no inflammation impact, but decrease the viability of SMCs. The other questions about metabolism and other impacts will be the next subject of further studies.

  11. Polymer/Iron Oxide Nanoparticle Composites—A Straight Forward and Scalable Synthesis Approach

    Directory of Open Access Journals (Sweden)

    Jens Sommertune

    2015-08-01

    Full Text Available Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle and magnetic multi-core nanoparticles (with several magnetic cores per particle. Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION in a range of polymer matrices of choice, such as poly(styrene, poly(lactid acid, poly(methyl methacrylate, and poly(caprolactone. Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI contrast efficacy.

  12. Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

    Science.gov (United States)

    Sommertune, Jens; Sugunan, Abhilash; Ahniyaz, Anwar; Bejhed, Rebecca Stjernberg; Sarwe, Anna; Johansson, Christer; Balceris, Christoph; Ludwig, Frank; Posth, Oliver; Fornara, Andrea

    2015-01-01

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy. PMID:26307966

  13. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    Directory of Open Access Journals (Sweden)

    Nils Bohmer

    2015-01-01

    Full Text Available Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs and silica-coated iron oxide nanoparticles (SCIONs between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

  14. Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case.

    Science.gov (United States)

    San Román, I; Galdames, A; Alonso, M L; Bartolomé, L; Vilas, J L; Alonso, R M

    2016-09-15

    Commercial stabilized slurry of zero-valent iron nanoparticles (nZVI) as well as laboratory-synthesized polymer-stabilized NZVI nanoparticles were used for lindane (γ-hexachlorocyclohexane) degradation studies in aqueous solution. In the present study, polymer-stabilized iron nanoparticles were stabilized using polyethylene glycol (PEG, Mn ~400 and ~950-1050) and polytetrahydrofuran (PTHF, Mn ~650). To study the effectiveness of the different nanoparticles, a quantitative monitorization of lindane degradation by using solid-phase extraction (SPE) and a qualitative measurement of generated volatile by-products by headspace-solid phase microextraction (HS-SPME) followed by GC/MS were carried out. The obtained data were compared and contrasted with the results obtained in previous work. Results showed that the nanoparticles studied in this work possess superior dechlorination performance compared with previous observations. The freshly prepared Fe(0)-PEG400, Fe(0)-PEG1050 and Fe(0)-PTHF exhibited high reactivity during the dechlorination process of lindane in a very short time. The results obtained with the synthesized nanoparticles were similar to those obtained with commercial nanoparticles. However, in all cases reactivity decreased at reaction's late stage. Degradation of lindane by the studied nanoparticles removed 99.9% of the lindane initial concentration after 72h, except for Fe(0)-PTHF nanoparticles, for which the reaction stopped after 5min. In all cases, the reaction followed a second order kinetics. Finally, comparing the results from this study with our previous work, where different nature polymers were considered (Fe(0)-CMC, Fe(0)-PAA and Fe(0)-PAP), more gradual degradation profile of lindane was observed for Fe(0)-PAA and Fe(0)-CMC. It should be noted that in the present case, the reaction of lindane was speeded up with commercial and Fe(0)-PEG nanoparticles. Nevertheless, in the later case, the composition of by-products was affected by the presence

  15. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.

    Science.gov (United States)

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  16. Room-temperature synthesis and electrocatalysis of carbon nanotubes supported palladium–iron alloy nanoparticles

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) supported palladium–iron bimetallic nanoparticles (Pd–Fe/CNTs) catalyst is synthesized using palladium hexacyanoferrate (PdHCF) as reaction precursor. In this method, the negatively charged PdHCF nanoparticles self-assemble on the positively charged polydiallyldimethylammonium chloride (PDDA) functionalized CNTs through electrostatic interaction, and then are reduced to Pd–Fe alloy nanoparticles by sodium borohydride. The physicochemical properties of Pd–Fe/CNTs are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). These structural analyses reveal that the Pd–Fe/CNTs catalyst possesses the high alloying degree and the small particle size. Electrochemical measurements show that the eletrocatalytic activity of the Pd–Fe/MWCNTs catalyst for the methanol oxidation is better than that of the Pd/CNTs catalyst, which originates from the synergistic effect between Pd atom and Fe atom

  17. Development of iron-based nanoparticles for Cr(VI removal from drinking water

    Directory of Open Access Journals (Sweden)

    Vourlias G.

    2013-01-01

    Full Text Available A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  18. Development of iron-based nanoparticles for Cr(VI) removal from drinking water

    Science.gov (United States)

    Simeonidis, K.; Tziomaki, M.; Angelakeris, M.; Martinez-Boubeta, C.; Balcells, Ll.; Monty, C.; Mitrakas, M.; Vourlias, G.; Andritsos, N.

    2013-01-01

    A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI) removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  19. Association of Arsenic and Phosphorus with Iron Nanoparticles in the hyporheic zone

    Science.gov (United States)

    O'Carroll, Denis; Hartland, Adam; Larsen, Joshua; Andersen, Martin

    2016-04-01

    The role of colloids and nanoparticles in hyporheic zone reactive transport is currently poorly understood, and may play an important role in contaminant mobility. The microbial oxidation of organic matter coupled to reductive iron oxide dissolution is widely recognized as the dominant mechanism driving elevated arsenic (As) concentrations in aquifers. This paper considers the potential of nanoparticles to increase the mobility of As in aquifers, thereby accounting for discrepancies between predicted and observed As transport reported elsewhere. Arsenic, phosphorus, and iron size distributions and natural organic matter association were examined along a flow path from surface water via the hyporheic zone to shallow groundwater. Our analysis demonstrates that the colloidal Fe concentration (>1 kDa) correlates with both colloidal P and colloidal As concentrations. Importantly, increases in the concentration of colloidal P (>1 kDa) were positively correlated with increases in the concentration of nominally dissolved As (nominally dissolved P. This suggests that P actively competes for adsorption sites on Fe nanoparticles, displacing adsorbed As, thus mirroring their interaction with Fe oxides in the aquifer matrix. Dynamic redox fronts at the interface between streams and aquifers may therefore provide globally widespread conditions for the generation of Fe nanoparticles, a mobile phase for As adsorption currently not a part of reactive transport models.

  20. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents.

    Science.gov (United States)

    Xi, Lei; Grobmyer, Stephen R; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2014-06-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.

  1. Iron nanoparticles from blood coated with collagen as a matrix for synthesis of nanohydroxyapatite

    Indian Academy of Sciences (India)

    M Chamundeeswari; B Santhosh Kumar; T Muthukumar; L Muthuraman; K Purna Sai; T P Sastry

    2013-12-01

    A simple wet precipitation technique was used to prepare nanobiocomposite containing iron nanoparticles coated with collagen. This nanobiocomposite was used as matrix for the synthesis of nanohydroxyapatite. The physicochemical characteristic studies of the nanohydroxyapatite thus formed were carried out using fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energydispersive X-ray spectroscopy and X-ray diffraction technique to confirm the formation of hydroxyapatite on iron nanoparticle–collagen complex. The results of the above studies supported the formation of iron nanoparticle–collagen–hydroxyapatite composite. The biological studies such as biocompatibility and hemocompatibility were carried out for nanohydroxyapatite using different cell lines and blood sample. The results of biocompatibility and hemolytic assay revealed that the prepared nanobiocomposite was 100 % biocompatible and hemocompatible. This nanobiocomposite may be used for biomedical application such as injectables for targeted delivery and as scaffold for tissue engineering.

  2. Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon

    Directory of Open Access Journals (Sweden)

    Min Jung Park

    2016-06-01

    Full Text Available Aimed at developing a highly active and stable non-precious metal electrocatalyst for oxygen reduction reaction (ORR, a novel FexNy/NC nanocomposite—that is composed of highly dispersed iron nitride nanoparticles supported on nitrogen-doped carbon (NC—was prepared by pyrolyzing carbon black with an iron-containing precursor in an NH3 atmosphere. The influence of the various synthetic parameters such as the Fe precursor, Fe content, pyrolysis temperature and pyrolysis time on ORR performance of the prepared iron nitride nanoparticles was investigated. The formed phases were determined by experimental and simulated X-ray diffraction (XRD of numerous iron nitride species. We found that Fe3N phase creates superactive non-metallic catalytic sites for ORR that are more active than those of the constituents. The optimized Fe3N/NC nanocomposite exhibited excellent ORR activity and a direct four-electron pathway in alkaline solution. Furthermore, the hybrid material showed outstanding catalytic durability in alkaline electrolyte, even after 4,000 potential cycles.

  3. Toxicity and biodistribution of activated and non-activated intravenous iron oxide nanoparticles

    Science.gov (United States)

    Tate, J. A.; Ogden, J. A.; Strawbridge, R. R.; Pierce, Z. E.; Hoopes, P. J.

    2009-02-01

    The use of nanoparticles in medical treatment has prompted the question of their safety. In this study, the pathophysiology and biodistribution of three different concentrations of intravenously-delivered dextran-coated Fe3O4 iron oxide nanoparticles (IONP) were evaluated in mice. Some groups of mice were exposed to an AC magnetic field (AMF) at levels comparable with those proposed for cancer treatments. Iron biodistribution analysis for both AMF and non-AMF treated mice was performed for all three concentrations used (.6 mg Fe/mouse, 1.8 mg Fe/mouse, and 5.6 mg Fe/mouse). Blood urea nitrogen, alanine transaminase, alkaline phosphatase, total serum protein, and creatinine were also assessed at 4 hours, 7 days, and 14 days post-injection. Histological analysis of lung, spleen, heart, liver, and kidney tissue was conducted at 7 and 14 days post-injection. Prussian blue and H&E stains were used to histomorphometrically assess iron content in the tissues studied. Preliminary results demonstrate small temporary elevation in liver enzymes and hepatocyte vacuolization at all iron concentrations studied. Liver and spleen were the primary sites of IONP deposition. None of the animals demonstrated systemic or local toxicity or illness, with or without AMF activation.

  4. The effect of initial iron concentration and pH on the radiolytic formation of γ-FeOOH nanoparticles

    International Nuclear Information System (INIS)

    The formation of iron oxyhydroxide nanoparticles under gamma irradiation is a process in the infancy of its understanding. Herein we present work to describe how initial iron concentration and pH impact the growth of radiolytically formed nanoparticles. These results can be used to better understand the activity transport processes occurring within a reactor environment which may pose both environmental and safety concerns. Preliminary results suggest that the final particle size is proportional to the initial dissolved iron concentration, while experiments probing the effect of solution pH are ongoing. (author)

  5. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  6. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  7. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mohamad Zaki Ab Rahman

    2013-06-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (MNPs with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe3O4 magnetic nanoparticles (Fe3O4 MNPs having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA-coated Fe3O4 MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence spectrometry (EDXRF, thermogravimetric analysis (TGA, X-ray powder diffraction (XRD, and vibrating sample magnetometer (VSM. The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe2+ and Fe3+ solutions and steering speed. The monodisperse Fe3O4 MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45 °C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe3O4 particles with better dispersibility. The synthesized Fe3O4 nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe3O4 nanoparticles increased with the particle size.

  8. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    Science.gov (United States)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  9. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    Science.gov (United States)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  10. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high

  11. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Science.gov (United States)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T. G.; Burkel, E.

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles.

  12. Controlled growth of iron oxide nanoparticles in the aqueous microdroplets.

    Science.gov (United States)

    Jeon, Bong-sik; Lee, Seung-Jun; Kim, Jong-Duk

    2008-09-01

    Magnetite nanoparticles were synthesized by chemical coprecipitation of ferric and ferrous aqueous solutions via regulation of the microenvironment at ambient conditions. Nanocrystals having an average diameter of 6 to 12 nm were obtained by picoliter droplets, whereas only 9 nm diameter nanocrystals were prepared by microliter droplets. The size of the nanocrystals was controlled by a precise balance of reactions of hydroxide ions with positive ions at the surface layer and inner layers of the droplets. The crystal structure and average size were analyzed by X-ray diffraction pattern and transmission electron microscope images. The field dependence and temperature dependence on magnetization measured by a superconducting quantum interference device demonstrate that the as-synthesized particles are superparamagnetic at room temperature and have a size-dependent magnetic property. The anisotropy constant calculated by the blocking temperature and particle size was found to decrease with increasing particle size.

  13. Magnetorheology of iron associated magnetic metal-organic framework nanoparticle

    Science.gov (United States)

    Quan, Xue Mei; Liu, Ying Dan; Choi, Hyoung Jin

    2015-05-01

    Metal-organic frameworks (MOFs) with zeolite-like structured materials have interesting characteristics because of their high surface areas and pore volumes. Among the various MOFs reported thus far, Fe-BTC was chosen as an additive to improve the dispersion stability of soft-magnetic carbonyl iron particle-based magnetorheological (MR) fluids. The morphology of the Fe-BTC additive was examined by TEM, and the behavior of the MR particles dispersed in silicone oil was examined using a rotational rheometer. With a typical magnetic property, the Fe-BTC additive added MR fluid showed similar MR behavior with that of the CI based MR fluid while its improved dispersion stability was observed.

  14. Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica

    Indian Academy of Sciences (India)

    A Bhaumik; S Samanta; N K Mal

    2005-11-01

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV–visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3),` within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore.

  15. Synthesis and characterization of L-carnosine coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Z. [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Kavas, H. [Department of Physics, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Baykal, A., E-mail: hbaykal@fatih.edu.tr [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Sozeri, H. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze-Kocaeli (Turkey); Alpsoy, L. [Department of Biology, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Celik, S.U. [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Toprak, M.S. [Department of Functional Materials, Royal Institute of Technology, SE16440 Kista-Stockholm (Sweden)

    2011-02-03

    Research highlights: > L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of Fe{sub 3}O{sub 4} (magnetite) in the presence of L-carnosine. > FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. > Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behaviour at room temperature. > The synthesized amino acid-coated magnetic nanoparticles might be applied to cell separation, diagnosis and targeted drug delivery for cancer therapy. - Abstract: L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of iron oxide in the presence of L-carnosine. Crystalline phase was identified as magnetite with an average crystallite size of 8 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM by log-normal fitting was {approx}11 nm. FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. CCIO NPs showed superparamagnetic charactersitic at room temperature. The magnetic core size of superparamagnetic CCIO NPs was found slightly smaller than the size obtained from TEM, due to the presence of magnetically dead layer. Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behavior at room temperature. The low value of saturation magnetization compared to the bulk magnetite has been explained by spin canting. LDH activity tests showed slight cytotoxicity of high dose of CCIO NPs. The ac conductivity of CCIO NPs was found to be greater than that of carnosine and the effective conduction mechanism was found as correlated barrier hopping (CBH). dc activation energy of the

  16. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  17. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays

  18. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    Energy Technology Data Exchange (ETDEWEB)

    Baldassarre, Francesca, E-mail: francesca.baldassarre@unisalento.it [University of Salento, Department of Cultural Heritage (Italy); Cacciola, Matteo, E-mail: matteo.cacciola@unirc.it [University “Mediterranea” of Reggio Calabria, DICEAM (Italy); Ciccarella, Giuseppe, E-mail: giuseppe.ciccarella@unisalento.it [University of Salento, Department of Innovation Engineering (Italy)

    2015-09-15

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  19. Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Robinson, Donald A; Yoo, Jason J; Castañeda, Alma D; Gu, Brett; Dasari, Radhika; Crooks, Richard M; Stevenson, Keith J

    2015-07-28

    An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.

  20. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, Gozde, E-mail: gozdeunsoy@hotmail.com [Middle East Technical University, Department of Biotechnology (Turkey); Yalcin, Serap [Middle East Technical University, Department of Biological Sciences (Turkey); Khodadust, Rouhollah [Middle East Technical University, Department of Biotechnology (Turkey); Gunduz, Gungor [Middle East Technical University, Department of Chemical Engineering (Turkey); Gunduz, Ufuk, E-mail: ufukg@metu.edu.tr [Middle East Technical University, Department of Biological Sciences (Turkey)

    2012-11-15

    The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe{sub 3}O{sub 4}). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH{sub 4}OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8 nm for CS MNPs in TEM and between 58 and 103 nm in DLS. The average diameters of bare MNPs were found as around 18 nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23 % by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia.

  1. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J., E-mail: francisco.teran@imdea.org [Ciudad Universitaria de Cantoblanco, IMDEA Nanociencia (Spain)

    2015-03-15

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.

  2. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Creixell, Mar [Department of Chemical Engineering, University of Puerto Rico, Mayagueez Campus, P.O. Box 9000, Mayagueez, PR 00681 (Puerto Rico); Department of Electronics, Faculty of Physics, University of Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda [Department of Chemical Engineering, University of Puerto Rico, Mayagueez Campus, P.O. Box 9000, Mayagueez, PR 00681 (Puerto Rico); Perez-Torres, Marianela [Department of Pharmaceutical Sciences, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR 00936 (Puerto Rico); Torres-Lugo, Madeline [Department of Chemical Engineering, University of Puerto Rico, Mayagueez Campus, P.O. Box 9000, Mayagueez, PR 00681 (Puerto Rico); Rinaldi, Carlos, E-mail: carlos.rinaldi@upr.ed [Department of Chemical Engineering, University of Puerto Rico, Mayagueez Campus, P.O. Box 9000, Mayagueez, PR 00681 (Puerto Rico)

    2010-08-15

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  3. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  4. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    Science.gov (United States)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  5. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.

    Science.gov (United States)

    Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong

    2013-09-01

    Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids. PMID:24205598

  6. Electrospun polyacrylonitrile nanocomposite fibers reinforced with iron nitrate nanoparticles

    Science.gov (United States)

    Mohammed, Asif

    The methodology of preparing pure Polyacrylonitrile (PAN) fibers and magnetic PAN/FeNO3 composite Nanofibers is the traditional electrospinning process where fibers of diameter ranging less than 100 nm and larger lengths can be sophisticatedly produced on laboratory bench. With varying properties of polymer concentration, voltage and other parameters pure PAN fibers and those loaded with FeNO3 are produced. Analysis of those prepared fibers has been done through a series of experiments like SEM, FITR and X-ray Diffraction. SEM analysis explains the formation of fibers and leads to the selection of best possible ones for future methods of rheological and TGA analysis. In the past where similar contributions have been done for the fibers with FeO and Fe3O4 and the Nanoparticles, the same mentioned procedure replaces them with FeNO3. On the whole, uniform bead-less fibers are obtained and their behaviors' are studied as well. Also, graphical information for correlating the size of fibers and their polymer concentrations has been obtained. TGA analysis for recording their stability under different thermal conditions is reported. Anilining methods using microwave equipment are done instead of conventional ones.

  7. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles.

    Science.gov (United States)

    Granitzer, P; Rumpf, K; Gonzalez-Rodriguez, R; Coffer, J L; Reissner, M

    2015-12-21

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.

  8. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  9. Hepatotoxicity evaluation of dextran stabilized iron oxide nanoparticles in Wistar rats.

    Science.gov (United States)

    Easo, Sheeja Liza; Mohanan, P V

    2016-07-25

    Cellular and organ responses to nanoparticles are relevant in the context of use of nanoparticles for biomedical applications. The purpose of the present study was to determine the potential of dextran stabilized iron oxide nanoparticles (DIONPs) to influence hepatic uptake and consequently induce hepatotoxic response in rats following intravenous administration. Inductively coupled plasma atomic emission spectroscopy analysis revealed that DIONPs are rapidly taken up into the liver, progressively broken down to iron constituents and exported into blood, with a part of it being retained in the liver. The potential of DIONPs to induce oxidative stress response was determined by evaluating the time-dependent redox defense status. Maximum alterations in antioxidant activities were observed to occur within a period of 7days. However, this effect was not followed by significant increase in lipid peroxidation or modulation of hepatic enzymes such as alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and bilirubin levels. Overall, these data imply that the liver retains functional integrity with a dose of 10mg/kg DIONPs, although with brief activation of redox defenses. PMID:27188646

  10. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles.

    Science.gov (United States)

    Hwang, Jangsun; Lee, Eunwon; Kim, Jieun; Seo, Youngmin; Lee, Kwan Hong; Hong, Jong Wook; Gilad, Assaf A; Park, Hansoo; Choi, Jonghoon

    2016-06-01

    Iron oxide nanoparticles have been used in a wide range of biomedical applications, including drug delivery, molecular imaging, and cellular imaging. Various surface modifications have been applied to the particles to stabilize their surface and to give them a moiety for anchoring tags and/or drug molecules. Conventional methods of delivering immunosuppressant drugs often require a high dose of drugs to ensure therapeutic effects, but this can lead to toxic side effects. In this study, we used silica-coated iron oxide nanoparticles (IOSs) for a drug delivery application in which the nanoparticles carry the minimum amount of drug required to be effective to the target cells. IOSs could be loaded with water-insoluble immunosuppressive drug molecules (MPA: mycophenolic acid) and be used as a contrast agent for MRI. We characterized the IOSs for their physicochemical properties and found their average hydrodynamic diameter and core size to be 40.5nm and 5nm, respectively. Following the introduction of MPA-loaded IOSs (IOS/M), we evaluated the secretion dynamics of cytokines from peripheral blood mononuclear cells stimulated with phytohemagglutinin (PHA). The results showed that IOS/M effectively inhibited the secretion of the cytokines interleukin-2 and tumor necrosis factor α, with a minimal concentration of MPA. In conclusion, IOS/M may have potential applications in both efficient drug delivery and MRI. PMID:26966999

  11. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lima, E. [CONICET and Instituto de Nanociencia y Nanotecnologia and Centro Atomico Bariloche (Argentina); Torres, T. E. [University of Zaragoza, Instituto de Nanociencia de Aragon (INA) and Departamento de Fisica de la Materia Condensada and Laboratorio de Microscopias Avanzadas (LMA) (Spain); Rossi, L. M. [Instituto de Quimica, Universidade de Sao Paulo (Brazil); Rechenberg, H. R. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Berquo, T. S. [Institute of Rock Magnetism, University of Minnesota (United States); Ibarra, A. [University of Zaragoza, INA and LMA (Spain); Marquina, C. [CSIC, Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon (ICMA) (Spain); Ibarra, M. R. [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada and LMA (Spain); Goya, G. F., E-mail: goya@unizar.es [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada (Spain)

    2013-05-15

    In this study, magnetic and power absorption properties of a series of iron oxide nanoparticles with average sizes Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket ranging from 3 to 23 nm were reported. The nanoparticles were prepared by thermal decomposition of Iron(III) acetylacetonate in organic media. From the careful characterization of the magnetic and physicochemical properties of these samples, the specific power absorption (SPA) values experimentally found were numerically reproduced, as well as their dependence with particle size, using a simple model of Brownian and Neel relaxation at room temperature. SPA experiments in ac magnetic fields (H{sub 0} = 13 kA/m and f = 250 kHz) indicated that the magnetic and rheological properties played a crucial role determining the heating efficiency at different conditions. A maximum SPA value of 344 W/g was obtained for a sample containing nanoparticles with Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket = 12 nm and dispersion {sigma} = 0.25. The observed SPA dependence with particle diameter and their magnetic parameters indicated that, for the size range and experimental conditions of f and H studied in this study, both Neel and Brown relaxation mechanisms are important to the heat generation observed.

  12. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). PMID:27474599

  13. Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar

    International Nuclear Information System (INIS)

    Synthesis of boronic acid functionalized superparamagnetic iron oxide nanoparticles has been reported. Magnetite nanoparticles were prepared by simple co-precipitation from Fe2+ and Fe3+ solution. m-Aminophenyl boronic acid was attached to iron oxide particles through 3,4-dihydroxy benzaldehyde through C=N bond. X-ray diffraction and selected area electron diffraction have shown the formation of inverse spinel phase magnetite of both as prepared and functionalized magnetite particles. FTIR shows attachment of boronic acid-imine onto iron oxide surface through enediol group. Transmission electron microscopy shows well dispersion of boronic acid functionalized particles of size 8 ± 2 nm. Vibration sample magnetometry shows both the particles are superparamagnetic at room temperature having saturation magnetization (Ms) 52 emu/g. In this work the affinity of these boronic acid functionalized particles towards sugar binding was studied taking dextrose sugar as a model. The influence of pH and sugar concentration has been extensively investigated. The results show that such boronic acid modified superparamagnetic particles are efficient support for sugar separation having maximum sugar loading capacity (60 μg/50 μl) at pH 8.

  14. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mérida, Fernando [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Chiu-Lam, Andreina [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Bohórquez, Ana C. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States); Maldonado-Camargo, Lorena [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Pérez, María-Eglée; Pericchi, Luis [Department of Mathematics, University of Puerto Rico, Río Piedras, P.O. Box 70377, San Juan, PR 00936-8377 (United States); Torres-Lugo, Madeline [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-15

    Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43–47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=2.3 nH m{sup 2} kg{sup −1}) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=1.6 nH m{sup 2} kg{sup −1}) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal

  15. Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method.

    Directory of Open Access Journals (Sweden)

    Michelle Jeung-Eun Lee

    Full Text Available BACKGROUND: Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice. METHODOLOGY/PRINCIPAL FINDINGS: To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7-8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles. CONCLUSIONS/SIGNIFICANCE: We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy.

  16. Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications

    Science.gov (United States)

    Balakrishnan, Srinivasan

    Magnetic nanoparticles have recently attracted much attention for potential biomedical applications such as targeted drug delivery, magnetic resonance imaging contrast agents and hyperthermia treatment of cancerous cells. Future research on biomedical applications also includes use of magnetic nanoparticles for cell and DNA separation. By functionalizing magnetic nanoparticles with cells or DNA selective biomolecules, the particles attach to the target and are removed from the sample upon passing through magnetic field gradients. The field gradients apply a force that attracts the particles given by the equation F = ∇(m · B), where m is the magnetization of the MNP, and B is the applied magnetic field. This type of magnetic manipulation is potential for in vivo applications such as targeted drug delivery, magnetic resonance imaging contrast enhancement and hyperthermia treatment of cancer. The magnitude of the field gradients of magnetic nanoparticles are significantly reduced due to the inverse square law dependence of magnetic field strength and subsequently the forces set up are reduced. Although the research in this field has focused primarily on iron oxide nanoparticles, these oxide nanoparticles have a low magnetization that renders them ineffective, at the distances required for in vivo applications, due to the reduced forces felt by the nanoparticles. Successful implementation of such magnetic nanoparticles based system in vivo may require higher magnetization. The aim of this proposal is to synthesize high magnetization Fe-based MNPs functionalized with artificial proteins. The research described in this dissertation focuses on synthesis, size control, structural and magnetic characterization and associated experimental studies to characterize their properties for application in magnetic fluid hyperthermia and magnetic resonance imaging applications. The method used for the synthesis of the Fe-based nanoparticles is the conventional borohydride

  17. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity

    Directory of Open Access Journals (Sweden)

    Shen CC

    2012-06-01

    Full Text Available Chien-Chang Shen,1,* Hong-Jen Liang,2,* Chia-Chi Wang,3 Mei-Hsiu Liao,4 Tong-Rong Jan11Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 2Innovation and Incubation Center, Yuanpei University, Hsinchu, 3School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 4Division of Isotope Application, Institute of Energy Research, Taoyuan, Taiwan*These authors contributed equally to this workBackground: It was recently reported that iron oxide nanoparticles attenuated antigen-specific humoral responses and T cell cytokine expression in ovalbumin-sensitized mice. It is presently unclear whether iron oxide nanoparticles influence T helper 1 cell-mediated immunity. The present study aimed to investigate the effect of iron oxide nanoparticles on delayed-type hypersensitivity (DTH, whose pathophysiology requires the participation of T helper 1 cells and macrophages.Methods: DTH was elicited by a subcutaneous challenge with ovalbumin to the footpads of mice sensitized with ovalbumin. Iron oxide nanoparticles (0.2–10 mg iron/kg were administered intravenously 1 hour prior to ovalbumin sensitization. Local inflammatory responses were examined by footpad swelling and histological analysis. The expression of cytokines by splenocytes was measured by enzyme-linked immunosorbent assay.Results: Administration of iron oxide nanoparticles, in a dose-dependent fashion, significantly attenuated inflammatory reactions associated with DTH, including the footpad swelling, the infiltration of T cells and macrophages, and the expression of interferon-γ, interleukin-6, and tumor necrosis factor-α in the inflammatory site. Iron oxide nanoparticles also demonstrated a suppressive effect on ovalbumin-stimulated production of interferon-γ by splenocytes and the phagocytic activity of splenic CD11b+ cells.Conclusion: These results demonstrated that a single dose of iron oxide nanoparticles attenuated

  18. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Hoff D

    2013-02-01

    Full Text Available Dan Hoff,1 Lubna Sheikh,2 Soumya Bhattacharya,2 Suprabha Nayar,2 Thomas J Webster11School of Engineering, Brown University, Providence, RI, USA; 2Biomaterials Group, Materials Science and Technology Division, CSIR-National Metallurgical Laboratory, Burmamines, Jamshedpur, IndiaAbstract: In the present study, the permeability of 11 different iron oxide nanoparticle (IONP samples (eight fluids and three powders was determined using an in vitro blood–brain barrier model. Importantly, the results showed that the ferrofluid formulations were statistically more permeable than the IONP powder formulations at the blood–brain barrier, suggesting a role for the presently studied in situ synthesized ferrofluid formulations using poly(vinyl alcohol, bovine serum albumin, collagen, glutamic acid, graphene, and their combinations as materials which can cross the blood–brain barrier to deliver drugs or have other neurological therapeutic efficacy. Conversely, the results showed the least permeability across the blood–brain barrier for the IONP with collagen formulation, suggesting a role as a magnetic resonance imaging contrast agent but limiting IONP passage across the blood–brain barrier. Further analysis of the data yielded several trends of note, with little correlation between permeability and fluid zeta potential, but a larger correlation between permeability and fluid particle size (with the smaller particle sizes having larger permeability. Such results lay the foundation for simple modification of iron oxide nanoparticle formulations to either promote or inhibit passage across the blood–brain barrier, and deserve further investigation for a wide range of applications.Keywords: ferrofluids, iron oxide nanoparticles, permeability, blood–brain barrier

  19. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  20. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells

    Directory of Open Access Journals (Sweden)

    Edmond Kahn

    2010-03-01

    Full Text Available Edmond Kahn1, Mauhamad Baarine2, Sophie Pelloux3, Jean-Marc Riedinger4, Frédérique Frouin1, Yves Tourneur3, Gérard Lizard21INSE RM U678/UMR – S UPMC, IFR 14, CH U Pitié-Salpêtrière, 75634 Paris Cedex 13, France; 2Centre de Recherche INSE RM U866, Equipe Biochimie Métabolique et Nutritionnelle – Université de Bourgogne, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France; 3Centre Commun de Quantimétrie, Université Lyon 1; Université de Lyon, Lyon, France; 4Département de Biologie et de Pathologie des Tumeurs, Centre Georges François-Leclerc, 21000 Dijon, FranceObjective: To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously.Study design: Flow cytometry (FCM, confocal laser scanning microscopy (CLSM, and subsequent factor analysis image processing (FAMIS are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH. Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE.Results: Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and

  1. Magnetic properties of iron oxide nanoparticles prepared by seeded-growth route

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A., E-mail: anaespinosamr@gmail.com [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (ICMM) (Spain); Munoz-Noval, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ceramica y Vidrio (ICV) (Spain); Garcia-Hernandez, M. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (ICMM) (Spain); Serrano, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ceramica y Vidrio (ICV) (Spain); Jimenez de la Morena, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (ICMM) (Spain); Figuerola, A. [Universitat de Barcelona, Departament de Quimica Inorganica i Institut de Nanociencia i Nanotecnologia (Spain); Quarta, A.; Pellegrino, T. [National Nanotechnology Laboratory of CNR-NANO (Italy); Wilhelm, C. [CNRS and Universite Paris Diderot, Laboratoire Matiere et Systemes Complexes (MSC), UMR 7057 (France); Garcia, M. A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ceramica y Vidrio (ICV) (Spain)

    2013-04-15

    In this work we investigate the magnetic properties of iron oxide nanoparticles obtained by two-step synthesis (seeded-growth route) with sizes that range from 6 to 18 nm. The initial seeds result monocrystalline and exhibit ferromagnetic behavior with low saturation field. The subsequent growth of a shell enhances the anisotropy inducing magnetic frustration, and, consequently, reducing its magnetization. This increase in anisotropy occurs suddenly at a certain size ({approx}10 nm). Electronic and structural analysis with X-ray absorption spectroscopy indicates a step reduction in the oxidation state as the particle reaches 10 nm size while keeping its overall structure in spite of the magnetic polydispersity. The formation of antiphase magnetic boundaries due to island percolation in the growing shells is hypothesized to be the mechanism responsible of the magnetic behavior, as a direct consequence of the two-step synthesis route of the nanoparticles.

  2. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei;

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of...... uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As...... a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide‐based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts....

  3. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    Science.gov (United States)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  4. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    Science.gov (United States)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  5. Magnetization and Specific Absorption Rate Studies of Ball-Milled Iron Oxide Nanoparticles for Biomedicine

    Directory of Open Access Journals (Sweden)

    P. Burnham

    2013-01-01

    Full Text Available Comparative studies are presented of iron oxide nanoparticles in the 7–15 nm average diameter range ball milled in hexane in the presence of oleic acid. Transmission electron microscopy identified spherical particles of decreasing size as milling time and/or surfactant concentration increased. Micromagnetic characterization via Mössbauer spectroscopy at room temperature yielded broadened magnetic spectroscopic signatures, while macromagnetic characterization via vibrating sample magnetometry of 7-8 nm diameter particles showed largely superparamagnetic behavior at room temperature and hysteretic at 2 K. Zero-field and field-cooled magnetization curves exhibited a broad maximum at ~215 K indicating the presence of strong interparticle magnetic interactions. The specific absorption rates of ferrofluids based on these nanoparticle preparations were measured in order to test their efficacies as hyperthermia agents.

  6. The synthesis of iron nickel alloy nanoparticles using a reverse micelle technique

    Science.gov (United States)

    Ban, Irena; Drofenik, Miha; Makovec, Darko

    2006-12-01

    Nanosized Fe 0.2Ni 0.8 particles were prepared by reducing their salts with sodium borohydride (NaBH 4) in cationic water-in-oil (w/o) microemulsions of water/cetyl-trimethyl-amonium bromide (CTAB) and n-butanol/isooctane at 25 °C. According to the TEM and X-ray diffraction analyses, the synthesized particles were around 4-12 nm in size. Due to their nanodimensions, the particles had a primitive cubic (pc) structure rather than the body-centered cubic (BCC) structure of the bulk material. An examination of the synthesis from the reverse micelle reveals that the morphology of the iron-nickel alloy nanoparticles depends mainly on the microemulsion's composition. The magnetization of the nanoparticles was much lower than that of the bulk material, reflecting the influence of the nanodimensions on the particles' magnetizations.

  7. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Science.gov (United States)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  8. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2015-01-01

    nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used......Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron...

  9. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.

    2016-06-10

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  10. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids

    Directory of Open Access Journals (Sweden)

    I. V. Beketov

    2012-06-01

    Full Text Available Nanoparticles of iron oxides (MNPs were prepared using the electric explosion of wire technique (EEW. The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetite suspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight. Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid.

  11. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Shukla S

    2015-07-01

    Full Text Available Sudeep Shukla,1 Vikas Arora,2 Alka Jadaun,3 Jitender Kumar,1 Nishant Singh,1 Vinod Kumar Jain1 1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India; 2Department of Chemistry, Indian Institute of Technology, New Delhi, Delhi, India; 3School of Biotechnology, Jawaharlal Nehru University, New Delhi, Delhi, India Abstract: Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM. Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles. Keywords: amebiasis, water treatment, nanotechnology

  12. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles.

    Science.gov (United States)

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral-fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles.

  13. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids

    Science.gov (United States)

    Beketov, I. V.; Safronov, A. P.; Medvedev, A. I.; Alonso, J.; Kurlyandskaya, G. V.; Bhagat, S. M.

    2012-06-01

    Nanoparticles of iron oxides (MNPs) were prepared using the electric explosion of wire technique (EEW). The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetite suspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level) based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight). Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid.

  14. Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2014-01-01

    Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that strongly adsorb in soils and sediments. There is a need to develop new and cost-effective solutions for the remediation of PCB contaminated soils. The suspended electrodialytic remediation combined with zero valent iron...... nanoparticles (nZVI) could be a competitive alternative to the commonly adapted solutions of incineration or landfilling. Surfactants can enhance the PCB desorption, dechlorination, and the contaminated soil cleanup. In this work, two different surfactants (saponin and Tween 80) were tested to enhance PCB...

  15. Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthias G. Wacker

    2014-11-01

    Full Text Available Human serum albumin nanoparticles have been utilized as drug delivery systems for a variety of medical applications. Since ultra-small superparamagnetic particles of iron oxide (USPIO are used as contrast agents in magnetic resonance imaging, their encapsulation into the protein matrix enables the synthesis of diagnostic and theranostic agents by surface modification and co-encapsulation of active pharmaceutical ingredients. The present investigation deals with the surface modification and nanoencapsulation of USPIO into an albumin matrix by using ethanolic desolvation. Particles of narrow size distribution and with a defined particle structure have been achieved.

  16. Iron-Doped Titania Nanoparticles for the Photocatalytic Oxidative Degradation of Nitrite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0. 5 %. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO2 catalyst follows zero-order kinetics, which is different from that over pure TiO2. The reaction rate decreases linearly with the increase of the pH of the solution.

  17. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.

    2015-04-01

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  18. In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution

    Science.gov (United States)

    Hoopes, P. Jacks; Petryk, Alicia A.; Gimi, Barjor; Giustini, Andrew J.; Weaver, John B.; Bischof, John; Chamberlain, Ryan; Garwood, Michael

    2012-03-01

    Recent advances in nanotechnology have allowed for the effective use of iron oxide nanoparticles (IONPs) for cancer imaging and therapy. When activated by an alternating magnetic field (AMF), intra-tumoral IONPs have been effective at controlling tumor growth in rodent models. To accurately plan and assess IONP-based therapies in clinical patients, noninvasive and quantitative imaging technique for the assessment of IONP uptake and biodistribution will be necessary. Proven techniques such as confocal, light and electron microscopy, histochemical iron staining, ICP-MS, fluorescent labeled mNPs and magnetic spectroscopy of Brownian motion (MSB), are being used to assess and quantify IONPs in vitro and in ex vivo tissues. However, a proven noninvasive in vivo IONP imaging technique has not yet been developed. In this study we have demonstrated the shortcomings of computed tomography (CT) and magnetic resonance imaging (MRI) for effectively observing and quantifying iron /IONP concentrations in the clinical setting. Despite the poor outcomes of CT and standard MR sequences in the therapeutic concentration range, ultra-short T2 MRI methods such as, Sweep Imaging With Fourier Transformation (SWIFT), provide a positive iron contrast enhancement and a reduced signal to noise ratio. Ongoing software development and phantom and in vivo studies, will further optimize this technique, providing accurate, clinically-relevant IONP biodistribution information.

  19. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates

    Indian Academy of Sciences (India)

    M Nidhin; R Indumathy; K J Sreeram; Balachandran Unni Nair

    2008-02-01

    We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV–vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.

  20. LA-ICP-MS Allows Quantitative Microscopy of Europium-Doped Iron Oxide Nanoparticles and is a Possible Alternative to Ambiguous Prussian Blue Iron Staining.

    Science.gov (United States)

    Scharlach, Constantin; Müller, Larissa; Wagner, Susanne; Kobayashi, Yuske; Kratz, Harald; Ebert, Monika; Jakubowski, Norbert; Schellenberger, Eyk

    2016-05-01

    The development of iron oxide nanoparticles for biomedical applications requires accurate histological evaluation. Prussian blue iron staining is widely used but may be unspecific when tissues contain substantial endogenous iron. Here we tested whether microscopy by laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) is sensitive enough to analyze accumulation of very small iron oxide particles (VSOP) doped with europium in tissue sections. For synthesis of VSOP, a fraction of Fe3+ (5 wt%) was replaced by Eu3+, resulting in particles with 0.66 mol% europium relative to iron (Eu-VSOP) but with otherwise similar properties as VSOP. Eu-VSOP or VSOP was intravenously injected into ApoE-/- mice on Western cholesterol diet and accumulated in atherosclerotic plaques of these animals. Prussian blue staining was positive for ApoE-/- mice with particle injection but also for controls. LA-ICP-MS microscopy resulted in sensitive and specific detection of the europium of Eu-VSOP in liver and atherosclerotic plaques. Furthermore, calibration with Eu-VSOP allowed calculation of iron and particle concentrations in tissue sections. The combination of europium-doped iron oxide particles and LA-ICP-MS microscopy provides a new tool for specific and quantitative analysis of particle distribution at the tissue level and allows correlation with other elements such as endogenous iron.

  1. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles.

    Science.gov (United States)

    Narayanan, T N; Mary, A P Reena; Swalih, P K Anas; Kumar, D Sakthi; Makarov, D; Albrecht, M; Puthumana, Jayesh; Anas, Abdulaziz; Anantharaman, M R

    2011-03-01

    Self-assembled magnetic colloidal suspensions are sought after by material scientists owing to its huge application potential. The biomedical applications of colloidal nanoparticles necessitate that they are biocompatible, non-interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a controlled co-precipitation technique followed by a modified sol-gel synthesis. A plausible mechanism for the formation of stable suspension of SiO2-coated Iron Oxide nanoparticles with a size of about 9 nm dispersed in polyethylene glycol (PEG) is proposed. Core-shell nature of the resultant SiO2-Iron Oxide nanocomposite was verified using transmission electron microscopy. Fourier transform-infrared spectroscopy studies were carried out to understand the structure and nature of chemical bonds. The result suggests that Iron Oxide exist in an isolated state inside silica matrix. Moreover, the presence of silanol bonds establishes the hydrophilic nature of silica shell confirming the formation of stable ferrofluid with PEG as carrier fluid. The magnetic characterization reveals the superparamagnetic behavior of the nanoparticles with a rather narrow distribution of blocking temperatures. These properties are not seen in ferrofluids prepared from Iron Oxide nanoparticles without SiO2 coating. The latter suggests the successful tuning of the inter-particle interactions preventing agglomeration of nanoparticles. Cytotoxicity studies on citric acid coated water based ferrofluid and silica-coated PEG-based ferrofluid were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride assay and it shows an enhanced compatibility for silica modified nanoparticles. PMID:21449334

  2. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications

    Science.gov (United States)

    Luchini, Alessandra; Irace, Carlo; Santamaria, Rita; Montesarchio, Daniela; Heenan, Richard K.; Szekely, Noemi; Flori, Alessandra; Menichetti, Luca; Paduano, Luigi

    2016-05-01

    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are

  3. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ziv-Polat O

    2012-03-01

    Full Text Available Ofra Ziv-Polat1, Hadas Skaat1, Abraham Shahar2, Shlomo Margel11Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan 52900, Israel; 2NVR Research Ltd, Nes-Ziona 74031, IsraelAbstract: Novel tissue-engineered magnetic fibrin hydrogel scaffolds were prepared by the interaction of thrombin-conjugated iron oxide magnetic nanoparticles with fibrinogen. In addition, stabilization of basal fibroblast growth factor (bFGF was achieved by the covalent and physical conjugation of the growth factor to the magnetic nanoparticles. Adult nasal olfactory mucosa (NOM cells were seeded in the transparent fibrin scaffolds in the absence or presence of the free or conjugated bFGF-iron oxide nanoparticles. The conjugated bFGF enhanced significantly the growth and differentiation of the NOM cells in the fibrin scaffolds, compared to the same or even five times higher concentration of the free bFGF. In the presence of the bFGF-conjugated magnetic nanoparticles, the cultured NOM cells proliferated and formed a three-dimensional interconnected network composed mainly of tapered bipolar cells. The magnetic properties of these matrices are due to the integration of the thrombin- and bFGF-conjugated magnetic nanoparticles within the scaffolds. The magnetic properties of these scaffolds may be used in future work for various applications, such as magnetic resonance visualization of the scaffolds after implantation and reloading the scaffolds via magnetic forces with bioactive agents, eg, growth factors bound to the iron oxide magnetic nanoparticles.Keywords: thrombin, fibroblast growth factor, fibrin scaffold, iron oxide nanoparticles, tissue engineering, magnetism, bioactive nanoparticle

  4. Laser Desorption/Ionization Mass Spectrometry (LDI-MS) of Lipids with Iron Oxide Nanoparticle-Coated Targets

    OpenAIRE

    Kusano, Maiko; Kawabata, Shin-ichirou; Tamura, Yusuke; Mizoguchi, Daigou; Murouchi, Masato; Kawasaki, Hideya; ARAKAWA, Ryuichi; Tanaka, Koichi

    2014-01-01

    Iron oxide nanoparticle (NP)-coated target plates were employed for the direct detection and analysis of low molecular weight lipids by laser desorption/ionization (LDI) mass spectrometry (MS). We have demonstrated that the use of the iron oxide NP-coated target provides a simple, direct, and rapid detection method for lipid standards and epidermal surface lipids without any cumbersome sample pretreatment as well as mass spectra that are free of background matrix peaks. Lipid standards (1-ste...

  5. Enhanced magnetic resonance contrast of iron oxide nanoparticles embedded in a porous silicon nanoparticle host

    Science.gov (United States)

    Kinsella, Joseph; Ananda, Shalini; Andrew, Jennifer; Grondek, Joel; Chien, Miao-Ping; Scandeng, Miriam; Gianneschi, Nathan; Ruoslahti, Erkki; Sailor, Michael

    2013-02-01

    In this report, we prepared a porous Si nanoparticle with a pore morphology that facilitates the proximal loading and alignment of magnetite nanoparticles. We characterized the composite materials using superconducting quantum interference device magnetometry, dynamic light scattering, transmission electron microscopy, and MRI. The in vitro cytotoxicity of the composite materials was tested using cell viability assays on human liver cancer cells and rat hepatocytes. An in vivo analysis using a hepatocellular carcinoma (HCC) Sprague Dawley rat model was used to determine the biodistribution properties of the material, while naïve Sprague Dawley rats were used to determine the pharmocokinetic properties of the nanomaterials. The composite material reported here demonstrates an injectable nanomaterial that exploits the dipolar coupling of superparamagnetic nanoparticles trapped within a secondary inorganic matrix to yield significantly enhanced MRI contrast. This preparation successfully avoids agglomeration issues that plague larger ferromagnetic systems. A Fe3O4:pSi composite formulation consisting of 25% by mass Fe3O4 yields an maximal T2* value of 556 mM Fe-1 s-1. No cellular (HepG2 or rat hepatocyte cells) or in vivo (rat) toxicity was observed with the formulation, which degrades and is eliminated after 4-8 h in vivo. The ability to tailor the magnetic properties of such materials may be useful for in vivo imaging, magnetic hyperthermia, or drug-delivery applications.

  6. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering.

    Science.gov (United States)

    Ziv-Polat, Ofra; Skaat, Hadas; Shahar, Abraham; Margel, Shlomo

    2012-01-01

    Novel tissue-engineered magnetic fibrin hydrogel scaffolds were prepared by the interaction of thrombin-conjugated iron oxide magnetic nanoparticles with fibrinogen. In addition, stabilization of basal fibroblast growth factor (bFGF) was achieved by the covalent and physical conjugation of the growth factor to the magnetic nanoparticles. Adult nasal olfactory mucosa (NOM) cells were seeded in the transparent fibrin scaffolds in the absence or presence of the free or conjugated bFGF-iron oxide nanoparticles. The conjugated bFGF enhanced significantly the growth and differentiation of the NOM cells in the fibrin scaffolds, compared to the same or even five times higher concentration of the free bFGF. In the presence of the bFGF-conjugated magnetic nanoparticles, the cultured NOM cells proliferated and formed a three-dimensional interconnected network composed mainly of tapered bipolar cells. The magnetic properties of these matrices are due to the integration of the thrombin- and bFGF-conjugated magnetic nanoparticles within the scaffolds. The magnetic properties of these scaffolds may be used in future work for various applications, such as magnetic resonance visualization of the scaffolds after implantation and reloading the scaffolds via magnetic forces with bioactive agents, eg, growth factors bound to the iron oxide magnetic nanoparticles. PMID:22419873

  7. Effect of isochronal annealing on phase transformation studies of iron oxide nanoparticles

    Indian Academy of Sciences (India)

    Anjali J Deotale; R V Nandedkar; A K Sinha; Anuj Upadhyay; Puspen Mondal; A K Srivastava; S K Deb

    2015-06-01

    The effect of isochronal annealing on the phase transformation in iron oxide nanoparticles is reported in this work. Iron oxide nanoparticles were successfully synthesized using an ash supported technique followed by annealing for 2 h at various temperatures between 300 and 700° C. It was observed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) that as-grown samples have mixed phases of crystalline haematite (α-Fe2O3) and a minor phase of either maghemite (-Fe2O3) or magnetite (Fe3O4). On annealing, the minor phase transforms gradually to haematite. The phase transformation is complete at annealing temperature of 442° C as confirmed by differential scanning calorimetric (DSC) analysis. The unresolved phases in XRD were further analysed and confirmed to be maghemite from the X-ray absorption near edge structure (XANES) studies. The magnetic measurements showed that at room temperature nano--Fe2O3 is weak ferromagnetic, and its magnetization is larger than the bulk value. The mixed phase sample shows higher value of magnetization because of the presence of ferromagnetic -Fe2O3 phase.

  8. Effect of solvent and silicon substrate surface on the size of iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Phillip; Milev, Adriyan, E-mail: A.Milev@uws.edu.au; Kannangara, Kamali [University of Western Sydney, School of Science and Health (Australia); Martin, Philip [CSIRO Lindfield, Materials Science and Engineering (Australia)

    2015-04-15

    The diameter of carbon nanotubes is strongly related the geometric sizes of the metal particles upon which they are nucleated. To improve the control over the nanoparticle sizes derived from iron acetate and deposited on Si substrates, two different approaches were employed; manipulation of the solvent chemistry and manipulation of the Si substrate surface. The iron acetate was dissolved separately in pure water and ethanol and in binary ethanol/water mixtures. Silicon substrates, with either smooth surface or nano-porous surface, were dip coated using these solutions. The dip-coated substrates were first thermally oxidised at 400 °C in air followed by reduction at 800 °C in an Ar/H{sub 2} gas mixture. As derived particles were measured by scanning electron microscopy, and the average size and size distribution were determined by statistical analysis. Electron microscopy and statistical analyses demonstrated that metal particles deposited onto the smooth Si wafer have sizes ranging from 18 to 160 nm based on the solvent used, where the pure solvents resulted in a narrower size distribution when compared to the water/ethanol mixtures. When nano-porous Si wafer is used as a substrate, the metal particle diameter distributions are reduced to a range from 11 to 17 nm contingent upon the solvent used. The role of the ethanol/water interactions investigated by vibrational (IR and Raman) and {sup 1}H nuclear magnetic resonance spectroscopy on nanoparticle sizes and size distributions is discussed.

  9. Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89

    Indian Academy of Sciences (India)

    Dhrubajyoti Nath; Ajay Kumar Manhar; Kuldeep Gupta; Devabrata Saikia; Shymal Kumar Das; Manabendra Mandal

    2015-10-01

    In recent years the application of metal nanoparticles is gaining attention in various fields. The present study focuses on the additive effect of `green’ synthesized iron nanoparticles (FeNPs) on dark fermentative hydrogen (H2) production by a mesophilic soil bacterium Enterobacter cloacae. The FeNPs were synthesized by a rapid green method from FeSO4 using aqueous leaf extract of Syzygium cumini. The synthesized FeNPs showed a characteristic surface plasmon resonance peak at 267 nm. The transmission electron microscopy images confirm that the formation of FeNPs was mainly porous and irregular in shape, with an average particle size of 20–25 nm. The presence of iron (Fe) in the synthesized FeNPs was confirmed by energy-dispersive X-ray spectroscopy. The comparative effect of FeSO4 and FeNPs on batch fermentative H2 production from glucose was investigated. The fermentation experiments reveal that the percentage and yield of H2 in FeNPs supplementation were increased significantly than the control (no supplementation) and FeSO4 containing media. The maximum H2 yield of 1.9 mol mol−1 glucose utilized was observed in 100 mg l−1 FeNPs supplementation, with two-fold increase in glucose conversion efficiency. Thus, the result suggests that FeNPs supplementation in place of FeSO4 could improve the bioactivity of H2 producing microbes for enhanced H2 yield and glucose consumption.

  10. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier.

    Science.gov (United States)

    Hoff, Dan; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2013-01-01

    In the present study, the permeability of 11 different iron oxide nanoparticle (IONP) samples (eight fluids and three powders) was determined using an in vitro blood-brain barrier model. Importantly, the results showed that the ferrofluid formulations were statistically more permeable than the IONP powder formulations at the blood-brain barrier, suggesting a role for the presently studied in situ synthesized ferrofluid formulations using poly(vinyl) alcohol, bovine serum albumin, collagen, glutamic acid, graphene, and their combinations as materials which can cross the blood-brain barrier to deliver drugs or have other neurological therapeutic efficacy. Conversely, the results showed the least permeability across the blood-brain barrier for the IONP with collagen formulation, suggesting a role as a magnetic resonance imaging contrast agent but limiting IONP passage across the blood-brain barrier. Further analysis of the data yielded several trends of note, with little correlation between permeability and fluid zeta potential, but a larger correlation between permeability and fluid particle size (with the smaller particle sizes having larger permeability). Such results lay the foundation for simple modification of iron oxide nanoparticle formulations to either promote or inhibit passage across the blood-brain barrier, and deserve further investigation for a wide range of applications. PMID:23426527

  11. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    Directory of Open Access Journals (Sweden)

    Zaloga J

    2014-10-01

    Full Text Available Jan Zaloga,1 Christina Janko,1 Johannes Nowak,2 Jasmin Matuszak,1 Sabine Knaup,1 Dietmar Eberbeck,3 Rainer Tietze,1 Harald Unterweger,1 Ralf P Friedrich,1 Stephan Duerr,1 Ralph Heimke-Brinck,4 Eva Baum,4 Iwona Cicha,1 Frank Dörje,4 Stefan Odenbach,2 Stefan Lyer,1 Geoffrey Lee,5 Christoph Alexiou1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany; 2Measuring and Automation Technology, Technical University Dresden, Dresden, Germany; 3Physikalisch-Technische-Bundesanstalt, Berlin, Germany; 4Pharmacy Department, University Hospital Erlangen, Erlangen, Germany; 5Division of Pharmaceutics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany Abstract: The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum

  12. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles

    Science.gov (United States)

    Granitzer, P.; Rumpf, K.; Gonzalez-Rodriguez, R.; Coffer, J. L.; Reissner, M.

    2015-11-01

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay

  13. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    Science.gov (United States)

    da Silva, Delmarcio Gomes; Hiroshi Toma, Sergio; de Melo, Fernando Menegatti; Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo; dos Santos, Antônio Domingues; Araki, Koiti; Toma, e. Henrique E.

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T2) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market.

  14. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    Directory of Open Access Journals (Sweden)

    Liao SH

    2015-05-01

    Full Text Available Shih-Hsiang Liao,1 Chia-Hung Liu,2 Bishnu Prasad Bastakoti,3 Norihiro Suzuki,7 Yung Chang,4 Yusuke Yamauchi,3 Feng-Huei Lin,5,6 Kevin C-W Wu1,6 1Department of Chemical Engineering, National Taiwan University No 1, Taipei, 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3National Institute for Materials Science, Ibaraki, Japan; 4R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyua, 5Institute of Biomedical Engineering, National Taiwan University No 1, Taipei City, 6Division of Medical Engineering Research, National Health Research Institutes, Miaoli County, Taiwan, 7International Center for Young Scientists (ICYS, National Institute for Materials Science (NIMS, Tsukuba, Ibaraki, Japan Abstract: Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4 nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2 owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. Keywords: hyperthermia, iron oxide, alginate, pre-gel, targeting 

  15. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy.

    Science.gov (United States)

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa

    2016-01-15

    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT.

  16. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  17. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth

    Energy Technology Data Exchange (ETDEWEB)

    Luef, Birgit; Fakra, Sirine C.; Csencsits, Roseann; Wrighton, Kelly C.; Williams, Kenneth H.; Wilkins, Michael J.; Downing, Kenneth H.; Long, Philip E.; Comolli, Luis R.; Banfield, Jillian F.

    2013-02-04

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III) bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Further, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated 2- and 3- dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). Most cells had their outer membranes decorated with up to 150 nm diameter aggregates composed of a few nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell-surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  18. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

    Science.gov (United States)

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  19. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. PMID:25841071

  20. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.

    Science.gov (United States)

    Arias, Sandra L; Shetty, Akshath R; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M; Allain, Jean Paul

    2016-01-01

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies. PMID:27285589

  1. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Dielectric and electrical insulation properties

    Science.gov (United States)

    Tuncer, Enis; Rondinone, Adam J.; Woodward, Jonathan; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.

    2009-03-01

    In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.

  2. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    Science.gov (United States)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  3. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    Science.gov (United States)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  4. Role of coating agent in iron oxide nanoparticle formation in an aqueous dispersion: Experiments and simulation.

    Science.gov (United States)

    Bachhar, Nirmalya; Bandyopadhyaya, Rajdip

    2016-02-15

    Iron oxide (Fe3O4) nanoparticle was synthesized by coprecipitation and was modeled and solved using a hybrid (discrete-continuous) model, based on a kinetic Monte Carlo (kMC) simulation scheme. The latter was combined with the constant number MC method, to improve both speed and accuracy of the simulation. Complete particle size distribution (PSD) from simulation matches very well with PSD of both uncoated and coated (with either polyacrylic acid or dextran) Fe3O4 nanoparticles, obtained from our experiments. The model is general, as the time scales of various processes (nucleation, diffusion-growth and coagulation-growth) are incorporated in rate equations, while, input simulation parameters are experimentally measured quantities. With the help of the validated model, effect of coating agent on coagulation-growth was estimated by a single, fitted, coagulation-efficiency parameter. Our simulation shows that, logarithm of coagulation-efficiency scales linearly with logarithm of inverse of the molecular weight of the coating agent. With this scaling law, our model is able to a priori predict the experimental PSD of Fe3O4 nanoparticles, synthesized with an even higher molecular weight of dextran. PMID:26624531

  5. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Nikkanen

    2008-01-01

    Full Text Available The liquid flame spray (LFS method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical composition were determined by TEM, XRD, XPS, and N2-adsorption measurements. The collected particulate material consists of micron-sized aggregates with nanosized primary particles. In both doped and undoped samples, tetragonal phase of zirconia was detected in room temperature while alumina was found to be noncrystalline. In the doped powder, Fe was oxidized to Fe2O3. The primary particle size of collected sample was approximately from 6 nm to 40 nm. Doping was observed to increase the specific surface area of the powder from 39 m2/g to 47 m2/g.

  6. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  7. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals.

    Science.gov (United States)

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-01-01

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining. PMID:27548152

  8. Mössbauer Study of Graphite-Containing Iron Oxide Nanoparticles

    Science.gov (United States)

    Sorescu, Monica; Trotta, Richard

    2016-03-01

    Graphite-doped hematite and magnetite nanoparticles systems (~50 nm) were prepared by mechanochemical activation for milling times ranging from 2 to 12 hours. Their structural and magnetic properties were studied by 57Fe Mössbauer spectroscopy. The spectra corresponding to the hematite milled samples were analyzed by considering two sextets, corresponding to the incorporation of carbon atoms into the iron oxide structure. For ball-milling time of 12 hours a quadrupole split doublet has been added, representing the contribution of ultrafine particles. The Mössbauer spectra of graphite-doped magnetite were resolved considering a sextet and a magnetic hyperfine field distribution, corresponding to the tetrahedral and octahedral sublattices of magnetite, respectively. A quadrupole split doublet was incorporated in the fitting of the 12-hour milled sample. The recoilless fraction for all samples was determined using our previously developed dual absorber method. It was found that the recoilless fraction of the graphite-doped hematite nanoparticles decreases as function of ball-milling time. The f factor of graphite-containing magnetite nanoparticles for the tetrahedral sites stays constant, while that of the octahedral sublattice decreases as function of ball-milling time. These findings reinforce the idea that carbon atoms exhibit preference for the octahedral sites of magnetite.

  9. Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model

    Science.gov (United States)

    Tate, Jennifer A.; Savellano, Mark D.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticle (IONP) hyperthermia is an emerging treatment that shows great potential as a cancer therapy both alone and in synergy with conventional modalities. Pre-clinical studies are attempting to elucidate the mechanisms of action and distributions of IONP in various in vitro and in vivo models, however these studies would greatly benefit from real-time imaging of IONP locations both in cellular and in mammalian systems. To this end, fluorescently-tagged IONP (fIONP) have been employed for real time tracking and co-registration of IONP with iron content. Starch-coated IONP were fluorescently-tagged, purified and analyzed for fluorescent signal at various concentrations. fIONP were incubated with MTGB cells for varying times and cellular uptake analyzed using confocal microscopy, flow cytometry and inductively-coupled plasma mass spectrometry (ICP-MS). fIONP were also injected into a bilateral mouse tumor model for radiation modification of tumor tissue and enhanced fIONP deposition assessed using a Xenogen IVIS fluorescent imager. Results demonstrated that fIONP concentrations in vitro correlated with ICPMS iron readings. fIONP could be tracked in vitro as well as in tissue samples from an in vivo model. Future work will employ whole animal fluorescent imaging to track the biodistribution of fIONP over time.

  10. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Sirivisoot S

    2015-07-01

    Full Text Available Sirinrath Sirivisoot,1 Benjamin S Harrison2 1Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; 2Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA Abstract: To extend the external control capability of drug release, iron oxide nanoparticles (NPs encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. Keywords: antibacterial, maghemite, hematite, Staphylococcus aureus

  11. Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes.

    Science.gov (United States)

    Papadas, Ioannis T; Fountoulaki, Stella; Lykakis, Ioannis N; Armatas, Gerasimos S

    2016-03-18

    Iron(III) oxide is a low-cost material with applications ranging from electronics to magnetism, and catalysis. Recent efforts have targeted new nanostructured forms of Fe2O3 with high surface area-to-volume ratio and large pore volume. Herein, the synthesis of 3D mesoporous networks consisting of 4-5 nm γ-Fe2O3 nanoparticles by a polymer-assisted aggregating self-assembly method is reported. Iron oxide assemblies obtained from the hybrid networks after heat treatment have an open-pore structure with high surface area (up to 167 m(2)g(-1)) and uniform pores (ca. 6.3 nm). The constituent iron oxide nanocrystals can undergo controllable phase transition from γ-Fe2O3 to α-Fe2O3 and to Fe3O4 under different annealing conditions while maintaining the 3D structure and open porosity. These new ensemble structures exhibit high catalytic activity and stability for the selective reduction of aryl and alkyl nitro compounds to the corresponding aryl amines and oximes, even in large-scale synthesis. PMID:26880681

  12. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  13. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    NARCIS (Netherlands)

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-01-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene

  14. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci

    NARCIS (Netherlands)

    Subbiandoss, Guruprakash; Sharifi, Shahriar; Grijpma, Dirk W.; Laurent, Sophie; van der Mei, Henny C.; Mahmoudi, Morteza; Busscher, Henk J.

    2012-01-01

    Biofilms on biomaterial implants are hard to eradicate with antibiotics due to the protection offered by the biofilm mode of growth, especially when caused by antibiotic-resistant strains. Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as

  15. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  16. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    International Nuclear Information System (INIS)

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h

  17. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NARCIS (Netherlands)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-01-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemi

  18. Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations.

    Directory of Open Access Journals (Sweden)

    Valentina Diana

    Full Text Available Multipotent stem cells (SCs could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn, routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI. In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS. Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies.

  19. Functionalized iron oxide nanoparticles for controlling the movement of immune cells

    Science.gov (United States)

    White, Ethan E.; Pai, Alex; Weng, Yiming; Suresh, Anil K.; van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-04-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were

  20. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  1. Dextran and Polymer Polyethylene Glycol (PEG Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    Directory of Open Access Journals (Sweden)

    Alisa Morss Clyne

    2012-05-01

    Full Text Available Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG. Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  2. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  3. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand

    Energy Technology Data Exchange (ETDEWEB)

    Mufti, Nandang, E-mail: nandangmufti@gmail.com; Atma, T., E-mail: nandangmufti@gmail.com; Fuad, A., E-mail: nandangmufti@gmail.com [Department of Physics, University of Malang, Jl Semarang-65145, Malang (Indonesia); Sutadji, E. [Department of Mechanical Engineering, University of Malang, Jl Semarang-65145, Malang (Indonesia)

    2014-09-25

    The aim of this research is to synthesize nanoparticles of black pigment of Magnetite (Fe{sub 3}O{sub 4}), red pigment of hematite (α-Fe{sub 2}O{sub 3}), and yellow pigment of ghoetite (α-FeOOH) from the iron sand. The black pigment of Fe{sub 3}O{sub 4} and the yellow pigment α-FeOOH nanoparticles were synthesized by coprecipitation method with variation of pH. Whereas, the red pigment Fe{sub 2}O{sub 3} was synthesized by sintering Fe{sub 3}O{sub 4} nanoparticles at temperature between 400 °C and 700 7°C for 1 hour. All the pigments has been characterized using X-ray diffraction and SEM. The XRD results shown that the particle size of the black pigmen Fe{sub 3}O{sub 4}, red pigment Fe{sub 3}O{sub 4} and yellow pigment α-FeOOH are around 12, 32, and 30 nm respectively. The particle size of Fe{sub 2}O{sub 3} nanoparticles increase by increasing sintering temperature from 32 nm at 400 °C to 39 nm at 700 °C. For yellow pigment of α-FeOOH, the particle size increase by increasing pH from 30,54 nm at pH 4 to 48,60 nm at pH 7. The SEM results shown that the morphologies of black, yellow and red pigments are aglomarated.

  4. Bi-Functional Silica Nanoparticles Doped with Iron Oxide and CdTe Prepared by a Facile Method

    Directory of Open Access Journals (Sweden)

    Xue Desheng

    2009-01-01

    Full Text Available Abstract Cadmium telluride (CdTe and iron oxide nanoparticles doped silica nanospheres were prepared by a multistep method. Iron oxide nanoparticles were first coated with silica and then modified with amino group. Thereafter, CdTe nanoparticles were assembled on the particle surfaces by their strong interaction with amino group. Finally, an outer silica shell was deposited. The final products were characterized by X-ray powder diffraction, transmission electron microscopy, vibration sample magnetometer, photoluminescence spectra, Fourier transform infrared spectra (FT-IR, and fluorescent microscopy. The characterization results showed that the final nanomaterial possessed a saturation magnetization of about 5.8 emu g−1and an emission peak at 588 nm when the excitation wavelength fixed at 380 nm.

  5. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. PMID:25437262

  6. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    Science.gov (United States)

    Andrade, Angela L.; Fabris, José D.; Pereira, Márcio C.; Domingues, Rosana Z.; Ardisson, José D.

    2013-04-01

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  7. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Angela L. [Federal University of Ouro Preto (UFOP), Department of Chemistry (Brazil); Fabris, Jose D., E-mail: jdfabris@ufmg.br [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM) (Brazil); Pereira, Marcio C. [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Institute of Science, Engineering and Technology (Brazil); Domingues, Rosana Z. [Federal University of Minas Gerais (UFMG), Department of Chemistry (Brazil); Ardisson, Jose D. [Development Center of Nuclear Technology (CNEN/CDTN), Laboratory of Applied Physics (Brazil)

    2013-04-15

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Moessbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  8. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice

    Directory of Open Access Journals (Sweden)

    Shen CC

    2011-06-01

    Full Text Available Chien-Chang Shen1, Chia-Chi Wang1, Mei-Hsiu Liao2, Tong-Rong Jan11Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; 2Division of Isotope Application, Institute of Energy Research, Taoyuan, TaiwanBackground: Superparamagnetic iron oxide nanoparticles have been used in clinical applications as a diagnostic contrasting agent. Previous studies showed that iron oxide nanoparticles deposited in the liver and spleen after systemic administration. The present study investigated the effect of iron oxide nanoparticles on antigen-specific immune responses in mice sensitized with the T cell-dependent antigen ovalbumin (OVA.Methods: BALB/c mice were intravenously administered with a single dose of iron oxide nanoparticles (10-60 mg Fe/kg 1 hour prior to OVA sensitization, and the serum antibody production and splenocyte reactivity were examined 7 days later.Results: The serum levels of OVA-specific IgG1 and IgG2a were significantly attenuated by treatment with iron oxide nanoparticles. The production of interferon-γ and interleukin-4 by splenocytes re-stimulated with OVA in culture was robustly suppressed in mice administered with iron oxide nanoparticles. The viability of OVA-stimulated splenocytes was also attenuated. In contrast, treatment with iron oxide nanoparticles did not affect the viability of splenocytes stimulated with concanavalin A, a T-cell mitogen.Conclusion: Collectively, these data indicate that systemic exposure to a single dose of iron oxide nanoparticles compromises subsequent antigen-specific immune reactions, including the serum production of antigen-specific antibodies, and the functionality of T cells.Keywords: iron oxide nanoparticle, antigen-specific, immune, ovalbumin

  9. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Naseroleslami

    2016-09-01

    Full Text Available Objective: The label and detection of cells injected into target tissues is an area of focus for researchers. Iron oxide nanoparticles can be used to label cells as they have special characteristics. The purpose of this study is to examine the effects of iron oxide nanoparticles on human-derived amniotic membrane stem cell (hAMCs survival and to investigate the magnetic properties of these nanoparticles with increased contrast in magnetic resonance imaging (MRI. Materials and Methods: In this experimental study, we initially isolated mesenchymal stem cells from amniotic membranes and analyzed them by flow cytometry. In addition, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs and characterized them by various methods. The SPIONs were incubated with hAMCs at concentrations of 25-800 μg/mL. The cytotoxicity of nanoparticles on hAMCs was measured by the MTT assay. Next, we evaluated the effectiveness of the magnetic nanoparticles as MRI contrast agents. Solutions of SPION were prepared in water at different iron concentrations for relaxivity measurements by a 1.5 Tesla clinical MRI instrument. Results: The isolated cells showed an adherent spindle shaped morphology. Polyethylene glycol (PEG-coated SPIONs exhibited a spherical morphology. The average particle size was 20 nm and magnetic saturation was 60 emu/g. Data analysis showed no significant reduction in the percentage of viable cells (97.86 ± 0.41% after 72 hours at the 125 μg/ml concentration compared with the control. The relaxometry results of this SPION showed a transverse relaxivity of 6.966 (μg/ml.s-1 Conclusion: SPIONs coated with PEG used in this study at suitable concentrations had excellent labeling efficiency and biocompatibility for hAMCs.

  10. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle-Covalent Versus Adsorptive Approach.

    Science.gov (United States)

    Friedrich, Ralf P; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-12-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.Particularly important for the production of adsorptive and covalent bound drugs to nanoparticles is the pureness of the involved formulation. Especially the covalent binding strategy demands defined chemistry of the drug, which is stabilized by excess free amino acids which could reduce reaction efficiency. In this study, we therefore used tangential flow filtration (TFF) method to purify the drugs before the reaction and used the frequently applied and clinically available recombinant tissue plasminogen activator (tPA; Actilyse(®)) as a proof of concept. We then coupled the tPA preparation to polyacrylic acid-co-maleic acid (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) using an amino-reactive activated ester reaction and compared these particles to PAM-coated SPIONs with electrostatically adsorbed tPA.Using dynamic light scattering (DLS) and pH-dependent electrokinetic mobility measurements, we showed that surface properties of the SPIONs were significantly greater affected after activation of the particles compared to the adsorption controls. Different in vitro assays were used to investigate the activity of tPA after coupling to the particles and purification of the ferrofluid. Covalent linkage significantly improves the reactivity and long-term stability of the conjugated SPION-tPA system compared to simple adsorption. In conclusion, we have shown an effective way to produce SPIONs with covalent and non-covalent ultra-filtrated drugs. We showed

  11. Synthesis and characterization of conditioned carbon with iron nanoparticles for the arsenic removal in aqueous phase

    International Nuclear Information System (INIS)

    Using pineapple husks conditioned with carboxymethylcellulose, hexamine and ferric nitrate, a carbonaceous material was obtained with nanoparticles of Fe (C Fe), which was characterized and tested for arsenic removal in the aqueous phase. The microscopic study showed spheres 4 microns and filaments 100 nm wide, so as iron particles whose diameter decreases to an average of 38.81 nm, when pyrolysis time was increased to 180 min. their distribution in the carbonaceous matrix is homogeneous. According to energy dispersive X-ray spectroscopy, C Fe contains C (82.29%), O (7.23%), K (0.68%), Ca (3.77%) and Fe (6.25%) and its diffraction pattern shows the characteristic peak of Fe (0), which is not observed in the coal without iron. By neutron activation analysis were quantified Al, Br, Ce, Co, Cr, Cs, Eu, Hf, K, Mg, Mn, Na, Rb, Sb, Sc and Zn, they can be involved in the process of sorption of As (v) forming surface active sites. For C Fe and C B characterized by Fourier transform infrared spectrometry, groups C-H, C=O, C=C, -Nh, NH2, isocyanate and isonitrile were found, the last two were formed by the present hexamine. X-ray photoelectron spectroscopy showed energy states of C 1 and O 1 in pineapple shell washed, shell conditioned with iron, C Fe at different times and the pyrolysis coal without iron (C B). The material C Fe 180 presented a specific area of 167 m2/g and 7.12 ± 1 sites/nm2 isoelectric point while pHi = 11.1 C B is 98.80 m2/g specific area and 1.5 ± 1 sites/nm2 and pHi = 10.6, being favorable to the sorption process. The highest removal of As(v) for both materials was at ph = 2, fitting the kinetic data to pseudo-second order model. The isotherms as a function of concentration were adjusted to Freundlich model indicating multilayer chemisorption at specific sites of a heterogeneous medium. Characterization by scanning electron microscopy after the sample sorption Fe nanoparticles remain in the carbonaceous matrix being not affected by the agitation of

  12. The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system

    International Nuclear Information System (INIS)

    In this study, we developed a convenient one-pot method with sodium oleate as both the surfactant and precipitant to synthesize pure magnetite nanoparticles in the water/ethanol/toluene system. The initial molar ratio of [Fe3+]/[Fe2+] and the concentration of iron salts were changed in order to systematically investigate their influences on the chemical and physical properties of nanoparticles, such as the crystal structure, morphology, particle sizes, dispersion and magnetism. Samples were determined by XRD, XPS, FTIR, DLS, and VSM. The oleate coating steadily existed on the surface of the nanoparticles to profit them of excellent monodispersibility and stability in non-polar solvents with very narrow size distribution and extremely approximate mean diameters of ∼7 nm. Particles consisted mainly of magnetite with a little or no maghemite phase with the molar ratio of [Fe3+]/[Fe2+] decreasing from 2:1 to 1:1, but they all exhibited superparamagnetism at room temperature. After the optimization, pure magnetite nanoparticles could be prepared with the saturation magnetization successfully increasing to 75 emu/g(Fe), when the molar ratio of [Fe3+]/[Fe2+] was 1.5:1 and the concentration of iron precursors was 95 mM.

  13. Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays.

    Science.gov (United States)

    Knappe, Patrick; Boehmert, Linda; Bienert, Ralf; Kamutzki, Silvana; Karmutzki, Silvana; Niemann, Birgit; Lampen, Alfonso; Thünemann, Andreas F

    2011-07-01

    Nanoparticles are not typically ready-to-use for in vitro cell culture assays. Prior to their use in assays, powder samples containing nanoparticles must be dispersed, de-agglomerated, fractionated by size, and characterized with respect to size and size distribution. For this purpose we report exemplarily on polyphosphate-stabilized iron oxide nanoparticles in aqueous suspension. Fractionation and online particle size analysis was performed in a time-saving procedure lasting 50 min by combining asymmetrical flow field-flow fractionation (A4F) and small-angle X-ray scattering (SAXS). Narrowly distributed nanoparticle fractions with radii of gyration (R(g)) from 7 to 21 nm were obtained from polydisperse samples. The A4F-SAXS combination is introduced for the preparation of well-characterized sample fractions originating from a highly polydisperse system as typically found in engineered nanoparticles. A4F-SAXS processed particles are ready-to-use for toxicological studies. The results of preliminary tests of the effects of fractionated iron oxide nanoparticles with a R(g) of 15 nm on a human colon model cell line are reported.

  14. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions

  15. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  16. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  17. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles

  18. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles

    Science.gov (United States)

    Beik, Jaber; Abed, Ziaeddin; Shakeri-Zadeh, Ali; Nourbakhsh, Mitra; Shiran, Mohammad Bagher

    2016-07-01

    In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs). Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed. Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO. Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.

  19. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles.

    Science.gov (United States)

    Patil, Ujwal S; Adireddy, Shiva; Jaiswal, Ashvin; Mandava, Sree; Lee, Benjamin R; Chrisey, Douglas B

    2015-10-15

    Increasing biomedical applications of iron oxide nanoparticles (IONPs) in academic and commercial settings have alarmed the scientific community about the safety and assessment of toxicity profiles of IONPs. The great amount of diversity found in the cytotoxic measurements of IONPs points toward the necessity of careful characterization and quantification of IONPs. The present document discusses the major developments related to in vitro and in vivo toxicity assessment of IONPs and its relationship with the physicochemical parameters of IONPs. Major discussion is included on the current spectrophotometric and imaging based techniques used for quantifying, and studying the clearance and biodistribution of IONPs. Several invasive and non-invasive quantification techniques along with the pitfalls are discussed in detail. Finally, critical guidelines are provided to optimize the design of IONPs to minimize the toxicity.

  20. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ujwal S. Patil

    2015-10-01

    Full Text Available Increasing biomedical applications of iron oxide nanoparticles (IONPs in academic and commercial settings have alarmed the scientific community about the safety and assessment of toxicity profiles of IONPs. The great amount of diversity found in the cytotoxic measurements of IONPs points toward the necessity of careful characterization and quantification of IONPs. The present document discusses the major developments related to in vitro and in vivo toxicity assessment of IONPs and its relationship with the physicochemical parameters of IONPs. Major discussion is included on the current spectrophotometric and imaging based techniques used for quantifying, and studying the clearance and biodistribution of IONPs. Several invasive and non-invasive quantification techniques along with the pitfalls are discussed in detail. Finally, critical guidelines are provided to optimize the design of IONPs to minimize the toxicity.

  1. Challenges in the Theoretical Description of Nanoparticle Reactivity: Nano Zero-Valent Iron

    CERN Document Server

    Karlický, František

    2014-01-01

    The reactivity of iron atoms, clusters and nanoparticles (nZVI) is of increasing interest owing to their important practical applications, ranging from the steel industry to water remediation technologies. Here, we provide an overview of computational methods and models that can be applied to study nZVI reactions and discuss their benefits and limitations. We also report current progress in calculations through recent examples treating the reactivity of nZVI particles. Finally, we consider the potential use of highly accurate methods with favorable scaling (such as quantum Monte Carlo or random phase approximation), which are currently considered too computationally expensive but are expected to become more amenable in the future as computer power increases.

  2. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside

    Science.gov (United States)

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-01

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  3. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green

    Science.gov (United States)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-01-01

    Iron-based nanoparticles (OT-FeNP) were synthesized using oolong tea extracts. Their morphology, structure and size were confirmed by scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-visible (UV-vis) and Fourier Transform Infrared spectroscopy (FTIR). Formation of FeNP results in mostly spherical particles with diameters ranging from 40 to 50 nm. Degradation of malachite green (MG) using OT-FeNP demonstrated that kinetics fitted well to the pseudo first-order reaction by removing 75.5% of MG (50 mg/L). This indicated that OT-FeNP has the potential to serve as a green nanomaterial for environmental remediation.

  4. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.

    Science.gov (United States)

    Su, Huijie; Fang, Zhanqiang; Tsang, Pokeung Eric; Zheng, Liuchun; Cheng, Wen; Fang, Jianzhang; Zhao, Dongye

    2016-11-15

    In this study, a kind of high-efficiency and low-cost biochar-supported zero-valent iron nanoparticles (nZVI@BC) was synthesised and used in the remediation of Cr(VI)-contaminated soil. The remediation tests indicated that the immobilisation efficiency of Cr(VI) and Crtotal was 100% and 91.94%, respectively, by 8g nZVI@BC per kg soil for 15 d of remediation. Further investigations showed that exchangeable Cr was almost completely converted to Fe-Mn oxides and organic matter. Moreover, nZVI@BC could effectively improve soil fertility and reduce the leachability of Fe caused by nZVI. At the same time, the cabbage mustard growth experiments indicated that the phytotoxicity of Cr(VI) and Fe in the seedlings was effectively decreased by nZVI@BC treatment, and that the cabbage mustard growth was enhanced. PMID:27469041

  5. CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes

    Indian Academy of Sciences (India)

    Ly May Chew; Holger Ruland; Hendrik J Schulte; Wei Xia; Martin Muhler

    2014-03-01

    Hydrogenation of CO2 to hydrocarbons over iron nanoparticles supported on oxygenfunctionalized multi-walled carbon nanotubes was studied in a fixed-bed U-tube reactor at 25 bar with a H2:CO2 ratio of 3. Conversion of CO2 was approximately 35% yielding C1-C5 products at 360°C with methane and CO as major products. The CO2 equilibrium conversion for temperatures in the range of 320° to 420°C was analysed by using CHEMCAD simulation software. Comparison between experimental and simulated degrees of CO2 conversion shows that reverse water gas shift equilibrium had been achieved in the investigated temperature range and that less than 47% of CO2 can be converted to CO at 420°C.

  6. Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy

    Science.gov (United States)

    Liu, Dongfang; Wu, Wei; Chen, Xi; Wen, Song; Zhang, Xizhi; Ding, Qi; Teng, Gaojun; Gu, Ning

    2012-03-01

    A strategy for conjugating an antitumor agent to superparamagnetic iron oxide nanoparticles (SPIONs) via a biocleavable ester binding is reported. Paclitaxel (PTX) was selected as a model drug. Both the in vitro and in vivo performance of the conjugates of SPION-PTX was investigated respectively. PTX can be released slowly through the hydrolysis of the ester bond in a pH-dependent manner and the SPION-PTX has near equal cytotoxity to the clinical PTX injection (Taxol) at the equivalent dose of PTX. Furthermore, the SPION-PTX can accumulate in tumor tissues as demonstrated by MRI and exhibit better tumor suppression effect than Taxol in vivo. The above good performance of the SPION-PTX together with the good biocompatibility of the SPIONs would promote greatly the application of the SPIONs in the biomedicine field.

  7. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique

    Science.gov (United States)

    Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Paneva, D.; Nedkov, I.

    2006-05-01

    In this paper we study the possibility to control the size of iron oxide (Fe3O4) nanoparticles by the microemulsion technique. We used a water-in-oil reverse microemulsion system with n-hexadecil trimethylammonium bromide (CTAB) as a cationic surfactant, n-butanol as a co-surfactant, n-hexanol as a continuous oil phase, and aqueous phase. The magnetite nanopowders were synthesized by a single microemulsion technique in which the aqueous phase contains only metal ions (Fe2+ and Fe3+). The particle size of the powders varied in the range of 14-36 nm depending on the preparation conditions. We studied the influence of changing the water/surfactant ratio (W 0 = 5, 10, 15, 20) and the metallic ion (Fe2+ and Fe3+) concentration on the particle size distribution and crystallinity of Fe3O4.

  8. Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current

    DEFF Research Database (Denmark)

    Comes, Helena I.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.;

    2015-01-01

    Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed...... different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage...... gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 (sic) for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 (sic) m-3) or landfilling...

  9. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging.

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  10. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  11. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

    Science.gov (United States)

    Shah, Rhythm R; Dombrowsky, Alexander R; Paulson, Abigail L; Johnson, Margaret P; Nikles, David E; Brazel, Christopher S

    2016-11-01

    Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor. PMID:27523991

  12. Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles

    Science.gov (United States)

    Reed, Dwayne Fitzgerald

    Its very high value of magnetocrystalline anisotropy makes the L1 0 phase of FePt a leading candidate for future high density magnetic recording systems. FePt nanoparticles can be prepared by a number of chemical methods. However, these particles have a face-centered cubic structure, with low anisotropy and are superparamagnetic. They must be heated to temperatures above 500 °C to obtain the chemically ordered L10 phase. However, during heating the particles coalesce to give twinned grains with large sizes (10-30 nm). Here we provide a solution to the sintering problem by developing a sol-gel procedure for coating the FePt particles with an amorphous silica shell. The silica shell prevents the FePt particles from agglomerating when heated to 700 °C to effect chemical ordering. FePt nanoparticles were prepared by the super-hydride reduction of platinum(II) acetylacetonate and iron(II) chloride in hot diphenyl ether in the presence of oleylamine and oleic acid capping ligands. The particles had an average diameter of 5-6 nm, a face-centered cubic structure and were superparamagnetic. The particles were coated using a microemulsion process producing a 6 nm silicon oxide shell with a single nanoparticle core-shell structure. The nanoparticles were heated to 700 °C for times of 30 min and 1hr to achieve L10 phase transformation. These samples were annealed in a tube furnace under 95% Ar/5% H2. Many procedures were found to be ineffective. They mostly consisted of biphasic reaction systems and several trials where reaction variables were altered in search of the appropriate conditions. This work has impacted the search for a higher density magnetic recording medium by allowing the study of FePt under a protected environment while achieving chemical ordering. If the L10 FePt nanoparticles will be used in magnetic recording, the particles will require a hard coating to prevent wear. In the course of the present work, it has been shown that the silicate shells

  13. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF for targeting brain tumors

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-01-01

    Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Yaroslav Y Marchenko,3 Anatolii V Dobrodumov,4 Anastasiya L Mikhrina,5 Marina G Martynova,1 Olga A Bystrova,1 Igor V Yakovenko,2 Alexander M Ischenko31Institute of Cytology of the Russian Academy of Sciences (RAS, 2AL Polenov Russian Scientific Research Institute of Neurosurgery, 3Research Institute of Highly Pure Biopreparations, 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, 5IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, RussiaAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs conjugated with recombinant human epidermal growth factor (SPION–EGF were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interaction of SPION–EGF conjugates with cells was analyzed in a C6 glioma cell culture. The distribution of the nanoparticles and their accumulation in tumors were assessed by magnetic resonance imaging in an orthotopic model of C6 gliomas. SPION–EGF nanosuspensions had the properties of a negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION–EGF nanoparticles showed high intracellular incorporation and the absence of a toxic influence on C6 cell viability and proliferation. Intravenous administration of SPION–EGF conjugates in animals provided receptor-mediated targeted delivery across the blood–brain barrier and tumor retention of the nanoparticles; this was more efficient than with unconjugated SPIONs. The accumulation of conjugates in the glioma was revealed as hypotensive zones on T2-weighted images with a twofold reduction in T2 relaxation time in comparison to unconjugated SPIONs (P<0.001. SPION

  14. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Denise Bargheer

    2015-01-01

    Full Text Available 51Cr-labeled, superparamagnetic, iron oxide nanoparticles (51Cr-SPIOs and 65Zn-labeled CdSe/CdS/ZnS-quantum dots (65Zn-Qdots were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the 65Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring 51Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, 65Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic 65ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC, but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our 65Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in

  15. Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation.

    Science.gov (United States)

    Han, Yanlai; Yan, Weile

    2014-12-01

    The incorporation of catalytic metals on iron nanoparticles to form bimetallic nanoparticles (BNPs) generates a class of highly reactive materials for degrading chlorinated hydrocarbons (e.g., trichloroethylene, TCE) in groundwater. Successful implementation of BNPs to groundwater decontamination relies critically on the stability of surface reactive sites of BNPs in groundwater matrices. This study investigated the effect of common groundwater solutes on TCE reduction with Ni-Fe (with Ni at 2 wt.%) bimetallic nanoparticles (herein denoted as Ni-Fe BNPs). Batch experiments involving pre-exposing the nanoparticles to various groundwater solutions for 24 h followed by reactions with TCE solutions were conducted. The results suggest that the deactivation behavior of Ni-Fe BNPs differs significantly from that of the well-studied Pd-Fe BNPs. Specifically, Ni-Fe BNPs were chemically stable in pure water. Mild reduction in TCE reaction rates were observed for Ni-Fe BNPs pre-exposed to chloride (Cl(-)), bicarbonate (HCO3(-)), sulfite (SO3(2-)) and humic acid solutions. Nitrate (NO3(-)), sulfate (SO4(2-)) and phosphate (HPO4(2-)) may cause moderate to severe deactivation at elevated concentrations (>1 mM). Product analysis and surface chemistry investigations using high-resolution X-ray photoelectron spectroscopy (HR-XPS) reveal that NO3(-) decreased particle reactivity mainly due to progressive formation of passivating oxides, whereas SO4(2-) and phosphate elicited rapid deactivation as a result of specific poisoning of the surface nickel sites. At similar levels, phosphate is the most potent deactivation agent among the solutes examined in this study. While our findings point out the desirable quality of Ni-Fe nanoparticles, particularly their greater electrochemical stability compared to Pd-Fe BNPs, its susceptibility to chemical poisoning at high levels of complexing ligands is also noted. Groundwater chemistry is therefore an important factor to consider when

  16. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles.

    Science.gov (United States)

    Ovejero, J G; Cabrera, D; Carrey, J; Valdivielso, T; Salas, G; Teran, F J

    2016-04-28

    Iron oxide nanoparticles have found an increasing number of biomedical applications as sensing or trapping platforms and therapeutic and/or diagnostic agents. Most of these applications are based on their magnetic properties, which may vary depending on the nanoparticle aggregation state and/or concentration. In this work, we assess the effect of the inter- and intra-aggregate magnetic dipolar interactions on the heat dissipation power and AC hysteresis loops upon increasing the nanoparticle concentration and the hydrodynamic aggregate size. We observe different effects produced by inter- (long distance) and intra-aggregate (short distance) interactions, resulting in magnetizing and demagnetizing effects, respectively. Consequently, the heat dissipation power under alternating magnetic fields strongly reflects such different interacting phenomena. The intra-aggregate interaction results were successfully modeled by numerical simulations. A better understanding of magnetic dipolar interactions is mandatory for achieving a reliable magnetic hyperthermia response when nanoparticles are located into biological matrices. PMID:27041536

  17. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe.

    Science.gov (United States)

    Carron, Sophie; Bloemen, Maarten; Vander Elst, Luce; Laurent, Sophie; Verbiest, Thierry; Parac-Vogt, Tatjana N

    2016-03-18

    A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).

  18. Synthesis, phase composition, Mössbauer and magnetic characterization of iron oxide nanoparticles.

    Science.gov (United States)

    Sarveena; Vargas, J M; Shukla, D K; Meneses, C T; Mendoza Zélis, P; Singh, M; Sharma, S K

    2016-04-14

    The present work describes the synthesis of iron oxide nanoparticles by thermal decomposition of Fe-precursors in argon and vacuum environments with control over particle size distribution, phase composition and the resulting magnetic properties. The Rietveld refinement analysis of X-ray diffraction data revealed the crystallinity as well the single-phase of γ-Fe2O3 nanoparticles prepared under vacuum, whereas the argon environment leads to the formation of multi-phase composition of γ-Fe2O3/Fe3O4 (90%) and wustite (10%). Synchrotron X-ray absorption near edge structure (XANES) indicates that the predominant phase in both samples is γ-Fe2O3, which is subsequently verified from the Mössbauer spectra. DC magnetic measurements indicate behavior typical of a superparamagnetic system validated by Mössbauer analysis. However, further investigation of ac susceptibility by typical Néel-Arrhenius and Vogel Fulcher magnetic models suggests an influence of interparticle interactions on the overall magnetic behavior of the system.

  19. Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation.

    Science.gov (United States)

    Du, Jiuju; Zhu, Wencheng; Yang, Li; Wu, Changqiang; Lin, Bingbing; Wu, Jun; Jin, Rongrong; Shen, Taipeng; Ai, Hua

    2016-12-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications. When covered with amphiphilic alkyl-polyethyleneimine (PEI), the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes. However, the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications. In this study, we used lactose to modify amphiphilic low molecular weight polyethylenimine (C12-PEI2K) at different lactosylation degree. It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells, comparing to the unsubstituted ones. Besides, we found the PEI induced cell autophagy can be reduced via lactose modification, indicating the increased cell viability might rely on down-regulating autophagy. Thus, our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification. PMID:27482464

  20. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.

  1. Photoemission study of metallic iron nanoparticles surface aging in biological fluids. Influence on biomolecules adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Canivet, L.; Denayer, F.O. [Université de Lille 2, Droit et Santé, 42 rue P. Duez, 59000 Lille (France); Champion, Y.; Cenedese, P. [CNRS-ICMPE, 2 rue H. Dunant, 94320 Thiais (France); Dubot, P., E-mail: pdubot@icmpe.cnrs.fr [CNRS-ICMPE, 2 rue H. Dunant, 94320 Thiais (France)

    2014-07-01

    Iron nanoparticles (nFe) prepared by vaporization and cryogenic condensation process (10–100 nm) has been exposed to Hank's balanced salt solution (HBSS) and the B-Ali cell growth fluids. These media can be used for cellular growth to study nFe penetration through cell membrane and its induced cytotoxicity. Surface chemistry of nFe exposed to such complex fluids has been characterized as the nanoparticles surface can be strongly changed by adsorption or corrosion processes before reaching intracellular medium. Particle size and surface chemistry have been characterized by scanning electron microscopy (SEM) and high-resolution X-ray photoelectron spectroscopy (HR-XPS). Exposition of nFe particles to growth and differentiation media leads to the formation of an oxy-hydroxide layer containing chlorinated species. We found that the passivated Fe{sub 2}O{sub 3} layer of the bare nFe particles is rapidly transformed into a thicker oxy-hydroxide layer that has a greater ability to adsorb molecular ions or ionic biomolecules like proteins or DNA.

  2. Easy synthesis of bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water

    Science.gov (United States)

    Deng, Jinyi

    In this study, high purity bismuth iron oxide (BiFeO3/BFO) nanoparticles of size 50-80 nm have been successfully synthesized by a simple sol-gel method using urea and polyvinyl alcohol at low temperature. X-ray diffraction (XRD) measurement is used to optimize the synthetic process to get highly crystalline and pure phase material. Diffuse reflectance ultraviolet-visible (DRUV-Vis) spectrum indicates that the absorption cut-off wavelength of the nanoparticles is about 620 nm, corresponding to an energy band gap of 2.1 eV. Compared to BaTiO3, BFO has a better degradation of methyl orange under light radiation. Also, photocatalytic tests prove this material to be efficient towards water splitting under simulated solar light to generate hydrogen. The simple synthetic methodology adopted in this paper will be useful in developing low-cost semiconductor materials as effective photocatalysts for hydrogen generation. Photocatalytic tests followed by gas chromatography (GC) analyses show that BiFeO3 generates three times more hydrogen than commercial titania P25 catalyst under the same experimental conditions.

  3. Superparamagnetic Iron Oxide Nanoparticles Coated with Galactose-Carrying Polymer for Hepatocyte Targeting

    Directory of Open Access Journals (Sweden)

    Mi Kyong Yoo

    2007-01-01

    Full Text Available Our goal is to develop the functionalized superparamagnetic iron oxide nanoparticles (SPIONs demonstrating the capacities to be delivered in liver specifically and to be dispersed in physiological environment stably. For this purpose, SPIONs were coated with polyvinylbenzyl-O-β-D-galactopyranosyl-D-gluconamide (PVLA having galactose moieties to be recognized by asialoglycoprotein receptors (ASGP-R on hepatocytes. For use as a control, we also prepared SPIONs coordinated with 2-pyrrolidone. The sizes, size distribution, structure, and coating of the nanoparticles were characterized by transmission electron microscopy (TEM, electrophoretic light scattering spectrophotometer (ELS, X-ray diffractometer (XRD, and Fourier transform infrared (FT-IR, respectively. Intracellular uptake of the PVLA-coated SPIONs was visualized by confocal laser scanning microscopy, and their hepatocyte-specific delivery was also investigated through magnetic resonance (MR images of rat liver. MRI experimental results indicated that the PVLA-coated SPIONs possess the more specific accumulation property in liver compared with control, which suggests their potential utility as liver-targeting MRI contrast agent.

  4. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

    Science.gov (United States)

    Madhavi, Vemula; Prasad, T. N. V. K. V.; Reddy, Ambavaram Vijaya Bhaskar; Ravindra Reddy, B.; Madhavi, Gajulapalle

    2013-12-01

    Zerovalent iron nanoparticles (ZVNI) were synthesized using a rapid, single step and completely green synthetic method from the leaf extracts of Eucalyptus globules and were characterized using the techniques Scanning Electron Microscopy (SEM), UV-Vis Spectroscopy, Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Zeta potential measurement. The FT-IR analysis reveals that the polyphenolic compounds present in the leaf extract may be responsible for the reduction and stabilization of the ZVNI. These nanoparticles were utilized for the adsorption of hexavalent chromium (Cr (VI)) and the concentration of Cr (VI) was determined using UV-Vis spectrometer after treating with ZVNI. Response and surface contour plots were drawn with the help of Mini-tab software to explain the adsorption of Cr (VI). The adsorption efficiency of Cr (VI) reaches to the highest value (98.1%) when the reaction time was about 30 min. and the ZVNI dosage was 0.8 g/L. The effective parameters such as adsorbent (ZVNI) dosage, initial Cr (VI) concentration and the kinetics were also examined.

  5. Sensitivity Improvement of an Impedimetric Immunosensor Using Functionalized Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Imen Hafaid

    2009-01-01

    Full Text Available This work has explored the development of impedimetric immunosensors based on magnetic iron nanoparticles (IrNP functionalized with streptavidin to which a biotinylated FAB part of the antibody has been bound using a biotin-streptavidin interaction. SPR analysis shows a deviation on the measured (angle during antigen-antibody recognition whereas label free detection using by EIS allows us to monitor variation of polarization resistance. Before detection, layers were analyzed by FTIR and AFM. Compared to immobilization of antibody on bare gold surface using aminodecanethiol SAM, antibody immobilization on nanoparticles permitted to reach lower detection limit: 500 pg/ml instead of 1 ng/ml to in the case of EIS and 300 ng/ml instead of 4.5 μg/ml in the case of SPR. Thus, it permitted to improve the sensitivity: from 257.3  Ω⋅cm2⋅μg−1⋅ml to 1871 Ω⋅cm2⋅μg−1⋅ml in the case of EIS and from 0.003°μg−1⋅ml to 0.094°μg−1⋅ml in the case of SPR.

  6. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles. PMID:27217748

  7. Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba.

    Science.gov (United States)

    Barhoumi, Lotfi; Oukarroum, Abdallah; Taher, Lotfi Ben; Smiri, Leila Samia; Abdelmelek, Hafedh; Dewez, David

    2015-04-01

    Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated in Lemna gibba plants exposed for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) at 0, 12.5, 25, 50, 100, 200 or 400 µg mL(-1). At gibba caused several alterations to the entire plant cellular system, which may come from both the uptake of nanoparticles and metal ions in the soluble fraction. Our results, based on the change of several biomarkers, showed that these SPION have a complex toxic mode of action on the entire plant system and therefore affects its viability. Therefore, the plant model L. gibba was shown to be a sensitive bioindicator of SPION cellular toxicity and thus can be used in the development of a laboratory bioassay toxicity testing. PMID:25392153

  8. The Role of Interactions in Systems of Single Domain Ferrimagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Silvio Dutz

    2012-05-01

    Full Text Available Magnetic nanoparticles are interesting materials for a lot of medical and technical applications. A less experimentally investigated question is the influence of particle packing density on magnetic properties due to magnetic interactions between single particles. For this, magnetic nanoparticles of iron oxides prepared as fine dry powder by laser deposition are investigated with respect to their structural and magnetic properties as function of packing density. The particles are nearly spherically shaped single crystals in the magnetic single domain size range with a mean diameter of 21 nm occasionally exhibiting spinel growth facets. Powders of these particles are diluted by nonmagnetic silicon oxide particles in a range of volume concentrations from 0.2 % up to 68 % of the bulk density of magnetite. The concentration dependence of remanence, coercivity and hysteresis losses is determined by measurements of minor loops in a vibrating sample magnetometer. Results which are discussed in the frame of present theoretical models may be understood in terms of the cubic anisotropy of magnetite distorted by a small uniaxial shape contribution.

  9. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. PMID:25689073

  10. One-step synthesis of iron oxide polypyrrole nanoparticles encapsulating ketoprofen as model of hydrophobic drug.

    Science.gov (United States)

    Attia, Mohamed F; Anton, Nicolas; Khan, Ikram Ullah; Serra, Christophe A; Messaddeq, Nadia; Jakhmola, Anshuman; Vecchione, Raffaele; Vandamme, Thierry

    2016-07-11

    This study reports a novel one-step synthesis of hybrid iron oxide/polypyrrole multifunctional nanoparticles encapsulating hydrophobic drug and decorated with polyethylene glycol. The overall process is based on the in situ chemical oxidative polymerization of pyrrole along with the reduction of ferric chloride (FeCl3) in the presence of ketoprofen as model drug and PEGylated surfactants. The final product is a nanocomposite composed of polypyrrole and a mixture of FeO/Fe2O3. Different concentrations of ketoprofen were encapsulated in the nanocomposite, and were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Encapsulation efficiency of the final product was measured by absorption, which can reach up to 98%. The release experiments confirmed complete drug release after about 3h in PBS solution. Morphological characterization of the nanocomposites was performed by electron microscopy (scanning and transmission electron microscopy) which confirmed the spherical geometry and opaque nature of nanoparticles with average particle size well below 50 nm. The final product is multifunctional system, which could act both as a nanocarrier for drug molecules as well as a contrasting agent. Magnetic relaxometry studies confirmed their possible applications as potential contrast agent in the field of magnetic resonance imaging (MRI). PMID:27163525

  11. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    Science.gov (United States)

    Martínez-González, Raquel; Estelrich, Joan; Busquets, Maria Antònia

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes) of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T) to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA. PMID:27472319

  12. Characterization of superparamagnetic iron oxide nanoparticles and its application in protein purification.

    Science.gov (United States)

    Okoli, Chuka; Fornara, Andrea; Qin, Jian; Toprak, Muhammet S; Dalhammar, Gunnel; Muhammed, Mamoun; Rajarao, Gunaratna K

    2011-11-01

    The application of surface modified magnetic adsorbent particles in combination with magnetic separation techniques has received considerable awareness in recent years. There is a particular need in protein purification and analysis for specific, functional and generic methods of protein binding on solid supports. Nanoscale superparamagnetic iron oxide particles have been used to purify a natural coagulant protein extracted from Moringa oleifera seeds. Spectrophotometric analysis of the coagulant protein was performed using synthetic clay solution as substrate. Protein binding with carboxyl and silica surface modified superparamagnetic iron oxide nanoparticles (SPION) were compared with the known carboxyl methyl cellulose (CMC) beads of approximately 1 microm. SPION modified with carboxyl surface showed higher binding capacity towards the coagulant protein compared to the CMC beads. The high surface area to volume ratio of the carboxyl-coated SPION resulted in high binding capacity and rapid adsorption kinetics of the crude protein extract. The purification and molecular weight of coagulant protein is analyzed by SDS-PAGE. This approach utilizes the most efficient, feasible and economical method of coagulant protein purification and it can also be applicable to other proteins that possess similar properties.

  13. Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes

    Science.gov (United States)

    Hodenius, Michael; Hieronymus, Thomas; Zenke, Martin; Becker, Christiane; Elling, Lothar; Bornemann, Jörg; Wong, John E.; Richtering, Walter; Himmelreich, Uwe; De Cuyper, Marcel

    2012-09-01

    This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC14:0PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of - 39 mV (oleate coated particles) and - 14 mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73 emu g-1 Fe3O4 and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r2 relaxivities and moderately high r1 values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.

  14. Positron annihilation study of iron oxide nanoparticles in mesoporous silica MCM-41 template

    International Nuclear Information System (INIS)

    The subject of investigation were the samples obtained by impregnation of MCM-41 template with an aqueous solution prepared from Fe(NO3)3·9H2O. As a result of such a procedure, iron oxides deposits on MCM-41 were formed. The Moessbauer studies revealed an occurrence of Fe3O4 nanocrystallites in the both ferri- and superparamagnetic states. Almost 80% small particles exist in a paramagnetic state. The positron annihilation lifetime spectroscopy (PALS) spectra were measured in air or in vacuum. The long-lived ortho-positronium (o-Ps) components and their intensities are time dependent due to air molecules interaction with iron oxide nanocrystallites and silica walls surfaces. The adsorption of air on the nanocrystallites surface causes a total screening of their surface and a raise of the o-Ps lifetime values. Observed anti-quenching effect is a result of competition of two phenomena: practically switching off a pick-off mechanism related to interaction of o-Ps with magnetite nanoparticles and considerably weaker usual quenching by paramagnetic oxygen molecules. (authors)

  15. Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts

    International Nuclear Information System (INIS)

    Carbon-encapsulated iron nanoparticles (CEINs) are emerging as promising biomedical tools due to their unique physicochemical properties. In this study, the cytotoxic effect of CEINs (the mean diameter distribution ranges 46–56 nm) has been explored by MTT, LDH leakage, Calcein-AM/propidium iodide (PI) and Annexin V-FITC/PI assays in human melanoma (HTB-140), mouse melanoma (B16-F10) cells, and human dermal fibroblasts (HDFs). The results demonstrated that CEINs produce mitochondrial and cell membrane cytotoxicities in a dose (0.0001–100 μg/ml)-dependent manner. Moreover, the studies elucidated some differences in cytotoxic effects between CEINs used as raw and purified materials composing of the carbon surface with acidic groups. Experiments showed that HTB-140 cells are more sensitive to prone early apoptotic events due to raw CEINs as compared to B16-F10 or HDF cells, respectively. Taken together, these results suggest that the amount of CEINs administered to cells and the composition of CEINs containing different amounts of iron as well as the carbon surface modification type is critical determinant of cytotoxic responses in both normal and cancer (melanoma) cells

  16. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity

    Science.gov (United States)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-09-01

    Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.

  17. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  18. Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis.

    Science.gov (United States)

    Taze, Chrysa; Panetas, Ioannis; Kalogiannis, Stavros; Feidantsis, Konstantinos; Gallios, George P; Kastrinaki, Georgia; Konstandopoulos, Athanasios G; Václavíková, Miroslava; Ivanicova, Lucia; Kaloyianni, Martha

    2016-03-01

    Nanoparticles (NPs), due to their increased application and production, are being released into the environment with unpredictable impact on the physiology of marine organisms, as well as on entire ecosystems and upcoming effects on human health. The aim of the present study was to evaluate and compare the oxidative responses of the mussel Mytilus galloprovincialis after exposure to iron oxide NPs and to iron oxide NPs incorporated into zeolite for 1, 3 and 7 days. Our results showed that both effectors induced changes on animal physiology by causing oxidative stress in hemocytes of exposed mussels compared to control animals. This was shown by the significant increase in reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, ubiquitin conjugates and DNA damage. In addition an increase in prooxidant levels as measured by the prooxidant-antioxidant balance (PAB) assay was observed in exposed mussels' hemolymph. The results show that ROS, DNA damage, protein and lipid oxidation, ubiquitin conjugates and PAB could constitute, after further investigation, reliable biomarkers for the evaluation of pollution or other environmental stressors. In addition, more studies are needed in order to ensure the safety of these NPs on various biomedical applications, since it is critical to design NPs that they meet the demands of application without causing cellular toxicity.

  19. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Science.gov (United States)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  20. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool.

    Science.gov (United States)

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes de Paula; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM(-1)s(-1) in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics.

  1. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

  2. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  3. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    Science.gov (United States)

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  4. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Science.gov (United States)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  5. Biomimetic Modification and In Vivo Safety Assessment of Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Song, Xinfeng; Gu, Xiangling; Sun, Hanwen; Fu, Chunhua; Zhang, Yancong; Dong, Pingxuan

    2016-04-01

    The efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications depends on the magnetic properties, long time stability in biological fluids, and specific targeting capacity. The properties of SPIONs were generally improved by surface modification, but common modification technologies were usually conducted with multi-steps under rigid conditions. In this work, a facile and simple approach to synthesize functionalized SPIONs contrast agents was set up. First of all, SPIONs were prepared by an improved ultrasonic co-precipitation method. Then the surfaces of these SPIONs were modified biomimeticly by dopamine (DA) with strong adhesion. At last, the c(RGDyK), a biomolecule with the capacity of specific targeting capacity towards liver tumor cells, were coupled with DA on SPIONs via Mannich reaction. Thus the novel magnetic composite nanoparticles (abbreviated as c(RGDyK)-PDA-SPIONs) were successfully prepared. The as-synthesized nanoparticles were characterized by scanning electron microscope (SEM), dynamic light scattering, magnetic hysteresis loop measuring instrument. As a result, that the c(RGDyK)-PDA-SPIONs had an average size of about 50 nm and uniform distribution, and had superparamagnetic properties, good water dispersion stability. The acute toxicity test of the assynthesized c(RGDyK)-PDA-SPIONs to mice was also investigated. It was observed that LD50 of c(RGDyK)-PDA-SPIONs was 4.38 g/kg, with a 95% confidence interval ranging from 3.49 g/kg to 5.87 g/kg. These results indicated the novel c(RGDyK)-PDA-SPIONs had excellent biocompatibility, which was endowed with a potential capacity to serve as MRI contrast agents in diagnosis and treatment of the liver tumor. PMID:27451771

  6. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  7. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles.

    Science.gov (United States)

    Beltrán, J J; Barrero, C A; Punnoose, A

    2015-06-21

    The actual role of transition metals like iron in the room temperature ferromagnetism (RTFM) of Fe doped ZnO nanoparticles is still an unsolved problem. While some studies concluded that the Fe ions participate in the magnetic interaction, others in contrast do not believe Fe to play a direct role in the magnetic exchange interaction. To contribute to the understanding of this issue, we have carefully investigated the structural, optical, vibrational and magnetic properties of sol-gel synthesized Zn1-xFexO (0 distortion and quadrupole splitting. Undoped ZnO nanoparticles exhibited very weak RTFM with a saturation magnetization (Ms) of ∼0.47 memu g(-1) and this value increased to ∼2.1 memu g(-1) for Zn0.99Fe0.01O. Very interestingly, the Ms for Zn0.99Fe0.01O and Zn0.97Fe0.03O increased by a factor of about ∼2.3 by increasing annealing for 1 h to 3 h. For x ≥ 0.05, ferrimagnetic disordered spinel ZnFe2O4 was formed and this phase was found to become more ordered with increasing annealing time. Fe does not contribute directly to the RTFM, but its presence promoted the formation of additional single charged oxygen vacancies, zinc vacancies, and more oxygen-ended polar terminations at the nanoparticle surface. These defects, which are mainly superficial, altered the electronic structure and are considered as the main sources of the observed ferromagnetism. PMID:25994044

  8. Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme.

    Science.gov (United States)

    Sun, Lova; Joh, Daniel Y; Al-Zaki, Ajlan; Stangl, Melissa; Murty, Surya; Davis, James J; Baumann, Brian C; Alonso-Basanta, Michelle; Kaol, Gary D; Tsourkas, Andrew; Dorsey, Jay F

    2016-02-01

    The treatment of glioblastoma multiforme, the most prevalent and lethal form of brain cancer in humans, has been limited in part by poor delivery of drugs through the blood-brain barrier and by unclear delineation of the extent of infiltrating tumor margins. Nanoparticles, which selectively accumulate in tumor tissue due to their leaky vasculature and the enhanced permeability and retention effect, have shown promise as both therapeutic and diagnostic agents for brain tumors. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been leveraged as T2-weighted MRI contrast agents for tumor detection and imaging; and gold nanoparticles (AuNP) have been demonstrated as radiosensitizers capable of propagating electron and free radical-induced radiation damage to tumor cells. In this study, we investigated the potential applications of novel gold and SPION-loaded micelles (GSMs) coated by polyethylene glycol-polycaprolactone (PEG-PCL) polymer. By quantifying gh2ax DNA damage foci in glioblastoma cell lines, we tested the radiosensitizing efficacy of these GSMs, and found that GSM administration in conjunction with radiation therapy (RT) led to ~2-fold increase in density of double-stranded DNA breaks. For imaging, we used GSMs as a contrast agent for both computed tomography (CT) and magnetic resonance imaging (MRI) studies of stereotactically implanted GBM tumors in a mouse model, and found that MRI but not CT was sufficiently sensitive to detect and delineate tumor borders after administration and accumulation of GSMs. These results suggest that with further development and testing, GSMs may potentially be integrated into both imaging and treatment of brain tumors, serving a theranostic purpose as both an MRI-based contrast agent and a radiosensitizer. PMID:27305768

  9. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  10. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C.

  11. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

  12. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  13. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  14. Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vitro anti-cancer studies

    Indian Academy of Sciences (India)

    Dilaveez Rehana; Azees Khan Haleel; Aziz Kalilur Rahiman

    2015-07-01

    Superparamagnetic iron oxide nanoparticles were synthesized by simple co-precipitation method and modified with different coating agents such as ascorbic acid, hexanoic acid, salicylic acid, L-arginine and L-cysteine. The synthesized nanoparticles were characterized by various techniques such as FT IR, XRD, VSM, SEM, TEM and thermal analysis. Both bare and coated magnetites were of cubic spinel structure and spherical in shape. All the magnetite nanoparticles showed superparamagnetic behaviour with high saturated magnetization. In vitro cytotoxicity test of bare and coated nanoparticles was performed using adenocarcinoma cells, A549. Cell viability of bare and L-arginine coated magnetite nanoparticles showed IC50 value of 31.2 g/mL proving the compatibility of nanocarriers when compared to others. Hence, L-arginine coated nanoparticles were used for loading the drug paclitaxel and the observed IC50 value (7.8 g/mL) shows its potent anti-proliferative effect against A549 lung cancer cell lines. Thus, it can be speculated that the drug paclitaxel loaded L-arginine coated nanoparticles could be used as an effective drug carrier for the destruction of cancer cells.

  15. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    Science.gov (United States)

    Panchal, V.; Lahoti, G.; Bhandarkar, U.; Neergat, M.

    2011-08-01

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L18 array of the Taguchi method, followed by the L4 array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe3O4 and Fe2O3 with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  16. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, V; Neergat, M [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Lahoti, G; Bhandarkar, U, E-mail: bhandarkar@iitb.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2011-08-31

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L{sub 18} array of the Taguchi method, followed by the L{sub 4} array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  17. X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing

    International Nuclear Information System (INIS)

    Iron-oxide nanoparticles have been synthesized by high temperature arc plasma route with different plasma currents and characterized for their structure, morphology and local atomic order. Fe K-edge x-ray absorption spectra reveal distinct local structure of the samples grown with different plasma currents. We have shown that the local disorder is higher for the higher plasma current grown samples that also have a larger average particle-size. The results provide useful information to control structural and morphological properties of nanoparticles grown by high temperature plasma synthesis process

  18. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects

    Science.gov (United States)

    Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng

    2016-07-01

    Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the

  19. Drugs Approved for Pancreatic Cancer

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Pancreatic Cancer This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Pancreatic Cancer Abraxane (Paclitaxel Albumin-stabilized Nanoparticle Formulation) Afinitor (Everolimus) ...

  20. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    Directory of Open Access Journals (Sweden)

    Key J

    2016-08-01

    , by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging.Keywords: MRI, NIRF, multimodal imaging, chitosan, iron oxide, bladder cancer

  1. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    OpenAIRE

    Venkatesan K; Rajan Babu D; Kavya Bai MP; Supriya R; Vidya R.; Madeswaran S; Anandan P; Arivanandhan M; Hayakawa Y

    2015-01-01

    Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The struct...

  2. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  3. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering

    OpenAIRE

    Ziv-Polat O; Skaat H; Shahar A; Margel S

    2012-01-01

    Ofra Ziv-Polat1, Hadas Skaat1, Abraham Shahar2, Shlomo Margel11Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan 52900, Israel; 2NVR Research Ltd, Nes-Ziona 74031, IsraelAbstract: Novel tissue-engineered magnetic fibrin hydrogel scaffolds were prepared by the interaction of thrombin-conjugated iron oxide magnetic nanoparticles with fibrinogen. In addition, stabilization of basal fibroblast growth factor (bFGF) was achieved by the covalent and phys...

  4. Convenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications

    OpenAIRE

    Passemard, Solène; Städler, Davide; Ucnova, Lucia; Schneiter, Guillaume Stéphane; Kong, Phally; Bonacina, Luigi; Gerber-Lemaire, Sandrine

    2013-01-01

    A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization wi...

  5. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rhythm R. [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States); Davis, Todd P.; Glover, Amanda L.; Nikles, David E. [Department of Chemistry, The University of Alabama, Tuscaloosa, AL (United States); Brazel, Christopher S., E-mail: cbrazel@eng.ua.edu [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States)

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe{sub 3}O{sub 4}) and maghemite (γ-Fe{sub 2}O{sub 3}) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1–47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. - Highlights: • Heating was tested in seven iron oxide nanoparticles for different magnetic fields. • Confirms an optimal nanoparticle size for heating that agrees with the literature. • Verifies Rosenweig's equation to predict the effect of field frequency on heating. • Reports reduced heating in high viscosity environments.

  6. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    OpenAIRE

    Kuen-Song Lin et al

    2008-01-01

    The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN) in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD) to reveal the speciation and possible reaction pathway in a very complex...

  7. The efficiency of magnetic carbon activated by iron oxide nanoparticles in removing of Cu (II from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Salehe Salehnia

    2016-04-01

    Full Text Available Background and Aim: Copper ions, due to forming complexes with organic and mineral compounds, can have worrying effects on health and environment. In the present study, the effect of powdered magnetic carbon activated by iron-oxide nanoparticles in removing of CU (V; II from aqueous solutions was assessed. Materials and Methods: This experimental study aimed at determining the effect of powdered magnetic carbon activated  by iron-oxide nanoparticles  parameters including PH, contact time, absorbing dose, and initial concentration on copper(II removal .from aqueous solutions; through an indirect current. In order to assess the qualities of the synthetized adsorbent, TGA, FT-IR and SEM tests were applied. Residual concentration of copper was measured at 324nm wavelength by means of atomic absorption spectrometry flame. The obtained data was analyzed using Langmuir and Freundlich isotherm model. Result: It was found that synthetic nanoparticles(PH=10, with the adsorbent dosage of 1gr/l, can remove more than 96% of copper ions from aqueous solutions at 2 minutes. Also, the results showed that copper absorption pattern is more in accord with Langmuir model.  Conclusion: Based on the current findings , magnetic synthesized nanoparticles coated with carbon. are in sporadic form in aqueous solutions. and can easily be separated using external magnetic environment. Moreover, because of existant active carbon sites absorption in iron oxide structure suferficial absorbtion capacity increases and and these nanoparticles reveal to have a high performance in the removing process of copper pollutants from aqueous solutions.

  8. Magnetic Labelling of Mesenchymal Stem Cells with Iron-Doped Hydroxyapatite Nanoparticles as Tool for Cell Therapy.

    Science.gov (United States)

    Panseri, Silvia; Montesi, Monica; Iafisco, Michele; Adamiano, Alessio; Ghetti, Martina; Cenacchi, Giovanna; Tampieri, Anna

    2016-05-01

    Superparamagnetic nanoparticles offer several opportunities in nanomedicine and magnetic cell targeting. They are considered to be an extremely promising approach for the translation of cell-based therapies from the laboratory to clinical studies. In fact, after injection, the magnetic labeled cells could be driven by a static magnetic field and localized to the target site where they can perform their specific role. In this study, innovative iron-doped hydroxyapatite nanoparticles (FeHA NPs) were tested with mesenchymal stem cells (MSCs) as tools for cell therapy. Results showed that FeHA NPs could represent higher cell viability in'respect to commercial superparamagnetic iron oxide nanoparticles (SPION) at four different concentrations ranging from 10 μg/ml up to 200 μg/ml and would also upregulate an early marker involved in commitment and differentiation of MSCs. Moreover, FeHA NPs were uptaken without negatively affecting the cell behavior and their ultrastructure. Thus obtained magnetic cells were easily guided by application of a static magnetic field. This work demonstrates the promising opportunities of FeHA NPs in MSCs labeling due to the unique features of fast degradation and very low iron content of FeHA NPs compared to SPIONs. Likewise, due to the intrinsic properties of FeHA NPs, this approach could be simply transferred to different cell types as an effective magnetic carrier of drugs, growth factors, miRNA, etc., offering favorable prospects in nanomedicine.

  9. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis

    Science.gov (United States)

    Walker, Joan M.; Zaleski, Jeffrey M.

    2016-01-01

    Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic

  10. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems

    OpenAIRE

    Waiz Karim; Armin Kleibert; Urs Hartfelder; Ana Balan; Jens Gobrecht; van Bokhoven, Jeroen A.; Yasin Ekinci

    2016-01-01

    Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions...

  11. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment

    Science.gov (United States)

    Quinto, Christopher A.; Mohindra, Priya; Tong, Sheng; Bao, Gang

    2015-07-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy.Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could

  12. Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application

    Energy Technology Data Exchange (ETDEWEB)

    Nor, Noorhashimah Mohamad [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia); Tan, Soo Choon; Noordin, Rahmah [NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The effects of acid functionalization and biocompatible polymer on iron oxide nanoparticles (IONPs) ferrofluid were studied. Black-Right-Pointing-Pointer The IONPs functionalized using citric acid (IONPs-CA) is the most stable ferrofluid with zeta potential value of -49 mV. Black-Right-Pointing-Pointer IONPs-CA can be directly conjugated with antibody without biocompatible polymer coating. Black-Right-Pointing-Pointer IONPs-CA had optimum detection efficiency of 15 min assay time. Black-Right-Pointing-Pointer IONPs-CA showed the highest colour intensity in labelling lateral flow immunoassay. - Abstract: In this study, colloidal stability of iron oxide nanoparticles (IONPs) with several acid functionalizations and biocompatible polymer coating were compared for use as labelling agent in lateral flow immunoassay (LFIA). IONPs were synthesized using the precipitation method and peptized using perchloric acid (PA), nitric acid (NA) and citric acid (CA) to form a stable IONPs ferrofluid. Steric stabilization of IONPs using silane polyethelene glycol (SiPEG) was developed to improve biocompatibility and provide spaces for subsequent conjugation process. From the transmission electron microscopy (TEM) images, the sizes of IONPs obtained with different acids peptization were in range of 11-17 nm. The IONPs peptized using citric acid showed the most stable ferrofluid condition at physiological condition with zeta potential value of -49 mV. The LFIA was also developed to examine the conjugation properties of IONPs to mouse anti-human IgG{sub 4} antibody (M{alpha}HIgG{sub 4}). IONPs functionalized with citric acid can be directly conjugated with the M{alpha}HIgG{sub 4} without the need of SiPEG addition. This is due to the presence of the carboxylic group that acted as a ligand to the extended bond formation with the antibody. Moreover, the conjugation of IONPs with M{alpha}HIgG{sub 4} was also tested in a LFIA to detect brugian

  13. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    Science.gov (United States)

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-01-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications. PMID:27004738

  14. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method

    International Nuclear Information System (INIS)

    Uniformly sized and crystalline iron oxide nanoparticles (IONPs) with spinel structure and mean diameters of about 3, 6 and 9 nm were synthesized in high yield using the microemulsion route at room temperature. The nanoparticles (NPs) were stabilized in situ by organic surfactant molecules which acted both as a stabilizer of the microemulsion system and as a capping layer of the NP surface. NP size control was attained by careful adjustment of the preparation conditions. The structure, morphology and NP size distribution were investigated by x-ray diffraction, transmission electron microscopy and scanning electron microscopy. A particular effort was devoted in this work to study the effect of size and capping of these NPs on their magnetic structure by in-field Mössbauer spectroscopy at 4.2 K. The mean canting angle (relative to the applied field direction) of the Fe spins was observed to increase with decreasing NP size due to the enhanced surface-to-volume ratio. Comparing bare and capped NPs of the same diameter, we verified that the spin canting was not affected by the organic capping. This implied almost identical magnetic orientations of bare and capped NPs. Simultaneously, the capping material was capable of preventing agglomeration effects which can occur in case of direct particle contact. Using a core/shell model, we showed that spin canting originated from the surface shell of the NPs. Furthermore, the Mössbauer spectral parameters provided evidence for the existence of a high fraction of Fe3O4 (magnetite) in the IONP. (paper)

  15. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Sulalit, E-mail: sulalit.bandyopadhyay@ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Singh, Gurvinder [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Sandvig, Ioanna [MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Sandvig, Axel [MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Department of Neurosurgery, Umeå University Hospital, Umeå (Sweden); Mathieu, Roland; Anil Kumar, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Glomm, Wilhelm Robert [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, N-7465 Trondheim (Norway)

    2014-10-15

    Graphical abstract: - Highlights: • A novel synthetic protocol for Fe@Au nanoparticles (NPs) has been optimized. • Surface functionalization and characterization of Fe@Au NPs. • NPs retain superparamagnetic properties after Au coating. • No toxic effects on two different cell types. • NPs suitable for theranostic applications. - Abstract: Fe@Au core–shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV–vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  16. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal

    Science.gov (United States)

    Lunge, Sneha; Singh, Shripal; Sinha, Amalendu

    2014-04-01

    Magnetic iron oxide nanoparticles (MION-Tea) successfully synthesized using tea waste template. MION-Tea exhibit super magnetic properties under external magnetic field with saturation magnetization value of 6.9 emu/g at room temperature. SEM of MION-Tea shows cuboid/pyramid shaped crystals structure of Fe3O4 (magnetite). TEM of MION-Tea shows the particle size in the range of 5-25 nm. XRD pattern of MION-Tea is identical to magnetite. Magnetic nanoparticles are tested for removal of As(III) and As(V) from aqueous solution. The adsorption data obeyed the Langmuir equation with high adsorption capacity of 188.69 mg/g for arsenic (III), and 153.8 mg/g for arsenic (V). The mean sorption energy (E) calculated from D-R model, indicated physico-chemical sorption process. A pseudo-second-order kinetic model fitted best for As(III) adsorption on MION-Tea and the derived activation energy was 64.27 kJ/mol. Thermodynamics revealed the endothermic nature of adsorption. The effects of solution pH, interfering anions and initial As(III) concentration have been investigated. MION-Tea was very low cost (Rs. 136 per kg). MION-Tea can be reused up to 5 adsorption cycles and regenerated using NaOH. Cost of As(III) removal from water of was estimated to be Rs. 14 for 100 L. Comparison with reported adsorbents proved MION-Tea a potential adsorbent for As(III) and As(V) adsorption.

  17. Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power

    Science.gov (United States)

    Iacovita, Cristian; Stiufiuc, Rares; Radu, Teodora; Florea, Adrian; Stiufiuc, Gabriela; Dutu, Alina; Mican, Sever; Tetean, Romulus; Lucaciu, Constantin M.

    2015-10-01

    Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.

  18. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    Science.gov (United States)

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst.

  19. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo

    Science.gov (United States)

    Simberg, Dmitri; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Park, Ji-Ho; Sailor, Michael J.; Ruoslahti, Erkki

    2009-01-01

    Previously we reported that plasma kallikrein and high molecular weight kininogen attach to the surface of dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) through the incompletely covered iron oxide core (Simberg et al., Biomaterials, 2009). Here we show that SPIONs also activate kallikrein-kinin system in vitro and in vivo. The serine protease activity of kallikrein was stably associated with SPIONs and could be detected on the nanoparticles even after extensive washing steps. The enzymatic activity was not detectable in kininogen-deficient and Factor XII-deficient plasma. The enzymatic activation could be blocked by precoating SPIONs with histidine-rich Domain 5 (D5) of kininogen. Importantly, the kallikrein activity was detectable in plasma of SPION-injected, but not of D5/SPION-injected mice. Tumor-targeted SPIONs when injected into kininogen-deficient and control mice, produced high levels of vascular clotting in tumors, suggesting that kallikrein activation is not responsible for the nanoparticle-induced thrombosis. These data could help in understanding the toxicity of nanomaterials and could be used in designing nanoparticles with controlled enzymatic activity. PMID:19508879

  20. Encapsulation of superparamagnetic iron oxide nanoparticles in poly-(lactide-co-glycolic acid) microspheres for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gun, Sumeyra; Edirisinghe, Mohan [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Stride, Eleanor, E-mail: Eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus, University of Oxford, Oxford OX3 7DQ (United Kingdom)

    2013-08-01

    Magnetic microspheres were prepared using a single step coaxial electrohydrodynamic atomization technique at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the coating and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles dispersed in polyethylene glycol as the encapsulated material. The morphology and particle size distributions of the prepared magnetic microspheres were investigated by scanning electron microscopy. The particles were spherical with mean diameters ranging from ∼ 2 μm to 18 μm, depending on the combination of processing parameters (flow rate and applied voltage). Analysis by infrared spectroscopy and focused ion-beam sectioning confirmed incorporation of iron oxide nanoparticles into the microspheres and the prepared samples were shown to be responsive to an applied magnetic field. This study demonstrates a convenient method for the preparation of nanoparticle loaded microspheres, which could be used potentially as transverse relaxation contrast agents in magnetic resonance imaging, as well as for magnetically guided drug delivery. Highlights: • Polymer microspheres embedding magnetic nanoparticles were prepared by coaxial electrospraying. • Particle size and uniformity could be controlled by varying the processing parameters. • Superparamagnetic characteristics were retained. • Particle formation required a single processing step at ambient temperature and pressure.

  1. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dingqi [Politecnico di Torino, Dipartimento Scienza Applicata e Tecnologia-DISAT and Dipartimento di Ingegneria dell' Ambiente, del Territorio e delle Infrastrutture-DIATI (Italy); Sethi, Rajandrea, E-mail: rajandrea.sethi@polito.it [Politecnico di Torino, Dipartimento di Ingegneria dell' Ambiente, del Territorio e delle Infrastrutture-DIATI (Italy)

    2012-11-15

    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particles.

  2. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    International Nuclear Information System (INIS)

    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particles.

  3. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sabyasachi [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Gogurla, Narendar [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Banerji, Pallab [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Guha, Prasanta K. [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [Department of Basic Science, MCKV Institute of Engineering, Howrah, Liluah 711204 (India)

    2015-10-15

    Graphical abstract: - Highlights: • β-FeSi{sub 2} nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi{sub 2}. • HRTEM and FESEM images indicate the β-FeSi{sub 2}average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi{sub 2}is p-type with hole density of 4.38 × 10{sup 18} cm{sup −3} and mobility 8.9 cm{sup 2}/V s. - Abstract: Nano-particles of β-FeSi{sub 2} have been synthesized by chemical reduction of a glassy phase of [Fe{sub 2}O{sub 3}, 4SiO{sub 2}] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi{sub 2} semiconducting phase. The average crystallite size of β-FeSi{sub 2} is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi{sub 2} phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi{sub 2} nano-particles is p-type with hole concentration of 4.38 × 10{sup 18} cm{sup −3} and average hole mobility of 8.9 cm{sup 2}/V s at 300 K.

  4. A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles.

    Science.gov (United States)

    Palchoudhury, Soubantika; Lead, Jamie R

    2014-12-16

    Catastrophic oil spills and oil from waste waters such as bilge and fracking waters pose major environmental concerns. The limitations of existing cleanup techniques for benign oil remediation has inspired a recent scientific impetus to develop oil-absorbing smart nanomaterials. Magnetic nanocomposites were here designed to allow easy recovery from various systems. In this study, sorption of reference MC252 oil with easy-to-synthesize and low-cost hydrophilic polyvinylpyrrolidone-coated iron oxide nanoparticles is reported for the first time. The one-step modified polyol synthesis in air directly generates water-soluble nanoparticles. Stable polyvinylpyrrolidone-coatings are known to minimize environmental alterations of nanoparticles from aggregation and other processes. Iron oxide provides effective magnetic actuation, while both PVP and iron oxide have low toxicity. These nanoparticles gave quantitative (near 100%) oil removal under optimized conditions. The facile synthesis and ease of use represents a significant improvement over existing techniques. PMID:25409536

  5. On the accessibility of surface-bound drugs on magnetic nanoparticles. Encapsulation of drugs loaded on modified dextran-coated superparamagnetic iron oxide by β-cyclodextrin.

    Science.gov (United States)

    Sudha, Natesan; Yousuf, Sameena; Israel, Enoch V M V; Paulraj, Mosae Selvakumar; Dhanaraj, Premnath

    2016-05-01

    We report the loading of drugs on aminoethylaminodextran-coated iron oxide nanoparticles, their superparamagnetic behavior, loading of drugs on them, and the β-cyclodextrin-complex formation of the drugs on the surface of the nanoparticles. The magnetic behavior is studied using vibrating sample magnetometry and X-ray photoelectron spectroscopy is used to analyze the elemental composition of drug-loaded nanoparticles. Scanning electron microscopy shows ordered structures of drug-loaded nanoparticles. UV-visible absorption and fluorescence spectroscopy are used to study the binding of the surface-loaded drugs to β-cyclodextrin. All of the drugs form 1:1 host-guest complexes. The iodide ion quenching of fluorescence of free- and iron oxide-attached drugs are compared. The binding strengths of the iron oxide surface-loaded drugs-β-cyclodextrin binding are smaller than those of the free drugs. PMID:26895504

  6. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  7. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Paul Seung Soo, E-mail: psk25@drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States); Becker, Aaron, E-mail: aaron.becker@childrens.harvard.edu [Harvard University, Department of Cardiovascular Surgery (United States); Ou, Yan, E-mail: ouy2@rpi.edu; Julius, Anak Agung, E-mail: agung@rpi.edu [Rensselaer Polytechnic Institute, Department of Electrical, Computer, and Systems Engineering (United States); Kim, Min Jun, E-mail: mkim@coe.drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States)

    2015-03-15

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.

  8. Synthesis and characterization of polyvinylimidazole-grafted superparamagnetic iron oxide nanoparticles (Si-PVIm-grafted SPION)

    Energy Technology Data Exchange (ETDEWEB)

    Erdemi, H. [Yalova University, Department of Polymer Engineering (Turkey); Soezeri, H. [TUBITAK-UME, National Metrology Institute (Turkey); Senel, M.; Baykal, A., E-mail: hbaykal@fatih.edu.tr [Fatih University, Department of Chemistry, Faculty of Arts and Sciences (Turkey)

    2012-08-15

    Polyvinylimidazole (PVIm)-grafted superparamagnetic iron oxide nanoparticles (SPION) (Si-PVIm-grafted Fe{sub 3}O{sub 4} NPs) were prepared by grafting of telomere of PVIm on the SPION. The product identified as magnetite, which has an average crystallite size of 9 {+-} 2 nm as estimated from X-ray line profile fitting. Particle size was estimated as 10.0 {+-} 0.5 nm from TEM micrographs. Mean particle size is found as 8.4 {+-} 1.0 nm which agrees well with the values calculated from XRD patterns (9 {+-} 2 nm). Vibrating Sample Magnetometer (VSM) analysis explained the superparamagnetic nature of the nanocomposite. Thermogravimetric analysis showed that the Si-Imi is 25 % of the Si-PVIm-grafted SPION, which means an inorganic content is about 75 %. Detailed electrical and dielectric properties of the properties of the product are also presented. The conductivity of the sample increases significantly with temperature and has the value in the range of 1.14 Multiplication-Sign 10{sup -7}-1.78 Multiplication-Sign 10{sup -4} S cm{sup -1}. Analysis of the real and imaginary parts of the permittivities indicated temperature and frequency dependency representing interfacial polarization and temperature-assisted reorganization effects.

  9. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy

    Science.gov (United States)

    Cunkelman, B. P.; Chen, E. Y.; Petryk, A. A.; Tate, J. A.; Thappa, S. G.; Collier, R. J.; Hoopes, P. J.

    2013-02-01

    Treatments of the post-operative surgical bed have proven appealing as the majority of cancer recurrence following tumor resection occurs at the tumor margin. A novel, biodegradable pullulan-based gel infused with magnetic iron oxide nanoparticles (IONP) is presented here for surgical bed administration followed by hyperthermia therapy via alternating magnetic field (AMF) activation. Pullulan is a water soluble, film-forming starch polymer that degrades at the postoperative wound site to deliver the IONP payload, targeting the remaining cancer cells. Different gel formulations containing various % wt of pullulan were tested for IONP elution. Elution levels and amount of gel degradation were measured by immersing the gel in de-ionized water for one hour then measuring particle concentrations in the supernatant and the mass of the remaining gel formulation. The most promising gel formulations will be tested in a murine model of surgical bed resection to assess in vivo gel dissolution, IONP cell uptake kinetics via histology and TEM analysis, and heating capability of the gel with AMF exposure.

  10. Anticancer Property of Iron Oxide Nanoparticle-Drug Complexes: An In Vitro Study.

    Science.gov (United States)

    Sreeja, S; Nair, Cherupally Krishnan

    2015-01-01

    Tumor-specific targeting of chemotherapeutic drugs can increase the therapeutic efficacy of most anticancer drugs. On surface-modified iron oxide nanoparticles (NPs), we complexed a hypoxic cell-targeting agent, sanazole (SAN), and a cytotoxic isoquinoline alkaloid, berberine (BBN). The major objective of this study was to elucidate the molecular mechanism of cytotoxicity in murine tumor cells (DLA) induced by NP-BBN-SAN complexes. The cytotoxicity of these complexes was determined using the dye exclusion method. The induction of apoptosis and cellular DNA damage in these cells was analyzed using dual staining and comet assay, respectively. The expression of genes in the treated cells elucidated the molecular mechanism underlying cytotoxicity. Cells treated with NP-BBN-SAN complexes showed significant increases in cytotoxicity and apoptosis, as well as extensive damage to cellular DNA compared to control cells. The cells treated with NP-BBN-SAN complexes showed greater DNA damage compared with other treatments. The increase in the expression of a pro-apoptotic gene suggested that apoptosis was the mechanism underlying cytotoxicity induced by NP-BBN-SAN complexes. Complexing with SAN increased the cytotoxic potential of NP-BBN complexes. Further in vivo studies are needed to evaluate the potential application of this method in controlling tumors. PMID:26349601

  11. Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Lotfi Barhoumi

    2013-01-01

    Full Text Available Toxicity of superparamagnetic iron oxide nanoparticles (SPION was investigated on Chlorella vulgaris cells exposed during 72 hours to Fe3O4 (SPION-1, Co0.2Zn0.8Fe2O4 (SPION-2, or Co0.5Zn0.5Fe2O4 (SPION-3 to a range of concentrations from 12.5 to 400 μg mL−1. Under these treatments, toxicity impact was indicated by the deterioration of photochemical activities of photosynthesis, the induction of oxidative stress, and the inhibition of cell division rate. In comparison to SPION-2 and -3, exposure to SPION-1 caused the highest toxic effects on cellular division due to a stronger production of reactive oxygen species and deterioration of photochemical activity of Photosystem II. This study showed the potential source of toxicity for three SPION suspensions, having different chemical compositions, estimated by the change of different biomarkers. In this toxicological investigation, algal model C. vulgaris demonstrated to be a valuable bioindicator of SPION toxicity.

  12. Effectiveness of tobramycin conjugated to iron oxide nanoparticles in treating infection in cystic fibrosis

    Science.gov (United States)

    Brandt, Yekaterina I.; Armijo, Leisha M.; Rivera, Antonio C.; Plumley, John B.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Smyth, Hugh D. C.; Osiński, Marek

    2013-02-01

    Cystic fibrosis (CF) is an inherited childhood-onset life-shortening disease. It is characterized by increased respiratory production, leading to airway obstruction, chronic lung infection and inflammatory reactions. The most common bacteria causing persisting infections in people with CF is Pseudomonas aeruginosa. Superparamagnetic Fe3O4 iron oxide nanoparticles (NPs) conjugated to the antibiotic (tobramycin), guided by a gradient of the magnetic field or subjected to an oscillating magnetic field, show promise in improving the drug delivery across the mucus and P. aeruginosa biofilm to the bacteria. The question remains whether tobramycin needs to be released from the NPs after the penetration of the mucus barrier in order to act upon the pathogenic bacteria. We used a zero-length 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) crosslinking agent to couple tobramycin, via its amine groups, to the carboxyl groups on Fe3O4 NPs capped with citric acid. The therapeutic efficiency of Fe3O4 NPs attached to the drug versus that of the free drug was investigated in P. aeruginosa culture.

  13. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles.

    Science.gov (United States)

    Zargar, B; Parham, H; Hatamie, A

    2009-07-01

    The adsorption and removal of amaranth (AM) from an aqueous solution by iron oxide nanoparticles (IONPs) coated with cetyltrimethylammonium bromide (CTAB) as adsorbent was reported. The novel magnetic separation was quite efficient for the adsorption and desorption of AM. In an aqueous solution of AM at 25 degrees C, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 1.05 mg mg(-1) and a Langmuir adsorption equilibrium constant of 0.90 Lmg(-1). The effect of temperature, pH of aqueous medium, electrolyte concentration, composition of desorbent solvent and interfering ions on the recovery process were also investigated. Methanol was used for desorption of adsorbed AM. Due to the absence of internal diffusion resistance both adsorption and desorption of AM were fast and could be completed within 5 min. The results indicated that the CTAB-coated IONPs could be employed in the removal of the anionic dye from wastewater. The AM was removed successfully in spiked samples of Karoon River water.

  14. Iron oxide nanoparticles coated with β-cyclodextrin polluted of Zea mays plantlets

    Directory of Open Access Journals (Sweden)

    Mihaela Racuciu

    2012-01-01

    Full Text Available The present experimental investigation is focused on the study of assimilatory pigments and nucleic acid levels in young plants intended for agricultural use (Zea mays in presence of water based magnetic fluid added in culture medium. The magnetic fluid was constituted by coating the nanosized magnetic nanoparticles (with 10.55 nm average value of the physical diameter with β-cyclodextrin (C42H70O35 and further dispersion in water. After germination, various volume fractions (between 10 mL/L and 500 mL/L of the magnetic fluid was added daily in the culture medium of Zea mays plants still at their early ontogenetic stages. Toxicity symptoms leaded to brown spots covering the leaf surface for the highest magnetic fluid volume fractions used, a putative oxidative stress generated by iron excess treatment. Relatively small volume fraction of magnetic fluid solutions induced the increase of chlorophyll a level (up to 38%, the main photosynthesis pigment, as well that the nucleic acid level (up to 57% in Zea mays plantlets. All volume fractions of magnetic fluid solutions analyzed may have severe disruptive effects such as the ratio chlorophyll a/chlorophyll b (about 50% decreasing.

  15. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings.

    Science.gov (United States)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-01-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution. PMID:24846348

  16. Influence of Synthesis Parameters on Magnetization and Size of Iron Oxide Nanoparticles

    Science.gov (United States)

    Lak, Aidin; Ludwig, Frank; Grabs, Ilka-Maria; Garnweitner, Georg; Schilling, Meinhard

    2010-12-01

    The effect of the synthesis parameters precursor concentration, reaction temperature, reaction time, and heating rate on the non-hydrolytic synthesis of iron oxide nanoparticles was studied via statistical design of experiment (DOE) methodology. The net sample magnetic moments were determined by fluxgate magnetorelaxometry (MRX). Multiple linear regression analysis provided an empirical model where the net magnetic moments solely depend on precursor concentration and reaction temperature. The correctness of net magnetic moments determined from MRX measurements was verified by static M-H measurements on three selected samples. Also, good agreement of the particle core sizes determined by TEM and by fitting static M-H curves with the Langevin function was found for these samples. A similar dependence on synthesis parameters was observed for sample core sizes and the net sample magnetic moments based on comparative measurements on the selected samples, indicating that the core sizes solely depend on precursor concentration and reaction temperature but not on reaction time and heating rate. On the other hand, an increase of reaction time causes a broadening of the core size distribution.

  17. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Science.gov (United States)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  18. Synthesis and characterization of polyvinylimidazole-grafted superparamagnetic iron oxide nanoparticles (Si-PVIm-grafted SPION)

    International Nuclear Information System (INIS)

    Polyvinylimidazole (PVIm)-grafted superparamagnetic iron oxide nanoparticles (SPION) (Si-PVIm-grafted Fe3O4 NPs) were prepared by grafting of telomere of PVIm on the SPION. The product identified as magnetite, which has an average crystallite size of 9 ± 2 nm as estimated from X-ray line profile fitting. Particle size was estimated as 10.0 ± 0.5 nm from TEM micrographs. Mean particle size is found as 8.4 ± 1.0 nm which agrees well with the values calculated from XRD patterns (9 ± 2 nm). Vibrating Sample Magnetometer (VSM) analysis explained the superparamagnetic nature of the nanocomposite. Thermogravimetric analysis showed that the Si-Imi is 25 % of the Si-PVIm-grafted SPION, which means an inorganic content is about 75 %. Detailed electrical and dielectric properties of the properties of the product are also presented. The conductivity of the sample increases significantly with temperature and has the value in the range of 1.14 × 10−7–1.78 × 10−4 S cm−1. Analysis of the real and imaginary parts of the permittivities indicated temperature and frequency dependency representing interfacial polarization and temperature-assisted reorganization effects.

  19. Different Storage Conditions Influence Biocompatibility and Physicochemical Properties of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jan Zaloga

    2015-04-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPIONs have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

  20. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings.

    Science.gov (United States)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-01-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  1. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  2. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage.

    Science.gov (United States)

    Imam, Syed Z; Lantz-McPeak, Susan M; Cuevas, Elvis; Rosas-Hernandez, Hector; Liachenko, Serguei; Zhang, Yongbin; Sarkar, Sumit; Ramu, Jaivijay; Robinson, Bonnie L; Jones, Yvonne; Gough, Bobby; Paule, Merle G; Ali, Syed F; Binienda, Zbigniew K

    2015-10-01

    Various iron-oxide nanoparticles have been in use for a long time as therapeutic and imaging agents and for supplemental delivery in cases of iron-deficiency. While all of these products have a specified size range of ∼ 40 nm and above, efforts are underway to produce smaller particles, down to ∼ 1 nm. Here, we show that after a 24-h exposure of SHSY-5Y human neuroblastoma cells to 10 μg/ml of 10 and 30 nm ferric oxide nanoparticles (Fe-NPs), cellular dopamine content was depleted by 68 and 52 %, respectively. Increases in activated tyrosine kinase c-Abl, a molecular switch induced by oxidative stress, and neuronal α-synuclein expression, a protein marker associated with neuronal injury, were also observed (55 and 38 % percent increases, respectively). Inhibition of cell-proliferation, significant reductions in the number of active mitochondria, and a dose-dependent increase in reactive oxygen species (ROS) were observed in neuronal cells. Additionally, using a rat in vitro blood-brain barrier (BBB) model, a dose-dependent increase in ROS accompanied by increased fluorescein efflux demonstrated compromised BBB integrity. To assess translational implications, in vivo Fe-NP-induced neurotoxicity was determined using in vivo MRI and post-mortem neurochemical and neuropathological correlates in adult male rats after exposure to 50 mg/kg of 10 nm Fe-NPs. Significant decrease in T 2 values was observed. Dynamic observations suggested transfer and retention of Fe-NPs from brain vasculature into brain ventricles. A significant decrease in striatal dopamine and its metabolites was also observed, and neuropathological correlates provided additional evidence of significant nerve cell body and dopaminergic terminal damage as well as damage to neuronal vasculature after exposure to 10 nm Fe-NPs. These data demonstrate a neurotoxic potential of very small size iron nanoparticles and suggest that use of these ferric oxide nanoparticles may result in neurotoxicity, thereby

  3. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    Science.gov (United States)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs

  4. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4 Nanoparticles Using Seaweed (Sargassum muticum Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Rosfarizan Mohamad

    2013-05-01

    Full Text Available The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (BS, Sargassum muticum water extract containing sulphated polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. The structural and properties of the Fe3O4-NPs were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM, energy dispersive X-ray fluorescence spectrometry (EDXRF, vibrating sample magnetometry (VSM and transmission electron microscopy. The average particle diameter as determined by TEM was found to be 18 ± 4 nm. X-ray diffraction showed that the nanoparticles are crystalline in nature, with a cubic shape. The nanoparticles synthesized through this biosynthesis method can potentially useful in various applications.

  5. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid.

    Science.gov (United States)

    Yang, Seung-Chul; Paik, Sae-Yeol-Rim; Ryu, Jina; Choi, Kyeong-Ok; Kang, Tae Seok; Lee, Jong Kwon; Song, Chi Won; Ko, Sanghoon

    2014-10-15

    Simple dynamic light scattering (DLS)-based methodologies were developed to determine primary particle size distribution of iron oxide particles in simulated gastrointestinal fluid. Iron oxide particles, which easily agglomerate in aqueous media, were converted into dispersed particles by modification of surface charge using citric acid and sodium citrate. After the modification, zeta-potential value decreased to -40mV at pH 7. Mean particle diameters in suspensions of iron oxide nano- and microparticles stabilized by the mixture of citric acid and sodium citrate were dramatically decreased to 166 and 358nm, respectively, which were close to the particle size distributions observed in the micrographs. In simulated gastrointestinal fluid, both iron oxide nano- and microparticles were heavily agglomerated with particle diameters of almost 2600 and 5200nm, respectively, due to charge shielding on the citrate-modified surface by ions in the media. For determining primary particle size distribution by using DLS-based approach, the iron oxide particles incubated in the simulated gastrointestinal fluid were converted to monodisperse particles by altering the pH to 7 and electrolyte elimination. The simple DLS-based methodologies are well suited to determine primary particle size distribution of mineral nanoparticles at various physical, chemical, and biological conditions.

  6. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-01

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  7. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent.

    Science.gov (United States)

    Prashant, Chandrasekharan; Dipak, Maity; Yang, Chang-Tong; Chuang, Kai-Hsiang; Jun, Ding; Feng, Si-Shen

    2010-07-01

    We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized. The transmission electron microscopy (TEM) showed direct visual evidence for the well dispersed distribution of the IOs within the NPs. We further investigated the biocompatibility and cellular uptake of the IOs-PNPs in vitro with MCF-7 breast cancer cells and NIH-3T3 mouse fibroblast in close comparison with the commercial IOs imaging agent Resovist. MRI imaging was further carried out to investigate the biodistribution of the IOs formulated in the IOs-PNPs, especially in the liver to understand the liver clearance process, which was also made in close comparison with Resovist. We found that the PLA-TPGS NPs formulation at the clinically approved dose of 0.8 mg Fe/kg could be cleared within 24 h in comparison with several weeks for Resovist. Xenograft tumor model MRI confirmed the advantages of the IOs-PNPs formulation versus Resovist through the enhanced permeation and retention (EPR) effect of the tumor vasculature. PMID:20434210

  8. Iron

    Science.gov (United States)

    ... as recommended by an obstetrician or other health care provider. Infants and toddlers Iron deficiency anemia in infancy can lead to delayed psychological development, social withdrawal, and less ability to pay attention. By age 6 to 9 months, full-term infants could ...

  9. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  10. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  11. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.

    Science.gov (United States)

    Gutierrez-Muñiz, O E; García-Rosales, G; Ordoñez-Regil, E; Olguin, M T; Cabral-Prieto, A

    2013-01-15

    This manuscript presents the synthesis of carbon modified with iron nanoparticles (CFe) and iron carbide (CarFe) from the pyrolyzed crown leaves of pineapple (Ananas comosus) treated with iron salts. The materials that were obtained were used for the removal of As(V) from aqueous media. The carbonaceous materials were characterized by Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Mossbauer Spectroscopy. The specific area (BET), number site density and point of zero charge (pH(pzc)) were also determined. The kinetic parameters were obtained by fitting the experimental data to the pseudo-first-order and pseudo-second-order models. Different isotherm models were applied to describe the As(V) adsorption behavior. The kinetics of As(V) sorption by CFe and CarFe was well defined for the pseudo-second-order model (R(2) = 0.9994 and 0.999, respectively). The maximum As(V) uptake was 1.8 mg g(-1) for CFe and 1.4 mg g(-1) for CarFe. The results obtained indicated that both materials are equally useful for As(V) sorption. The As(V) experimental isotherm data were described by the Freundlich model for CFe and CarFe.

  12. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier

    Science.gov (United States)

    Naik, Sweta; Carpenter, Everett E.

    2008-04-01

    Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the

  13. Stable iron carbide nanoparticle dispersions in [Emim][SCN] and [Emim][N(CN)2] ionic liquids.

    Science.gov (United States)

    Khare, Varsha; Kraupner, Alexander; Mantion, Alexandre; Jelicić, Aleksandra; Thünemann, Andreas F; Giordano, Cristina; Taubert, Andreas

    2010-07-01

    Dispersions of Fe(3)C nanoparticles in several ionic liquids (ILs) have been investigated. The ILs are based on 1-ethyl-3-methylimidazolium [Emim] and 1-butyl-3-methylimidazolium [Bmim] cations. Anions are ethylsulfate [ES], methanesulfonate [MS], trifluoromethylsulfonate (triflate) [TfO], tetrafluoroborate [BF(4)], dicyanamide [N(CN)(2)], and thiocyanate [SCN]. Among the ILs studied, [Emim][SCN] and [Emim][N(CN)(2)] stand out because only in these ILs have stable and transparent nanoparticle dispersions been obtained. All other ILs lead to blackish, slightly turbid dispersions or to completely nontransparent suspensions, which often contain undispersed sediment. UV/vis spectroscopy, transmission electron microscopy, and X-ray scattering suggest that the reason for the stabilization of the Fe(3)C nanoparticles in [Emim][SCN] is the leaching of traces of iron from the particles (without affecting the crystal structure of the Fe(3)C particles). The resulting particle surface is thus carbon-rich, which presumably favors the stabilization of the particles. A similar explanation can be postulated for [Emim][N(CN)(2)], with the dicyanamide anion also being a good ligand for iron. PMID:20426431

  14. Fabrication of a novel chromium-iron oxide (Cr2Fe6O12) nanoparticles by thermal treatment method

    International Nuclear Information System (INIS)

    In this research,a novel chromium-iron oxide (Cr2Fe6O12) nanoparticle with rhombohedral symmetry was prepared by a simple thermal treatment method.Heat treatment was conducted using an electric cylinder furnace in an air atmosphere at temperatures between 773 and 923 K, where the produced chromium-ironoxide nanoparticles had different crystallite sizes ranging from 9 to 20 nm. The products were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), X-ray analysis (EDXA), and Fourier transform infrared spectroscopy (FT-IR). The samples demonstrated a magnetic behavior with unpaired electron spins, which was confirmed by using vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy. - Highlights: • An aqueous solution of PVA and metal nitrates consist of Fe (NO3)3·9H2O and Cr (NO3)3·9H2O was prepared at 353 K • The mixed solution was heated at 373 K to evaporate the water and the resulting solid was crushed to powder • The influence of calcination temperature on structure and magnetic properties of a novel chromium-iron oxide (Cr2Fe6O12) nanoparticle was characterized

  15. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy

    Science.gov (United States)

    Armijo, Leisha M.; Kopciuch, Michael; Olszá½¹wka, Zuzia; Wawrzyniec, Stephen J.; Rivera, Antonio C.; Plumley, John B.; Cook, Nathaniel C.; Brandt, Yekaterina I.; Huber, Dale L.; Smolyakov, Gennady A.; Adolphi, Natalie L.; Smyth, Hugh D. C.; Osiński, Marek

    2014-03-01

    Pseudomonas aeruginosa bacterium is a deadly pathogen, leading to respiratory failure in cystic fibrosis and nosocomial pneumonia, and responsible for high mortality rates in these diseases. P. aeruginosa has inherent as well as acquired resistance to many drug classes. In this paper, we investigate the effectiveness of two classes; aminoglycoside (tobramycin) and fluoroquinolone (ciprofloxacin) administered alone, as well as conjugated to iron oxide (magnetite) nanoparticles. P. aeruginosa possesses the ability to quickly alter its genetics to impart resistance to the presence of new, unrecognized treatments. As a response to this impending public health threat, we have synthesized and characterized magnetite nanoparticles capped with biodegradable short-chain carboxylic acid derivatives conjugated to common antibiotic drugs. The functionalized nanoparticles may carry the drug past the mucus and biofilm layers to target the bacterial colonies via magnetic gradient-guided transport. Additionally, the magnetic ferrofluid may be used under application of an oscillating magnetic field to raise the local temperature, causing biofilm disruption, slowed growth, and mechanical disruption. These abilities of the ferrofluid would also treat multi-drug resistant strains, which appear to be increasing in many nosocomial as well as acquired opportunistic infections. In this in vitro model, we show that the iron oxide alone can also inhibit bacterial growth and biofilm formation.

  16. Electrical and magnetic behavior of iron doped nickel titanate (Fe3+/NiTiO3) magnetic nanoparticles

    Science.gov (United States)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam

    2016-01-01

    Iron doped nickel titanate (Fe3+/NiTiO3) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer-Emmett-Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m2 g-1. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (Hc) 867-462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe3+/NiTiO3 nanoparticles at higher Fe content.

  17. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed. PMID:26674701

  18. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed.

  19. Superparamagnetic iron oxide nanoparticles label human bone marrow and umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Ma Yan; Zhang De-qing; Chen Le; Wang Jian; Zhang Xue; Hou Yan; Bi Xiao-juan; Yang Rong; Hu An-hua

    2012-01-01

      BACKGROUND: Nowadays, it is becoming more and more important to optimize safety of human derived cel s, label cel s efficiently and track cel s after cel s transplantation both in basic research and clinic application. OBJECTIVE: To compare the cel viability, labeling efficiency and imaging effect of the T2* weight image (WI) magnetic resonance (MR) between the human bone marrow and umbilical cord derived mesenchymal stem cel s labeled with the superparamaganetic iron oxide nanoparticles, as wel as to optimize their treatment efficiency. METHODS: The third generation of human bone marrow and umbilical cord derived mesenchymal stem cel s were cultured, and labeled with 5-30 mg/L Feridex Ⅳ and protamine sulfate. RESULTS AND CONCLUSION: The viability of human bone marrow mesenchymal stromal cel s was similar with human umbilical cord derived mesenchymal stem cel s (P >0.05). There was no significant difference of labeling rate between the bone marrow msenchymal stem cel s labeled with 5-30 mg/L Feridex Ⅳ(P >0.05); while there was significant difference of labeling rate between the umbilical cord derived mesenchymal stem cel s labeled with 5 mg/L Feridex Ⅳ and 20 and 30 mg/L Feridex Ⅳ(P <0.05); the positive labeling rate of umbilical cord derived mesenchymal stem cel s was lower than that of bone marrow msenchymal stem cel s after labeled with 10 mg/L FeridexⅣ(P <0.05). When two sources of cel s were labeled with Feridex Ⅳ more than 2 mg/L, the iron oxide particles were found in the cel suspension and could not be removed by elution and filtration. The signal intensity from 3.0T MR GRE T2*WI scan was decreased with the increasing of Feridex Ⅳ concentration in both cel types. It is safe and effective to label the two tissue-derived mesenchymal stem cel s with 10 mg/L Feridex Ⅳ-protamine sulfate complex, and can be observed with T2*WI MR.

  20. A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design

    Science.gov (United States)

    Karaagac, Oznur; Kockar, Hakan

    2016-07-01

    Orthogonal design technique was applied to obtain superparamagnetic iron oxide nanoparticles with high saturation magnetization, Ms. Synthesis of the nanoparticles were done in air atmosphere according to the orthogonal table L934. Magnetic properties of the synthesized nanoparticles were measured by a vibrating sample magnetometer. Structural analysis of the nanoparticles was also carried out by X-ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). After the analysis of magnetic data, the optimized experimental parameters were determined as [Fe+2]/[Fe+3]=6/6, iron ion concentration=1500 mM, base concentration=6.7 M and reaction time=2 min. Magnetic results showed that the synthesis carried out according to the optimized conditions gave the highest Ms of 69.83 emu/g for the nanoparticles synthesized in air atmosphere. Magnetic measurements at 10 K and 300 K showed the sample is superparamagnetic at room temperature. Structural analysis by XRD, FTIR and selected area electron diffraction showed that the sample had the inverse spinel crystal structure of iron oxide. The particle size of the optimized sample determined from the TEM image is 7.0±2.2 nm. The results indicated that the Ms of superparamagnetic iron oxide nanoparticles can be optimized by experimental design with the suitable choice of the synthesis parameters.

  1. 77 FR 59158 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2012-09-26

    ... submitted for approval as nontoxic. We addressed lead poisoning in waterfowl in an environmental impact... as nontoxic. We evaluated the impact of approval of this shot type in a draft environmental... available resources. Therefore, preparation of an environmental impact statement (EIS) is not...

  2. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. PMID:22944203

  3. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures.

    Science.gov (United States)

    Kadar, Eniko; Rooks, Paul; Lakey, Cara; White, Daniel A

    2012-11-15

    Synthetic zero-valent nano-iron (nZVI) compounds are finding numerous applications in environmental remediation owing to their high chemical reactivity and versatile catalytic properties. Studies were carried out to assess the effects of three types of industrially relevant engineered nZVI on phytoplankton growth, cellular micromorphology and metabolic status. Three marine microalgae (Pavlova lutheri, Isochrysis galbana and Tetraselmis suecica) were grown on culture medium fortified with the nano-Fe compounds for 23 days and subsequent alterations in their growth rate, size distribution, lipid profiles and cellular ultrastructure were assessed. The added nano Fe concentrations were either equimolar with the EDTA-Fe conventionally added to the generic f/2 medium (i.e. 1.17 × 10(-5)M), or factor 10 lower and higher, respectively. We provide evidence for the: (1) broad size distribution of nZVI particles when added to the nutrient rich f/2 media with the higher relative percentage of the smallest particles with the coated forms; (2) normal algal growth in the presence of all three types of nZVIs with standard growth rates, cellular morphology and lipid content comparable or improved when compared to algae grown on f/2 with EDTA-Fe; (3) sustained algal growth and normal physiology at nZVI levels 10 fold below that in f/2, indicating preference to nanoparticles over EDTA-Fe; (4) increased total cellular lipid content in T. suecica grown on media enriched with uncoated nZVI25, and in P. lutheri with inorganically coated nZVI(powder), when compared at equimolar exposures; (5) significant change in fatty acid composition complementing the nZVI(powder)-mediated increase in lipid content of P. lutheri; (6) a putative NP uptake mechanism is proposed for I. galbana via secretion of an extracellular matrix that binds nZVIs which then become bioavailable via phagocytotic membrane processes. PMID:23059967

  4. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zehua [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Hongwei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xinxin; Song, Wei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China)

    2015-03-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H{sub 2}O{sub 2}. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT.

  5. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    Science.gov (United States)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  6. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H2O2. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT

  7. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    Science.gov (United States)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  8. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  9. Bivalent alkyne-bisphosphonate as clickable and solid anchor to elaborate multifunctional iron oxide nanoparticles with microwave enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Guenin, Erwann, E-mail: guenin@univ-paris13.fr [Universite Paris 13, Sorbonne Paris Cite, CSPBAT Laboratory, UMR 7244 CNRS (France); Hardouin, Julie [University of Rouen, PBS Laboratory, UMR 6270 CNRS (France); Lalatonne, Yoann; Motte, Laurence [Universite Paris 13, Sorbonne Paris Cite, CSPBAT Laboratory, UMR 7244 CNRS (France)

    2012-07-15

    We report the elaboration of clickable superparamagnetic nanoparticles that act as a scaffold for further modifications by click chemistry. This nano platform is easily obtained by coating iron oxide nanoparticle {gamma}-Fe{sub 2}O{sub 3}, with a new bifunctional molecule (1-hydroxy-1-phosphonopent-4-ynyl)phosphonic acid (HMBPyne). The HMBP and the alkyne functions act respectively as anchoring surface group and click chemistry functionality. We evaluate the functionalization of this new 'clickable' nanoplateform using Huisgen 1,3-cycloaddition as model reaction and demonstrate the potential of microwave irradiation to increase the grafting yield. The effectiveness of click chemistry for the modification of mNPs is explored with a diverse array of functional species.

  10. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. - Highlights: • Synthesized PEG-PIONs/DOX have excellent physical properties. • PEG-PIONs/DOX have a potential to in vivo application. • PEG-PIONs/DOX could be used as drug delivery system as well as contrast agents

  11. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hałupka-Bryl, Magdalena, E-mail: magdalenahalupka@op.pl [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Bednarowicz, Magdalena [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Dobosz, Bernadeta; Krzyminiewski, Ryszard [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Zalewski, Tomasz [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Wereszczyńska, Beata [Department of Macromolecular Physics, Adam Mickiewicz University, Poznań (Poland); Nowaczyk, Grzegorz; Jarek, Marcin [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Nagasaki, Yukio [Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Master’s School of Medicinal Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); International Centre for Materials Nanoarchitectonics Satellite (WPI-MANA), National Institute For Materials Sciences (NIMS) and University of Tsukuba (Japan)

    2015-06-15

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. - Highlights: • Synthesized PEG-PIONs/DOX have excellent physical properties. • PEG-PIONs/DOX have a potential to in vivo application. • PEG-PIONs/DOX could be used as drug delivery system as well as contrast agents.

  12. Role of the Initial Formation of the Iron Nano-Particles in the Multi-Walled Carbon Nanotubes Growth Process

    Institute of Scientific and Technical Information of China (English)

    Leszek Stobinski; Hong-Ming Lin

    2004-01-01

    Careful preparation of the iron nano-particle catalyst for carbon nanotubes (CNTs) fabrication has crucial importance for initial growth of multi-wall carbon-nanotubes (MWCNTs). Thin iron layer was thermally deposited in a high vacuum onto the surface of the SiO2/Si wafer at about 300 K. The sample was heated up to 700℃ in a hydrogen atmosphere, and then the sample was heated once again at750℃ in ethylene atmosphere. After hydrogen treatment continuous Fe layer was changed into many well separated Fe nano-peaks. AFM, SEM and HR-TEM studies of deposited MWCNTs allow us to propose a growth mechanism for long, straight MWCNTs.

  13. Nata de coco (NDC)