WorldWideScience

Sample records for approach including plasma

  1. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  2. Thermovoltaic semiconductor device including a plasma filter

    Science.gov (United States)

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  3. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... Treatment Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key ...

  4. A multidisciplinary approach including the use of platelet-rich plasma to treat an elite athlete with patellar tendinopathy – a case report

    Science.gov (United States)

    Rowan, Tracy L.; Drouin, Jillian L.

    2013-01-01

    Objective: Patellar tendinopathy affects a substantial proportion of athletes involved in jumping or kicking activities. Platelet rich plasma (PRP) injections may be a promising treatment used in conjunction with common traditional therapies. Clinical Features: Patellar tendinopathy is often the result of repetitive or excessive overload on the patellar tendon. Activity modification, cryotherapy, eccentric exercises, shockwave therapy, and PRP have been indicated as treatment options during various stages of this condition. Intervention and Outcome: A 23 year old female, elite track and field athlete was managed for patellar tendinopathy with a combination of traditional therapeutic interventions as well as a PRP injection. This athlete returned to pre-injury level of competition six months post-injection. Conclusion: Emerging literature on PRP appears to be promising for patellar tendinopathy, however, it remains unclear which patients may benefit most and whether the stage of the disorder has an impact on the clinical outcome. PMID:24302777

  5. Global model including multistep ionizations in helium plasmas

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2016-12-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.

  6. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  7. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  8. Plasma stability theory including the resistive wall effects

    Science.gov (United States)

    Pustovitov, V. D.

    2015-12-01

    > Plasma stabilization due to a nearby conducting wall can provide access to better performance in some scenarios in tokamaks. This was proved by experiments with an essential gain in and demonstrated as a long-lasting effect at sufficiently fast plasma rotation in the DIII-D tokamak (see, for example, Strait et al., Nucl. Fusion, vol. 43, 2003, pp. 430-440). The rotational stabilization is the central topic of this review, though eventually the mode rotation gains significance. The analysis is based on the first-principle equations describing the energy balance with dissipation in the resistive wall. The method emphasizes derivation of the dispersion relations for the modes which are faster than the conventional resistive wall modes, but slower than the ideal magnetohydrodynamics modes. Both the standard thin wall and ideal-wall approximations are not valid in this range. Here, these are replaced by an approach incorporating the skin effect in the wall. This new element in the stability theory makes the energy sink a nonlinear function of the complex growth rate. An important consequence is that a mode rotating above a critical level can provide a damping effect sufficient for instability suppression. Estimates are given and applications are discussed.

  9. 77 FR 6463 - Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma...

    Science.gov (United States)

    2012-02-08

    ... Requirements for Blood and Blood Components, Including Source Plasma; Correction AGENCY: Food and Drug... Blood Components, Including Source Plasma,'' which provided incorrect publication information...

  10. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  11. Alternative approaches to plasma confinement

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  12. Stellar cooling bounds on new light particles: including plasma effects

    CERN Document Server

    Hardy, Edward

    2016-01-01

    Strong constraints on the coupling of new light particles to the Standard Model (SM) arise from their production in the hot cores of stars, and the effects of this on stellar cooling. The large electron density in stellar cores significantly modifies the in-medium propagation of SM states. For new light particles which have an effective in-medium mixing with the photon, such plasma effects can result in parametrically different production rates to those obtained from a naive calculation. Taking these previously-neglected contributions into account, we make updated estimates for the stellar cooling bounds on a number of light new particle candidates. In particular, we improve the bounds on light (m < keV) scalars coupling to electrons or nucleons by up to 3 orders of magnitude in the coupling squared, significantly revise the supernova cooling bounds on dark photon couplings, and qualitatively change the mass dependence of stellar bounds on new vectors.

  13. 77 FR 7 - Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma

    Science.gov (United States)

    2012-01-03

    ...) Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma AGENCY: Food and... requirements for blood and blood components, including Source Plasma, into one section of the Code of Federal..., and Source Plasma,'' which amended Sec. 606.121(d)(2) by adding ``or in solid black,''...

  14. Including patients’ perspectives in patient information leaflets: A polyocular approach

    DEFF Research Database (Denmark)

    Fage-Butler, Antoinette Mary

    2013-01-01

    Existing research reveals that patients’ perspectives are missing from mandatory patient information leaflets (PILs). At the same time, there is overwhelming consensus that they should be included in this genre, and a corresponding need for potential approaches to tackle this problem. This paper...

  15. Internet addiction neuroscientific approaches and therapeutical implications including smartphone addiction

    CERN Document Server

    Reuter, Martin

    2017-01-01

    The second edition of this successful book provides further and in-depth insight into theoretical models dealing with Internet addiction, as well as includes new therapeutical approaches. The editors also broach the emerging topic of smartphone addiction. This book combines a scholarly introduction with state-of-the-art research in the characterization of Internet addiction. It is intended for a broad audience including scientists, students and practitioners. The first part of the book contains an introduction to Internet addiction and their pathogenesis. The second part of the book is dedicated to an in-depth review of neuroscientific findings which cover studies using a variety of biological techniques including brain imaging and molecular genetics. The third part of the book focuses on therapeutic interventions for Internet addiction. The fourth part of the present book is an extension to the first edition and deals with a new emerging potential disorder related to Internet addiction – smartphone addicti...

  16. Precision Obesity Treatments Including Pharmacogenetic and Nutrigenetic Approaches.

    Science.gov (United States)

    Solas, Maite; Milagro, Fermin I; Martínez-Urbistondo, Diego; Ramirez, Maria J; Martínez, J Alfredo

    2016-07-01

    Five pharmaceutical strategies are currently approved by the US FDA for the treatment of obesity: orlistat, lorcaserin, liraglutide, phentermine/topiramate, and bupropion/naltrexone. The most effective treatment seems to be the combined administration of phentermine/topiramate followed by lorcaserin and bupropion/naltrexone. In relation to the management of excessive weight, other aspects also need to be considered, including comorbidities accompanying obesity, drug interactions, and the risk of negative collateral effects, as well as individualized treatments based on the genetic make-up. This review aims to provide an overview of the approved anti-obesity drugs and newer molecules that could affect different targets in the central nervous system or peripheral tissues, the molecular mechanisms, emerging dietary treatments and phytogenic compounds, and pharmacogenetic/nutrigenetic approaches for personalized obesity management.

  17. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  18. Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, I; Antoun, T; Vorobiev, O

    2009-12-16

    Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the

  19. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  20. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  1. A variational approach to resistive relativistic plasmas

    CERN Document Server

    Andersson, N; Hawke, I

    2016-01-01

    We develop an action principle to construct the field equations for a multi-fluid system containing charge-neutral fluids, plasmas, and dissipation (via resistive interactions), by combining the standard, Maxwell action and minimal coupling of the electromagnetic field with a recently developed action for relativistic dissipative fluids. We use a pull-back formalism from spacetime to abstract matter spaces to build unconstrained variations for both the charge-neutral fluids and currents making up the plasmas. Using basic linear algebra techniques, we show that a general "relabeling" invariance exists for the abstract matter spaces. With the field equations in place, a phenomenological model for the resistivity is developed, using as constraints charge conservation and the Second Law of Thermodynamics. A minimal model for a system of electrons, protons, and heat is developed using the Onsager procedure for incorporating dissipation.

  2. Hamiltonian approach to hybrid plasma models

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.

  3. Collective fluctuations in magnetized plasma: Transition probability approach

    Energy Technology Data Exchange (ETDEWEB)

    Sosenko, P.P. [International Centre of Physics and M.M.Boholiubov Inst. for Theoretical Physics, Kyiv (Ukraine)]|[Ecole Polytechnique, Palaiseau (France)]|[Univ. Henri Poincare, Vandoeuvre (France)

    1997-10-01

    Statistical plasma electrodynamics is elaborated with special emphasis on the transition probability approach and quasi-particles, and on modern applications to magnetized plasmas. Fluctuation spectra in the magnetized plasma are calculated in the range of low frequencies (with respect to the cyclotron one), and the conditions for the transition from incoherent to collective fluctuations are established. The role of finite-Larmor-radius effects and particle polarization drift in such a transition is explained. The ion collective features in fluctuation spectra are studied. 63 refs., 30 figs.

  4. Fluorogenic MMP activity assay for plasma including MMPs complexed to α2-macroglobulin

    NARCIS (Netherlands)

    Beekman, B.; Drijfhout, J.W.; Ronday, H.K.; TeKoppele, J.M.

    1999-01-01

    Elevated MMP activities are implicated in tissue degradation in, e.g., arthritis and cancer. The present study was designed to measure MMP enzyme activity in plasma. Free active MMP is unlikely to be present in plasma: upon entering the circulation, active MMP is expected to be captured by the prote

  5. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-09-01

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  6. Laser diagnostics on atmospheric pressure discharge plasmas, including cryoplasmas, in environments around room and cryogenic temperature

    Science.gov (United States)

    Sakakibara, Noritaka; Muneoka, Hitoshi; Urabe, Keiichiro; Yasui, Ryoma; Sakai, Osamu; Terashima, Kazuo

    2017-04-01

    Cryoplasmas, the plasma gas temperature (T g) of which can be controlled continuously below room temperature, show various unique and advantageous properties depending on T g. Recently, the T g dependence of plasma chemistry related to metastable helium (Hem) has been revealed in helium cryoplasmas. However, T g was only estimated by thermal calculation from the temperature outside the plasmas. In this study, for better evaluation of T g, near-infrared laser heterodyne interferometry (NIR-LHI) measurements were conducted in atmospheric pressure helium pulsed discharge plasmas at around room and cryogenic ambient temperatures (T a). The maximum difference between T g and T a was evaluated as 47 K at T a  =  300 K with 282 mW power consumption. To further investigate the T g dependence of plasma chemical reactions related to Hem, laser absorption spectroscopy (LAS) was performed on the same discharge plasmas to measure the Hem density and lifetime. The Hem lifetime was longer at lower T g, i.e. the lifetime at T g  =  145 K (9.6 µs) was seven times longer than that at T g  =  386 K (1.4 µs). By comparing the results with the numerically simulated rates of Hem quenching reactions taking T g into account, the mechanism of the Hem quenching reaction was revealed to vary with T g even though the main quenching reaction was a three-body collision at all T g. In this manner, the combination of NIR-LHI with LAS led directly to the T g dependence of Hem quenching reactions.

  7. Plasma and oscillations with contributions in memoriam including a complete bibliography of his works

    CERN Document Server

    Suits, C Guy

    1961-01-01

    The Collected Works of Irving Langmuir, Volume 5: Plasma and Oscillations is an 11-chapter text covers the extensive research study of Langmuir in the field of gas discharges. This book specifically tackles oscillations in ionized gases. The opening chapters describe the plasma-boundary phenomena and the use of a probe to separate the primary electron beam from the scattered electrons. The succeeding chapters deal with the collisions between electrons and gas molecules, oscillations in ionized gases, and the interaction of electron and positive ion space charges in cathode sheaths. These t

  8. Plasma-water systems studied with optical diagnostics including sum-frequency generation spectroscopy

    Science.gov (United States)

    Ito, Tsuyohito

    2016-09-01

    Recently, various applications of plasma-water systems have been reported, such as materials synthesis, agricultural applications, and medical treatments. As one of basic studies of such systems, we are investigating water surface structure influenced by a plasma via vibrational sum-frequency generation spectroscopy. Vibrational sum-frequency generation spectroscopy is known to be an interfacially active diagnostic technique, as such process occurs in noncentrosymmetric medium. Visible and wavenumber-tunable infrared beams are simultaneously irradiated to the interface. The interfacial water has ice-like ( 3200 cm-1), liquid-like ( 3400 cm-1), and free OH (3700 cm-1) structures (assignment of the ice-like structure still remains contentious), and the intensity of the signal becomes stronger when the tunable infrared beam resonates with a vibration of the structures. The results indicate that with generating air dielectric barrier discharges for supplying reactive species to the water surface, all investigated signals originating from the above-mentioned three structures decrease. Furthermore, the signal strengths are recovered after terminating the plasma generation. We currently believe that the surface density of the reactive species should be high when they are found at the water surface. Details on the experimental results of the sum-frequency generation spectroscopy, as well as other spectroscopic results of plasma-water systems, will be presented at the conference.

  9. The evolution of interstellar clouds in a streaming hot plasma including heat conduction

    CERN Document Server

    Vieser, W

    2007-01-01

    To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the...

  10. The postprandial plasma rye fingerprint includes benzoxazinoid-derived phenylacetamide sulfates.

    Science.gov (United States)

    Hanhineva, Kati; Keski-Rahkonen, Pekka; Lappi, Jenni; Katina, Kati; Pekkinen, Jenna; Savolainen, Otto; Timonen, Oskari; Paananen, Jussi; Mykkänen, Hannu; Poutanen, Kaisa

    2014-07-01

    The bioavailability of whole-grain rye-derived phytochemicals has not yet been comprehensively characterized, and different baking and manufacturing processes can modulate the phytochemical composition of breads and other rye products. The aim of our study was to find key differences in the phytochemical profile of plasma after the consumption of 3 breads containing rye bran when compared with a plain white wheat bread control. Plasma metabolite profiles of 12 healthy middle-aged men and women were analyzed using LC quadrupole time-of-flight mass spectrometry metabolomics analysis while fasting and at 60 min, 120 min, 240 min, and 24 h after consuming a meal that contained either 100% whole-grain sourdough rye bread or white wheat bread enriched with native unprocessed rye bran or bioprocessed rye bran. White wheat bread was used as the control. The meals were served in random order after a 12-h overnight fast, with at least 3 d between each occasion. Two sulfonated phenylacetamides, hydroxy-N-(2-hydroxyphenyl) acetamide and N-(2-hydroxyphenyl) acetamide, potentially derived from the benzoxazinoid metabolites, were among the most discriminant postprandial plasma biomarkers distinguishing intake of breads containing whole-meal rye or rye bran from the control white wheat bread. Furthermore, subsequent metabolite profiling analysis of the consumed breads indicated that different bioprocessing/baking techniques involving exposure to microbial metabolism (e.g., sourdough fermentation) have a central role in modulating the phytochemical content of the whole-grain and bran-rich breads.

  11. 3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios

    Science.gov (United States)

    Paccagnella, R.; Strauss, H. R.; Breslau, J.

    2009-03-01

    Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM), which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.

  12. Control of plasma profile in microwave discharges via inverse-problem approach

    Directory of Open Access Journals (Sweden)

    Yasuyoshi Yasaka

    2013-12-01

    Full Text Available In the manufacturing process of semiconductors, plasma processing is an essential technology, and the plasma used in the process is required to be of high density, low temperature, large diameter, and high uniformity. This research focuses on the microwave-excited plasma that meets these needs, and the research target is a spatial profile control. Two novel techniques are introduced to control the uniformity; one is a segmented slot antenna that can change radial distribution of the radiated field during operation, and the other is a hyper simulator that can predict microwave power distribution necessary for a desired radial density profile. The control system including these techniques provides a method of controlling radial profiles of the microwave plasma via inverse-problem approach, and is investigated numerically and experimentally.

  13. Time-Dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-Dependent Escape

    CERN Document Server

    Becker, P A; Le, T

    2006-01-01

    Stochastic acceleration of charged particles due to interactions with magnetohydrodynamic (MHD) plasma waves is the dominant process leading to the formation of the high-energy electron and ion distributions in a variety of astrophysical systems. Collisions with the waves influence both the energization and the spatial transport of the particles, and therefore it is important to treat these two aspects of the problem in a self-consistent manner. We solve the representative Fokker-Planck equation to obtain a new, closed-form solution for the time-dependent Green's function describing the acceleration and escape of relativistic ions interacting with Alfven or fast-mode waves characterized by momentum diffusion coefficient $D(p)\\propto p^q$ and mean particle escape timescale $t_esc(p) \\propto p^{q-2}$, where $p$ is the particle momentum and $q$ is the power-law index of the MHD wave spectrum. In particular, we obtain solutions for the momentum distribution of the ions in the plasma and also for the momentum dist...

  14. Dynamical and transport properties in plasmas including three-particle spatial correlations

    Science.gov (United States)

    Ababsa, Hakima; Meftah, Med Tayeb; Chohra, Thouria

    2017-03-01

    In this work, we study the two and triplet static correlation functions in plasma when the ions interact via the Debye screened potential and via the Deutsch screened potential. The latter takes into consideration the possible quantum effects at short distances. The ratio of the mean distance between two ions and the thermal De Broglie wavelength ri/λT gives the measure of these effects. Our investigation is developed in the conditions of weak coupling parameter (Γ <1 ). The pair and the triplet correlation functions are calculated numerically and compared to the correlation functions due to the Kirkwood superposition approximation (KSA). Some applications to the ion velocity auto-correlation function D(t) and the electric field auto-correlation function C(t) at an ion (assumed to be an impurity) and the diffusion coefficient D are calculated for the two kinds of potentials in different plasma conditions. The comparison with other results found in the literature shows a well satisfactory agreement, for the static as well as the dynamic properties.

  15. Nonlinear waves in electron–positron–ion plasmas including charge separation

    Indian Academy of Sciences (India)

    A MUGEMANA; S MOOLLA; I J LAZARUS

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth andspiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations.

  16. Gauge-invariant approach to meson photoproduction including the final-state interaction

    CERN Document Server

    Haberzettl, H; Krewald, S

    2006-01-01

    A fully gauge-invariant (pseudoscalar) meson photoproduction amplitude off a nucleon including the final-state interaction is derived. The approach based on a comprehensive field-theoretical formalism developed earlier by one of the authors replaces certain dynamical features of the full interaction current by phenomenological auxiliary contact currents. A procedure is outlined that allows for a systematic improvement of this approximation. The feasibility of the approach is illustrated by applying it to both the neutral and charged pion photoproductions.

  17. Alcohol intake and colorectal cancer: a comparison of approaches for including repeated measures of alcohol consumption

    DEFF Research Database (Denmark)

    Thygesen, Lau Caspar; Wu, Kana; Grønbaek, Morten;

    2008-01-01

    BACKGROUND: In numerous studies, alcohol intake has been found to be positively associated with colorectal cancer risk. However, the majority of studies included only one exposure measurement, which may bias the results if long-term intake is relevant.METHODS: We compared different approaches...... for including repeated measures of alcohol intake among 47,432 US men enrolled in the Health Professionals Follow-up Study. Questionnaires including questions on alcohol intake had been completed in 1986, 1990, 1994, and 1998. The outcome was incident colorectal cancer during follow-up from 1986 to 2002.RESULTS......: During follow-up, 868 members of the cohort experienced colorectal cancer. Baseline, updated, and cumulative average alcohol intakes were positively associated with colorectal cancer, with only minor differences among the approaches. These results support moderately increased risk for intake >30 g...

  18. A structure zone diagram including plasma based deposition and ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-10-14

    An extended structure zone diagram is proposed that includes energetic deposition, characterized by a large flux of ions typical for deposition by filtered cathodic arcs and high power impulse magnetron sputtering. The axes are comprised of a generalized homologous temperature, the normalized kinetic energy flux, and the net film thickness, which can be negative due to ion etching. It is stressed that the number of primary physical parameters affecting growth by far exceeds the number of available axes in such a diagram and therefore it can only provide an approximate and simplified illustration of the growth condition?structure relationships.

  19. An approach to include soil carbon changes in life cycle assessments

    DEFF Research Database (Denmark)

    Petersen, Bjorn Molt; Knudsen, Marie Trydeman; Hermansen, John Erik

    2013-01-01

    Globally, soil carbon sequestration is expected to hold a major potential to mitigate agricultural greenhouse gas emissions. However, the majority of life cycle assessments (LCA) of agricultural products have not included possible changes in soil carbon sequestration. In the present study, a method...... production in China. The suggested approach considers the time of the soil CO2 emissions for the LCA by including the Bern Carbon Cycle Model. Time perspectives of 20,100 and 200 years are used and a soil depth of 0-100 cm is considered. The application of the suggested method showed that the results were...... to estimate carbon sequestration to be included in LCA is suggested and applied to two examples where the inclusion of carbon sequestration is especially relevant: 1) Bioenergy: removal of straw from a Danish soil for energy purposes and 2) Organic versus conventional farming: comparative study of soybean...

  20. Nonextensive entropy approach to space plasma fluctuations and turbulence

    CERN Document Server

    Leubner, M P; Baumjohann, W

    2006-01-01

    Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation the classical Boltzmann-Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distributions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-kappa functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing kappa-values in case of slow solar wind conditions where a Gaussian is approached i...

  1. Nonlinear Modeling of a High Precision Servo Injection Molding Machine Including Novel Molding Approach

    Institute of Scientific and Technical Information of China (English)

    何雪松; 王旭永; 冯正进; 章志新; 杨钦廉

    2003-01-01

    A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.

  2. Electromagnetic microinstabilities in tokamak plasmas using a global spectral approach

    Energy Technology Data Exchange (ETDEWEB)

    Falchetto, G. L

    2002-03-01

    Electromagnetic microinstabilities in tokamak plasmas are studied by means of a linear global eigenvalue numerical code. The code is the electromagnetic extension of an existing electrostatic global gyrokinetic spectral toroidal code, called GLOGYSTO. Ion dynamics is described by the gyrokinetic equation, so that ion finite Larmor radius effects are taken into account to all orders. Non adiabatic electrons are included in the model, with passing particles described by the drift-kinetic equation and trapped particles through the bounce averaged drift-kinetic equation. A low frequency electromagnetic perturbation is applied to a low -but finite- {beta}plasma (where the parameter {beta} identifies the ratio of plasma pressure to magnetic pressure); thus, the parallel perturbations of the magnetic field are neglected. The system is closed by the quasi-neutrality equation and the parallel component of Ampere's law. The formulation is applied to a large aspect ratio toroidal configuration, with circular shifted surfaces. Such a simple configuration enables one to derive analytically the gyrocenter trajectories. The system is solved in Fourier space, taking advantage of a decomposition adapted to the toroidal geometry. The major contributions of this thesis are as follows. The electromagnetic effects on toroidal Ion Temperature Gradient driven (ITG) modes are studied. The stabilization of these modes with increasing {beta}, as predicted in previous work, is confirmed. The inclusion of trapped electron dynamics enables the study of its coupling to the ITG modes and of Trapped Electron Modes (TEM) .The effects of finite {beta} are considered together with those of different magnetic shear profiles and of the Shafranov shift. The threshold for the destabilization of an electromagnetic mode is identified. Moreover, the global formulation yields for the first time the radial structure of this so-called Alfvenic Ion Temperature Gradient (AITG) mode. The stability of the

  3. Effective action approach to wave propagation in scalar QED plasmas

    CERN Document Server

    Shi, Yuan; Qin, Hong

    2016-01-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...

  4. An ArcGIS approach to include tectonic structures in point data regionalization.

    Science.gov (United States)

    Darsow, Andreas; Schafmeister, Maria-Theresia; Hofmann, Thilo

    2009-01-01

    Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS; therefore, it could be adopted in many practical applications.

  5. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  6. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    CERN Document Server

    Grell, Gilbert; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-01-01

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the Restricted Active Space Self-Consistent Field method including spin-orbit coupling is used to cope with this challenge and to calculate valence and core photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the $\\text{[Fe(H}_2\\text{O)}_6\\text{]}^{2+}$ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approx...

  7. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  8. A nonextensive statistics approach for Langmuir waves in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    V. Muñoz

    2006-01-01

    Full Text Available The nonextensive statistics formalism proposed by Tsallis has found many applications in systems with memory effects, long range spatial correlations, and in general whenever the phase space has fractal or multi-fractal structure. These features may appear naturally in turbulent or non-neutral plasmas. In fact, the equilibrium distribution functions which maximize the nonextensive entropy strongly resemble the non-Maxwellian particle distribution functions observed in space and laboratory and turbulent pure electron plasmas. In this article we apply the Tsallis entropy formalism to the problem of longitudinal oscillations in a proton-electron plasma. In particular, we study the equilibrium distribution function and the dispersion relation of longitudinal oscillations in a relativistic plasma, finding interesting differences with the nonrelativistic treatment.

  9. Clinical application of plasma thermograms. Utility, practical approaches and considerations.

    Science.gov (United States)

    Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B

    2015-04-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article.

  10. a Novel Obstacle Avoidance Approach for Mobile Robot System Including Target Capturing

    Science.gov (United States)

    El Kamel, M. A.; Beji, L.; Abichou, A.; Mammar, S.

    2009-03-01

    In this work we focused on the study of how a mobile robot with kinematic model can reach a target in an hostile environment, with one obstacle. We developed a new approach which breaks up the control law into the sum of a repulsive part ur and an attractive part ua to make a mobile robot converge to the target, while avoiding the obstacle. Our approach is based on Lyapunov technique and transformation to polar coordinates in order to built a control law without analytic switch among different cases of robot's navigation. Simulations are carried out for two scenarios of navigation for target capturing.

  11. A comprehensive approach including a new enlargement technique to prevent complications after De Quervain tendinopathy surgery.

    Science.gov (United States)

    Perno-Ioanna, D; Papaloïzos, M

    2016-06-01

    The goal of this study was to evaluate the outcome of our surgical approach aimed at preventing complications following surgery for De Quervain tendinopathy. Our stepwise surgical procedure is described in detail. We reviewed 56 cases operated by a senior surgeon over 5years, and re-evaluated them with a minimum 15months' follow-up. Complications mentioned in the literature (poor wound healing, adhesions, nerve injury, incomplete decompression, tendon subluxation) were not present in any of the cases; the satisfaction rate was very high. Slight residual discomfort was noted in 16 cases. Among them, 13 had an associated pathology. In summary, the outcome after the comprehensive approach presented here is highly predictable. Properly applied, good to excellent results can be expected in most patients. Potential postoperative complications are effectively prevented. Some caution is needed in cases of associated pathologies.

  12. Transitions between the different regimes of propagation of an electron plasma wave, including the effect of Landau damping, trapping and plasma inhomogeneity

    CERN Document Server

    Bénisti, Didier

    2016-01-01

    This paper addresses the linear and nonlinear propagation of an electron wave (EPW), in a three-dimensional geometry, and in a collisionless plasma that may be inhomogeneous, nonstationary, anisotropic and even weakly magnetized. The wave amplitude, together with any hydrodynamic quantity characterizing the plasma (density, temperature,...) are supposed to vary very little within one wavelength or one wave period. Hence, the geometrical optics limit is assumed, and the wave propagation is described by a first order differential equation. This equation explicitly accounts for three-dimensional effects, plasma inhomogeneity, Landau damping, and the collisionless dissipation and electron acceleration due to trapping. It is derived by mixing results obtained from a direct resolution of the Vlasov-Poisson system and from a variational formalism involving a nonlocal Lagrangian density. In a one-dimensional situation, abrupt transitions are predicted in the coefficients of the wave equation. They occur when the sate...

  13. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.

    Science.gov (United States)

    Kim, Namhee; Zahran, Mai; Schlick, Tamar

    2015-01-01

    The modular organization of RNA structure has been exploited in various computational and theoretical approaches to identify RNA tertiary (3D) motifs and assemble RNA structures. Riboswitches exemplify this modularity in terms of both structural and functional adaptability of RNA components. Here, we extend our computational approach based on tree graph sampling to the prediction of riboswitch topologies by defining additional edges to mimick pseudoknots. Starting from a secondary (2D) structure, we construct an initial graph deduced from predicted junction topologies by our data-mining algorithm RNAJAG trained on known RNAs; we sample these graphs in 3D space guided by knowledge-based statistical potentials derived from bending and torsion measures of internal loops as well as radii of gyration for known RNAs. We present graph sampling results for 10 representative riboswitches, 6 of them with pseudoknots, and compare our predictions to solved structures based on global and local RMSD measures. Our results indicate that the helical arrangements in riboswitches can be approximated using our combination of modified 3D tree graph representations for pseudoknots, junction prediction, graph moves, and scoring functions. Future challenges in the field of riboswitch prediction and design are also discussed.

  14. A Holistic Approach Including Biological and Geological Criteria for Integrative Management in Protected Areas

    Science.gov (United States)

    Peña, Lorena; Monge-Ganuzas, Manu; Onaindia, Miren; De Manuel, Beatriz Fernández; Mendia, Miren

    2017-02-01

    Biodiversity hotspots and geosites are indivisible parts of natural heritage. Therefore, an adequate spatial delimitation and understanding of both and their linkages are necessary in order to be able to establish conservation policies. Normally, biodiversity hotspots are a typical target for those policies but, generally, geosites are not taken into account. Thus, this paper aims to fill this gap by providing an easily replicable method for the identification and integration of the geosites and the biodiversity hotspots in a Network for Integrative Nature Conservation that highlights their linkages. The method here presented has been applied to Urdaibai Biosphere Reserve situated in southeastern of the Bay of Biscay. The obtained results indicate that some geosites that are not directly related with biodiversity hotspots remain unprotected. Thus, from the study carried out, it can be stated that we conserving just the biodiversity hotspots is not enough to conserve the whole natural heritage of a protected area, as some plots interesting due to their relevant geoheritage remain unprotected. Therefore, it is necessary to fully integrate geosites into the planning documents of protected areas as a part of an ecosystem approach. The ecosystem approach recognizes the integrity of abiotic and biotic elements in nature conservation policies. Moreover, the proposed framework and the innovative methodology can be used as an easy input to identify priority areas for conservation, to improve the protected areas conservation planning, and to demonstrate the linkages between biodiversity hotspots and geosites.

  15. New linear plasma devices in the trilateral euregio cluster for an integrated approach to plasma surface interactions in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unterberg, B., E-mail: b.unterberg@fz-juelich.de [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Jaspers, R. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Koch, R. [Laboratoire de Physique des Plasmas/Laboratorium voor Plasmafysica, ERM/KMS, EURATOM-Association, B-1000 Brussels (Belgium); Massaut, V. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Rapp, J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Reiter, D.; Kraus, S.; Kreter, A.; Philipps, V.; Reimer, H.; Samm, U.; Scheibl, L.; Schweer, B. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Schuurmans, J.; Uytdenhouwen, I. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Al, R.; Berg, M.A. van den; Brons, S.; Eck, H.J.N. van; Goedheer, W.J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2011-10-15

    New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device with super-conducting magnetic field coils which will reach ITER-like divertor conditions at high magnetic field, ii) the newly proposed linear plasma device JULE-PSI (FZJ), which will allow to expose toxic and neutron activated target samples to ITER-like fluences and ion energies including in vacuo analysis of neutron activated samples, and iii) the plasmatron VISION I, a compact plasma device which will be operated inside the tritium lab at SCK-CEN Mol, capable to investigate tritium plasmas and moderately activated wall materials. This contribution shows the capabilities of the new devices and their forerunner experiments (Pilot-PSI at FOM and PSI-2 Juelich at FZJ) in view of the main objectives of the new TEC program on plasma surface interactions.

  16. A nonlinear generalized continuum approach for electro-elasticity including scale effects

    Science.gov (United States)

    Skatulla, S.; Arockiarajan, A.; Sansour, C.

    2009-01-01

    Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear

  17. A nonextensive statistics approach for Langmuir waves in relativistic plasmas

    OpenAIRE

    V. Muñoz

    2006-01-01

    The nonextensive statistics formalism proposed by Tsallis has found many applications in systems with memory effects, long range spatial correlations, and in general whenever the phase space has fractal or multi-fractal structure. These features may appear naturally in turbulent or non-neutral plasmas. In fact, the equilibrium distribution functions which maximize the nonextensive entropy strongly resemble the non-Maxwellian particle distribution functions observed in space and laborato...

  18. A comprehensive approach to the design of ethanol supply chains including carbon trading effects.

    Science.gov (United States)

    Giarola, Sara; Shah, Nilay; Bezzo, Fabrizio

    2012-03-01

    The optimal design of biofuels production systems is a key component in the analysis of the environmental and economic performance of new sustainable transport systems. In this paper a general mixed integer linear programming modelling framework is developed to assess the design and planning of a multi-period and multi-echelon bioethanol upstream supply chain under market uncertainty. The optimisation design process of biofuels production systems aims at selecting the best biomass and technologies options among several alternatives according to economic and environmental (global warming potential) performance. A key feature in the proposed approach is the acknowledgement of an economic value to the overall GHG emissions, which is implemented through an emissions allowances trading scheme. The future Italian biomass-based ethanol production is adopted as a case study. Results show the effectiveness of the model as a decision making-tool to steer long-term decisions and investments.

  19. Paediatric Stroke: Review of the Literature and Possible Treatment Options, including Endovascular Approach

    Directory of Open Access Journals (Sweden)

    Elisa F. Ciceri

    2011-01-01

    Full Text Available Stroke is among the top 10 causes of death in childhood. More than half of the surviving children have long-term neurological sequelae. Ischemic stroke (IS includes arterial ischemic stroke and cerebral venous thrombosis with venous infarction. Haemorrhagic stroke (HS includes intracerebral haematoma or subarachnoid haemorrhage. Risk factors for stroke are different in children and in adults. 10–30% of IS have no identified risk factors. However, multiple risk factors are recognizable in the majority of stroke in children; thus, a comprehensive diagnostic evaluation is crucial. Vascular abnormalities, such as arteriovenous malformations, aneurysms, vessel dissection, stenosis, and moyamoya disease, are frequently associated with both IS and HS and lead to high recurrence rates. Endovascular and surgical treatment options are sometimes indicated, performed on the basis of expert opinion, and extrapolated from the adult procedures. In the present paper, we review the recent literature and we discuss the treatment in five cases managed at our institutions.

  20. Simulated village locations in Thailand: A multi-scale model including a neural network approach.

    Science.gov (United States)

    Tang, Wenwu; Malanson, George P; Entwisle, Barbara

    2009-04-01

    The simulation of rural land use systems, in general, and rural settlement dynamics in particular has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space-time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing pattern-process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Experiments results demonstrate this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area.

  1. Radioreceptor assay to study the affinity of benzodiazepines and their receptor binding activity in human plasma including their active metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Dorow, R.G.; Seidler, J.; Schneider, H.H. (Schering A.G., Berlin (Germany, F.R.))

    1982-04-01

    A radioreceptor assay has been established to measure the receptor affinities of numerous benzodiazepines in clinical use. The time course of receptor binding activity was studied by this method in the plasma of eight healthy subjects randomly treated with 1mg lormetazepam (Noctamid(R)), 2mg flunitrazepam (Rohypnol(R)), and 10mg diazepam (Valium(R)), and placebo on a cross-over basis. Blood samples were collected up to 154h after treatment. Receptor affinities of numerous benzodiazepines in vitro show good correlation with therapeutic human doses (r=0.96) and may be predictive of drug potency in man. Mean peak plasma levels of lormetazepam binding equivalents were 4.8+-1 ng/ml at 2h after lormetazepam, 7.2+-1.8 ng/ml at 8h after flunitrazepam, and 17.9+-2.7 ng/ml at 15h after diazepam. Plasma elimination halflives of benzodiazepine binding equivalents were 9.3, 23 and 63h, respectively. Slow elimination of benzodiazepine binding equivalents following flunitrazepam and diazepam may be due to persistent active metabolites.

  2. Monte-Carlo fluid approaches to detached plasmas in non-axisymmetric divertor configurations

    Science.gov (United States)

    Feng, Y.; Frerichs, H.; Kobayashi, M.; Reiter, D.

    2017-03-01

    Fluid transport modeling in three-dimensional boundaries of toroidal confinement devices is reviewed with the emphasis on a Monte-Carlo approach to simulate detached plasmas. The loss of axisymmetry in such configurations presents a major challenge for numerical implementation of the standard fluid model widely applied to fusion experimental devices. A large-scale effort has been made to address this problem under complementary aspects including different magnetic topologies and numerical techniques. In this paper, we give a brief review of the different strategies pioneered and the challenges involved. A more detailed description is provided for the Monte-Carlo code—EMC3-Eirene, where the physics model and the basic idea behind the applied Monte-Carlo method are presented. The focus is put on its applications to detachment studies for stellarators and tokamaks. Here, major achievements and difficulties encountered are described. Model limitations and further development plans are discussed.

  3. Including the monetary part in macro accounting: A ‘modern’ approach to the macroeconomic accounting

    Directory of Open Access Journals (Sweden)

    Onur TUTULMAZ

    2014-12-01

    Full Text Available Economic output is placed at the heart of the macroeconomics. To calculate the output one needs to achieve simplifying a high level complexity of economic relationships to form a system. On the flip side, the model should be enough elaborated to be able to reflect the important relationships. In this manner, the classical macroeconomic identity as Keynes suggested is simple enough to understand the main elements but it does not show the financial parts of transactions. Not having the monetary part of the economy it lacks the coherence. With the financial and economic crises getting more frequent, more endeavour to build a more inclusive and coherent macroeconomic system has been observed. However, there are large variety in different options of simplifying and simulating complex relationships among the real and monetary part of the modern economies.  Our paper tries to set an analysis comparing some of the recent prominent ideas in building balance sheet and transaction flow matrix in regard to macroeconomic accounting system. We can conclude the new achievement of including the monetary transactions in the frame causes a compromise from the simplicity for a coherent and more complete picture of macro economy.

  4. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation.

    Science.gov (United States)

    Antonini, V; Torrengo, S; Marocchi, L; Minati, L; Dalla Serra, M; Bao, G; Speranza, G

    2014-01-01

    Plasma enhanced physical vapor depositions are extensively used to fabricate substrates for cell culture applications. One peculiarity of the plasma processes is the possibility to deposit thin films with reproducible chemical and physical properties. In the present work, a combinatorial plasma polymerization process was used to deposit thin carbon based films to promote cell adhesion, in the interest of testing cell proliferation as a function of the substrate chemical properties. Peculiarity of the combinatorial approach is the possibility to produce in just one deposition experiment, a set of surfaces of varying chemical moieties by changing the precursor composition. A full characterization of the chemical, physical and thermodynamic properties was performed for each set of the synthesized surfaces. X-ray photoelectron spectroscopy was used to measure the concentration of carboxyl, hydroxyl and amine functional groups on the substrate surfaces. A perfect linear trend between polar groups' density and precursors' concentration was found. Further analyses reveled that also contact angles and the correspondent surface energies of all deposited thin films are linearly dependent on the precursor concentration. To test the influence of the surface composition on the cell adhesion and proliferation, two cancer cell lines were utilized. The cell viability was assessed after 24 h and 48 h of cell culture. Experiments show that we are able to control the cell adhesion and proliferation by properly changing the thin film deposition conditions i.e. the concentration and the kind of chemical moiety on the substrate surface. The results also highlight that physical and chemical factors of biomaterial surface, including surface hydrophobicity and free energy, chemical composition, and topography, can altered cell attachment.

  5. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  6. Magnetic reconnection rate in space plasmas: a fractal approach.

    Science.gov (United States)

    Materassi, Massimo; Consolini, Giuseppe

    2007-10-26

    Magnetic reconnection is generally discussed via a fluid description. Here, we evaluate the reconnection rate assuming a fractal topology of the reconnection region. The central idea is that the fluid hypothesis may be violated at the scales where reconnection takes place. The reconnection rate, expressed as the Alfvén Mach number of the plasma moving toward the diffusion region, is shown to depend on the fractal dimension and on the sizes of the reconnection or diffusion region. This mechanism is more efficient than prediction of the Sweet-Parker model and even Petschek's model for finite magnetic Reynolds number. A good agreement also with rates given by Hall MHD models is found. A discussion of the fractal assumption on the diffusion region in terms of current microstructures is proposed. The comparison with in-situ satellite observations suggests the reconnection region to be a filamentary domain.

  7. Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: results of genome-wide association analyses including 4659 European individuals

    Science.gov (United States)

    Heid, Iris M.; Henneman, Peter; Hicks, Andrew; Coassin, Stefan; Winkler, Thomas; Aulchenko, Yurii S.; Fuchsberger, Christian; Song, Kijoung; Hivert, Marie-France; Waterworth, Dawn M.; Timpson, Nicholas J.; Richards, J. Brent; Perry, John R.B.; Tanaka, Toshiko; Amin, Najaf; Kollerits, Barbara; Pichler, Irene; Oostra, Ben A.; Thorand, Barbara; Frants, Rune R.; Illig, Thomas; Dupuis, Josée; Glaser, Beate; Spector, Tim; Guralnik, Jack; Egan, Josephine M.; Florez, Jose C.; Evans, David M.; Soranzo, Nicole; Bandinelli, Stefania; Carlson, Olga D.; Frayling, Timothy M.; Burling, Keith; Smith, George Davey; Mooser, Vincent; Ferrucci, Luigi; Meigs, James B.; Vollenweider, Peter; van Dijk, Ko Willems; Pramstaller, Peter; Kronenberg, Florian; van Duijn, Cornelia M.

    2009-01-01

    Objective Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. Methods We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0*10-4 for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. Results The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3*10-24) as well as in both women- and men-specific analyses (p=8.7*10-17 and p=2.5*10-11, respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). Conclusions We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin. PMID:20018283

  8. [New approaches to the measurement of the concentration and peroxidase activity of myeloperoxidase in human blood plasma].

    Science.gov (United States)

    Gorudko, I V; Cherkalina, O S; Sokolov, A V; Pulina, M O; Zakharova, E T; Vasil'ev, V B; Cherenkevich, S N; Panasenko, O M

    2009-01-01

    A novel method for spectrometrical measurement of myeloperoxidase (MPO) activity in plasma with o-dianisidine (DA) as a substrate is proposed. We have determined the optimal conditions, including the pH and hydrogen peroxide concentration, under which MPO is the main contributor to DA oxidation in plasma. Specific MPO inhibitors, salicylhydroxamic acid or (4-aminobenzoyl)hydrazide, are added to measure the activity of other heme-containing peroxidases (mainly hemoglobin and its derivatives) and subtract their contribution from the total plasma peroxidase activity. Plasma MPO concentrations are quantified by a new enzyme-linked immunosorbent assay (ELISA) developed by us and based on the use of antibodies raised in rats and rabbits. The sensitivity of this ELISA is high: 0.2-250 ng/ml. A direct and significant (P < 0.0001) correlation was observed between the MPO activities measured spectrometrically and by ELISA in blood samples from 38 healthy donors. The proposed approaches to MPO measurement in plasma can be used to evaluate the enzyme activity and concentration, as well as the efficacy of mechanisms by which MPO is regulated under physiological conditions and against the background of various inflammatory diseases.

  9. A hyperbolic-equation system approach for magnetized electron fluids in quasi-neutral plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Rei, E-mail: kawashima@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Komurasaki, Kimiya, E-mail: komurasaki@k.u-tokyo.ac.jp [Department of Advanced Energy, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Schönherr, Tony, E-mail: schoenherr@al.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-03-01

    A new approach using a hyperbolic-equation system (HES) is proposed to solve for the electron fluids in quasi-neutral plasmas. The HES approach avoids treatments of cross-diffusion terms which cause numerical instabilities in conventional approaches using an elliptic equation (EE). A test calculation reveals that the HES approach can robustly solve problems of strong magnetic confinement by using an upwind method. The computation time of the HES approach is compared with that of the EE approach in terms of the size of the problem and the strength of magnetic confinement. The results indicate that the HES approach can be used to solve problems in a simple structured mesh without increasing computational time compared to the EE approach and that it features fast convergence in conditions of strong magnetic confinement.

  10. Ab initio approach to the ion stopping power at the plasma-solid interface

    Science.gov (United States)

    Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten

    2016-10-01

    The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.

  11. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaotian; Jiang, Binhao, E-mail: jiangbh@hit.edu.cn [Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin (China)

    2015-06-21

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods.

  12. A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region

    Science.gov (United States)

    Klimas, A. J.

    1983-01-01

    A numerical method is presented for studying one-dimensional electron plasma evolution under typical interplanetary conditions. The method applies the Fourier-Fourier transform approach to a plasma model that is a generalization of the electrostatic Vlasov-Poisson system of equations. Conservation laws that are modified to include the plasma model generalization and also the boundary effects of nonperiodic solutions are given. A new conservation law for entropy in the transformed space is then introduced. These conservation laws are used to verify the numerical solutions. A discretization error analysis is presented. Two numerical instabilities and the methods used for their suppression are treated. It is shown that in interplanetary plasma conditions, the bump-on-tail instability produces significant excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An explanation of the second harmonic excitation is given in terms of wave-wave coupling during the growth phase of the instability.

  13. A simplified approach to calculate atomic partition functions in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    D' Ammando, Giuliano [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); Colonna, Gianpiero [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Capitelli, Mario [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy)

    2013-03-15

    A simplified method to calculate the electronic partition functions and the corresponding thermodynamic properties of atomic species is presented and applied to C(I) up to C(VI) ions. The method consists in reducing the complex structure of an atom to three lumped levels. The ground level of the lumped model describes the ground term of the real atom, while the second lumped level represents the low lying states and the last one groups all the other atomic levels. It is also shown that for the purpose of thermodynamic function calculation, the energy and the statistical weight of the upper lumped level, describing high-lying excited atomic states, can be satisfactorily approximated by an analytic hydrogenlike formula. The results of the simplified method are in good agreement with those obtained by direct summation over a complete set (i.e., including all possible terms and configurations below a given cutoff energy) of atomic energy levels. The method can be generalized to include more lumped levels in order to improve the accuracy.

  14. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    Directory of Open Access Journals (Sweden)

    Kechagias John

    2017-01-01

    Full Text Available Plasma Arc Cutting (PAC is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min, torch standoff distance (mm, and arc voltage (volts. Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For each one of the three process parameters, three parameter levels were used. Analysis of means (ANOM and analysis of variances (ANOVA were performed in order for the effect of each parameter on the leaner dimensional accuracy to be assessed.

  15. Fluid approach to evaluate sound velocity in Yukawa systems (complex plasmas)

    CERN Document Server

    Khrapak, Sergey

    2015-01-01

    The conventional fluid description of multi-component plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasi-localized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strengt...

  16. A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas

    CERN Document Server

    Porcherot, Quentin; Gilleron, Franck; Blenski, Thomas

    2011-01-01

    Absorption and emission spectra of plasmas with multicharged-ions contain transition arrays with a huge number of coalescent electric-dipole (E1) lines, which are well suited for treatment by the unresolved transition array and derivative methods. But, some transition arrays show detailed features whose description requires diagonalization of the Hamiltonian matrix. We developed a hybrid opacity code, called SCORCG, which combines statistical approaches with fine-structure calculations consistently. Data required for the computation of detailed transition arrays (atomic configurations and atomic radial integrals) are calculated by the super-configuration code SCO (Super-Configuration Opacity), which provides an accurate description of the plasma screening effects on the wave-functions. Level energies as well as position and strength of spectral lines are computed by an adapted RCG routine of R. D. Cowan. The resulting code provides opacities for hot plasmas and can handle mid-Z elements. The code is also a po...

  17. New approaches for the reduction of plasma arc drop in second-generation thermionic converters

    Science.gov (United States)

    Hatziprokopiou, M. E.; Shaw, D. T.

    1981-03-01

    Investigations of ion generation and recombination mechanisms in the cesium plasma are described with respect to the advanced mode thermionic energy converter. The changes in plasma density and temperature within the converter were studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation were studied in some detail, namely vibrationally excited N2 as an energy source of ionization of Cs ions in a dc discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N2-Cs mixture. The data obtained show that all three techniques - i.e., the non-LTE high voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  18. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane.

    Science.gov (United States)

    Wüstner, Daniel; Modzel, Maciej; Lund, Frederik W; Lomholt, Michael A

    2016-09-01

    Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.

  19. Global approach to the spectral problem of microinstabilities in tokamak plasmas using a gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-08-01

    Ion temperature gradient (ITG)-related instabilities are studied in tokamak-like plasmas with the help of a new global eigenvalue code. Ions are modelled in the frame of gyrokinetic theory so that finite Larmor radius effects of these particles are retained to all orders. Non-adiabatic trapped electron dynamics is taken into account through the bounce-averaged drift kinetic equation. Assuming electrostatic perturbations, the system is closed with the quasineutrality relation. Practical methods are presented which make this global approach feasible. These include a non-standard wave decomposition compatible with the curved geometry as well as adapting an efficient root finding algorithm for computing the unstable spectrum. These techniques are applied to a low pressure configuration given by a large aspect ratio torus with circular, concentric magnetic surfaces. Simulations from a linear, time evolution, particle in cell code provide a useful benchmark. Comparisons with local ballooning calculations for different parameter scans enable further validation while illustrating the limits of that representation at low toroidal wave numbers or for non-interchange-like instabilities. The stabilizing effect of negative magnetic shear is also considered, in which case the global results show not only an attenuation of the growth rate but also a reduction of the radial extent induced by a transition from the toroidal- to the slab-ITG mode. Contributions of trapped electrons to the ITG instability as well as the possible coupling to the trapped electron mode are clearly brought to the fore. (author) figs., tabs., 69 refs.

  20. An alternative approach for reusing slags from a plasma vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Y.-M. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China)], E-mail: yiming@mail.hwai.edu.tw; Tseng, H.-J. [Department of Foundry Engineering, National Tainan Industrial Vocational High School, Tainan 71075, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, J.-W.; Wang, C.-T. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China); Chen, H.-T. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2008-08-15

    Vitrification is widely applied to transform hazardous materials into inert slags. Raising the value of the recycled slag is an important issue from an economic point of view. In this study, an alternative approach for mixing a plasma slag with unsaturated polyester resin for making the dough-like molding composites is proposed. Physical properties, including ultimate tensile strength, Rockwell hardness, and the elongation at break, were measured to evaluate the characteristics of the composites. A scanning electron microscope and an X-ray diffractometer were used to examine the micro characteristics of the specimens. The chemical stability of the composites was estimated using the toxicity characteristic leaching procedure and a hot water bathing process. In an optimal slag loading (mass ratio of slag to unsaturated polyester resin) ranged from 0.1 to 0.2, the slag powder improved the physical properties of the composites. With an increased slag loading, excess slag powder weakened the structure of the resin, reducing the ultimate tensile strength and Rockwell hardness. The acid and water bathing tests indicated that the resin is decomposed in a hot environment. However, the slag was not destructed nor were the hazardous metals leached out. The results show that the molding method is an effective technology to recycle the slag.

  1. Simulation of plasma discharge in liquids: A detailed two-phase fluid approach

    Science.gov (United States)

    Charchi Aghdam, Ali; Farouk, Tanvir; Reacting Systems; Advanced Energy Research Laboratory Team

    2015-09-01

    Plasma discharge in liquids has gained great attention recently due to its applications in biomedical engineering, fuel processing, and water treatment and so on. Despite the tremendous interest, a comprehensive understanding of the underlying physics still remains limited. In the current work, an attempt is made to present a mathematical multi-physics model to describe the discharge of plasma in liquids. An in-house modeling platform is developed for simulating plasma formation in multiphase fluids. The model resolves a detailed two-phase fluid including viscous effects, surface tension, gravitational forces and electrical body force. All the governing equations are solved for gas and liquid phases. Electric field and charged species equations along with the plasma reaction kinetics are solved to get the charge distribution in the different phases as well as at the gas-liquid interface to obtain the electric body force acting at the interface. By coupling the above sub-models, a comprehensive multi-physics model for plasma discharge in liquids is constructed which is able to capture several physical aspects of the phenomena especially the role of the bubble, its motion and distortion on plasma characteristics.

  2. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements

    Science.gov (United States)

    Verhulst, Tobias G. W.; Sapundjiev, Danislav; Stankov, Stanimir M.

    2016-06-01

    The ionospheric behavior over Belgium during the partial solar eclipse of 20 March 2015 is analyzed based on high-resolution solar radio flux, vertical incidence sounding, and GPS TEC measurements. First results of ionosonde-based ionospheric plasma drift and tilt observations are presented and analyzed, including some traveling ionospheric disturbances caused by the eclipse. Also, collocated ionosonde and GPS measurements are used to reconstruct the time evolution of the vertical electron density distribution using the Royal Meteorological Institute (RMI) ionospheric specification system, called Local Ionospheric Electron Density profile Reconstruction (LIEDR).

  3. Ionization cross section for a strongly coupled partially ionized hydrogen plasma: variable phase approach

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, Al-Farabi Kazakh National University, 050012 Almaty (Kazakhstan)], E-mail: Fazylhan.Baimbetov@kaznu.kz, E-mail: Z.Kudyshev@mail.ru

    2009-05-29

    In the present work an electron impact ionization cross section is considered. The electron impact ionization cross section is calculated with the help of a variable phase approach to potential scattering. The Calogero equation is numerically solved, based on a pseudopotential model of interaction between partially ionized plasma particles, which accounts for correlation effects. As a result, scattering phase shifts are obtained. On the basis of the scattering phase shifts, the ionization cross section is calculated.

  4. Equation of State of the Quark Gluon Plasma within the Quasi-particle Approach

    CERN Document Server

    Begun, Viktor V; Mogilevsky, Oleg A

    2010-01-01

    We propose simple analytical form of the quark-gluon plasma (QGP) equation of state (EoS) based on a quasi-particle approach. This new EoS satisfies all qualitative features observed in the lattice QCD calculations and gives a good quantitative description of the lattice results in SU(3) gluodynamics. The suggested EoS opens up new possibilities for hydrodynamic and kinetic phenomenological applications in the studies of the QGP.

  5. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1.

    Directory of Open Access Journals (Sweden)

    Ewa A Jankowska

    Full Text Available OBJECTIVES: We hypothesised that assessment of plasma C-terminal pro-endothelin-1 (CT-proET-1, a stable endothelin-1 precursor fragment, is of prognostic value in patients with chronic heart failure (CHF, beyond other prognosticators, including N-terminal pro-B-type natriuretic peptide (NT-proBNP. METHODS: We examined 491 patients with systolic CHF (age: 63±11 years, 91% men, New York Heart Association [NYHA] class [I/II/III/IV]: 9%/45%/38%/8%, 69% ischemic etiology. Plasma CT-proET-1 was detected using a chemiluminescence immunoassay. RESULTS: Increasing CT-proET-1 was a predictor of increased cardiovascular mortality at 12-months of follow-up (standardized hazard ratio 1.42, 95% confidence interval [CI] 1.04-1.95, p = 0.03 after adjusting for NT-proBNP, left ventricular ejection fraction (LVEF, age, creatinine, NYHA class. In receiver operating characteristic curve analysis, areas under curve for 12-month follow-up were similar for CT-proET-1 and NT-proBNP (p = 0.40. Both NT-proBNP and CT-proET-1 added prognostic value to a base model that included LVEF, age, creatinine, and NYHA class. Adding CT-proET-1 to the base model had stronger prognostic power (p<0.01 than adding NT-proBNP (p<0.01. Adding CT-proET-1 to NT-proBNP in this model yielded further prognostic information (p = 0.02. CONCLUSIONS: Plasma CT-proET-1 constitutes a novel predictor of increased 12-month cardiovascular mortality in patients with CHF. High CT-proET-1 together with high NT-proBNP enable to identify patients with CHF and particularly unfavourable outcomes.

  6. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A. [SciberQuest, Inc., Del Mar, CA (United States); Karimabadi, Homa [SciberQuest, Inc., Del Mar, CA (United States)

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  7. A new approach for evaluating water hammer including the initial state of pressurization of the installation and fluid

    Directory of Open Access Journals (Sweden)

    G. Kaless

    2016-04-01

    Full Text Available The water hammer phenomenon is well known since the 19th century, while its mathematical formulation, by means of differential equations, is due to works of researchers such us Allievi (1903 and others from the beginning of the 20th century. The equations found in the technical publications produce a strange water hammer when the initial condition is defined assuming an incompressible fluid and a rigid pipe. The correct solution requires solving the water hammer equations for the initial state. When the finite difference method is applied, the initial state is solved by means of a set of non-linear equations. A novel approach is proposed including the initial state of pressurization into the governing equations and hence simplifying the calculus of the initial conditions. Furthermore, a critical reading of the deduction of the equations is done pointing out conceptual inconsistencies and proposing corrections.

  8. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs

    Institute of Scientific and Technical Information of China (English)

    T.Bentrcia; F.Djeffal; E.Chebaaki

    2013-01-01

    A fuzzy framework based on an adaptive network fuzzy inference system (ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate (DG) MOSFETs.The effect of the channel length and thickness on the resulting degradation is addressed,and 2-D numerical simulations are used for the elaboration of the training database.Several membership function shapes are developed,and the best one in terms of accuracy is selected.The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior.Therefore,the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices,including the hot-carrier and quantum effects.

  9. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    CERN Document Server

    Barkaoui, Abdelwahed; Tarek, Merzouki; Hambli, Ridha; Ali, Mkaddem

    2014-01-01

    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher s...

  10. Increasing resource allocation and research into tobacco control activities: a comprehensive approach including primary prevention, treatment and brief intervention.

    Science.gov (United States)

    Richmond, R

    1993-01-01

    The range of tobacco control activities should be viewed as essential parts of a complex multi-component puzzle. Intervention strategies designed to address tobacco control should be comprehensive and include both primary and secondary prevention activities and be multi-faceted and capable of bringing about change at both the individual and broader social and cultural levels. In this paper I argue for a mutually inclusive framework in which the various components contribute in important and different ways. I examine the prevalence of smoking and identify the high risk groups, then I examine the range of available strategies and present the evidence for their success. I discuss the primary prevention approaches such as warning labels, taxes, price increases, workplace bans, education in schools, mass media and self-help materials, as well as brief interventions and treatment strategies which are conducted at the worksite, general practice and specialized cessation clinics. The areas for future research are delineated for increased resource allocation and include: the best ways to disseminate brief interventions to smokers, methods to motivate smokers; training of health professionals to deliver brief interventions; enhancing quitting and access to existing treatment resources among specific disadvantaged minority groups, e.g. migrants, unemployed youth, the effect on smoking prevalence of warning labels on cigarette packets and price rises on cigarettes.

  11. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    Science.gov (United States)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  12. Spectral Approach to Anderson Localization in a Disordered 2D Complex Plasma Crystal

    Science.gov (United States)

    Kostadinova, Eva; Liaw, Constanze; Matthews, Lorin; Busse, Kyle; Hyde, Truell

    2016-10-01

    In condensed matter, a crystal without impurities acts like a perfect conductor for a travelling wave-particle. As the level of impurities reaches a critical value, the resistance in the crystal increases and the travelling wave-particle experiences a transition from an extended to a localized state, which is called Anderson localization. Due to its wide applicability, the subject of Anderson localization has grown into a rich field in both physics and mathematics. Here, we introduce the mathematics behind the spectral approach to localization in infinite disordered systems and provide physical interpretation in context of both quantum mechanics and classical physics. We argue that the spectral analysis is an important contribution to localization theory since it avoids issues related to the use of boundary conditions, scaling, and perturbation. To test accuracy and applicability we apply the spectral approach to the case of a 2D hexagonal complex plasma crystal used as a macroscopic analog for a graphene-like medium. Complex plasma crystals exhibit characteristic distance and time scales, which are easily observable by video microscopy. As such, these strongly coupled many-particle systems are ideal for the study of localization phenomena. The goal of this research is to both expand the spectral method into the classical regime and show the potential of complex plasma as a macroscopic tool for localization experiments. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  13. A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas

    Science.gov (United States)

    Calzetta, Esteban; Kandus, Alejandra

    2016-12-01

    We develop a purely hydrodynamic formalism to describe collisional, anisotropic instabilities in a relativistic plasma, that are usually described with kinetic theory tools. Our main motivation is the fact that coarse-grained models of high particle number systems give more clear and comprehensive physical descriptions of those systems than purely kinetic approaches, and can be more easily tested experimentally as well as numerically. Also they make it easier to follow perturbations from linear to nonlinear regimes. In particular, we aim at developing a theory that describes both a background nonequilibrium fluid configurations and its perturbations, to be able to account for the backreaction of the latter on the former. Our system of equations includes the usual conservation laws for the energy-momentum tensor and for the electric current, and the equations for two new tensors that encode the information about dissipation. To make contact with kinetic theory, we write the different tensors as the moments of a nonequilibrium one-particle distribution function (1pdf) which, for illustrative purposes, we take in the form of a Grad-like ansatz. Although this choice limits the applicability of the formalism to states not far from equilibrium, it retains the main features of the underlying kinetic theory. We assume the validity of the Vlasov-Boltzmann equation, with a collision integral given by the Anderson-Witting prescription, which is more suitable for highly relativistic systems than Marle’s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emergence of instabilities in an anisotropic, but axially symmetric background. For small departures of isotropy we find the dispersion relation for normal modes, which admit unstable solutions for a wide range of values of the parameter space.

  14. Thermodynamic coherence of the Variational Average-Atom in Quantum Plasmas (VAAQP) approach

    CERN Document Server

    Piron, R; Cichocki, B

    2009-01-01

    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is reported. The model as well as main results of previous studies are briefly recalled. The code is based on a new fully variational model of dense plasmas at equilibrium with quantum treatment of all electrons. The code can calculate the Average Atom structure and the mean ionization from the variational equations respecting the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electronic pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach on the example of the aluminium 10 eV isotherm EOS curve. A first comparison to an INFERNO-type model is also presented.

  15. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m/sup 5/) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2/sup 1/A' state of SO/sub 2/ with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables.

  16. Study of a pseudo-empirical model approach to characterize plasma actuators

    Energy Technology Data Exchange (ETDEWEB)

    Marziali Bermudez, M [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina); Sosa, R; Artana, G [Laboratorio de Fluidodinamica, Facultad de Ingenieria, UBA, Av. Paseo Colon 850, Buenos Aires 1063 (Argentina); Grondona, D; Marquez, A; Kelly, H, E-mail: rsosa@fi.uba.ar [Instituto de Fisica del Plasma (CONICET) - Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)

    2011-05-01

    The use of plasma actuators is a recent technology that imposes a localized electric force that is used to control air flows. A suitable representation of actuation enables to undertake plasma actuators optimization, to design flow-control strategies, or to analyse the flow stabilization that can be attained by plasma forcing. The problem description may be clearly separated in two regions. An outer region, where the fluid is electrically neutral, in which the flow is described by the Navier-Stokes equation without any forcing term. An inner region, that forms a thin boundary layer, where the fluid is ionized and electric forces are predominant. The outer limit of the inner solution becomes the boundary condition for the outer problem. The outer problem can then be solved with a slip velocity that is issued from the inner solution. Although the solution for the inner problem is quite complex it can be contoured proposing pseudo-empirical models where the slip velocity of the outer problem is determined indirectly from experiments. This pseudo-empirical model approach has been recently tested in different cylinder flows and revealed quite adapted to describe actuated flow behaviour. In this work we determine experimentally the influence of the duty cycle on the slip velocity distribution. The velocity was measured by means of a pitot tube and flow visualizations of the starting vortex (i.e. the induced flow when actuation is activated in a quiescent air) have been done by means of the Schlieren technique. We also performed numerical experiments to simulate the outer region problem when actuation is activated in a quiescent air using a slip velocity distribution as a boundary condition. The experimental and numerical results are in good agreement showing the potential of this pseudo-empirical model approach to characterize the plasma actuation.

  17. Radiative opacity of plasmas studied by detailed term (level) accounting approaches

    Institute of Scientific and Technical Information of China (English)

    ZENG Jiao-long; JIN Feng-tao; YUAN Jian-min

    2006-01-01

    Detailed term and level accounting (DTA and DLA) schemes have been developed to calculate the spectrally resolved and Rosseland and Planck mean opacities of plasmas in local thermodynamic equilibrium.Various physical effects,such as configuration interaction effect (including core-valence electron correlations effect and relativistic effect),detailed line width effect (including the line saturation effect),etc.,on the opacity of plasmas have been investigated in detail.Some of these physical effects are less capable or even impossible to be taken into account by statistical models such as unresolved transition arrays,super-transitionarray or average atom models.Our detailed model can obtain accurate opacity of plasmas.Using this model,we have systematically investigated the radiative opacities of low,medium and high-Z plasmas under different conditions of temperature and density.For example,for aluminum plasma,in the X-ray region,we demonstrated the effects of autoionization resonance broadening on the opacity for the first time.Furthermore,the relativistic effects play an important role on the opacity as well.Our results are in good agreement with other theoretical ones although better agreement can be obtained after the effects of autoionization resonance broadening and relativity have been considered.Our results also show that the modelling of the opacity is very complicated,since too many physical effects influence the accuracy of opacity.``For medium and high-Z plasmas,however,there are systematic discrepancies unexplained so far between the theoretical and experimental opacities.Here,the theoretical opacities are mainly obtained by statistical models.To clarify the discrepaneies,efforts from both sides are needed.From the viewpoint of theory,however,a DLA method,in which various physical effects can be taken into account,should be useful in resolving the difference.Taking gold plasma as an example,we studied in detail the effects of core-valence electron

  18. Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design

    Institute of Scientific and Technical Information of China (English)

    CHENG Jia; ZHU Yu; JI Linhong

    2012-01-01

    The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.

  19. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.

    Science.gov (United States)

    Liu, Ang; Lute, John; Gu, Huidong; Wang, Bonnie; Trouba, Kevin J; Arnold, Mark E; Aubry, Anne-Françoise; Wang, Jian

    2015-09-01

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2

  20. GLOBAL APPROACH OF CHANNEL MODELING IN MOBILE AD HOC NETWORKS INCLUDING SECOND ORDER STATISTICS AND SYSTEM PERFORMANCES ANALYSIS

    Directory of Open Access Journals (Sweden)

    Basile L. AGBA

    2008-06-01

    Full Text Available Mobile ad hoc networks (MANET are very difficult to design in terms of scenarios specification and propagation modeling. All these aspects must be taken into account when designing MANET. For cost-effective designing, powerful and accurate simulation tools are needed. Our first contribution in this paper is to provide a global approach process (GAP in channel modeling combining scenarios and propagation in order to have a better analysis of the physical layer, and finally to improve performances of the whole network. The GAP is implemented in an integrated simulation tool, Ad-SMPro. Moreover, channel statistics, throughput and delay are some key points to be considered when studying a mobile wireless networks. A carefully analysis of mobility effects over second order channel statistics and system performances is made based on our optimized simulation tool, Ad-SMProl. The channel is modeled by large scale fading and small scale fading including Doppler spectrum due to the double mobility of the nodes. Level Cross Rate and Average Duration of Fade are simulated as function of double mobility degree, a defined to be the ratio of the nodes' speeds. These results are compared to the theoretical predictions. We demonstrate that, in mobile ad hoc networks, flat fading channels and frequency-selective fading channels are differently affected. In addition, Bit Error rate is analysed as function of the ratio of the average bit energy to thermal noise density. Other performances (such as throughput, delay and routing traffic are analysed and conclusions related to the proposed simulation model and the mobility effects are drawn.

  1. Plasma Neutrophil Gelatinase-Associated Lipocalin Is Primarily Related to Inflammation during Sepsis: A Translational Approach.

    Directory of Open Access Journals (Sweden)

    Gordon P Otto

    Full Text Available Acute kidney injury (AKI during sepsis is common and underestimated. Plasma neutrophil gelatinase-associated lipocalin (plasma-NGAL is discussed as new biomarker for AKI diagnosis, but during inflammation its function and diagnostic impact remain unclear. The association between plasma-NGAL and inflammatory markers in septic patients, but also in healthy controls and patients with chronic inflammation before and after either maximum exercise test or treatment with an anti-TNF therapy were investigated. In-vitro blood stimulations with IL-6, lipopolysaccharide, NGAL or its combinations were performed to investigate cause-effect-relationship. Plasma-NGAL levels were stronger associated with inflammation markers including IL-6 (Sepsis: r = 0.785 P < 0.001; chronic inflammation after anti-TNF: r = 0.558 P < 0.001, IL-8 (Sepsis: r = 0.714 P<0.004; healthy controls after exercise r = 0.786 P < 0.028; chronic inflammation before anti-TNF: r = 0.429 P < 0.041 and IL-10 (healthy controls before exercise: r = 0.791 P < 0.028 than with kidney injury or function. Correlation to kidney injury or function was found only in septic patients (for creatinine: r = 0.906 P < 0.001; for eGFR: r = -0.686 P = 0.005 and in patients with rheumatic disease after anti-TNF therapy (for creatinine: r = 0.466 P < 0.025. In stimulation assays with IL-6 and lipopolysaccharide plasma-NGAL was increased. Co-stimulation of lipopolysaccharide with plasma-NGAL decreased cellular injury (P < 0.05 and in trend IL-10 levels (P = 0.057. Septic mice demonstrated a significantly improved survival rate after NGAL treatment (P < 0.01. Plasma-NGAL seams to be strongly involved in inflammation. For clinical relevance, it might not only be useful for AKI detection during severe inflammation - indeed it has to be interpreted carefully within this setting - but additionally might offer therapeutic potential.

  2. New Statistical Multiparticle Approach to the Acceleration of Electrons by the Ion Field in Plasmas

    Directory of Open Access Journals (Sweden)

    Eugene Oks

    2010-01-01

    Full Text Available The phenomenon of the acceleration of the (perturbing electrons by the ion field (AEIF significantly reduces Stark widths and shifts in plasmas of relatively high densities and/or relatively low temperature. Our previous analytical calculations of the AEIF were based on the dynamical treatment: the starting point was the ion-microfield-caused changes of the trajectories and velocities of individual perturbing electrons. In the current paper, we employ a statistical approach: the starting point is the electron velocity distribution function modified by the ion microfield. The latter had been calculated by Romanovsky and Ebeling in the multiparticle description of the ion microfield. The result shows again the reduction of the electron Stark broadening. Thus two totally different analytical approaches (dynamical and statistical agree with each other and therefore disprove the corresponding recent fully-numerical simulations by Stambulchik et al. that claimed an increase of the electron Stark broadening.

  3. The field line map approach for simulations of magnetically confined plasmas

    Science.gov (United States)

    Stegmeir, Andreas; Coster, David; Maj, Omar; Hallatschek, Klaus; Lackner, Karl

    2016-01-01

    Predictions of plasma parameters in the edge and scrape-off layer of tokamaks is difficult since most modern tokamaks have a divertor and the associated separatrix causes the usually employed field/flux-aligned coordinates to become singular on the separatrix/X-point. The presented field line map approach avoids such problems as it is based on a cylindrical grid: standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t. magnetic field) operators, and the characteristic flute mode property (k∥ ≪k⊥) of structures is exploited computationally via a field line following discretisation of parallel operators which leads to grid sparsification in the toroidal direction. This paper is devoted to the discretisation of the parallel diffusion operator (the approach taken is very similar to the flux-coordinate independent (FCI) approach which has already been adopted to a hyperbolic problem (Ottaviani, 2011; Hariri, 2013)). Based on the support operator method, schemes are derived which maintain the self-adjointness property of the parallel diffusion operator on the discrete level. These methods have very low numerical perpendicular diffusion compared to a naive discretisation which is a critical issue since magnetically confined plasmas exhibit a very strong anisotropy. Two different versions of the discrete parallel diffusion operator are derived: the first is based on interpolation where the order of interpolation and therefore the numerical diffusion is adjustable; the second is based on integration and is advantageous in cases where the field line map is strongly distorted. The schemes are implemented in the new code GRILLIX, and extensive benchmarks and numerous examples are presented which show the validity of the approach in general and GRILLIX in particular.

  4. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  5. Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals

    NARCIS (Netherlands)

    I.M. Heid (Iris); P. Henneman (Peter); A.A. Hicks (Andrew); S. Coassin (Stefan); T.W. Winkler (Thomas); Y.S. Aulchenko (Yurii); C. Fuchsberger (Christian); K. Song (Kijoung); M.-F. Hivert (Marie-France); D. Waterworth (Dawn); N. Timpson (Nicholas); J.B. Richards (Brent); J.R.B. Perry (John); T. Tanaka (Toshiko); N. Amin (Najaf); B. Kollerits (Barbara); I. Pichler (Irene); B.A. Oostra (Ben); B. Thorand (Barbara); R.R. Frants (Rune); T. Illig (Thomas); J. Dupuis (Josée); B. Glaser (Beate); T.D. Spector (Timothy); J.M. Guralnik (Jack); J.M. Egan (Josephine); J.C. Florez (Jose); D.M. Evans (David); N. Soranzo (Nicole); S. Bandinelli (Stefania); O.D. Carlson (Olga); T.M. Frayling (Timothy); K.A. Burling (Keith); G.D. Smith; V. Mooser (Vincent); L. Ferrucci (Luigi); J.B. Meigs (James); P. Vollenweider (Peter); K.W.v. Dijk; P.P. Pramstaller (Peter Paul); F. Kronenberg (Florian); P. Tikka-Kleemola (Päivi)

    2010-01-01

    textabstractObjective: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in m

  6. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A. [Trinum Research, Inc., San Diego, CA (United States)

    2016-08-08

    we have developed a novel Event-driven Multiscale Asynchronous Parallel Simulation (EMAPS) technology that replaces time stepping with self-adaptive update events. Local calculations are carried out only on an “as needed basis”. EMAPS (i) guarantees accurate and stable processing of physical variables in time accurate simulations, and (ii) eliminates unnecessary computation. Applying EMAPS to the hybrid model has resulted in the development of a unique parallel code, dimension-independent (compile-time-configurable) HYPERS (Hybrid Parallel Event-Resolved Simulator) that scales to hundreds of thousands of parallel processors. HYPERS advances electromagnetic fields and particles asynchronously on time scales determined by local physical laws and mesh properties. To achieve high computational accuracy in complex device geometries, HYPERS employs high-fidelity Cartesian grids with masked conductive cells. The HYPERS model includes multiple ion species, energy and momentum conserving ion-ion collisions, and provides a number of approximations for plasma resistivity and vacuum regions. Both local and periodic boundary conditions are allowed. The HYPERS solver preserves zero divergence of magnetic field. The project has demonstrated HYPERS capabilities on a number of applications of interest to fusion and astrophysical plasma physics applications listed below. 1. Theta-pinch formation of FRCs The formation, spontaneous spin-up, and stability of theta-pinch formed field-reversed configurations have been studied self-consistently in 3D. The end-to-end hybrid simulations reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration, and the nonlinear evolution of a fast growing tearing mode. 2. FRC collisions with magnetic mirrors Interactions of fast plasma streams and objects with magnetic obstacles (dipoles

  7. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities.

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    Full Text Available BACKGROUND: In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g., by the Golgi. We addressed these issues in the work presented here. PRINCIPAL FINDINGS: We found that Hsp60 localizes in the tumor cell plasma membrane, is associated with lipid rafts, and ends up in the exosomal membrane. We also found evidence that Hsp60 localizes in the Golgi apparatus and its secretion is prevented by an inhibitor of this organelle. CONCLUSIONS/SIGNIFICANCE: We propose a multistage process for the translocation of Hsp60 from the inside to the outside of the cell that includes a combination of protein traffic pathways and, ultimately, presence of the chaperonin in the circulating blood. The new information presented should help in designing future strategies for research and for developing diagnostic-monitoring means useful in clinical oncology.

  8. Calculation of Internal Energy and Pressure of Dense hydrogen Plasma by Direct Path Integral Monte Carlo Approach

    Institute of Scientific and Technical Information of China (English)

    刘松芬; 胡北来

    2003-01-01

    The internal energy and pressure of dense hydrogen plasma are calculated by the direct path integral Monte Carlo approach. The Kelbg potential is used as interaction potentials both between electrons and between protons and electrons in the calculation. The complete formulae for internal energy and pressure in dense hydrogen plasma derived for the simulation are presented. The correctness of the derived formulae are validated by the obtained simulation results. The numerical results are discussed in details.

  9. An Asset Pricing Approach to Testing General Term Structure Models including Heath-Jarrow-Morton Specifications and Affine Subclasses

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; van der Wel, Michel

    We develop a new empirical approach to term structure analysis that allows testing for time-varying risk premia and for the absence of arbitrage opportunities based on the drift restriction within the Heath, Jarrow and Morton (1992) framework. As in the equity case, a zero intercept condition...... is tested, but in addition to the standard bilinear term in factor loadings and market prices of risk, the relevant mean restriction in the term structure case involves an additional nonlinear (quadratic) term in factor loadings. We estimate our general model using likelihood-based dynamic factor model...... techniques for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our factor model estimates are similar across a general state space implementation and an alternative robust two-step principal components approach. The evidence favors time-varying market prices of risk. Most...

  10. An alternative approach to field-aligned coordinates for plasma turbulence simulations

    CERN Document Server

    Ottaviani, M A

    2010-01-01

    Turbulence simulation codes can exploit the flute-like nature of plasma turbulence to reduce the effective number of degrees of freedom necessary to represent fluctuations. This can be achieved by employing magnetic coordinates of which one is aligned along the magnetic field. This work presents an approach in which the position along the field lines is identified by the toroidal angle, rather than the most commonly used poloidal angle. It will be shown that this approach has several advantages. Among these, periodicity in both angles is retained. This property allows moving to an equivalent representation in Fourier space with a reduced number of toroidal components. It will be shown how this duality can be exploited to transform conventional codes that use a spectral representation on the magnetic surface into codes with a field-aligned coordinate. It is also shown that the new approach can be generalised to get rid of magnetic coordinates in the poloidal plane altogether, for a large class of models. Tests...

  11. Approach to Chandrasekhar-Kendall-Woltjer State in a Chiral Plasma

    CERN Document Server

    Xia, Xiao-liang; Wang, Qun

    2016-01-01

    We study the time evolution of the magnetic field in a plasma with a chiral magnetic current. The Vector Spherical Harmonic functions (VSH) are used to expand all fields. We define a measure for the Chandrasekhar-Kendall-Woltjer (CKW) state, which has a simple form in VSH expansion. We propose the conditions for a general class of initial momentum spectra that will evolve into the CKW state. For this class of initial conditions, to approach the CKW state, (i) a non-vanishing chiral magnetic conductivity is necessary, and (ii) the time integration of the product of the electric resistivity and chiral magnetic conductivity must grow faster than the time integration of the resistivity. We give a few examples to test these conditions numerically which work very well.

  12. A Plasma Proteomic Approach in Rett Syndrome: Classical versus Preserved Speech Variant

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    2013-01-01

    Full Text Available Rett syndrome (RTT is a progressive neurodevelopmental disorder mainly caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2. Although over 200 mutations types have been identified so far, nine of which the most frequent ones. A wide phenotypical heterogeneity is a well-known feature of the disease, with different clinical presentations, including the classical form and the preserved speech variant (PSV. Aim of the study was to unveil possible relationships between plasma proteome and phenotypic expression in two cases of familial RTT represented by two pairs of sisters, harbor the same MECP2 gene mutation while being dramatically discrepant in phenotype, that is, classical RTT versus PSV. Plasma proteome was analysed by 2-DE/MALDI-TOF MS. A significant overexpression of six proteins in the classical sisters was detected as compared to the PSV siblings. A total of five out of six (i.e., 83.3% of the overexpressed proteins were well-known acute phase response (APR proteins, including alpha-1-microglobulin, haptoglobin, fibrinogen beta chain, alpha-1-antitrypsin, and complement C3. Therefore, the examined RTT siblings pairs proved to be an important benchmark model to test the molecular basis of phenotypical expression variability and to identify potential therapeutic targets of the disease.

  13. The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Fenny M. Dwivany; Dina Yuli; Rachel A. Burton; Neil J. Shirley; Sarah M. Wilson; Geoffrey B. Fincher; Antony Bacic; Ed Newbigin; Monika S. Doblin

    2009-01-01

    The CELLULOSESYNTHASE-LIKE C(CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CEL-LULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the diver-gence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-β-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coor-dinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of poly-saccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.

  14. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode; Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage a l'arc TIG

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, M.

    2009-06-15

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  15. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  16. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  17. The MC-DFT approach including the SCS-MP2 energies to the new Minnesota-type functionals.

    Science.gov (United States)

    Liu, Po-Chun; Hu, Wei-Ping

    2014-08-05

    We have applied the multicoefficient density functional theory (MC-DFT) to four recent Minnesota functionals, including M06-2X, M08-HX, M11, and MN12-SX on the performance of thermochemical kinetics. The results indicated that the accuracy can be improved significantly using more than one basis set. We further included the SCS-MP2 energies into MC-DFT, and the resulting mean unsigned errors (MUEs) decreased by approximately 0.3 kcal/mol for the most accurate basis set combinations. The M06-2X functional with the simple [6-311+G(d,p)/6-311+G(2d,2p)] combination gave the best performance/cost ratios for the MC-DFT and MC-SCS-MP2|MC-DFT methods with MUE of 1.58 and 1.22 kcal/mol, respectively.

  18. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  19. Digital adaptive coronagraphy using SLMs: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems

    Science.gov (United States)

    Kühn, Jonas; Patapis, Polychronis

    2016-07-01

    We introduce a new technological framework for high-contrast coronagraphy, namely digital adaptive coronagraphy (DAC) using spatial light modulators (SLMs), taking advantage of recent advances in this technology. We present proof-of-principle experimental results in the visible, using a transmissive twisted nematic liquid crystal SLM display to show that SLMs can be successfully implemented as focal-plane phase-mask coronagraphs (4QPM, 8OPM,...), and that the technology is essentially in place to address realistic instrumental configurations. We explore a specific application where SLM-based adaptive coronagraphy might be particularly competitive, which is direct imaging of multiple stars systems, by simultaneously nulling multiple point sources in the field. Using a simple approach to compute a brightness-weighted synthetized coronagraphic phase map, we show that in the case of binaries the contrast gain over using a regular phase map can exceed 4 stellar magnitudes for a 1:1 binaries down to separation as close as 1 λ/D. Thanks to video-rate update frequency of the SLM, the technique is in principle compatible with sky rotation in the case of altitude-azimuth telescope mounts, and can address multiple target configurations with no actual mechanical or hardware change.

  20. Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach

    CERN Document Server

    Diaz, A J; Collados, M

    2014-01-01

    We study the modification of the classical criterion for the linear onset and growth rate of the Rayleigh-Taylor instability (RTI) in a partially ionized (PI) plasma in the one-fluid description, considering a generalized induction equation. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The boundary conditions lead to an equation for the frequencies in which some of them have positive complex parts, marking the appearance of the RTI. We study the ambipolar term alone first, extending the result to the full induction equation later. We find that the configuration is always unstable because of the presence of a neutral species. In the classical stability regime the growth rate is small, since the collisions prevent the neutral fluid to fully develop the RTI. For parameters in the classical instability regime the growth rate is lowered, but for the consi...

  1. Isotope effects on nuclear magnetic shieldings calculated by including zero-point vibration corrections: the VMF approach

    Energy Technology Data Exchange (ETDEWEB)

    Dransfeld, Alk

    2004-03-08

    As a minimal dynamic correction the 'zero-point vibration', ZPV, was included in the ab initio calculation of the isotropic magnetic shielding of {sup 13}C, {sup 19}F, {sup 29}Si, {sup 31}P, and {sup 35}Cl in some molecules including the references of NMR spectroscopy (f.i. CFCl{sub 3}, CH{sub 3}-NO{sub 2}, and TMS). In contrast to most previous works the ZPV correction is not based on gradients of internal coordinates, but uses derivatives obtained by 'vibration mode following' (VMF, the coordinates of the gradients describing the magnetic shielding hypersurface are the normal coordinates of the ground state vibration motion). The vibrational corrections obtained at the applied DFT level of theory are slightly smaller than those reported for MP2 calculations. Isotope effects computed with the ZPV/VMF correction are in reasonable agreement with experimental data. Contributions from individual vibration modes to the zero-point correction show that rotational motions have a large effect.

  2. A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma

    Science.gov (United States)

    Xia, Hui; Strachan, Briony C.; Gifford, Sean C.; Shevkoplyas, Sergey S.

    2016-10-01

    Leukocyte reduction of donated blood products substantially reduces the risk of a number of transfusion-related complications. Current ‘leukoreduction’ filters operate by trapping leukocytes within specialized filtration material, while allowing desired blood components to pass through. However, the continuous release of inflammatory cytokines from the retained leukocytes, as well as the potential for platelet activation and clogging, are significant drawbacks of conventional ‘dead end’ filtration. To address these limitations, here we demonstrate our newly-developed ‘controlled incremental filtration’ (CIF) approach to perform high-throughput microfluidic removal of leukocytes from platelet-rich plasma (PRP) in a continuous flow regime. Leukocytes are separated from platelets within the PRP by progressively syphoning clarified PRP away from the concentrated leukocyte flowstream. Filtrate PRP collected from an optimally-designed CIF device typically showed a ~1000-fold (i.e. 99.9%) reduction in leukocyte concentration, while recovering >80% of the original platelets, at volumetric throughputs of ~1 mL/min. These results suggest that the CIF approach will enable users in many fields to now apply the advantages of microfluidic devices to particle separation, even for applications requiring macroscale flowrates.

  3. A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma.

    Science.gov (United States)

    Xia, Hui; Strachan, Briony C; Gifford, Sean C; Shevkoplyas, Sergey S

    2016-10-24

    Leukocyte reduction of donated blood products substantially reduces the risk of a number of transfusion-related complications. Current 'leukoreduction' filters operate by trapping leukocytes within specialized filtration material, while allowing desired blood components to pass through. However, the continuous release of inflammatory cytokines from the retained leukocytes, as well as the potential for platelet activation and clogging, are significant drawbacks of conventional 'dead end' filtration. To address these limitations, here we demonstrate our newly-developed 'controlled incremental filtration' (CIF) approach to perform high-throughput microfluidic removal of leukocytes from platelet-rich plasma (PRP) in a continuous flow regime. Leukocytes are separated from platelets within the PRP by progressively syphoning clarified PRP away from the concentrated leukocyte flowstream. Filtrate PRP collected from an optimally-designed CIF device typically showed a ~1000-fold (i.e. 99.9%) reduction in leukocyte concentration, while recovering >80% of the original platelets, at volumetric throughputs of ~1 mL/min. These results suggest that the CIF approach will enable users in many fields to now apply the advantages of microfluidic devices to particle separation, even for applications requiring macroscale flowrates.

  4. Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation

    Science.gov (United States)

    2012-03-28

    with important kinetic non - Maxwellian particle distributions. These plasmas exhibit a range of length and time scales, making accurate simulation a...the plasmas ’ phase space for accurate reproduction of natural phenomena. These four goals offer an interlocking plan of attack to reach a full...anisotropic bimodal intermittent turbulence in space plasmas ” Phys. Plasmas . 11 (2004) 1287-1299.] to describe phenomena such as the scaling of the

  5. Experimental Investigation of the Effects of Various Plasma Actuator Configurations on Lift and Drag Coefficients of a Circular Cylinder Including the Effects of Electrodes

    Institute of Scientific and Technical Information of China (English)

    Siavash TABATABAEIAN; Masoud MIRZAEI; Asghar SADIGHZADEH; Vahid DAMIDEH; Abdollah SHADARAM

    2012-01-01

    In this paper,the effects of the existence of plasma actuator electrodes and also various configurations of the actuator for controlling the flow field around a circular cylinder are experimentally investigated.The cylinder is made of PVC (Polyvinyl Chloride) and considered as a dielectric barrier.Two electrodes are flush-mounted on the surface of the cylinder and are connected to a DC high voltage power supply for generation of electrical discharge.Pressure distribution results show that the existence of the electrodes and also the plasma are able to change the pressure distribution around the cylinder and consequently the lift and drag coefficients.It is found that the effect of the existence of the electrodes is comparable with the effect of plasma actuator in controlling the flow field around the cylinder and this effect is not reported by other researchers.Eventually it is concluded that the existence of the electrodes or any extra objects on the cylinder and also the existence of the plasma are capable of changing the flow field structure around the cylinder so that the behavior of the lift and drag coefficients of the cylinder will be changed significantly.

  6. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  7. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    Science.gov (United States)

    Sliz, Rafal; Suzuki, Yuji; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2012-09-01

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment.

  8. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    KAUST Repository

    Sliz, Rafal

    2012-09-13

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Clinical Immunology Review Series: an approach to the patient with recurrent orogenital ulceration, including Behçet's syndrome.

    LENUS (Irish Health Repository)

    Keogan, M T

    2009-04-01

    Patients presenting with recurrent orogenital ulcers may have complex aphthosis, Behçet\\'s disease, secondary complex aphthosis (e.g. Reiter\\'s syndrome, Crohn\\'s disease, cyclical neutropenia) or non-aphthous disease (including bullous disorders, erythema multiforme, erosive lichen planus). Behçet\\'s syndrome is a multi-system vasculitis of unknown aetiology for which there is no diagnostic test. Diagnosis is based on agreed clinical criteria that require recurrent oral ulcers and two of the following: recurrent genital ulcers, ocular inflammation, defined skin lesions and pathergy. The condition can present with a variety of symptoms, hence a high index of suspicion is necessary. The most common presentation is with recurrent mouth ulcers, often with genital ulcers; however, it may take some years before diagnostic criteria are met. All patients with idiopathic orogenital ulcers should be kept under review, with periodic focused assessment to detect evolution into Behçet\\'s disease. There is often a delay of several years between patients fulfilling diagnostic criteria and a diagnosis being made, which may contribute to the morbidity of this condition. Despite considerable research effort, the aetiology and pathogenesis of this condition remains enigmatic.

  10. General relativistic radiative transfer in hot astrophysical plasmas a characteristic approach

    CERN Document Server

    Zane, S; Nobili, L; Erna, M; Zane, Silvia; Turolla, Roberto; Nobili, Luciano; Erna, Myris

    1996-01-01

    In this paper we present a characteristic method for solving the transfer equation in differentially moving media in a curved spacetime. The method is completely general, but its capabilities are exploited at best in presence of symmetries, when the existence of conserved quantities allows to derive analytical expressions for the photon trajectories in phase space. In spherically--symmetric, stationary configurations the solution of the transfer problem is reduced to the integration of a single ordinary differential equation along the bi--parametric family of characteristic rays. Accurate expressions for the radiative processes relevant to continuum transfer in a hot astrophysical plasma have been used in evaluating the source term, including relativistic e--p, e--e bremsstrahlung and Compton scattering. A numerical code for the solution of the transfer problem in moving media in a Schwarzschild spacetime has been developed and tested. Some applications, concerning ``hot'' and ``cold'' accretion onto non--rot...

  11. Is the societal approach wide enough to include relatives? Incorporating relatives' costs and effects in a cost-effectiveness analysis.

    Science.gov (United States)

    Davidson, Thomas; Levin, Lars-Ake

    2010-01-01

    It is important for economic evaluations in healthcare to cover all relevant information. However, many existing evaluations fall short of this goal, as they fail to include all the costs and effects for the relatives of a disabled or sick individual. The objective of this study was to analyse how relatives' costs and effects could be measured, valued and incorporated into a cost-effectiveness analysis. In this article, we discuss the theories underlying cost-effectiveness analyses in the healthcare arena; the general conclusion is that it is hard to find theoretical arguments for excluding relatives' costs and effects if a societal perspective is used. We argue that the cost of informal care should be calculated according to the opportunity cost method. To capture relatives' effects, we construct a new term, the R-QALY weight, which is defined as the effect on relatives' QALY weight of being related to a disabled or sick individual. We examine methods for measuring, valuing and incorporating the R-QALY weights. One suggested method is to estimate R-QALYs and incorporate them together with the patient's QALY in the analysis. However, there is no well established method as yet that can create R-QALY weights. One difficulty with measuring R-QALY weights using existing instruments is that these instruments are rarely focused on relative-related aspects. Even if generic quality-of-life instruments do cover some aspects relevant to relatives and caregivers, they may miss important aspects and potential altruistic preferences. A further development and validation of the existing caregiving instruments used for eliciting utility weights would therefore be beneficial for this area, as would further studies on the use of time trade-off or Standard Gamble methods for valuing R-QALY weights. Another potential method is to use the contingent valuation method to find a monetary value for all the relatives' costs and effects. Because cost-effectiveness analyses are used for

  12. Dark Matter Inelastic Up-Scattering with the Interstellar Plasma: An Exciting New Source of X-Ray Lines, including at 3.5 keV

    CERN Document Server

    D'Eramo, Francesco; Profumo, Stefano; Stefaniak, Tim

    2016-01-01

    We explore the phenomenology of a class of models where the dark matter particle can inelastically up-scatter to a heavier excited state via off-diagonal dipolar interactions with the interstellar plasma (gas or free electrons). The heavier particle then rapidly decays back to the dark matter particle plus a quasi-monochromatic photon. For the process to occur at appreciable rates, the mass splitting between the heavier state and the dark matter must be comparable to, or smaller than, the kinetic energy of particles in the plasma. As a result, the predicted photon line falls in the soft X-ray range, or, potentially, at arbitrarily lower energies. We explore experimental constraints from cosmology and particle physics, and present accurate calculations of the dark matter thermal relic density and of the flux of monochromatic X-rays from thermal plasma excitation. We find that the model provides a natural explanation for the observed 3.5 keV line from clusters of galaxies and from the Galactic center, and is co...

  13. Comparison of approaches to Total Quality Management. Including an examination of the Department of Energy`s position on quality management

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1994-03-01

    This paper presents a comparison of several qualitatively different approaches to Total Quality Management (TQM). The continuum ranges from management approaches that are primarily standards -- with specific guidelines, but few theoretical concepts -- to approaches that are primarily philosophical, with few specific guidelines. The approaches to TQM discussed in this paper include the International Organization for Standardization (ISO) 9000 Standard, the Malcolm Baldrige National Quality Award, Senge`s the Learning Organization, Watkins and Marsick`s approach to organizational learning, Covey`s Seven Habits of Highly Successful People, and Deming`s Fourteen Points for Management. Some of these approaches (Deming and ISO 9000) are then compared to the DOE`s official position on quality management and conduct of operations (DOE Orders 5700.6C and 5480.19). Using a tabular format, it is shown that while 5700.6C (Quality Assurance) maps well to many of the current approaches to TQM, DOE`s principle guide to management Order 5419.80 (Conduct of Operations) has many significant conflicts with some of the modern approaches to continuous quality improvement.

  14. DCT-TCI: Real Gas Characterization of Plasma Flow Control - An Integrated Approach

    Science.gov (United States)

    2011-12-23

    Actuator The high voltages required to ignite the plasma discharge were generated using a Corona Magnetics Inc. high voltage transformer. A 10 kHz...with a one atmosphere uniform glow discharge surface plasma,” 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV, 1998), AIAA-98-0328. 8T...093508 (2005). 15K. P. Singh, S. Roy and D.V. Gaintonde, “Modeling of Dielectric Barrier Discharge Plasma Actuator with Atmospheric Air Chemistry

  15. Effective-action approach to wave propagation in scalar QED plasmas

    Science.gov (United States)

    Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong

    2016-07-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.

  16. New approaches for the reduction of plasma arc drop in second-generation thermionic converters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hatziprokopiou, M.E.; Shaw, D.T.

    1981-03-31

    Investigations of ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter are described. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  17. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  18. Plasma diagnostics approach to welding heat source/molten pool interaction

    Energy Technology Data Exchange (ETDEWEB)

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  19. The field line map approach for simulations of magnetically confined plasmas

    CERN Document Server

    Stegmeir, Andreas; Maj, Omar; Hallatschek, Klaus; Lackner, Karl

    2015-01-01

    In the presented field line map approach the simulation domain of a tokamak is covered with a cylindrical grid, which is Cartesian within poloidal planes. Standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t.~magnetic field lines) operators. The characteristic flute mode property $\\left(k_{\\parallel}\\ll k_{\\perp}\\right)$ of structures is exploited computationally by a grid sparsification in the toroidal direction. A field line following discretisation of parallel operators is then required, which is achieved via a finite difference along magnetic field lines. This includes field line tracing and interpolation or integration. The main emphasis of this paper is on the discretisation of the parallel diffusion operator. Based on the support operator method a scheme is constructed which exhibits only very low numerical perpendicular diffusion. The schemes are implemented in the new code GRILLIX, and extensive benchmarks are presented which show the validity of the approach ...

  20. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates.

    Science.gov (United States)

    Ma, Chaoxiong; Trujillo, Michael J; Camden, Jon P

    2016-09-14

    Nanoporous metal films are promising substrates for surfaced-enhanced Raman scattering (SERS) measurement, owing to their homogeneity, large surface area, and abundant hot-spots. Herein, a facile procedure was developed to fabricate nanoporous Ag film on various substrate surfaces. Thermally deposited Ag film was first treated with O2 plasma, resulting in porous Ag/AgxO film (AgxO-NF) with nanoscale feature. Sodium citrate was then used to reduce AgxO to Ag, forming nanoporous Ag film (AgNF) with similar morphology. The AgNF substrate demonstrates 30-fold higher Raman intensity than Ag film over polystyrene nanospheres (d = 600 nm) using 4-mercaptobenzoic acid (4-MBA) as the sensing molecule. Comparing with ordinary Raman measurement on 4-MBA solution, an enhancement factor of ∼6 × 10(6) was determined for AgNF. The AgNF substrate was evaluated for benzoic acid, 4-nitrophenol, and 2-mercaptoethanesulfonate, showing high SERS sensitivity for chemicals that bind weakly to Ag surface and molecules with relatively small Raman cross section at micromolar concentration. In addition to its simplicity, the procedure can be applied to various materials such as transparency film, filter paper, hard polystyrene film, and aluminum foil, revealing similar Raman sensitivity. By testing the durability of the substrate, we found that the AgxO films can be stored in ambient conditions for more than 90 days and still deliver the same SERS intensity if the films are treated with sodium citrate before use. These results demonstrate the advantage of the proposed approach for mass production of low-cost, sensitive, and durable SERS substrates. The transferable nature of these AgNF to different flexible surfaces also allows their easy integration with other sensing schemes.

  1. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology.

    Directory of Open Access Journals (Sweden)

    Stefan Rupf

    Full Text Available The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra: 1.96 µm were exposed to human oral cavities for 24 and 72 hours (n = 149 each to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each. Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates. Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM. Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 µm (24 h to 91 µm (72 h covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease.

  2. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology.

    Science.gov (United States)

    Rupf, Stefan; Idlibi, Ahmad Nour; Marrawi, Fuad Al; Hannig, Matthias; Schubert, Andreas; von Mueller, Lutz; Spitzer, Wolfgang; Holtmann, Henrik; Lehmann, Antje; Rueppell, Andre; Schindler, Axel

    2011-01-01

    The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 µm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 µm (24 h) to 91 µm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease.

  3. Nosocomial infections—a new approach towards preventive medicine using plasmas

    Science.gov (United States)

    Morfill, G. E.; Shimizu, T.; Steffes, B.; Schmidt, H.-U.

    2009-11-01

    A new, very efficient, large area scalable and robust electrode design for plasma production in air at atmosphere pressures has been developed and tested. This has made the development of a 'plasma dispenser' for hospital disinfection possible, which has certain advantages over current fluid disinfection systems. The properties of this device are presented, in particular the bactericidal and fungicidal efficiency, and the advantages are described. Such plasma dispensers could play an important role in the future fight against the alarming and growing threat posed by nosocomial (=hospital and community associated) bacterial infections.

  4. 'Plasma Camp': A Different Approach to Professional Development for Physics Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Post-Zwicker and Nicholas R. Guilbert

    1998-12-01

    The Plasma Physics and Fusion Energy Institute ('Plasma Camp') was inaugurated in 1998 as a way to address two areas of concern in the professional development of high-school physics teachers: involving teachers in the theory and methods of a current area of research in physics and connecting the research experience back into the classroom. The Institute, run jointly by a scientist and a teacher, immersed high-school teachers from across the country in laboratory investigations and in pedagogical projects for two weeks at Princeton University's Plasma Physics Laboratory. The goals, structure, and initial outcomes of the Institute are discussed.

  5. Nosocomial infections-a new approach towards preventive medicine using plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morfill, G E; Shimizu, T; Steffes, B; Schmidt, H-U [Max-Planck Institute for extraterrestrial physics, Giessenbachstrasse, D-85748 Garching (Germany); Hospital Munich Schwabing, Koelner Platz 1, D-80804 Muenchen (Germany)], E-mail: gem@mpe.mpg.de

    2009-11-15

    A new, very efficient, large area scalable and robust electrode design for plasma production in air at atmosphere pressures has been developed and tested. This has made the development of a 'plasma dispenser' for hospital disinfection possible, which has certain advantages over current fluid disinfection systems. The properties of this device are presented, in particular the bactericidal and fungicidal efficiency, and the advantages are described. Such plasma dispensers could play an important role in the future fight against the alarming and growing threat posed by nosocomial (=hospital and community associated) bacterial infections.

  6. Surface modification of PdlLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches.

    Science.gov (United States)

    Baki, Abdulrahman; Rahman, Cheryl V; White, Lisa J; Scurr, David J; Qutachi, Omar; Shakesheff, Kevin M

    2017-01-16

    Injectable poly (dl-lactic-co-glycolic acid) (PdlLGA) microspheres are promising candidates as biodegradable controlled release carriers for drug and cell delivery applications; however, they have limited functional groups on the surface to enable dense grafting of tissue specific biocompatible molecules. In this study we have evaluated surface adsorption, entrapment and oxygen plasma treatment as three approaches to modify the surfaces of PdlLGA microspheres with gelatine methacrylate (gel-MA) as a biocompatible and photo cross-linkable macromolecule. Time of flight secondary ion mass spectroscopy (TOF SIMS) and X-ray photoelectron spectroscopy (XPS) were used to detect and quantify gel-MA on the surfaces. Fluorescent and scanning electron microscopies (SEM) were used to image the topographical changes. Human mesenchymal stem cells (hMSCs) of immortalised cell line were cultured on the surface of gel-MA modified PdlLGA microspheres and Presto-Blue assay was used to study the effect of different surface modifications on cell proliferation. Data analysis showed that the oxygen plasma treatment approach resulted in the highest density of gel-MA deposition. This study supports oxygen plasma treatment as a facile approach to modify the surface of injectable PdlLGA microspheres with macromolecules such as gel-MA to enhance proliferation rate of injected cells and potentially enable further grafting of tissue specific molecules.

  7. Marine geodesy a multipurpose approach to solve oceanic problems. [including submersible navigation under iced seas, demarcation and determination of boundaries in deep ocean, tsunamis, and ecology

    Science.gov (United States)

    Saxena, N.

    1974-01-01

    Various current and future problem areas of marine geodesy are identified. These oceanic problem areas are highly diversified and include submersible navigation under ice seas, demarcation and determination of boundaries in deep ocean, tsunamis, ecology, etc., etc. Their achieved as well as desired positional accuracy estimates, based upon publications and discussions, are also given. A multipurpose approach to solve these problems is described. An optimum configuration of an ocean-bottom control-net unit is provided.

  8. Plant polyphenols as electron donors for erythrocyte plasma membrane redox system: validation through in silico approach

    OpenAIRE

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna; Rizvi, Syed Ibrahim

    2012-01-01

    Background The plasma membrane redox system (PMRS) has extensively been studied in erythrocytes. The PMRS plays an important role in maintaining plasma redox balance and provides a protective mechanism against oxidative stress. Earlier it was proposed that only NADH or NADPH provided reducing equivalents to PMRS; however, now it is acknowledged that some polyphenols also have the ability to donate reducing equivalents to PMRS. Methods Two different docking simulation softwares, Molegro Virtua...

  9. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    Science.gov (United States)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  10. Plasmas for medicine

    Science.gov (United States)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  11. Modeling function-perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE-ODE approach.

    Science.gov (United States)

    Ricken, T; Werner, D; Holzhütter, H G; König, M; Dahmen, U; Dirsch, O

    2015-06-01

    This study focuses on a two-scale, continuum multicomponent model for the description of blood perfusion and cell metabolism in the liver. The model accounts for a spatial and time depending hydro-diffusion-advection-reaction description. We consider a solid-phase (tissue) containing glycogen and a fluid-phase (blood) containing glucose as well as lactate. The five-component model is enhanced by a two-scale approach including a macroscale (sinusoidal level) and a microscale (cell level). The perfusion on the macroscale within the lobules is described by a homogenized multiphasic approach based on the theory of porous media (mixture theory combined with the concept of volume fraction). On macro level, we recall the basic mixture model, the governing equations as well as the constitutive framework including the solid (tissue) stress, blood pressure and solutes chemical potential. In view of the transport phenomena, we discuss the blood flow including transverse isotropic permeability, as well as the transport of solute concentrations including diffusion and advection. The continuum multicomponent model on the macroscale finally leads to a coupled system of partial differential equations (PDE). In contrast, the hepatic metabolism on the microscale (cell level) was modeled via a coupled system of ordinary differential equations (ODE). Again, we recall the constitutive relations for cell metabolism level. A finite element implementation of this framework is used to provide an illustrative example, describing the spatial and time-depending perfusion-metabolism processes in liver lobules that integrates perfusion and metabolism of the liver.

  12. Determination of the rotational population of H2 and D2 including high-N states in low temperature plasmas via the Fulcher-α transition

    Science.gov (United States)

    Briefi, S.; Rauner, D.; Fantz, U.

    2017-01-01

    Vibrational and rotational excitation of the hydrogen molecule can significantly affect molecular reaction rates in low pressure low temperature plasmas, for example for the creation of H- /D- ions via the dissociative attachment process. In general, the rotational population in these discharges is known to be non-thermal with an overpopulation of states with high rotational quantum number N. In contrast to a sophisticated direct measurement of the rotational distribution in the X g+1 Σ, v = 0 state, it is demonstrated that the determination can also be carried out up to high-N levels rather easily via optical emission spectroscopy utilizing the Fulcher-α transition of H2 and D2. The measured rotational populations can be described with a two-temperature distribution where the cold part reflects the population according to the gas temperature of the discharge. This has been verified by using the emission of the second positive system of nitrogen as independent gas temperature diagnostic. The hot part where the rotational temperature reaches several thousand Kelvin arises most probably from recombinative desorption of hydrogen at the discharge vessel wall where parts of the binding energy are converted into rotational excitation. Neglecting the hot population - what is often done when using the Fulcher-α transition as gas temperature diagnostic - can lead to a strong overestimation of Tgas. No fundamental differences in the rotational distributions between hydrogen and deuterium have been found, only the hot rotational temperature is smaller for D2 indicating an isotope-dependency of the recombinative desorption process.

  13. The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers

    Science.gov (United States)

    Angelsky, P. O.; Ushenko, A. G.; Dubolazov, A. V.; Sidor, M. I.; Bodnar, G. B.; Koval, G.; Trifonyuk, L.

    2013-04-01

    We present in this work the results of an investigation to analyse the coordinate distributions of azimuths and ellipticity of polarization (polarization maps) in laser images of blood plasma layers for three groups of patients: healthy (group 1), mastopathy (group 2) and breast cancer (group 3). To characterize polarization maps for all groups of samples we use three groups of parameters: statistical moments of the first to fourth orders, autocorrelation functions and logarithmic dependences for power spectra related to distributions of azimuths and ellipticity of polarization inherent to laser images of blood plasma. We ascertain the criteria for diagnosis and differentiation of pathological changes of the breast.

  14. Brine migration resulting from CO2 injection into saline aquifers – An approach to risk estimation including various levels of uncertainty

    DEFF Research Database (Denmark)

    Walter, Lena; Binning, Philip John; Oladyshkin, Sergey

    2012-01-01

    for large-scale 3D models including complex physics. Therefore, we apply a model reduction based on arbitrary polynomial chaos expansion combined with probabilistic collocation method. It is shown that, dependent on data availability, both types of uncertainty can be equally significant. The presented study...... features such as caprock properties, faults, and distinct geological layers. This is considered in this work by 6 different scenarios having different characteristic geological features. On the other hand, Monte Carlo methods are a classical approach to address statistical uncertainty. This is not feasible...

  15. Global approach to the spectral problem of microinstabilities in a cylindrical plasma using a gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Vaclavik, J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-03-01

    Considering the spectral problem of microinstabilities in a curved system, methods for solving the global gyrokinetic equation are presented for the simple case of a cylindrical plasma. They prove to be efficient for computing the full unstable spectrum of ITG-type modes and have shown to be applicable to the two-dimensional integral equation of tokamak configurations. (author) 5 figs., 22 refs.

  16. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine.

    Science.gov (United States)

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-07-30

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).

  17. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  18. Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium

    CERN Document Server

    Martínez-Gómez, David; Terradas, Jaume

    2016-01-01

    Ideal MHD provides an accurate description of low-frequency Alfv\\'en waves in fully ionized plasmas. However, higher frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low and the high frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall's term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations we check that at high frequencies ions of different species are not as strongly coupled as in the low frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high frequency waves since an appreciable damping is obtained. Furthermore, Coulomb collisions be...

  19. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  20. Non-thermodynamic approach to including bombardment-induced post-cascade redistribution of point defects in dynamic Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Ignatova, V.A. E-mail: velislav@uia.ua.ac.be; Chakarov, I.R.; Katardjiev, I.V

    2003-04-01

    The redistribution of the elements as a result of atomic relocations produced by the ions and the recoils due to the ballistic and transport processes is investigated by making use of a dynamic Monte Carlo code. Phenomena, such as radiation-enhanced diffusion (RED) and bombardment-induced segregation (BIS) triggered by the ion bombardment may also contribute to the migration of atoms within the target. In order to include both RED and BIS in the code, we suggest an approach which is considered as an extension of the binary collision approximation, i.e. it takes place 'simultaneously' with the cascade and acts as a correction to the particle redistribution for low energies. Both RED and BIS models are based on the common approach to treat the transport processes as a result of a random migration of point defects (vacancies and interstitials) according to a probability given by a pre-defined Gaussian. The models are tested and the influence of the diffusion and segregation is illustrated in the cases of 12 keV {sup 121}Sb{sup +} implantation at low fluence in SiO{sub 2}/Si substrate and of self-sputtering of Ga{sup +} ions during profiling of SiO{sub 2}/Si interfaces.

  1. Non-thermodynamic approach to including bombardment-induced post-cascade redistribution of point defects in dynamic Monte Carlo code

    CERN Document Server

    Ignatova, V A; Katardjiev, I V

    2003-01-01

    The redistribution of the elements as a result of atomic relocations produced by the ions and the recoils due to the ballistic and transport processes is investigated by making use of a dynamic Monte Carlo code. Phenomena, such as radiation-enhanced diffusion (RED) and bombardment-induced segregation (BIS) triggered by the ion bombardment may also contribute to the migration of atoms within the target. In order to include both RED and BIS in the code, we suggest an approach which is considered as an extension of the binary collision approximation, i.e. it takes place 'simultaneously' with the cascade and acts as a correction to the particle redistribution for low energies. Both RED and BIS models are based on the common approach to treat the transport processes as a result of a random migration of point defects (vacancies and interstitials) according to a probability given by a pre-defined Gaussian. The models are tested and the influence of the diffusion and segregation is illustrated in the cases of 12 keV ...

  2. Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to Dispersal-Vicariance Analysis and a case using Aesculus L. (Sapindaceae) including fossils

    Institute of Scientific and Technical Information of China (English)

    A.J. HARRIS; Qiu-Yun (Jenny) XIANG

    2009-01-01

    We propose a simple statistical approach for using Dispersal-Vicariance Analysis (DIVA) software to infer biogeographic histories without fully bifurcating trees. In this approach, ancestral ranges are first optimized for a sample of Bayesian trees. The probability P of an ancestral range r at a node is then calculated as P(rY)= Σnt=1 F(rY)tPt where Y is a node, and F(rY) is the frequency of range r among all the optimal solutions resulting from DIVA optimization at node Y, t is one of n topologies optimized, and Pt is the probability of topology t. Node Y is a hypothesized ancestor shared by a specific crown lineage and the sister of that lineage "x", where x may vary due to phylogenetic uncertainty (polytomies and nodes with posterior probability <100%). Using this method, the ancestral distribution at Y can be estimated to provide inference of the geographic origins of the specific crown group of interest. This approach takes into account phylogenetic uncertainty as well as uncertainty from DIVA optimization. It is an extension of the previously described method called Bayes-DIVA, which pairs Bayesian phylogenetic analysis with biogeographic analysis using DIVA. Further, we show that the probability P of an ancestral range at Y calculated using this method does not equate to pp* F(rY) on the Bayesian consensus tree when both variables are < 100%, where pp is the posterior probability and F(rY) is the frequency of range r for the node containing the specific crown group. We tested our DIVA-Bayes approach using Aesculus L., which has major lineages unresolved as a polytomy. We inferred the most probable geographic origins of the five traditional sections of Aesculus and ofAesculus californica Nutt. and examined range subdivisions at parental nodes of these lineages.Additionally, we used the DIVA-Bayes data from Aesculus to quantify the effects on biogeographic inference of including two wildcard fossil taxa in phylogenetic analysis. Our analysis resolved the

  3. Plasma-polyplumbagin-modified microfiber probes: a functional material approach to monitoring vascular access line contamination.

    Science.gov (United States)

    Davis, James; Molina, María Teresa; Leach, Christopher P; Cardosi, Marco F

    2013-10-01

    Atmospheric plasma treated carbon fiber filaments (10 micrometer) were used as the base substrate in the design of a probe intended for use within intravascular access devices. The microfiber probe was further functionalized with a polyplumbagin layer through which the line pH could be determined voltammetrically and therein provide the potential for obtaining diagnostic information relating to bacterial colonization of the line. The redox processes attributed to the immobilized polymer are characterized and a methodology developed to enable the acquisition of a redox signal that is selective and sensitive to pH. The applicability of the composite probe was demonstrated through examining the direct response in whole blood.

  4. A new approach for sequencing virion genome of Chinese HIV-1 strains subtype B and BC from plasma

    Institute of Scientific and Technical Information of China (English)

    MENG Zhe-feng; ZHANG Xiao-yan; XIN Ruo-lei; XING Hui; HE Xiang; XU Jian-qing; SHAO Yi-ming

    2011-01-01

    Background Although it was widely accepted that full-length HIV genome sequences is important in studying virus genetic evolution and variation as well as developing vaccine candidate,to directly sequencing HIV-1 genome of virion RNA remains as a challenge worldwide.Up to date,no published genomic sequences from virion RNA are available for Chinese prevalent HIV-1 strains due to the absence of specialized protocol and appropriate lab equipments.In this study we developed a straightforward approach for amplifying and sequencing HIV virion RNA from plasma by modifying published protocols and further confirmed it is suitable to process Chinese samples.Methods The methods for viral RNA extraction and gene amplification was modified and optimized as could be widely used in most Chinese labs.Gene alignment of Chinese HIV-1 strains was employed for designing specialized primer sets for Thai-B and BC recombinant strains.Based on comprehensively consideration of high variable gene region and recombinant breakpoints in BC recombinant strains,a three-amplicon strategy (including 4.3-kb gag-pol,2.9-kb pol-env and 2.7-kb env-ne) was developed.In addition,one amplicon (9 kb near full-length genome) was also used in 32 samples with varied viral loads.All amplicons were directly sequenced by DNA automated sequencer.Results Twenty-five percent(8/32) amplification efficiency was achieved by the one-amplicon strategy and 65.6%(21/32) by three-amplicon strategy.For one amplicon strategy,none of complete near full-length genome sequences was obtained by DNA sequencing.For three-amplicon strategy,75% sequences were achieved in DNA sequencing.Amplification efficiency but not sequencing efficiency was closely associated with viral loads.Conclusion Three-amplicon strategy covering all encoding regions of HIV-1 is suitable for Thai-B and BC recombinant strains and could be potentially employed in less-well equipped Chinese labs.

  5. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  6. Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach

    Energy Technology Data Exchange (ETDEWEB)

    Rubab, N.; Biernat, H. K. [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria); Institute of Physics, University of Graz, Universitaetplatz 5, A-8010 Graz (Austria); Erkaev, V. [Institute of Computational Modelling, 660036 Krasnoyarsk, Russia and Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Langmayr, D. [Virtual Vehicle Competence Center (vif), Inffeldgasse 21a, 8010 Graz (Austria)

    2011-07-15

    Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.

  7. Thickness measurement approach for plasma sprayed coatings using ultrasonic testing technique

    Institute of Scientific and Technical Information of China (English)

    LIN Li; LI Xi-meng; XU Zhi-hui; LEI Ming-kai

    2004-01-01

    The special ultrasonic testing system has been developed for thickness measurement of plasma sprayed coatings. The ultrasonic immersion method was used to obtain stable coupling condition and avoid other disadvantages of contact method. Spherical acoustic lens were designed to focus ultrasonic beam so as to improve beam directivity and concentrate ultrasonic energy. To increase testing precision and avoid mussy wave signals, moderate pulse width and frequency of the transducer has been selected. The displacement of transducer in X-Y-Z directions was precisely manipulated by step-controlled system to insure the accuracy of focus length and repetition of measurement. Optimized testing conditions (with the transducer of center frequency of 10 MHz and crystal diameter of 8 mm, focus length of 9.5 mm, diameter of focal column of 0. 1 mm and length of focal column of 0.27 mm) were selected to determine the thickness between 285 -414 μm of ZrO2 coatings plasma sprayed on the nickel based superalloy. The frequency interval of the periodic extremums in ultrasonic power spectra decreases with increasing coating thickness. The ultrasonic results accord with those of metallographical method.

  8. Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings

    Science.gov (United States)

    Heimann, Robert B.

    2010-06-01

    Statistical design of experiment (SDE) methodology applied to design and performance testing of plasma-sprayed coatings follows an evolutionary path, usually starting with classic multiparameter screening designs (Plackett-Burman), and progressing through factorial (Taguchi) to limited response surface designs (Box-Behnken). Modern designs of higher dimensionality, such as central composite and D-optimal designs, will provide results with higher predictive power. Complex theoretical models relying on evolutionary algorithms, and application of artificial neuronal networks (ANNs) and fuzzy logic control (FLC) allow estimating the behavior of the complex plasma spray environment through validation either by key experiments or first-principle calculations. In this review, paper general principles of SDE will be discussed and examples be given that underscore the different powers of prediction of individual statistical designs. Basic rules of ANN and FLC will be briefly touched on, and their potential for increased reliability of coating performance through stringent quality control measures assessed. Salient features will be reviewed of studies performed to optimize thermal coating properties and processes reported in the pertinent literature between 2000 and the present.

  9. Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Gerke, Horst H.

    2012-08-01

    In the absence of overland flow, shallow subsurface runoff is one of the most important mechanisms determining hydrological responses of headwater catchments to rainstorms. Subsurface runoff can be triggered by preferential flow of infiltrating water frequently occurring in heterogeneous and structured soils as a basically one-dimensional (1D) vertical process. Any attempt to include effects of preferential flow in hydrological hillslope studies is limited by the fact that the thickness of the permeable soil is mostly small compared to the length of the hillslope. The objective of this study is to describe preferential flow effects on hillslope-scale subsurface runoff by combining a 1D vertical dual-continuum approach with a 1D lateral flow equation. The 1D vertical flow of water in a variably saturated soil is described by a coupled set of Richards' equations and the 1D saturated lateral flow of water on less permeable bedrock by the diffusion wave equation. The numerical solution of the combined model was used to study rainfall-runoff events on the Tomsovska hillslope by comparing simulated runoff with observed trench discharge data. The dual-continuum model generated the observed rapid runoff response, which served as an input for the lateral flow model. The diffusion wave model parameters (i.e., length of the contributing hillslope, effective porosity, and effective hydraulic conductivity) indicate that the hillslope length that contributed to subsurface drainage is relatively short (in the range of 25-50 m). Significant transformation of the 1D vertical inflow signal by lateral flow is expected for longer hillslopes, smaller effective conductivities, and larger effective porosities. The physically-based combined modeling approach allows for a consistent description of both preferential flow in a 1D vertical soil profile and lateral subsurface hillslope flow in the simplest way.

  10. Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (P100)

    NARCIS (Netherlands)

    Bornmann, L.; Leydesdorff, L.; Wang, J.

    2013-01-01

    For comparisons of citation impacts across fields and over time, bibliometricians normalize the observed citation counts with reference to an expected citation value. Percentile-based approaches have been proposed as a non-parametric alternative to parametric central-tendency statistics. Percentiles

  11. Thermodynamics of the Quark-Gluon Plasma within a T-matrix approach

    CERN Document Server

    Lacroix, Gwendolyn; Buisseret, Fabien

    2015-01-01

    The strongly-coupled phase of the quark-gluon plasma (QGP) is studied here by resorting to a $T$-matrix formulation in which the medium is seen as a non-ideal gas of quasiparticles (quarks, antiquarks and gluons) interacting nonpertubatively. In the temperature range under study, (1-5) $T_c$, where $T_c$ is the temperature of deconfinement, the interactions are expected to be strong enough to generate bound states. The dissociation temperature of such binary bound states is thus computed here. The more the quasiparticles involved in the binary system are heavy, the more the bound state is likely to survive significantly above $T_c$. Then, the QGP equations of state at zero and small baryonic potential are computed for $N_f = 2$ and $N_f = 2 + 1$ by resorting to the Dashen, Ma and Bernstein formulation of statistical mechanics. Comparisons with current lattice QCD data are presented.

  12. Opacity of Hot and Dense Plasmas of a Mixture using an Average-Atom Approach

    Institute of Scientific and Technical Information of China (English)

    袁建民

    2002-01-01

    An average-atom model is proposed to calculate the opacities of hot and dense plasmas of a mixture. A self-consistent scheme is used to reach the requirements of the same temperature and chemical potential for all kinds ofatoms in the mixtures, the same electron density at the boundaries between the atoms, and the electrical neutralitywithin each atomic sphere. The orbital energies and wavefunctions for the bound electrons are calculated withthe Dirac-Slater equations. The occupation numbers at each orbital of each kind of atom are determined by theFermi-Dirac distribution with the same chemical potential for all kinds of atoms. As an example, the opacity ofthe mixture of Au and Cd is calculated at a few temperatures and densities.

  13. Description of excited states in [Re(Imidazole)(CO)3 (Phen)](+) including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach.

    Science.gov (United States)

    Fumanal, Maria; Daniel, Chantal

    2016-10-15

    The low-lying electronic excited states of [Re(imidazole)(CO)3 (phen)](+) (phen = 1,10-phenanthroline) ranging between 420 nm and 330 nm have been calculated by means of relativistic spin-orbit time-dependent density functional theory (TD-DFT) and wavefunction approaches (state-average-CASSCF/CASPT2). A direct comparison between the theoretical absorption spectra obtained with different methods including SOC and solvent corrections for water points to the difficulties at describing on the same footing the bands generated by metal-to-ligand charge transfer (MLCT), intraligand (IL) transition, and ligand-to-Ligand- charge transfer (LLCT). While TD-DFT and three-roots-state-average CASSCF (10,10) reproduce rather well the lowest broad MLCT band observed in the experimental spectrum between 420 nm and 330 nm, more flexible wavefunctions enlarged either by the number of roots or by the number of active orbitals and electrons destabilize the MLCT states by introducing IL and LLCT character in the lowest part of the absorption spectrum. © 2016 Wiley Periodicals, Inc.

  14. Reliability and Construct Validity of the Psychopathic Personality Inventory-Revised in a Swedish Non-Criminal Sample - A Multimethod Approach including Psychophysiological Correlates of Empathy for Pain.

    Science.gov (United States)

    Sörman, Karolina; Nilsonne, Gustav; Howner, Katarina; Tamm, Sandra; Caman, Shilan; Wang, Hui-Xin; Ingvar, Martin; Edens, John F; Gustavsson, Petter; Lilienfeld, Scott O; Petrovic, Predrag; Fischer, Håkan; Kristiansson, Marianne

    2016-01-01

    Cross-cultural investigation of psychopathy measures is important for clarifying the nomological network surrounding the psychopathy construct. The Psychopathic Personality Inventory-Revised (PPI-R) is one of the most extensively researched self-report measures of psychopathic traits in adults. To date however, it has been examined primarily in North American criminal or student samples. To address this gap in the literature, we examined PPI-R's reliability, construct validity and factor structure in non-criminal individuals (N = 227) in Sweden, using a multimethod approach including psychophysiological correlates of empathy for pain. PPI-R construct validity was investigated in subgroups of participants by exploring its degree of overlap with (i) the Psychopathy Checklist: Screening Version (PCL:SV), (ii) self-rated empathy and behavioral and physiological responses in an experiment on empathy for pain, and (iii) additional self-report measures of alexithymia and trait anxiety. The PPI-R total score was significantly associated with PCL:SV total and factor scores. The PPI-R Coldheartedness scale demonstrated significant negative associations with all empathy subscales and with rated unpleasantness and skin conductance responses in the empathy experiment. The PPI-R higher order Self-Centered Impulsivity and Fearless Dominance dimensions were associated with trait anxiety in opposite directions (positively and negatively, respectively). Overall, the results demonstrated solid reliability (test-retest and internal consistency) and promising but somewhat mixed construct validity for the Swedish translation of the PPI-R.

  15. Reliability and Construct Validity of the Psychopathic Personality Inventory-Revised in a Swedish Non-Criminal Sample - A Multimethod Approach including Psychophysiological Correlates of Empathy for Pain.

    Directory of Open Access Journals (Sweden)

    Karolina Sörman

    Full Text Available Cross-cultural investigation of psychopathy measures is important for clarifying the nomological network surrounding the psychopathy construct. The Psychopathic Personality Inventory-Revised (PPI-R is one of the most extensively researched self-report measures of psychopathic traits in adults. To date however, it has been examined primarily in North American criminal or student samples. To address this gap in the literature, we examined PPI-R's reliability, construct validity and factor structure in non-criminal individuals (N = 227 in Sweden, using a multimethod approach including psychophysiological correlates of empathy for pain. PPI-R construct validity was investigated in subgroups of participants by exploring its degree of overlap with (i the Psychopathy Checklist: Screening Version (PCL:SV, (ii self-rated empathy and behavioral and physiological responses in an experiment on empathy for pain, and (iii additional self-report measures of alexithymia and trait anxiety. The PPI-R total score was significantly associated with PCL:SV total and factor scores. The PPI-R Coldheartedness scale demonstrated significant negative associations with all empathy subscales and with rated unpleasantness and skin conductance responses in the empathy experiment. The PPI-R higher order Self-Centered Impulsivity and Fearless Dominance dimensions were associated with trait anxiety in opposite directions (positively and negatively, respectively. Overall, the results demonstrated solid reliability (test-retest and internal consistency and promising but somewhat mixed construct validity for the Swedish translation of the PPI-R.

  16. Application of a design of experiment approach in the development of a sensitive bioanalytical assay in human plasma.

    Science.gov (United States)

    Dawes, Michelle L; Bergum, James S; Schuster, Alan E; Aubry, Anne-Françoise

    2012-11-01

    To support a first-in-human (FIH) clinical study in healthy volunteers, a human plasma assay, a 20-fold more sensitive method than the validated non-clinical LC-MS/MS assays, was requested. For the clinical assay, a LLOQ of 0.050 ng/mL for Compound A and 0.100 ng/mL for Compound B was desired to accurately determine the analyte concentrations in human plasma samples across all treatment groups. A design of experiment (DOE) investigation was performed in an effort to optimize the extraction procedure of the bioanalytical assay used to support the first in human study and future clinical studies. Three factors, extraction buffer pH (two pHs), volume ratio of organic solvent to plasma (two ratios), and extraction shake time (three times), were selected for the DOE. Both analytes were analyzed at a low concentration, 0.150 ng/mL, and a stable isotope label internal standard was used for each analyte. To estimate the recovery of each analyte from the extraction, the response ratio of each analyte over the respective internal standard was used, and to estimate matrix effects, the absolute response (peak area) of each analyte was used. The results of the DOE indicated that the three factors tested had a more significant effect on the extraction of the metabolite, Compound B, compared to that of the parent, Compound A. The extraction buffer pH had the greatest influence on Compound B and the volume of extraction solvent had an influence on both analytes. Unexpectedly, a longer extraction time caused an apparent decrease in the overall recovery for both analytes. This was presumably due to an increased extraction of interfering matrix components. Optimal conditions were achieved for the combined analysis of both compounds using the DOE approach.

  17. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  18. Comparative efficacy and safety of the left versus right radial approach for percutaneous coronary procedures: a meta-analysis including 6870 patients.

    Science.gov (United States)

    Xia, S L; Zhang, X B; Zhou, J S; Gao, X

    2015-08-01

    The radial approach is widely used in the treatment of patients with coronary artery disease. We conducted a meta-analysis of published results on the efficacy and safety of the left and right radial approaches in patients undergoing percutaneous coronary procedures. A systematic search of reference databases was conducted, and data from 14 randomized controlled trials involving 6870 participants were analyzed. The left radial approach was associated with significant reductions in fluoroscopy time [standardized mean difference (SMD)=-0.14, 95% confidence interval (CI)=-0.19 to -0.09; Pprocedural failure of the left and the right radial approaches [risk ratios (RR)=0.98; 95%CI=0.77-1.25; P=0.88] or procedural time (SMD=-0.05, 95%CI=0.17-0.06; P=0.38). Tortuosity of the subclavian artery (RR=0.27, 95%CI=0.14-0.50; Pright radial approach. A greater number of catheters were used with the left than with the right radial approach (SMD=0.25, 95%CI=0.04-0.46; P=0.02). We conclude that the left radial approach is as safe as the right radial approach, and that the left radial approach should be recommended for use in percutaneous coronary procedures, especially in percutaneous coronary angiograms.

  19. Complex plasmas scientific challenges and technological opportunities

    CERN Document Server

    Lopez, Jose; Becker, Kurt; Thomsen, Hauke

    2014-01-01

    This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present, and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nanometer- to micrometer-sized particles, negative ions, molecules and radicals, and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using mi...

  20. Practical diagnostic approaches to composite plasma cell neoplasm and low grade B-cell lymphoma/clonal infiltrates in the bone marrow.

    Science.gov (United States)

    Hussein, Shafinaz; Gill, Kamraan; Baer, Lea N; Hoehn, Daniela; Mansukhani, Mahesh; Jobanputra, Vaidehi; Bhagat, Govind; Alobeid, Bachir

    2015-03-01

    Composite plasma cell neoplasm (PCN) and low grade B-cell lymphoma (B-NHL) in the bone marrow are uncommon and raise the differential diagnosis of B-NHL with plasmacytic differentiation and PCN with lymphoplasmacytic morphology. This can be a challenging differential diagnosis, and the distinctions are important because of differences in management. We report five cases of composite PCN with B-NHL or clonal B-cell infiltrates involving the bone marrow. By using multiple different diagnostic modalities, including immunophenotyping by flow cytometry and immunohistochemistry, cytogenetic analysis and IGH gene rearrangement studies by polymerase chain reaction, we were able to distinguish two distinct clonally unrelated neoplasms in all cases. We describe the utility and pitfalls of these different diagnostic modalities. Flow cytometric analysis with a panel of antibodies that includes CD19, CD56, CD138, CD45 and other aberrant markers commonly expressed by PCN will allow identification of clonally unrelated PCN and B-NHL in a composite neoplasm, and distinguish them from B-NHL with plasmacytic differentiation and PCN with lymphoplasmacytic morphology. Cytogenetic and molecular analyses can give false-negative or false-positive results. In summary, a multimodal approach utilizing these different tools, including clinical data, should be used to arrive at the correct diagnosis.

  1. Comparative efficacy and safety of the left versus right radial approach for percutaneous coronary procedures: a meta-analysis including 6870 patients

    Directory of Open Access Journals (Sweden)

    S.L. Xia

    2015-08-01

    Full Text Available The radial approach is widely used in the treatment of patients with coronary artery disease. We conducted a meta-analysis of published results on the efficacy and safety of the left and right radial approaches in patients undergoing percutaneous coronary procedures. A systematic search of reference databases was conducted, and data from 14 randomized controlled trials involving 6870 participants were analyzed. The left radial approach was associated with significant reductions in fluoroscopy time [standardized mean difference (SMD=-0.14, 95% confidence interval (CI=-0.19 to -0.09; P<0.00001] and contrast volume (SMD=-0.07, 95%CI=-0.12 to -0.02; P=0.009. There were no significant differences in rate of procedural failure of the left and the right radial approaches [risk ratios (RR=0.98; 95%CI=0.77-1.25; P=0.88] or procedural time (SMD=-0.05, 95%CI=0.17-0.06; P=0.38. Tortuosity of the subclavian artery (RR=0.27, 95%CI=0.14-0.50; P<0.0001 was reported more frequently with the right radial approach. A greater number of catheters were used with the left than with the right radial approach (SMD=0.25, 95%CI=0.04-0.46; P=0.02. We conclude that the left radial approach is as safe as the right radial approach, and that the left radial approach should be recommended for use in percutaneous coronary procedures, especially in percutaneous coronary angiograms.

  2. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    Science.gov (United States)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  3. Dip Coating of Nano Hydroxyapatite on Titanium Alloy with Plasma Assisted γ-Alumina Buffer Layer: A Novel Coating Approach

    Institute of Scientific and Technical Information of China (English)

    M.Khalid; M.Mujahid; A.Nusair Khan; R.S.Rawat

    2013-01-01

    This paper reported a novel coating approach to deposit a thin,crack free and nano-structured hydroxyapatite (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for biomedical implants.The Al2O3 buffer layer was deposited by plasma spraying while the HA top layer was applied by dip coating technique.The X-ray diffraction (XRD) and Raman reflections of alumina buffer layer showed α-to γ-Al2O3 phase transformation;and the fractographic analysis of the sample revealed the formation of columnar grains in well melted splats.The bonding strength between Al2O3 coating and Ti6Al4V substrate was estimated to be about 40 MPa.The presence of dip coated HA layer was confirmed using XRD,scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.The SEM images exhibited that HA top layer enveloped homogenously the troughs and crests of the underneath rough (Ra =2.91 μm) Al2O3 surface.It is believed that the novel coating approach adopted might render the implant suitable for rapid cement-less fixation as well as biocompatible for longer periods.

  4. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  5. Numerical study of chiral plasma instability within the classical statistical field theory approach

    CERN Document Server

    Buividovich, P V

    2015-01-01

    We report on a numerical study of the real-time dynamics of chirally imbalanced lattice Dirac fermions coupled to dynamical electromagnetic field. To this end we use the classical statistical field theory approach, in which the quantum evolution of fermions is simulated exactly, and electromagnetic fields are treated as classical. Motivated by recent experiments on chirally imbalanced Dirac semimetals, we use the Wilson-Dirac lattice Hamiltonian for fermions in order to model the emergent nature of chiral symmetry at low energies. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring large chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to decay at the expense of nonzero helicity of electromagnetic ...

  6. Kubo-Greenwood approach to conductivity in dense plasmas with average atom models

    CERN Document Server

    Starrett, C E

    2016-01-01

    A new formulation of the Kubo-Greenwood conductivity for average atom models is given. The new formulation improves upon previous by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman-Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman-Evans formula. Again results based on this expression are in good agreement with ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.

  7. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  8. A contoured gap coaxial plasma gun with injected plasma armature

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  9. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    Science.gov (United States)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  10. A quantile regression approach can reveal the effect of fruit and vegetable consumption on plasma homocysteine levels.

    Directory of Open Access Journals (Sweden)

    Eliseu Verly-Jr

    Full Text Available A reduction in homocysteine concentration due to the use of supplemental folic acid is well recognized, although evidence of the same effect for natural folate sources, such as fruits and vegetables (FV, is lacking. The traditional statistical analysis approaches do not provide further information. As an alternative, quantile regression allows for the exploration of the effects of covariates through percentiles of the conditional distribution of the dependent variable.To investigate how the associations of FV intake with plasma total homocysteine (tHcy differ through percentiles in the distribution using quantile regression.A cross-sectional population-based survey was conducted among 499 residents of Sao Paulo City, Brazil. The participants provided food intake and fasting blood samples. Fruit and vegetable intake was predicted by adjusting for day-to-day variation using a proper measurement error model. We performed a quantile regression to verify the association between tHcy and the predicted FV intake. The predicted values of tHcy for each percentile model were calculated considering an increase of 200 g in the FV intake for each percentile.The results showed that tHcy was inversely associated with FV intake when assessed by linear regression whereas, the association was different when using quantile regression. The relationship with FV consumption was inverse and significant for almost all percentiles of tHcy. The coefficients increased as the percentile of tHcy increased. A simulated increase of 200 g in the FV intake could decrease the tHcy levels in the overall percentiles, but the higher percentiles of tHcy benefited more.This study confirms that the effect of FV intake on lowering the tHcy levels is dependent on the level of tHcy using an innovative statistical approach. From a public health point of view, encouraging people to increase FV intake would benefit people with high levels of tHcy.

  11. Metal plasmas for the fabrication of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2006-09-21

    A review is provided covering metal plasma production, theenergetic condensation of metal plasmas, and the formation ofnanostructures using such plasmas. Plasma production techniques includepulsed laser ablation, filtered cathodic arcs, and various forms ofionized physical vapor deposition, namely magnetron sputtering withionization of sputtered atoms in radio frequency discharges,self-sputtering, and high power impulse magnetron sputtering. Thediscussion of energetic condensation focuses on the control of kineticenergy by biasing and also includes considerations of the potentialenergy and the processes occurring at subplantation and implantation. Inthe final section on nanostructures, two different approaches arediscussed. In the top-down approach, the primary nanostructures arelithographically produced and metal plasma is used to coat or filltrenches and vias. Additionally, multilayers with nanosize periods(nanolaminates) can be produced. In the bottom-up approach, thermodynamicforces are used to fabricate nanocomposites and nanoporous materials bydecomposition and dealloying.

  12. Treatment outcome and prognostic factor analysis in transplant-eligible Chinese myeloma patients receiving bortezomib-based induction regimens including the staged approach, PAD or VTD

    Directory of Open Access Journals (Sweden)

    Chim Chor

    2012-06-01

    Full Text Available Abstract Background We have reported promising outcomes using a staged approach, in which bortezomib/thalidomide/dexamethasone was used only in 14 patients with suboptimal response to VAD (vincristine/adriamycin/dexamethasone before autologous stem cell transplantation (ASCT. Here we compared the outcomes of the staged approach with frontline PAD (bortezomib/doxorubicin/dexamethasone or VTD (bortezomib/thalidomide/dexamethasone induction, and analysed prognostic factors for outcome. Patients and methods Ninety-one transplant-eligible Chinese patients received three induction regimens prior to ASCT [staged approach (N = 25, PAD (N = 31, VTD (N = 35]. and received thalidomide maintenance for 2 years post-ASCT. Results 43 (47.3% patients had International Staging System (ISS III disease. By an intention-to-treat analysis, the overall CR/nCR rate were 37.4% post-induction, and 62.6% post-ASCT. Five-year overall (OS and event-free (EFS survivals were 66% and 45.1%. There was no difference of the post-induction CR/nCR rate, EFS or OS between patients induced by these three regimens. Moreover, ISS III disease did not affect CR/nCR rates. Multivariate analysis showed that ISS and post-ASCT CR/nCR impacted OS while ISS and post-induction CR/nCR impacted EFS. Conclusions These three induction regimens produced comparable and favorable outcomes in myeloma. The unfavorable outcome of ISS stage III persisted despite upfront/early use of bortezomib. CR/nCR predicted favorable survivals.

  13. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked...... to the animal growth performance. Three dose–response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC–MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth...... metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA....

  14. Development and validation of a multi-analyte LC-MS/MS approach for quantification of neuroleptics in whole blood, plasma, and serum.

    Science.gov (United States)

    Montenarh, Deborah; Hopf, Markus; Maurer, Hans H; Schmidt, Peter; Ewald, Andreas H

    2016-10-01

    Based on a similar approach for quantification of antidepressants, benzodiazepines, and z-drugs, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-analyte approach with simple liquid-liquid extraction was extended for fast target screening and quantification of neuroleptics in whole blood, plasma, and serum. As this method is part of a multi-analyte procedure for over 100 analytes from different drug classes and as the extracts were additionally used in the authors' laboratory for gas chromatography-mass spectrometry (GC-MS) analysis, one universal stable-isotope-labelled internal standard (SIL-IS) was used to save time and resource. The method was validated with respect to international guidelines. For accuracy and precision, full calibration was performed with ranges from subtherapeutic to toxic concentrations. Selectivity problems could not be observed, but matrix effects ranged from 68 to 211% in all samples. For the low quality control (QC), recovery ranged from 32 to 112%, process efficiency from 31 to 165% and for the high QC recovery from 42 to 141%, process efficiency from 29 to 154%. In addition statistical data evaluation of the variances of the recovery, matrix effects, and process efficiency data between whole blood vs. plasma, whole blood vs. serum, and plasma vs. serum were done. The presented LC-MS/MS approach was applicable for selective detection of 33 neuroleptics as well as accurate and precise quantification of 25 neuroleptics in whole blood, 19 in plasma, and 17 in serum. More significant matrix effects (ME) for neuropletic drugs overall in plasma and serum as compared with whole blood were detected. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Positive approach: Implications for the relation between number theory and geometry, including connection to Santilli mathematics, from Fibonacci reconstitution of natural numbers and of prime numbers

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Stein E., E-mail: stein.johansen@svt.ntnu.no [Institute for Basic Research, Division of Physics, Palm Harbor, Florida, USA and Norwegian University of Science and Technology, Department of Social Anthropology, Trondheim (Norway)

    2014-12-10

    The paper recapitulates some key elements in previously published results concerning exact and complete reconstitution of the field of natural numbers, both as ordinal and as cardinal numbers, from systematic unfoldment of the Fibonacci algorithm. By this natural numbers emerge as Fibonacci 'atoms' and 'molecules' consistent with the notion of Zeckendorf sums. Here, the sub-set of prime numbers appears not as the primary numbers, but as an epistructure from a deeper Fibonacci constitution, and is thus targeted from a 'positive approach'. In the Fibonacci reconstitution of number theory natural numbers show a double geometrical aspect: partly as extension in space and partly as position in a successive structuring of space. More specifically, the natural numbers are shown to be distributed by a concise 5:3 code structured from the Fibonacci algorithm via Pascal's triangle. The paper discusses possible implications for the more general relation between number theory and geometry, as well as more specifically in relation to hadronic mathematics, initiated by R.M. Santilli, and also briefly to some other recent science linking number theory more directly to geometry and natural systems.

  16. Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach

    CERN Document Server

    Cuntz, M; Schroeder, K -P; Bounama, C; Franck, S

    2011-01-01

    In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance to the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical, and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solution...

  17. A numerical approach for the direct computation of flows including fluid-solid interaction: modeling contact angle, film rupture, and dewetting

    CERN Document Server

    Mahady, K; Kondic, L

    2015-01-01

    In this paper, we present a computationally efficient method for including fluid-solid interactions into direct numerical simulations of the Navier--Stokes equations. This method is found to be as powerful as our earlier formulation [J. Comp. Phys., vol. 249: 243 (2015)], while outperforming the earlier method in terms of computational efficiency. The performance and efficacy of the presented method are demonstrated by computing contact angles of droplets at equilibrium. Furthermore, we study the instability of films due to destabilizing fluid-solid interactions, and discuss the influence of contact angle and inertial effects on film breakup. In particular, direct simulation results show an increase in the final characteristic length scales when compared to the predictions of a linear stability analysis, suggesting significant influence of nonlinear effects. Our results also show that emerging length scales differ, depending on a number of physical dimensions considered.

  18. Plasma diagnostic approach for the low-temperature deposition of silicon quantum dots using dual frequency PECVD

    Science.gov (United States)

    Sahu, B. B.; Yin, Y.; Lee, J. S.; Han, Jeon G.; Shiratani, M.

    2016-10-01

    Although studies of silicon (Si) quantum dots (QDs) were started just a few years ago, progress is noteworthy concerning unique film properties and their potential application for devices. In particular, relating to the Si QD process optimization, it is essential to control the deposition environment by studying the role of plasma parameters and atomic and molecular species in the process plasmas. In this work, we report on advanced material processes for the low-temperature deposition of Si QDs by utilizing radio frequency and ultrahigh frequency dual frequency (DF) plasma enhanced chemical vapor deposition (PECVD) method. DF PECVD can generate a very high plasma density in the range ~9  ×  1010 cm-3 to 3.2  ×  1011 cm-3 at a very low electron temperature (T e) ~ 1.5 to 2.4 eV. The PECVD processes, using a reactive mixture of H2/SiH4/NH3 gases, are carefully studied to investigate the operating regime and to optimize the deposition parameters by utilizing different plasma diagnostic tools. The analysis reveals that a higher ion flux at a higher plasma density on the substrate is conducive to enhancing the overall crystallinity of the deposited film. Along with high-density plasmas, a high concentration of atomic H and N is simultaneously essential for the high growth rate deposition of Si QDs. Numerous plasma diagnostics methods and film analysis tools are used to correlate the effect of plasma- and atomic-radical parameters on the structural and chemical properties of the deposited Si QD films prepared in the reactive mixtures of H2/SiH4/NH3 at various pressures.

  19. Dynamic etching of soluble surface layers with on-line inductively coupled plasma mass spectrometry detection - a novel approach for determination of complex metal oxide surface cation stoichiometry

    OpenAIRE

    Limbeck, A; Rupp, GM; M. Kubicek; Tellez, H.; Druce, J; Ishihara, T.; Kilner, JA; Fleig, J.

    2016-01-01

    In this work, an innovative approach for determining the surface stoichiometry of complex metal oxide (CMO) thin films is presented. The procedure is based on treatment of the sample surface with different etching solutions, followed by on-line analysis of the derived eluates using inductively coupled plasma ? mass spectrometry (ICP-MS). Via consecutive treatment of the sample surface with water and diluted HCl, a differentiation between water soluble and acid soluble parts of near surface re...

  20. Transverse electric conductivity and dielectric permeability in quantum non-degenerate and maxwellian collisional plasma with variable collision frequency in Mermin's approach

    CERN Document Server

    Latyshev, A V

    2013-01-01

    Formulas for transverse conductance and dielectric permeability in quantum non-degenerate and Maxwellian collisional plasma with arbitrary variable collision frequency in Mermin's approach are deduced. Frequency of collisions of particles depends arbitrarily on a wave vector. The special case of frequency of collisions proportional to the module of a wave vector is considered. The graphic analysis of the real and imaginary parts of dielectric function is made.

  1. Doping control analysis of 46 polar drugs in horse plasma and urine using a 'dilute-and-shoot' ultra high performance liquid chromatography-high resolution mass spectrometry approach.

    Science.gov (United States)

    Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M

    2016-06-17

    The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis.

  2. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    Science.gov (United States)

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  3. A numerical approach for the direct computation of flows including fluid-solid interaction: Modeling contact angle, film rupture, and dewetting

    Science.gov (United States)

    Mahady, K.; Afkhami, S.; Kondic, L.

    2016-06-01

    In this paper, we present a computationally efficient method for including fluid-solid interactions into direct numerical simulations of the Navier-Stokes equations. This method is found to be as powerful as our earlier formulation [K. Mahady et al., "A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries," J. Comput. Phys. 294, 243 (2015)], while outperforming the earlier method in terms of computational efficiency. The performance and efficacy of the presented method are demonstrated by computing contact angles of droplets at equilibrium. Furthermore, we study the instability of films due to destabilizing fluid-solid interactions, and discuss the influence of contact angle and inertial effects on film breakup. In particular, direct simulation results show an increase in the final characteristic length scales when compared to the predictions of a linear stability analysis, suggesting significant influence of nonlinear effects. Our results also show that emerging length scales differ, depending on a number of physical dimensions considered.

  4. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers.

    Science.gov (United States)

    Gossman, Michael S; Wilkinson, Jeffrey D; Mallick, Avishek

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient׳s sex; patient׳s age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient׳s medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  5. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: Retrospective physician surveys including chart reviews at numerous centers

    Energy Technology Data Exchange (ETDEWEB)

    Gossman, Michael S., E-mail: MGossman@TSRCC.com [Regulation Directive Medical Physics, Russell, KY (United States); Wilkinson, Jeffrey D. [Medtronic, Inc., Mounds View, MN (United States); Mallick, Avishek [Department of Mathematics, Marshall University, Huntington, WV (United States)

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient's sex; patient's age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient's medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  6. Administration of flutamide alters sperm ultrastructure, sperm plasma membrane integrity and its stability, and sperm mitochondrial oxidative capability in the boar: in vivo and in vitro approach.

    Science.gov (United States)

    Lydka, M; Piasecka, M; Gaczarzewicz, D; Koziorowski, M; Bilinska, B

    2012-08-01

    Our previous work has shown that an anti-androgen flutamide administered pre- and post-natally induced adverse effects on the epididymal morphology and function of adult boars. The present investigation is aimed to understand the effect of flutamide and its metabolite on changes in sperm plasma membrane integrity and its stability, changes in mitochondrial oxidative capability and frequency of abnormal sperm. In vivo effects of flutamide (50 mg/kg b.w.) on sperm ultrastructure were examined by electron microscopic observations. In vitro effects of 5, 50 and 100 μg/ml hydroxyflutamide, administered for 2 and 24 h, on sperm plasma membrane integrity were measured by LIVE/DEAD Sperm Vitality kit, while those on sperm membrane stability and mitochondrial oxidoreductive activity were investigated using Merocyanine 540 and NADH tests, respectively. The incidence of abnormal spermatozoa increased significantly (p boars compared with controls. In an in vitro approach, low dose of hydroxyflutamide in 2-h incubations appeared less effective in altering the sperm plasma membrane integrity and its stability than two higher doses used (p sperm membrane destabilization and mitochondrial oxidoreductive activity was strengthened after 24 h of hydroxyflutamide administration (p sperm parameters with regard to oxidative capability of mitochondria, plasma membrane changes and sperm ultrastructure provides novel data on the boar sperm sensitivity to anti-androgen action. Results indicate high sensitivity of boar spermatozoa to androgen withdrawal.

  7. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  8. Successful Approaches to Helping Students--Including English Learners--Succeed in Elementary School. Parent Guide = Enfoques exitosos para ayudar a los estudiantes--incluyendo a los que aprenden ingles--a triunfar en la escuela primaria. Guia de padres

    Science.gov (United States)

    EdSource, 2007

    2007-01-01

    This guide informs parents about some instructional practices that work well for all elementary school students, in particular English learners. It includes questions parents can ask teachers and principals to help them understand how their children's school approaches teaching and learning. Both English and Spanish versions of the document are…

  9. Plasma in dentistry

    OpenAIRE

    Cha, Seunghee; Park, Young-Seok

    2014-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, deco...

  10. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  11. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  12. Plasma polymerization of acetylene onto silica: an approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, J.W.M.; Ooij, W.J.; Dierkes, W.K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water pene

  13. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years......) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk...... of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality....

  14. Full validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric procedure for target screening and quantification of 34 antidepressants in human blood plasma as part of a comprehensive multi-analyte approach.

    Science.gov (United States)

    Remane, Daniela; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H

    2011-06-01

    Multi-analyte procedures are of great interest in clinical and forensic toxicology making the analytical process much simpler, faster, and cheaper and allow monitoring of analytes of different drug classes in one single body sample. The aim of the present study was to validate an ultra high performance liquid chromatographic-tandem mass spectrometric approach for fast target screening and quantification of 34 antidepressants in plasma after simple liquid-liquid extraction as part of a multi-analyte procedure for over 130 drugs. The validation process including recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes (already published), selectivity, cross talk, accuracy and precision, stabilities, and limits of quantification and detection showed that the approach was selective, sensitive, accurate, and precise for 28 of the 34 tested drugs. The applicability was successfully tested by analyzing authentic plasma samples and external quality control samples. Furthermore, it could be shown that time- and cost-saving one-point calibration was applicable for 21 drugs for daily routine and especially in emergency cases.

  15. Plasma detachment in linear devices

    Science.gov (United States)

    Ohno, N.

    2017-03-01

    Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.

  16. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  17. A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    DEFF Research Database (Denmark)

    Rago, Daniela; Kristensen, Mette; Gürdeniz, Gözde

    2013-01-01

    that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from...... dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations...... related to the consumption of fresh apples. Partial least squaresdiscriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate...

  18. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

    Science.gov (United States)

    Manakhov, Anton; Michlíček, Miroslav; Felten, Alexandre; Pireaux, Jean-Jacques; Nečas, David; Zajíčková, Lenka

    2017-02-01

    The quantitative analysis of the chemistry at the surface of functional plasma polymers is highly important for the optimization of their deposition conditions and, therefore, for their subsequent applications. The chemical derivatization of amine and carboxyl-anhydride layers is a well-known technique already applied by many researchers, notwithstanding the known drawback of the derivatization procedures like side or uncomplete reactions that could lead to "unreliable" results. In this work, X-ray photoelectron spectroscopy (XPS) combined with depth profiling with argon clusters is applied for the first time to study derivatized amine and carboxyl-anhydride plasma polymer layers. It revealed an additional important parameter affecting the derivatization reliability, namely the permeation of the derivatizing molecule through the target analysed layer, i.e. the composite effect of the probe molecule size and the layer porosity. Amine-rich films prepared by RF low pressure plasma polymerization of cyclopropylamine were derivatized with trifluoromethyl benzaldehide (TFBA) and it was observed by that the XPS-determined NH2 concentration depth profile is rapidly decreasing over top ten nanometers of the layer. The anhydride-rich films prepared by atmospheric plasma co-polymerization of maleic anhydride and C2H2 have been reacted with, parafluoroaniline and trifluoroethyl amine. The decrease of the F signal in top surface layer of the anhydride films derivatized by the "large" parafluoroaniline was observed similarly as for the amine films but the derivatization with the smaller trifluoroethylamine (TFEA) led to a more homogenous depth profile. The data analysis suggests that the size of the derivatizing molecule is the main factor, showing that the very limited permeation of the TFBA molecule can lead to underestimated densities of primary amines if the XPS analysis is solely carried out at a low take-off angle. In contrast, TFEA is found to be an efficient

  19. Impacts of recessed gate and fluoride-based plasma treatment approaches toward normally-off AlGaN/GaN HEMT.

    Science.gov (United States)

    Heo, Jun-Woo; Kim, Young-Jin; Kim, Hyun-Seok

    2014-12-01

    We report two approaches to fabricating high performance normally-off AIGaN/GaN high-electron mobility transistors (HEMTs). The fabrication techniques employed were based on recessed-metal-insulator-semiconductor (MIS) gate and recessed fluoride-based plasma treatment. They were selectively applied to the area under the gate electrode to deplete the two-dimensional electron gas (2-DEG) density. We found that the recessed gate structure was effective in shifting the threshold voltage by controlling the etching depth of gate region to reduce the AIGaN layer thickness to less than 8 nm. Likewise, the CF4 plasma treatment effectively incorporated negatively charged fluorine ions into the thin AIGaN barrier so that the threshold voltage shifted to higher positive values. In addition to the increased threshold voltage, experimental results showed a maximum drain current and a maximum transconductance of 315 mA/mm and 100 mS/mm, respectively, for the recessed-MIS gate HEMT, and 340 mA/mm and 330 mS/mm, respectively, for the fluoride-based plasma treated HEMT.

  20. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  1. Plasma Adiponectin Levels in Acute Liver Failure Patients Treated with Plasma Filtration with Dialysis and Plasma Exchange.

    Science.gov (United States)

    Yamamoto, Hiroshi; Nakae, Hajime; Uji, Yoshitaka; Maeda, Kazuhisa; Tani, Tohru; Eguchi, Yutaka

    2015-08-01

    Plasma filtration with dialysis (PDF) is a blood purification therapy in which simple plasma exchange (PE) is performed using a selective membrane plasma separator while the dialysate flows outside of the hollow fibers. Improvement of hypoadiponectinemia is considered to be a useful therapeutic approach for ameliorating fatal conditions including cardio-metabolic and infectious disease. We investigated the effects of PDF in comparison to PE in terms of plasma adiponectin (APN) changes in patients with acute liver failure. Seventeen patients with liver failure were studied; PDF was performed 55 times and PE 14 times. Plasma APN levels increased significantly after PDF, while decreasing significantly after PE. PDF appears to be among the most useful blood purification therapies in acute liver failure cases in terms of increasing APN levels.

  2. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer.

    Science.gov (United States)

    Gajjar, Ketan; Trevisan, Júlio; Owens, Gemma; Keating, Patrick J; Wood, Nicholas J; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Martin, Francis L

    2013-07-21

    Currently available screening tests do not deliver the required sensitivity and specificity for accurate diagnosis of ovarian or endometrial cancer. Infrared (IR) spectroscopy of blood plasma or serum is a rapid, versatile, and relatively non-invasive approach which could characterize biomolecular alterations due to cancer and has potential to be utilized as a screening or diagnostic tool. In the past, no such approach has been investigated for its applicability in screening and/or diagnosis of gynaecological cancers. We set out to determine whether attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy coupled with a proposed classification machine could be applied to IR spectra obtained from plasma and serum for accurate class prediction (cancer vs. normal). Plasma and serum samples were obtained from ovarian cancer cases (n = 30), endometrial cancer cases (n = 30) and non-cancer controls (n = 30), and subjected to ATR-FTIR spectroscopy. Four derived datasets were processed to estimate the real-world diagnosis of ovarian and endometrial cancer. Classification results for ovarian cancer were remarkable (up to 96.7%), whereas endometrial cancer was classified with a relatively high accuracy (up to 81.7%). The results from different combinations of feature extraction and classification methods, and also classifier ensembles, were compared. No single classification system performed best for all different datasets. This demonstrates the need for a framework that can accommodate a diverse set of analytical methods in order to be adaptable to different datasets. This pilot study suggests that ATR-FTIR spectroscopy of blood is a robust tool for accurate diagnosis, and carries the potential to be utilized as a screening test for ovarian cancer in primary care settings. The proposed classification machine is a powerful tool which could be applied to classify the vibrational spectroscopy data of different biological systems (e.g., tissue, urine, saliva

  3. Spectral line shapes using the dicenter approach for dense hot plasmas: hydrogen and helium-like lines.

    Science.gov (United States)

    Sauvan, P.; Leboucher-Dalimier, E.; Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Calisti, A.; Talin, B.

    2000-05-01

    This paper reports on the spectral line shape of hydrogen and helium-like lines relevant to the quasi-static dicenter model. This treatment is justified for hot dense, moderate Z plasmas. The code IDEFIX developed for the quasi-static dicenter model involves a self-consistent description of the interactions and of the radiative properties. Strong dependence of the transition energies and of the dipole moments on the interionic separation are pointed out and novel density-dependent spectroscopic features such as asymmetries, satellite-like features, molecular transitions are exhibited. The theoretical spectra presented are discussed in connection with experimental results where these exist.

  4. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, L., E-mail: laurent.vivet@valeo.com [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Joudrier, A.-L.; Bouttemy, M.; Vigneron, J. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Tan, K.L.; Morelle, J.M. [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Etcheberry, A. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Chalumeau, L. [Egide, Site industriel du Sactar, 85500 Bollène (France)

    2013-06-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  5. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  6. Solitons in relativistic laser-plasma interactions

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-song; DU Shu-cheng

    2007-01-01

    Single or/and multipeak solitons in plasma under relativistic electromagnetic field are reviewed.The incident electromagnetic field iS allowed to have a zero or/and nonzero initial constant amplitude.Some interesting numerical results are obtained that include a high-number multipeak laser pulse and single or/and low-number multipeak plasma wake structures.It is also shown that there exists a combination of soliton and oscillation waves for plasma wake field.Also,the electron density exhibits multi-caviton structure or the combination of caviton and oscillation.A complete eigenvalue spectrum of parameters is given wherein some higher peak numbers of multipeak electromagnetic solitons in the plasma are included.Moreover, some interesting scaling laws are presented for field energy via numerical approaches.Some implications of results are discussed.

  7. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  8. Modeling attainment of steady state of drug concentration in plasma by means of a Bayesian approach using MCMC methods.

    Science.gov (United States)

    Jordan, Paul; Brunschwig, Hadassa; Luedin, Eric

    2008-01-01

    The approach of Bayesian mixed effects modeling is an appropriate method for estimating both population-specific as well as subject-specific times to steady state. In addition to pure estimation, the approach allows to determine the time until a certain fraction of individuals of a population has reached steady state with a pre-specified certainty. In this paper a mixed effects model for the parameters of a nonlinear pharmacokinetic model is used within a Bayesian framework. Model fitting by means of Markov Chain Monte Carlo methods as implemented in the Gibbs sampler as well as the extraction of estimates and probability statements of interest are described. Finally, the proposed approach is illustrated by application to trough data from a multiple dose clinical trial.

  9. Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mathieu [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-02-15

    The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L{sup -1} Na, K, Rb and Ba as matrix elements and 300 {mu}g L{sup -1} Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers.

  10. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  11. Magnetized strongly coupled plasmas and how to realize them in a dusty plasma setup

    CERN Document Server

    Bonitz, M; Ott, T; Löwen, H

    2013-01-01

    Strongly coupled plasmas in which the interaction energy exceeds the kinetic energy play an important role in many astrophysical and laboratory systems including compact stars, laser plasmas and dusty plasmas. They exhibit many unusual collective properties, such as liquid or crystalline behaviour, peculiar oscillation spectra and transport properties. Recently, strongly coupled plasmas were studied in the presence of a strong magnetic field by computer simulations, and strong modifications of their transport properties and oscillation spectra were observed. While strong magnetization is common in stellar systems it is practically impossible to achieve in complex plasmas due to the large mass of the dust particles. Here we discuss a recently demonstrated approach to achieve very strong "magnetization" by a rotation of the neutral gas, and we present new results for macroscopic two-dimensional systems.

  12. Field-flow fractionation: An efficient approach for matrix removal of soil extract for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Sangsawong, Supharart; Waiyawat, Weerawan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2011-06-01

    An on-line coupling between a continuous-flow sequential extraction (CFSE) unit and flow field-flow fractionation with cross flow matrix removal (FlFFF/CFM) with ICP-OES detection was developed for determination of metal leachability from soil. The use of high concentration of Mg(NO 3) 2 in exchangeable phase can cause undesirable matrix effects by shifting ionization equilibrium in the plasma, etc., resulting in a clear need for matrix removal. Therefore, the capability of FlFFF/CFM to remove Mg matrix ion from soil extract was evaluated. Poly(ethylene imine) (PEI) having molecular weight of 25,000 Da was added to form complexes with analyte elements (Cu, Mn, Pb, and Zn) but not the matrix element (Mg). The free Mg matrix ions were then removed by filtering off through the ultrafiltration membrane, having a 1000-Da molecular weight cut-off, inside the FlFFF channel. With the use of FlFFF/CFM, matrix removal efficiency was approximately 83.5%, which was equivalent to approximately 6-fold dilution of the matrix ion. The proposed hyphenated system of CFSE and FlFFF/CFM with ICP-OES detection was examined for its reliability by checking with SRM 2710 (a highly contaminated soil from Montana). The metal contents determined by the proposed method were not significantly different (at 95% confidence) from the certified values.

  13. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  14. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach

    Science.gov (United States)

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  15. Effects of DC bias voltages on the RF-excited plasma-tissue interaction

    Science.gov (United States)

    Yang, Aijun; Liu, Dingxin; Wang, Xiaohua; Li, Jiafeng; Chen, Chen; Rong, Mingzhe; Kong, Michael G.

    2016-10-01

    We present in this study how DC bias voltage impacts on the fluxes of reactive species on the skin tissue by means of a plasma-tissue interaction model. The DC bias voltage inputs less than 2% of the total discharge power, and hence it has little influence on the whole plasma characteritics including the volume-averaged densities of reactive species and the heating effect. However, it pushes the plasma bulk towards the skin surface, which significantly changes the local plasma characteristics in the vicinity of the skin surface, and in consequence remarkably enhances the flux densities of reactive species on the skin tissue. With the consideration of plasma dosage and heat damage on the skin tissue, DC bias voltage is a better approach compared with the common approach of increasing the plasma power. Since the DC voltage is easy to apply on the human body, it is a promising approach for use in clincial applications.

  16. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  17. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  18. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    Reactive plasmas produced in oxygen, nitrogen, hydrogen and other complex gas mixture are used for various applications including thin films, etching, ion implantation, ashing, particles growth, oxidation and other surface functionalization processes. Most of the reactive gases are also...... the possibility to control and use these plasmas for processing. Development of reactive plasma sources for both applications and basic science is rather challenging and some of these efforts will be presented in direct correlation with diagnostic approaches....... electronegative so that, the role of negative ions cannot be neglected. The continuous decrease of the features size in micro- and nanoelectronic industry requires a precise control of plasma parameters including the negative ions. Despite of a good progress in plasma diagnostics, yet more is to be done...

  19. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  1. Pre-equilibrium plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)

  2. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  3. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  4. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.

    Science.gov (United States)

    Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen

    2016-02-01

    We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.

  5. The Center for Multiscale Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, Yannis G

    2015-01-20

    This final report describes research performed in Princeton University, led by Professor Yannis G. Kevrekidis, over a period of six years (August 1, 2014 to July 31, 2010, including a one-year, no-cost extension) as part of the Center for Multiscale Plasma Dynamics led by the University of Maryland. The work resulted in the development and implementation of several multiscale algorithms based on the equation-free approach pioneered by the PI, including its applications in plasma dynamics problems. These algoriithms include coarse projective integration and coarse stability/bifurcation computations. In the later stages of the work, new links were made between this multiscale, coarse-graining approach and advances in data mining/machine learning algorithms.

  6. The center for multiscale plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, Yannis G [Princeton Univ., Princeton, NJ (United States)

    2015-01-20

    This final report describes research performed in Princeton University, led by Professor Yannis G. Kevrekidis, over a period of six years (August 1, 2014 to July 31, 2010, including a one-year, no-cost extension) as part of the Center for Multiscale Plasma Dynamics led by the University of Maryland. The work resulted in the development and implementation of several multiscale algorithms based on the equation-free approach pioneered by the PI, including its applications in plasma dynamics problems. These algoriithms include coarse projective integration and coarse stability/bifurcation computations. In the later stages of the work, new links were made between this multiscale, coarse-graining approach and advances in data mining/machine learning algorithms.

  7. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    Science.gov (United States)

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys.

  8. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  9. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    Science.gov (United States)

    ... chromosomes . Other tests, such as fluorescence in situ hybridization (FISH) and flow cytometry , may also be done ... sample made up of red blood cells. Blood chemistry studies : A procedure in which a blood sample ...

  10. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... chromosomes . Other tests, such as fluorescence in situ hybridization (FISH) and flow cytometry , may also be done ... sample made up of red blood cells. Blood chemistry studies : A procedure in which a blood sample ...

  11. General Information about Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... chromosomes . Other tests, such as fluorescence in situ hybridization (FISH) and flow cytometry , may also be done ... sample made up of red blood cells. Blood chemistry studies : A procedure in which a blood sample ...

  12. Analytic device including nanostructures

    KAUST Repository

    Di, Fabrizio, E.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  13. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    Science.gov (United States)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  14. EDITORIAL: Focus on Plasma Medicine

    Science.gov (United States)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  15. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  16. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... people regard as a prerequisite for participating in local community politics. Based on a fieldwork in two villages of Panchthar district in eastern Nepal, this article explores how these changes strengthen or weaken women’s political agency and how this is reflected in their participation in community...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...

  17. "Angular" plasma cell cheilitis.

    Science.gov (United States)

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  18. "Angular" plasma cell cheilitis

    OpenAIRE

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus

    2014-01-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  19. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  20. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  1. Development and validation of a fast and uniform approach to quantify β-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry.

    Science.gov (United States)

    Colin, Pieter; De Bock, Lies; T'jollyn, Huybrecht; Boussery, Koen; Van Bocxlaer, Jan

    2013-01-15

    Monitoring of plasma antibiotic concentrations is necessary for individualization of antimicrobial chemotherapy dosing in special patient populations. One of these special populations of interest are the post-bariatric surgery patients. Until today, little is known on the effect of this procedure on drug disposition and efficacy. Therefore, close monitoring of antimicrobial plasma concentrations in these patients is warranted. A fast and uniform ultra-high-performance liquid chromatography (UPLC) method with tandem mass spectrometric detection (MS/MS) has been developed and qualified for the simultaneous quantification of β-lactam antibiotics in human plasma. Compounds included in this multi-component analysis are: amoxicillin, ampicillin, phenoxymethylpenicillin, piperacillin, cefuroxime, cefadroxil, flucloxacillin, meropenem, cefepime, ceftazidime, tazobactam, linezolid and cefazolin. After spiking of five different stable isotope labelled internal standards, plasma samples were prepared for UPLC-MS/MS analysis by mixed-mode solid phase extraction. The developed method was proven to be free of (relative) matrix effects and proved to be reliable for the quantification of 12 out of 13 β-lactam antibiotics. As a proof of concept the method has been applied to plasma samples obtained from a healthy volunteer treated with amoxicillin. The analytical method is suitable for use in a therapeutic drug monitoring setting, providing the clinician with reliable measurements on β-lactam antibiotic plasma concentrations in a timely manner.

  2. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  3. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  4. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  5. A Systematic Analysis of the Sensitivity of Plasma Pharmacokinetics to Detect Differences in the Pulmonary Performance of Inhaled Fluticasone Propionate Products Using a Model-Based Simulation Approach.

    Science.gov (United States)

    Weber, Benjamin; Hochhaus, Guenther

    2015-07-01

    The role of plasma pharmacokinetics (PK) for assessing bioequivalence at the target site, the lung, for orally inhaled drugs remains unclear. A validated semi-mechanistic model, considering the presence of mucociliary clearance in central lung regions, was expanded for quantifying the sensitivity of PK studies in detecting differences in the pulmonary performance (total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics) between test (T) and reference (R) inhaled fluticasone propionate (FP) products. PK bioequivalence trials for inhaled FP were simulated based on this PK model for a varying number of subjects and T products. The statistical power to conclude bioequivalence when T and R products are identical was demonstrated to be 90% for approximately 50 subjects. Furthermore, the simulations demonstrated that PK metrics (area under the concentration time curve (AUC) and C max) are capable of detecting differences between T and R formulations of inhaled FP products when the products differ by more than 20%, 30%, and 25% for total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics, respectively. These results were derived using a rather conservative risk assessment approach with an error rate of <10%. The simulations thus indicated that PK studies might be a viable alternative to clinical studies comparing pulmonary efficacy biomarkers for slowly dissolving inhaled drugs. PK trials for pulmonary efficacy equivalence testing should be complemented by in vitro studies to avoid false positive bioequivalence assessments that are theoretically possible for some specific scenarios. Moreover, a user-friendly web application for simulating such PK equivalence trials with inhaled FP is provided.

  6. Contoured-gap coaxial guns for imploding plasma liner experiments

    Science.gov (United States)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  7. Plasma Colloquium Travel Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  8. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  9. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  10. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  11. Theory of gas discharge plasma

    CERN Document Server

    Smirnov, Boris M

    2015-01-01

    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  12. Durable Nanolayer Graft Polymerization of Functional Finishes Using Atmospheric Plasma

    Science.gov (United States)

    Mazloumpour, Maryam

    . Furthermore, spunbond nonwoven polypropylene fabric, commonly used for hygienic products, was treated with diallyldimethylammonium chloride (DADMAC). Atmospheric pressure glow discharge plasma was used to induce free radical chain polymerization of the ADMAC monomer, which conferred a graft polymerized network on the fabric with durable antimicrobial properties. The effect of different DADMAC concentration, and plasma conditions including the RF power and the time of plasma exposure were studied and the optimum treatment conditions were identified by calculating the surface charge density on the treated fabrics. The presence of poly-DADMAC on the polypropylene surface was confirmed using SEM, FT-IR and TOF-SIMS. Antibacterial performance was investigated using standard test methods (AATCC TM 100) for both gram positive and gram negative bacteria. The antimicrobial results showed 6 log reductions in the bacterial activities of K. pneumoniae and S .aureus, which was unprecedented using a plasma-induced graft polymerization approach.

  13. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  14. Interaction of High Intensity Electromagnetic Waves with Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Shvets

    2008-10-03

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  15. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  16. A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma

    Science.gov (United States)

    Xiaoyu, DONG; Tingting, LIU; Yuqin, XIONG

    2017-02-01

    Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0 h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels. Supported by National Natural Science Foundation of China (Nos. 21246012, 21306015 and 21476032).

  17. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas; La transmission d`ondes cyclotroniques electroniques: une approche nouvelle pour caracteriser les fonctions de distribution electronique des plasmas chauds de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.

  18. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  19. Comparison between two alternative approaches for the analysis of polarization evolution of EM waves in a nonuniform, fully anisotropic medium. A magnetized plasma; Paragone tra due metodi alternativi per l'analisi della polarizzazione di onde elettromagnetiche in un plasma magnetizzato

    Energy Technology Data Exchange (ETDEWEB)

    Segre, S. E. [ENEA, Div. Fusione, Centro Ricerche Frascati, Frascati, Rome (Italy)

    2001-07-01

    A comparison is made between two alternative approaches for the analysis of polarization evolution of em waves in a magnetized plasma. The two approaches are the Coupled Wave-Equation Formalism (CWF) and the Stokes Vector Formalism (SVF). After brief descriptions of the two formalisms the correspondence between them is spelled out. The two formalisms are then compared and their relative advantages and limitations are discussed. [Italian] Si fa un confronto tra due metodi alternativi per l'analisi della polarizzazione di onde elettromagnetiche in un plasma magnetizzato. I due metodi sono il formalismo delle equazioni accoppiate per le onde (Coupled Wave-equation Formalism) e il formalismo del vettore di Stokes (Stokes Vector Formalism). Dopo brevi descrizioni dei due formalismi, viene esplicitata la corrispondenza tra essi quindi i due formalismi vengono confrontati e si discutono i loro meriti e limiti relativi.

  20. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including g...

  1. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  2. Diagnostics of Nanodusty Plasma

    Science.gov (United States)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  3. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  4. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  5. Including Magnetostriction in Micromagnetic Models

    Science.gov (United States)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  6. Recent progress in plasma modelling at INFN-LNS

    Science.gov (United States)

    Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.

    2016-02-01

    At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.

  7. Recent progress in plasma modelling at INFN-LNS

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Castro, G.; Mascali, D.; Celona, L.; Gammino, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Torrisi, G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, Via Graziella, 89100 Reggio Calabria (Italy); Galatà, A. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy)

    2016-02-15

    At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via “cold” approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an “as-a-whole” picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.

  8. Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach.

    Directory of Open Access Journals (Sweden)

    Kayode A Balogun

    Full Text Available BACKGROUND: Omega (n-3 polyunsaturated fatty acids (PUFA are converted to bioactive lipid components that are important mediators in metabolic and physiological pathways; however, which bioactive compounds are metabolically active, and their mechanisms of action are still not clear. We investigated using lipidomic techniques, the effects of diets high in n-3 PUFA on the fatty acid composition of various bioactive lipids in plasma and liver. METHODOLOGY AND PRINCIPAL FINDINGS: Female C57BL/6 mice were fed semi-purified diets (20% w/w fat containing varying amounts of n-3 PUFA before mating, during gestation and lactation, and until weaning. Male offspring were continued on their mothers' diets for 16 weeks. Hepatic and plasma lipids were extracted in the presence of non-naturally occurring internal standards, and tandem electrospray ionization mass spectrometry methods were used to measure the fatty acyl compositions. There was no significant difference in total concentrations of phospholipids in both groups. However, there was a significantly higher concentration of eicosapentaenoic acid containing phosphatidylcholine (PC, lysophosphatidylcholine (LPC, and cholesteryl esters (CE (p < 0.01 in the high n-3 PUFA group compared to the low n-3 PUFA group in both liver and plasma. Plasma and liver from the high n-3 PUFA group also had a higher concentration of free n-3 PUFA (p < 0.05. There were no significant differences in plasma concentrations of different fatty acyl species of phosphatidylethanolamine, triglycerides, sphingomyelin and ceramides. CONCLUSIONS/SIGNIFICANCE: Our findings reveal for the first time that a diet high in n-3 PUFA caused enrichment of n-3 PUFA in PC, LPC, CE and free fatty acids in the plasma and liver of C57BL/6 mice. PC, LPC, and unesterified free n-3 PUFA are important bioactive lipids, thus altering their fatty acyl composition will have important metabolic and physiological roles.

  9. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  10. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  11. [Industrial pasteurization of plasma and criteria of quality].

    Science.gov (United States)

    Burnouf-Radosevich, M; Burnouf, T; Huart, J J

    1993-01-01

    The approach followed in the design of a large-scale pasteurization treatment (60 degrees C for 10 hours in the liquid state) of fresh frozen plasma is presented. Various aspects thought to influence the viral safety of such a product are discussed. They are based largely upon the fact that, although it is subjected to a specific viral inactivation treatment, this plasma does not benefit from any fractionation steps known to participate in the potential elimination of infectious agents during the manufacture of plasma derivatives. Consequently, the plasma is obtained from regular plasmapheresis donors, and the plasma donations used to make the pool must be negative for anti-HIV-1 and -2, anti-HCV, anti-HBc, anti-HTLV-1 and -2, HBs antigen and parvovirus B19 antigen, and have a normal level of ALT. The batch size is limited to 100 plasma units to limit the potential infectious risk associated with very large batches, especially if an infectious agent, resistant to pasteurization, is present. Pasteurization has been chosen for this procedure, as applied to plasma derivatives, has been shown to inactivate a broad spectrum of viruses, both enveloped and non-enveloped. The process is relatively simple. The frozen plasma units are opened, and the plasmas are mixed and thawed at 30 degrees C to avoid the formation of cryoprecipitate. The liquid plasma is transferred to a sterilized container and stabilizers are added. The mixture is then transferred to the pasteurization unit to be heat-treated at 60 degrees C for at least 10 hours under gentle mixing. Following cooling, the mixture is ultrafiltered to eliminate the stabilizers and to concentrate the plasma pool to its initial volume. The plasma is sterile-filtered, then dispensed into bottles and frozen. Virus validation of this pasteurization process, carried out by independent virology laboratories, have confirmed the ability of the process to inactivate more than 4 to 6 logs of non-enveloped or enveloped, DNA or RNA

  12. Reconnection experiments including 3D magnetic nulls

    Science.gov (United States)

    Le, A.; Egedal, J.; Vrublevskis, A.

    2010-11-01

    A rich collection of magnetic reconnection scenarios is possible in three dimensions depending on the topological and geometric structure of the magnetic field [1]. In recent experiments at the Versatile Toroidal Facility (VTF) three-dimensional effects were essential even in nearly axisymmetric plasmas with a non-vanishing toroidal field [2]. To explore reconnection in 3D geometries including magnetic null points, a new adjustable set of coils will be installed in the vacuum chamber of VTF. The range of vacuum magnetic field topologies attainable in VTF will be explored numerically. Plasma reconnection experiments will be run in these configurations, and measurements will be presented if available. [4pt] [1] CE Parnell, et al., (2009) ``Three-Dimensional Magnetic Reconnection, in Magnetic Coupling between the Interior and the Atmosphere of the Sun,'' eds. S.S. Hasan and R.J. Rutten, Springer-Verlag, Heidelberg, Berlin. [0ex] [2] Katz, N. et al., (2010) Phys. Rev. Lett. 104, 255004.

  13. Kinetic theory of the interaction of gravitational waves with a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Melkumova, E.Iu.

    1983-01-01

    The interaction of weak gravitational waves (GWs) with a plasma is described in terms of kinetic equations and is reduced to the mutual excitation and a energy exchange between the GW, plasmons, and charged particles of the plasma. The approach used is based on elementary quantum considerations, which makes it possible to obtain a closed system of balance equations for the distribution functions of plasma particles, plasmons, and gravitons. The calculation of probabilities included in the balance equations is based on the correspondence principle, which makes it necessary to consider only those processes which accompany gravitational-wave emission. Particular consideration is given to the gravitational susceptibility of the plasma, gravitational-wave generation during the merging of plasma waves, and the 'super-light-speed' Cerenkov emission of gravitational waves from a plasma filament.

  14. Waves and instabilities in plasmas

    CERN Document Server

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  15. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment.

    NARCIS (Netherlands)

    Vriens, D.; Geus-Oei, L.F. de; Oyen, W.J.G.; Visser, E.P.

    2009-01-01

    For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible i

  16. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  17. Experimental plasma research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  18. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  19. Photons in a partonic transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Moritz; Senzel, Florian; Greiner, Carsten [Goethe Universitaet Frankfurt, Max-von-Laue-Str. 1 60438 Frankfurt am Main (Germany)

    2015-07-01

    Partonic transport approaches have proved to be valuable tools in describing the quark-gluon plasma, created in heavy-ion collisions. In this work, first steps towards a dynamical understanding of photonproduction in expanding heavy-ion collisions are presented. Several photon production processes are included in the partonic cascade BAMPS (Boltzmann Approach to Multi-Parton Scatterings). BAMPS provides a microscopic tool to study expanding fireballs, employing a stochastic method to solve the relativistic 3+1d Boltzmann equation. Subsequently, photon spectra can be investigated, and in particular, the influence of the quark-gluon plasma phase for the elliptic flow of photons is studied.

  20. MicroScale - Atmospheric Pressure Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Mohan [Case Western Reserve University

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  1. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  2. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    Science.gov (United States)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  3. All Plasma Products Are Not Created Equal: Characterizing Differences Between Plasma Products

    Science.gov (United States)

    2015-06-01

    products that may affect efficacy and safety. METHODS: Four different plasma products were analyzed to include fresh frozen plasma (FFP), liquid plasma...have come onto the market. FFP, plasma frozen at 24 hours (PF-24), and liquid plasma (LP) are single-donor products pre- pared by separating plasma from...Transfusion. 2004;44(11):1674Y1675. 2. American Association of Blood Banks . Standards for Blood Banks and Transfusion Services. 26th ed. Bethesda, MD

  4. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  5. Color Instabilities in the Quark-Gluon Plasma

    CERN Document Server

    Mrowczynski, Stanislaw; Strickland, Michael

    2016-01-01

    When the quark-gluon plasma (QGP) - a system of deconfined quarks and gluons - is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. We begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh-Schwinger formalism, classical and kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, are analyzed in detail. Particular attention is paid to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a ...

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-25

    This Streamlined Approach for Environmental Restoration (SAFER) plan was prepared as a characterization and closure report for Corrective Action Unit (CAU) 357, Mud Pits and Waste Dump, in accordance with the Federal Facility Agreement and Consent Order. The CAU consists of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the Nevada Test Site (NTS). All of the CASs are found within Yucca Flat except CAS 25-15-01 (Waste Dump). Corrective Action Site 25-15-01 is found in Area 25 in Jackass Flat. Of the 14 CASs in CAU 357, 11 are mud pits, suspected mud pits, or mud processing-related sites, which are by-products of drilling activities in support of the underground nuclear weapons testing done on the NTS. Of the remaining CASs, one CAS is a waste dump, one CAS contains scattered lead bricks, and one CAS has a building associated with Project 31.2. All 14 of the CASs are inactive and abandoned. Clean closure with no further action of CAU 357 will be completed if no contaminants are detected above preliminary action levels. A closure report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval upon completion of the field activities. Record of Technical Change No. 1 is dated 3/2004.

  7. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  8. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  9. A New Approach to Plasma CVD of TiO2 Photocatalyst on γ-Al2O3 Pellet Filled in Dielectric Barrier Discharges at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    朱爱民; 聂龙辉; 张秀玲; 石川; 宋志民; 徐勇

    2004-01-01

    A supported TiO2/γ-Al2O3 photocatalyst has been prepared by γ-Al2O3 pellet-filled dielectric barrier discharges induced plasma CVD at atmospheric pressure and room temperature.The TiO2/γ-Al2O3 photocatalyst exhibits higher photocatalytic activity than Degussa P25, and much higher photocatalytic activity than that prepared by thermal CVD.

  10. A Systematic Analysis of the Sensitivity of Plasma Pharmacokinetics to Detect Differences in the Pulmonary Performance of Inhaled Fluticasone Propionate Products Using a Model-Based Simulation Approach

    OpenAIRE

    Weber, Benjamin; Hochhaus, Guenther

    2015-01-01

    The role of plasma pharmacokinetics (PK) for assessing bioequivalence at the target site, the lung, for orally inhaled drugs remains unclear. A validated semi-mechanistic model, considering the presence of mucociliary clearance in central lung regions, was expanded for quantifying the sensitivity of PK studies in detecting differences in the pulmonary performance (total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics) between test (T) an...

  11. Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobiotics and mammalian organisms.

    Science.gov (United States)

    Gómez-Ariza, José Luis; Jahromi, Elham Zeini; González-Fernández, Macarena; García-Barrera, Tamara; Gailer, Jürgen

    2011-06-01

    In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.

  12. Persistence of low levels of plasma viremia and of the latent reservoir in patients under ART: A fractional-order approach

    Science.gov (United States)

    Pinto, Carla M. A.

    2017-02-01

    Low levels of viral load are found in HIV-infected patients, after many years under successful suppressive anti-retroviral therapy (ART). The factors leading to this persistence are still under debate, but it is now more or less accepted that the latent reservoir may be crucial to the maintenance of this residual viremia. In this paper, we study the role of the latent reservoir in the persistence of the latent reservoir and of the plasma viremia in a fractional-order (FO) model for HIV infection. Our model assumes that (i) the latently infected cells may undergo bystander proliferation, without active viral production, (ii) the latent cell activation rate decreases with time on ART, (iii) the productively infected cells' death rate is a function of the infected cell density. The proposed model provides new insights on the role of the latent reservoir in the persistence of the latent reservoir and of the plasma virus. Moreover, the fractional-order derivative distinguishes distinct velocities in the dynamics of the latent reservoir and of plasma virus. The later may be used to better approximations of HIV-infected patients data. To our best knowledge, this is the first FO model that deals with the role of the latent reservoir in the persistence of low levels of viremia and of the latent reservoir.

  13. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  14. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.

    Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  15. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning.

    Science.gov (United States)

    Mihailescu, A.

    2016-12-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond (fs) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  16. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  17. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  18. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  19. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Abecasis, Goncalo R.; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  20. Plasma is a strategic resource.

    Science.gov (United States)

    Strengers, Paul F W; Klein, Harvey G

    2016-12-01

    Plasma-derived medicinal products (PDMPs) such as immunoglobulins and clotting factors are listed by the World Health Organization as essential medicines. These and other PDMPs are crucial for the prophylaxis and treatment of patients with bleeding disorders, immune deficiencies, autoimmune and inflammatory diseases, and a variety of congenital deficiency disorders. While changes in clinical practice in developed countries have reduced the need for red blood cell transfusions thereby significantly reducing the collection volumes of whole blood and recovered plasma suitable for fractionation, the need for PDMPs worldwide continues to increase. The majority of plasma supplies for the manufacture of PDMPs is met by the US commercial plasma industry. However, geographic imbalance in the collection of plasma raises concerns that local disruptions of plasma supplies could result in regional and global shortages of essential PDMPs. Plasma, which fits the definition of a strategic resource, that is, "an economically important raw material which is subject to a higher risk of supply interruption," should be considered a strategic resource comparable to energy and drinking water. Plasma collections should be increased outside the United States, including in low- and middle-income countries. The need for capacity building in these countries is an essential part to strengthen quality plasma collection. This will require changes in national and regional policies. We advocate the need for the restoration of an equitable balance of the international plasma supply to reduce the risk of supply shortages worldwide. Strategic independence of plasma should be endorsed on a global level.

  1. Synthesis of vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts with high coverage using plasma assisted PVD approach

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Kumar, Prabhat; Reddy, G.B.

    2015-07-25

    Highlights: • This report shows the growth of α-V{sub 2}O{sub 5} on Si [1 0 0] substrate using a facile PVD route. • The presence of O{sub 2}-plasma at 500 °C is most essential for the growth of NBs with excellent coverage. • The properties of V{sub 2}O{sub 5} films are systematically studied as function of growth temperature. • The three step growth mechanism of V{sub 2}O{sub 5} NBs is discussed in this paper briefly. - Abstract: Cost-saving, easy-handling, and eco-affable plasma assisted sublimation process (PASP) is proposed to synthesize vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts (NBs) with excellent coverage on Si [1 0 0] wafer using oxygen plasma without using surfactants/catalysts. Pure orthorhombic V{sub 2}O{sub 5} NBs having average length of few hundred of microns with quite uniform width nearly of 100 nm are formed at 500 °C. No film is deposited on Si in presence of oxygen gas without exciting plasma at 500 °C. HRTEM analysis with SAED pattern confirm that all V{sub 2}O{sub 5} NBs are single crystalline in nature with the fringe width of 0.33 nm corresponding to [0 1 0] crystal plane. The XPS analysis shows the compositional purity and sub-stoichiometric nature of V{sub 2}O{sub 5} NBs. The sub-stoichiometric nature of NBs is manifested through an appearance of low intensity peak corresponding to low oxidation state of V (i.e. V{sup 4+}) at the binding energy of 514.8 eV. The micro-Raman and FTIR analysis of NBs are carried out to study the different vibrational modes exhibited by V and O atoms coordinated in distinct fashions. The nanobelts exhibit room temperature PL emission in UV–visible realm with a broad hump in the range of 450–750 nm, which confirms the presence of oxygen defects in NBs and strongly supports the XPS results as well. The possible growth mechanism of α-V{sub 2}O{sub 5} NBs is proposed in this paper briefly.

  2. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  3. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    CERN Document Server

    Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G

    2013-01-01

    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...

  4. Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates

    Science.gov (United States)

    Ong, Wei Li; Zhang, Chun; Ho, Ghim Wei

    2011-10-01

    Though the fabrication of ZnO nanostructures is economical and low temperature, the lack of a facile, reliable and low temperature methodology to tune its electrical conductivity has prevented it from competing with other semiconductors. Here, we carried out surface modification of ZnO nanowires using ammonia plasma with no heat treatment, and studied their electrical properties over an extended time frame of more than a year. The fabrication of flexible devices was demonstrated via various methods of transferring and aligning as-synthesized ZnO nanowires onto plastic substrates. Hall measurements of the plasma modified ZnO nanowires revealed p-type conductivity. The N1s peak was present in the X-ray photoelectron spectrum of the surface modified ZnO, showing the presence of ammonia complexes. Low temperature photoluminescence showed evidence of acceptor-bound exciton emission. The resulting electrical devices, a chemical sensor and p-n homojunction, show the tunable electrical response of the surface modified ZnO nanowires.

  5. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  6. Diagnostic for the plasma liner experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, M.; Merritt, E.; Lynn, A.G. [University of New Mexico, Albuquerque NM (United States); Bauer, B.S.; Fuelling, S.; Siemen, R.E. [University of Nevada, Reno NV (United States); Hsu, S.C. [Los Alamos National Laboratory, Los Alamos NM (United States); Witherspoon, F.D.; Brockington, S.; Case, A.; Messer, S.J. [HyperV Tecnologies Corp, Chantilly VA (United States); Cassibry, J.T. [University of Alabama, Huntsville AL (United States)

    2011-07-01

    Magneto-Inertial Fusion (MIF) includes a class of fusion energy concepts that seek to relax the required implosion times of inertial fusion to microseconds rather than nanoseconds by utilizing magnetized targets. The Plasma Liner Experiment (PLX) at Los Alamos National Laboratory will explore and demonstrate the feasibility of forming imploding spherical 'plasma liners' that can reach peak pressures {approx} 0.1 Mbar upon stagnation. The liners will be formed via merging of 30 - 60 dense, high Mach number plasma jets (M {approx} 10-35, v {approx} 50-70 km/s, jet radius {approx} 5 cm) in spherically convergent geometry. This is a staged, exploratory project where scientific issues will be studied first at modest stored energies ({approx} 300 kJ) before attempting to reach MIF-relevant pressures (requiring {approx} 1.5 MJ). Key physics issues include peak parameters (n, T, radius) at stagnation, dynamics of the merging jet liner formation (e.g. lateral shocks, instabilities), and spherical symmetry of the liner. Plasmas will be high-Z species (e.g. Ar, Xe), unmagnetized, and are expected to have densities {approx} 10{sup 22} m{sup -3} and low temperature, Te {approx} Ti {approx} a few eV, when initially exiting the plasma guns where the jets are formed. Density and temperature will first decrease slightly, then increase to n {approx} 10{sup 25} - 10{sup 26} m{sup -3} and Te {approx} Ti {approx} 100 eV as stagnation is approached over a 1 meter radial distance. The large range of densities (4-5 orders of magnitude), initially cold plasma, and short optical depth as the jets merge make diagnosing the plasma a particularly challenging problem. Initial diagnostics will include multi-chord visible interferometry and polarimetry, Schlieren imaging, visible and V-UV spectroscopy, fast 1-dimensional imaging diode arrays, fast visible cameras, bolometry, magnetic and electrostatic probes, and pressure sensitive 'witness plates' to measure pressure and jet

  7. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  8. Including the public in pandemic planning: a deliberative approach

    Directory of Open Access Journals (Sweden)

    Braunack-Mayer Annette J

    2010-08-01

    Full Text Available Abstract Background Against a background of pandemic threat posed by SARS and avian H5N1 influenza, this study used deliberative forums to elucidate informed community perspectives on aspects of pandemic planning. Methods Two deliberative forums were carried out with members of the South Australian community. The forums were supported by a qualitative study with adults and youths, systematic reviews of the literature and the involvement of an extended group of academic experts and policy makers. The forum discussions were recorded with simultaneous transcription and analysed thematically. Results Participants allocated scarce resources of antiviral drugs and pandemic vaccine based on a desire to preserve society function in a time of crisis. Participants were divided on the acceptability of social distancing and quarantine measures. However, should such measures be adopted, they thought that reasonable financial, household and psychological support was essential. In addition, provided such support was present, the participants, in general, were willing to impose strict sanctions on those who violated quarantine and social distancing measures. Conclusions The recommendations from the forums suggest that the implementation of pandemic plans in a severe pandemic will be challenging, but not impossible. Implementation may be more successful if the public is engaged in pandemic planning before a pandemic, effective communication of key points is practiced before and during a pandemic and if judicious use is made of supportive measures to assist those in quarantine or affected by social isolation measures.

  9. Including Assistive Technology in Teacher Preparation: Exploring One Approach

    Science.gov (United States)

    Poel, Elissa Wolfe; Wood, Jackie; Schmidt, Naomi

    2013-01-01

    Assistive Technology (AT) is specifically addressed in the most recent reauthorization of IDEA, the Individuals with Disabilities Education Improvement Act (2004). The law insures that assistive devices and services

  10. Testing and assessment strategies, including alternative and new approaches

    DEFF Research Database (Denmark)

    Meyer, Otto A.

    2003-01-01

    The object of toxicological testing is to predict possible adverse effect in humans when exposed to chemicals whether used as industrial chemicals, pharmaceuticals or pesticides. Animal models are predominantly used in identifying potential hazards of chemicals. The use of laboratory animals raises...... ethical concern. However, irrespective of animal welfare it is an important aspect of the discipline of toxicology that the primary object is human health. The ideal testing and assessment strategy is simple to use all the available test methods and preferably more in laboratory animal species from which...... we get as many data as possible in order to obtain the most extensive database for the toxicological evaluation of a chemical. Consequently, the society has decided that certain group of chemicals should be tested accordingly. However, realising that, this idea is not obtainable in practice because...

  11. Tools for voltage stability analysis, including a probabilistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, X.; Martins, N.; Bianco, A.; Pinto, H.J.C.P. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Pereira, M.V.F. [Power System Research (PSR), Inc., Rio de Janeiro, RJ (Brazil); Gomes, P.; Santos, M.G. dos [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper reviews some voltage stability analysis tools that are being used or envisioned for expansion and operational planning studies in the Brazilian system, as well as, their applications. The paper also shows that deterministic tools can be linked together in a probabilistic framework, so as to provide complementary help to the analyst in choosing the most adequate operation strategies, or the best planning solutions for a given system. (author) 43 refs., 8 figs., 8 tabs.

  12. Differentiation between naproxen, naproxen-protein conjugates, and naproxen-lysine in plasma via micellar electrokinetic capillary chromatography : a new approach in the bioanalysis of drug targeting preparations

    NARCIS (Netherlands)

    Albrecht, C.; Reichen, J; Visser, Jan; Meijer, D.K F; Thormann, W

    1997-01-01

    Pharmacotherapy through the targeting of drugs is a promising new approach that requires adequate analytical methods capable of differentiating between the free drug the drug carrier, and metabolites. Using micellar electrokinetic capillary chromatography (MECC), we report the separation of naproxen

  13. Multi-Scale Modeling of Plasma Thrusters

    Science.gov (United States)

    Batishchev, Oleg

    2004-11-01

    Plasma thrusters are characterized with multiple spatial and temporal scales, which are due to the intrinsic physical processes such as gas ionization, wall effects and plasma acceleration. Characteristic times for hot plasma and cold gas are differing by 6-7 orders of magnitude. The typical collisional mean-free-paths vary by 3-5 orders along the devices. These make questionable a true self-consistent modeling of the thrusters. The latter is vital to the understanding of complex physics, non-linear dynamics and optimization of the performance. To overcome this problem we propose the following approach. All processes are divided into two groups: fast and slow. The slow ones include gas evolution with known sources and ionization sink. The ionization rate, transport coefficients, energy sources are defined during "fast step". Both processes are linked through external iterations. Multiple spatial scales are handled using moving adaptive mesh. Development and application of this method to the VASIMR helicon plasma source and other thrusters will be discussed. Supported by NASA.

  14. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Gang; MENG Yuedong; ZHONG Shaofeng; LIU Feng; JIANG Zhongqing; SHU Xingsheng; REN Zhaoxing; WANG Xiangke

    2008-01-01

    An investigation was made into polystyrene (PS) grafted onto nanometre sili-con carbide (SIC) particles. In our experiment, the grafting polymerization reaction was in-duced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanome-tre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spec-troscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  15. Plasma on a foundry cupola

    Science.gov (United States)

    Pineau, Didier

    An experiment of a plasma torch on a production foundry cupola is reported. The test runs were conducted on a hot blast cupola, the blast temperature in the absence of plasma being 400 C. With the torch, the temperature of the blast was increased to 1000 C. The experiment was conducted for the manufacture of car engines with a 2.5 MW transportable plasma system. The cupola was boosted with a 4 MW torch and results included an increase in production of 45 percent, a decrease in coke rate and no more new iron in the loads. The plasma torch and hot air cupola furnace are described.

  16. Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching--a response surface modeling approach.

    Science.gov (United States)

    Rath, Swagat S; Nayak, Pradeep; Mukherjee, P S; Roy Chaudhury, G; Mishra, B K

    2012-03-01

    The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values as a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.

  17. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Case, Andrew [HyperV Technologies Corp., Chantilly, VA (United States); Brockington, Samuel [HyperV Technologies Corp., Chantilly, VA (United States); Messer, Sarah [HyperV Technologies Corp., Chantilly, VA (United States); Bomgardner, Richard [HyperV Technologies Corp., Chantilly, VA (United States); Phillips, Mike [HyperV Technologies Corp., Chantilly, VA (United States); Wu, Linchun [HyperV Technologies Corp., Chantilly, VA (United States); Elton, Ray [Univ. of Maryland, College Park, MD (United States)

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  18. Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling

    CERN Document Server

    Baalrud, Scott D; Daligault, Jerome

    2014-01-01

    The effective potential theory is a physically motivated method for extending traditional plasma transport theories to stronger coupling. It is practical in the sense that it is easily incorporated within the framework of the Chapman-Enskog or Grad methods that are commonly applied in plasma physics and it is computationally efficient to evaluate. The extension is to treat binary scatterers as interacting through the potential of mean force, rather than the bare Coulomb or Debye-screened Coulomb potential. This allows for aspects of many-body correlations to be included in the transport coefficients. Recent work has shown that this method accurately extends plasma theory to orders of magnitude stronger coupling when applied to the classical one-component plasma model. The present work shows that similar accuracy is realized for the Yukawa one-component plasma model and it provides a comparison with other approaches.

  19. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers

    Science.gov (United States)

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-12-01

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma.

  20. An approach for diagnosing plasma cell myeloma by three-color flow cytometry based on kappa/lambda ratios of CD38-gated CD138+ cells

    Directory of Open Access Journals (Sweden)

    Nakayama Shoko

    2012-09-01

    Full Text Available Abstract Background World Health Organization (WHO criteria are commonly used to diagnose plasma cell myeloma (PCM; however, these criteria are complex and require several laboratory parameters. For differentiating reactive plasmacytosis from clonal plasma cell (PC neoplasms such as PCM, it is important to accurately determine the expression of cytoplasmic immunoglobulin light chains. Methods We retrospectively analyzed the records of 27 selected patients with PCM who underwent bone biopsies for confirmative diagnosis according to WHO criteria. Twenty-three controls were also investigated. In the present study, all the samples were analyzed using flow cytometry (FC in the side scatter vs. CD38 histogram mode, and the CD38-gated PC population was identified. Bivariate histograms of CD138/kappa and CD138/lambda were assessed, and the ratios of dual-positive cells to the CD138+ PC population were calculated. The kappa/lambda ratio was defined as the ratio of CD138/kappa to CD138/lambda. Results PCM cells were distinguished from normal PCs using cutoff levels between 0.76 and 1.5, at a sensitivity of 96.3% and specificity of 95.7%. Conclusions Three-color FC analysis is simple to perform and inexpensive, with clinically relevant data obtained soon after the completion of FC measurements. The detection of the cytoplasmic kappa/lambda ratio of CD38-gated CD138+ PCs may be a useful tool in the diagnosis of PCM. To the best of our knowledge, this report represents the first diagnostic assessment of the cytoplasmic kappa/lambda ratio in CD38-gated CD138+ PCs using FC analysis. This method may help in more simple, efficient, rapid, and accurate diagnosis of PCM. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1568085959771735

  1. Review: engineering particles using the aerosol-through-plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia C [UNM; Richard, Monique [TEMA

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  2. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  3. Plasma metallization

    CERN Document Server

    Crowther, J M

    1997-01-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of s...

  4. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  5. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Case, Andrew [HyperV Technologies Corp.; Brockington, Samuel [HyperV Technologies Corp.y; Messer, Sarah [HyperV Technologies Corp.; Bomgardner, Richard [HyperV Technologies Corp.; Phillips, Mike [HyperV Technologies Corp.; Wu, Linchun [HyperV Technologies Corp.; Elton, Ray [University of Maryland

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  6. Freak waves in negative-ion plasmas: an experiment revisited

    Science.gov (United States)

    Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian

    2016-10-01

    Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.

  7. Plasma dynamo

    CERN Document Server

    Rincon, F; Schekochihin, A A; Valentini, F

    2015-01-01

    Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...

  8. Plasma medicine

    CERN Document Server

    Fridman, Alexander

    2012-01-01

    This comprehensive text is suitable for researchers and graduate students of a 'hot' new topic in medical physics. Written by the world's leading experts,  this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medic

  9. Effect of the binding interaction of an emissive niacin derivative on the conformation and activity of a model plasma protein: A spectroscopic and simulation-based approach.

    Science.gov (United States)

    Sett, Riya; Ganguly, Aniruddha; Guchhait, Nikhil

    2016-11-01

    The present work demonstrates a detailed photophysics of bio-active drug-like acid viz., 2-hydroxynicotinic acid (2-HNA) and its interaction with a model plasma protein Bovine Serum Albumin (BSA). The drug which is in essence a vitamin-B3 derivative, is capable of exhibiting ultrafast lactim-lactam cross-over response and thereby the modulation of the lactam emission within the bio-environment of the protein has been depicted spectroscopically to reveal the drug-protein interaction. Apart from evaluating the binding constant, the probable location of the neutral drug molecule within the protein cavity (hydrophobic subdomain IIIA) has been explored by AutoDock-based blind docking simulation technique. In this microheterogeneous medium, slow solvent reorientation time with respect to the emissive lifetime of the drug explicate the Red Edge Effect (REE). To complement the findings about the binding process, chaotrope-induced protein denaturation has also been inspected. The probe also illustrates a perceptible difference in rotational relaxation time in confined medium than in aqueous medium which strengthen our verdict. Unfolding of the protein in the presence of the drug molecule has been probed by the decrease of the α-helical content, obtained via circular dichroism (CD) spectroscopy, which is also supported by the gradual slaughter of the esterase activity of the protein in the presence of the drug molecule.

  10. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  11. Hall Effect in a Plasma.

    Science.gov (United States)

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  12. Microwave Diagnostics of Ultracold Neutral Plasma

    CERN Document Server

    Guo, Ronghua Lu Li

    2010-01-01

    We suggest an approach for using microwave radiation in diagnostics of ultracold neutral plasma. Microwave scattering from ultracold neutral plasma is calculated . Simple formulations are get and indicate that the dipole radiation power of ultracold neutral plasma does not depend on density profile $n_e(r)$ and $\\omega$ when $\\omega\\gg\\omega_{pe0}$, but on the total electron number $N_e$. This method provides the information of $N_e$ and from which we can get the three body recombination rate of the plasma, which is extremely important in the researches of ultracold neutral plasma.

  13. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  14. Neutrino oscillations in a turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T. [Instituto de Física, Universidade de São Paulo, São Paulo, SP, CEP 05508-090 Brazil and IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Haas, F. [Departamento de Física, Universidade Federal do Paraná, Curitiba PR, CEP 81531-990 (Brazil)

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  15. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma.

    Science.gov (United States)

    Alkawareek, Mahmoud Y; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2014-02-01

    Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism.

  16. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  17. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  18. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  19. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    Science.gov (United States)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  20. Magnetoresistive waves in plasmas

    Science.gov (United States)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  1. Evolution of the mirror approach to fusion: some conjectures

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.E.

    1984-09-18

    Some possible directions for the future evolution of the mirror approach to fusion are outlined, in the context of economically-motivated criteria. Speculations are given as to the potential advantages, economic and otherwise, of the use of axially-symmetric systems, operated in semi-collisional regimes of lower Q (fusion power balance ratio) than that projected for present-day tandem mirror designs. These regims include barely tandem modes, and ion-heated modes, in association with higher efficiency direct conversion. Another possible economically advantageous approach mentioned is the use of a tandem mirror plasma to stabilize a FRM (field-reversed mirror) plasma, with potential synergistic advantages.

  2. Plasma-gas interactions studies in a hybrid plume plasma rocket

    Science.gov (United States)

    Chang, F. R.; Krueger, W. A.; Yang, T. F.; Fisher, J. L.

    1985-01-01

    Plasma-gas interaction was investigated and the basic mechanisms for energy and particle transport. The solution approach assumes cylindrical geometry and includes a multiplicity of atomic reactions, and the presence of a strong magnetic field is described. The principal reactions are electron and ion impact ionization, and charge exchange between hot ions and cold neutrals. Radial particle and energy transport is mainly by diffusion. A modified Bohm diffusion model for plasma in the core of the plume, and classical neutral particle diffusion in the cooler regions of the flow are presented. Neutrals are allowed to free stream in the low density regions, where the collision mean-free-path becomes comparable, or even larger than the characteristic dimensions of the system.

  3. Rapid quick, easy, cheap, effective, rugged, and safe extraction with novel phospholipid cleanup: A streamlined ultra high performance liquid chromatography with ultraviolet detection approach for screening polycyclic aromatic hydrocarbons in avian blood cells and plasma.

    Science.gov (United States)

    Provatas, Anthony A; Yevdokimov, Alexander V; King, Cory A; Gatley, Emma L; Stuart, James D; Evers, David C; Perkins, Christopher R

    2015-08-01

    A streamlined method has been developed for the isolation and analysis of polycyclic aromatic hydrocarbons in avian blood cells and plasma utilizing quick, easy, cheap, effective, rugged, and safe extraction in combination with novel phospholipid cleanup technology. A variety of traditional extraction and cleanup techniques have been employed in the preparation and analysis of polycyclic aromatic hydrocarbonsin a variety of matrices; liquid-liquid partitioning, solid-phase extractions, gel permeation chromatography, and column chromatography are all effective techniques, however they are laborious and time consuming processes that require large amounts of solvent. Using quick, easy, cheap, effective, rugged, and safe extraction coupled with phospholipid cleanup, samples can be quickly screened while maintaining high throughput and sensitivity. With a liquid chromatography approach, analysis times may be kept short at 16 min while maintaining high analyte recovery. Recoveries in quality control samples ranged from 70 to 109%, with average surrogate recoveries of 80.6 ± 1.10%. The result of using a quick, easy, cheap, effective, rugged, and safe extraction approach in conjunction with phospholipid cleanup is a methodology that significantly reduces sample preparation time and solvent use while maintaining high sensitivity and reproducibility.

  4. Plasma probe characteristics in low density hydrogen pulsed plasmas

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V; Bijkerk, F

    2014-01-01

    Probe theories are only applicable in the regime where the probe's perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas. Indeed, in the case studied here, probe measurements would lead to a large overestimate of the plasma density. In contrast, the ...

  5. The kinetic studies of direct methane oxidation to methanol in the plasma process

    Institute of Scientific and Technical Information of China (English)

    INDARTO Antonius; CHOI Jae-Wook; LEE Hwaung; SONG Hyung Keun

    2008-01-01

    The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to investigate thoroughly the possible intermediate species likely to be presented in the process. A set of plasma experiments was undertaken by using dielectric barrier discharge (DBD), classified as non-thermal plasma, done at atmospheric pressure and room temperature. Plasma proc-ess yields more methanol than thermal process at the same methane conversion rates and methane to oxygen feed ratios. Oxidation reaction of thermal process resulted CO and CO2 as the most dominant products and the selectivity reached 19% and 68%, respectively. Moreover, more CO and less CO2 were produced in plasma process than in thermal process. The selectivity of CO and CO2 by plasma was 47% and 20%, respectively. Ethane (C2H6) was detected as the only higher hydrocarbon with a signifi-cant concentration. The concentration of ethane reached 9% of the total products in plasma process and 17% in thermal process. The maximum selectivity of methanol, the target material of this research, was 12% obtained by plasma method and less than 5% by thermal process. In some certain points, the kinetic model closely matched with the experimental results.

  6. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  7. Electrosurgical plasmas

    Science.gov (United States)

    Stalder, Kenneth R.; McMillen, Donald F.; Woloszko, Jean

    2005-06-01

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  8. Electrosurgical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Kenneth R; McMillen, Donald F; Woloszko, Jean [ArthroCare Corp., Sunnyvale, CA 94085-3523 (United States)

    2005-06-07

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  9. Leukocyte Counts, Myeloperoxidase, and Pregnancy-Associated Plasma Protein A as Biomarkers for Cardiovascular Disease: Towards a Multi-Biomarker Approach

    Directory of Open Access Journals (Sweden)

    M. B. I. Lobbes

    2010-01-01

    Full Text Available We evaluated leukocyte counts and levels of CRP, fibrinogen, MPO, and PAPP-A in patients with stable and unstable angina pectoris, acute myocardial infarction, and healthy controls. All biomarkers were analyzed again after 6 months. Leukocyte counts and concentrations of fibrinogen, CRP, MPO, and PAPP-A were significantly increased in patients with acute myocardial infarction. Leukocyte counts and concentrations of MPO were significantly increased in patients with unstable angina pectoris compared with controls. After 6 months, leukocyte counts and MPO concentrations were still increased in patients with acute myocardial infarction when compared to controls. Discriminant analysis showed that leukocyte counts, MPO, and PAPP-A concentrations classified study group designation for acute coronary events correctly in 83% of the cases. In conclusion, combined assessment of leukocyte counts, MPO, and PAPP-A was able to correctly classify acute coronary events, suggesting that this could be a promising panel for a multibiomarker approach to assess cardiovascular risk.

  10. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  11. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  12. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.

    2013-01-01

    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  13. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  14. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  15. Plasma medicine: an introductory review

    Science.gov (United States)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  16. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; /Southern California U.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O' Connell, C.; Siemann, R.H.; Walz, D.; /SLAC; Clayton,; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  17. Range of fractionated plasma products to optimize plasma resources

    Institute of Scientific and Technical Information of China (English)

    Thierry Burnouf

    2010-01-01

    @@ HUMAN PLASMA is a source material that is crucial for the production of unique therapeutic fractionated products. Indeed, plasma contains hundreds of proteins ensuring many physiological functions. The most abun-dant proteins, albumin and immunoglobulin G (IgG) ,are present at about 35 and 10 g/L,respectively,repre-senting about 80% of all plasma proteins. However,other important therapeutic proteins include the coagu-lation factors (factor Ⅷ (F Ⅷ) ; FIX ; Von Willebrand Factor (VWF), fibrinogen) various protease inhibitors (alpha 1-antitrypsin ; antithrombin; C1-esterase) and anticoagulants (protein C) which exhibit potent physi-ological activity.

  18. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  19. General presentation including new structure

    Science.gov (United States)

    Soons, A.

    2002-12-01

    Electrical, electronic and electro-mechanical components play an essential role in the functional performance, quality, life cycle and costs of space systems. Their standardisation, product specification, development, evaluation, qualification and procurement must be based on a coherent and efficient approach, paying due attention to present and prospective European space policies and must be commensurate with user needs, market developments and technology trends. The European Space Components Coordination (ESCC) is established with the objective of harmonising the efforts concerning the various aspects of EEE space components by ESA. European national and international public space organisations, the component manufacturers and the user industries. The goal of the ESCC is to improve the availability of strategic EEE space components with the required performance and at affordable costs for institutional and commercial space programmes. It is the objective of ESCC to achieve this goal by harmonising the resources and development efforts for space components in the ESA Member States and by providing a single and unified system for the standardisation, product specification, evaluation, qualification and procurement of European EEE space components and for the certification of components and component manufacturers.

  20. Biodiversity conservation including uncharismatic species

    DEFF Research Database (Denmark)

    Muñoz, Joaquin

    2007-01-01

    Recent papers mention ideas on the topics of biodiversity conservation strategies and priorities (Redford et al. 2003; Lamoreux et al. 2006; Rodrı´guez et al. 2006), the current status of biodiversity (Loreau et al. 2006), the obligations of conservation biologists regarding management policies...... (Chapron 2006; Schwartz 2006), and the main threats to biodiversity (including invasive species) (Bawa 2006). I suggest, however, that these articles do not really deal with biodiversity. Rather, they all focus on a few obviously charismatic groups (mammals, birds, some plants, fishes, human culture...

  1. Study on Performance Parameters of the Plasma Source for a Short-Conduction-Time Plasma Opening Switch

    Institute of Scientific and Technical Information of China (English)

    LUO Weixi; ZENG Zhengzhong; WANG Liangping; LEI Tianshi; HU Yixiang; HUANG Tao; SUN Tieping

    2012-01-01

    Plasma source performance parameters, including plasma ejection density and velocity, greatly affect the operation of a short-conduction-time plasma opening switch (POS). In this paper, the plasma source used in the POS of Qiangguang I generator is chosen as the study object. At first the POS working process is analyzed. The result shows that the opening performance of the POS can be improved by increasing the plasma ejection velocity and decreasing the plasma density. The influence of the cable plasma gun structure and number on the plasma ejection parameters is experimentally investigated with two charge collectors. Finally a semi-empirical model is proposed to describe the experimental phenomenon.

  2. Plasma fluoride and enamel fluorosis.

    Science.gov (United States)

    Angmar-Månsson, B; Ericsson, Y; Ekberg, O

    1976-11-24

    It is postulated that tissue fluid F concentrations are the primary determinants of flouride effects on bones and developing teeth and that these concentrations are dependent on, or mirrored by, blood plasma F. It has earlier been shown that the plasma F levels are dependent on the dietary F supply as well as on skeletal F concentration. Fasting and post-ingestion or postinjection plasma F levels have been determined in rats on F doses that cause different degrees of enamel fluorosis. The results indicate that temporary peak values rather than elevated fasting values are responsible for the occurrence of enamel fluorosis and that the peak values must approach about 10 muM in order to block enamel formation by the ameloblasts. The diagnostic and prognostic importance of plasma F determinations is discussed.

  3. Multi-level molecular modelling for plasma medicine

    Science.gov (United States)

    Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.

    2016-02-01

    Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.

  4. Generalized fluid theory including non-Maxwellian kinetic effects

    OpenAIRE

    Izacard, Olivier

    2016-01-01

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasma come mainly from the use of very CPU-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize t...

  5. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  6. Plasma chemistry study of PLAD processes

    Energy Technology Data Exchange (ETDEWEB)

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying [Nanya Technology Inc., Santa Clara, CA 95054 (United States); Micron Technology Inc., Boise, ID 83707 (United States)

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  7. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  8. Special issue on transient plasmas

    Science.gov (United States)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-11-01

    This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.

  9. Radiation reaction in fusion plasmas.

    Science.gov (United States)

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  10. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  11. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ramshaw, J.D.; Chang, C.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  12. Diffusive, convective and Nernst-effect losses of magnetic flux and heat from a wall-confined magnetized plasma

    Science.gov (United States)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2013-10-01

    The recently proposed MAGLIF approach to inertial fusion ignition involves compression and heating of plasma with frozen-in magnetic flux by a heavy cylindrical liner. To reach fusion conditions, the compressed plasma should retain a large fraction of the magnetic flux and thermal energy enclosed by the liner. Magnetic flux and heat losses from strongly magnetized plasma to a cold liner wall are significantly influenced by the Nernst and Ettingshausen thermomagnetic effects. We present exact analytical solutions of 1D MHD equations with Ohmic heating, heat conductivity and thermomagnetic terms included and discuss relative roles of diffusive, conductive and Nernst-effect-related losses of magnetic flux and heat from the magnetized plasma to the wall. These solutions are compared to our 1D simulation results. They can serve for verification of plasma transport modeling by MHD codes. Work supported by DOE/NNSA.

  13. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  14. Stark broadening data for stellar plasma research.

    Science.gov (United States)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  15. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  16. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    Science.gov (United States)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  17. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  18. Design of an HHFW antenna including high impedance surfaces for FTU

    Science.gov (United States)

    Milanesio, Daniele; Maggiora, Riccardo

    2013-10-01

    The successful design of an Ion Cyclotron antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside the dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e. they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. This work documents the design by means of numerical codes of an antenna including high impedance surfaces to be tested on the FTU IBW port and fed by the FTU IBW generators at 433 MHz. The test on FTU, if successful, will confirm the possibility to adopt this approach for future HHFW antennas.

  19. A dynamical model of plasma turbulence in the solar wind.

    Science.gov (United States)

    Howes, G G

    2015-05-13

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.

  20. Electron heating via the self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas

    CERN Document Server

    Schuengel, E; Donko, Z; Korolov, I; Derzsi, A; Schulze, J

    2016-01-01

    The self-excitation of Plasma Series Resonance (PSR) oscillations plays an important role in the electron heating dynamics in Capacitively Coupled Radio Frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the Electrical Asymmetry Effect, i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge-voltage relation of the plasma sheaths deviates from a simple quadratic behavior and if (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to pro...

  1. Kinetic description of rotating Tokamak plasmas with anisotropic temperatures in the collisionless regime

    CERN Document Server

    Cremaschini, Claudio

    2011-01-01

    A largely unsolved theoretical issue in controlled fusion research is the consistent \\textit{kinetic} treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchalleged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asym...

  2. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.

    Science.gov (United States)

    Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P

    2015-05-13

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.

  3. Antimicrobial outcomes in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  4. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  5. Plasma nanoscience: setting directions, tackling grand challenges

    Energy Technology Data Exchange (ETDEWEB)

    Ostrikov, Kostya [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); Cvelbar, Uros [Jozef Stefan Institute, 39 Jamova cesta, Ljubljana, SI-1000 (Slovenia); Murphy, Anthony B, E-mail: Kostya.Ostrikov@csiro.au, E-mail: Uros.Cvelbar@ijs.si, E-mail: Tony.Murphy@csiro.au [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2011-05-04

    This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma-liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

  6. Plasma nanoscience: setting directions, tackling grand challenges

    Science.gov (United States)

    (Ken Ostrikov, Kostya; Cvelbar, Uros; Murphy, Anthony B.

    2011-05-01

    This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma-liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

  7. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  8. Modified Enskog Kinetic Theory for Strongly Coupled Plasmas

    CERN Document Server

    Baalrud, Scott D

    2015-01-01

    Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S.~D.~Baalrud and J.~Daligault, Phys.~Rev.~Lett.~{\\bf 110}, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling ($\\Gamma \\gtrsim 30$). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.

  9. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  10. Chapter 8: Plasma operation and control

    Science.gov (United States)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E. A.; Lister, J. B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A. C. C.; Wesley, J. C.

    2007-06-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m-1), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape—the plasma magnetic control, as well as control of other plasma global parameters or their profiles—the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  11. Couette Flow of Unmagnetized Plasma

    CERN Document Server

    Collins, C; Cooper, C M; Flanagan, K; Khalzov, I V; Nornberg, M D; Seidlitz, B; Wallace, J; Forest, C B

    2014-01-01

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_s\\sim 0.7$) are driven by edge ${\\bf J \\times B}$ torques in helium, neon, argon, and xenon plasmas. We present measurements of a self-consistent, rotation-induced, species-dependent rad...

  12. Thomson scattering from laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  13. The Absence of Plasma in"Spark Plasma Sintering"

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  14. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  15. Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects

    CERN Document Server

    Khomenko, E; de Vicente, A; Collados, M; Luna, M

    2014-01-01

    We study the Rayleigh-Taylor instability (RTI) at a prominence-corona transition region in a non-linear regime. Our aim is to understand how the presence of neutral atoms in the prominence plasma influences the instability growth rate, and the evolution of velocity, magnetic field vector and thermodynamic parameters of turbulent drops. We perform 2.5D numerical simulations of the instability initiated by a multi-mode perturbation at the corona-prominence interface using a single-fluid MHD approach including a generalized Ohm's law. The initial equilibrium configuration is purely hydrostatic and contains a homogeneous horizontal magnetic field forming an angle with the direction in which the plasma is perturbed. We analyze simulations with two different orientations of the magnetic field. For each field orientation we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law (AD case). Other than that, both simulations for each field orientation are identica...

  16. Vortex stabilized electron beam compressed fusion grade plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  17. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  18. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  19. Plasma Free Metanephrines

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? Also known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine ...

  20. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  1. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  2. The Wisconsin Plasma Astrophysics Laboratory

    CERN Document Server

    Forest, C B; Brookhart, M; Cooper, C M; Clark, M; Desangles, V; Egedal, J; Endrizzi, D; Miesch, M; Khalzov, I V; Li, H; Milhone, J; Nornberg, M; Olson, J; Peterson, E; Roesler, F; Schekochihin, A; Schmitz, O; Siller, R; Spitkovsky, A; Stemo, A; Wallace, J; Weisberg, D; Zweibel, E

    2015-01-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries which mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of $ T_{e}\\approx5-20$ eV and $n_{e}\\approx10^{11}-5\\times10^{12}$ cm$^{-3}$ provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  3. Plasma diagnostics by means of electric probes; Diagnostico del plasma por medio de sondas electricas

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1991-04-15

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  4. A new ultrafast and high-throughput mass spectrometric approach for the therapeutic drug monitoring of the multi-targeted anti-folate pemetrexed in plasma from lung cancer patients

    NARCIS (Netherlands)

    R.J.W. Meesters (Roland); R. Cornelissen (Robin); R.J. van Klaveren (Rob); R. de Jonge (Robert); E. den Boer (Ethan); J. Lindemans (Jan); T.M. Luider (Theo)

    2010-01-01

    textabstractAn analytical assay has been developed and validated for ultrafast and high-throughput mass spectrometric determination of pemetrexed concentrations in plasma using matrix assisted laser desorption/ionization-triple quadrupole-tandem mass spectrometry. Patient plasma samples spiked with

  5. Boundary Plasma Turbulence Simulations for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  6. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  7. Modelling of Complex Plasmas

    Science.gov (United States)

    Akdim, Mohamed Reda

    2003-09-01

    not included. Results are presented for situations in which the dust signi_cantly changes the discharge characteristics, both by a strong reduction of the electron density and by altering the electric field by its charge. Simulations for dust with a radius of 2 mu-m show that the stationary solution of the dust density and the average electric field depend on the total amount of the dust. The presence of dust enhances the deposition rate of amorphous silicon 2 at the electrodes because of the rise in the average electron energy associated with the decrease of the electron density and the constraint of a constant power input. This increase of deposition rate has also been observed in experiments by others. To study the behavior of dust in a less complicated environment, experiments in non-reactive plasmas have been carried out by a number of research groups. In these experiments the dust particles are injected through the electrodes in an argon discharge. These experiments have shown very interesting phenomena. Dust particles start to interact with each other in the discharge and form two-dimensional Coulomb clusters. These experiments often show an appearance of a void, a dustfree region in the discharge. Similar experiments have also been carried out under microgravity. These experiments have shown three-dimensional Coulomb clusters of dust particles also with the appearance of a void. Also rotating dust clouds (vortices) near the edges of the electrodes have been observed, that tend to rotate as long as the plasmas is on. To understand the behavior of the particles, we have developed a two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently to study the behavior of dust particles. Simulations for dust with a radius of 7.5 mu-m show that a double space charge layer is created around the sharp boundary of the dust crystal. The inter-particle interaction is taken into account by means of an equation of

  8. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  9. Low voltage operation of plasma focus.

    Science.gov (United States)

    Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A

    2010-08-01

    Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

  10. PlasmaPy: beginning a community developed Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  11. Plasma and Plasma Protein Product Transfusion: A Canadian Blood Services Centre for Innovation Symposium.

    Science.gov (United States)

    Zeller, Michelle P; Al-Habsi, Khalid S; Golder, Mia; Walsh, Geraldine M; Sheffield, William P

    2015-07-01

    Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected

  12. Electrosurgical Plasma Discharges

    Science.gov (United States)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  13. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  14. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  15. US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Miley, George H. [Univ. of Illinois, Champaign, IL (United States). Dept. of Nuclear, Plasma, and Radiological Engineering

    2007-05-25

    This report lays out the agenda for the entire workshop and then lists the abstracts for all 29 presentations. All of these presentations cover small plasma and accelerator neutron sources. A few of the presentations include: Comments about IEC History and Future Directions; Characteristics in Pulse Operation of IEC Device with Confronting Two Plasma Sources; Overview of the University of Wisconsin-Madison IEC Program; Improving IEC Particle Confinement Times Using Multiple Grids; Integral Transport Approach for Molecular Ion Processes in IEC Devices; A Counter Stream Beam D-D Neutron Generator; Low Pressure IECF Operation Using Differentially-Pumped Ion Sources, and more.

  16. A novel cupping-assisted plasma treatment for skin disinfection

    Science.gov (United States)

    Xiong, Zilan; Graves, David B.

    2017-02-01

    A novel plasma treatment method/plasma source called cupping-assisted plasma treatment/source for skin disinfection is introduced. The idea combines ancient Chinese ‘cupping’ technology with plasma sources to generate active plasma inside an isolated, pressure-controlled chamber attached to the skin. Advantages of lower pressure include reducing the threshold voltage for plasma ignition and improving the spatial uniformity of the plasma treatment. In addition, with reduced pressure inside the cup, skin pore permeability might be increased and it improves attachment of the plasma device to the skin. Moreover, at a given pressure, plasma-generated active species are restricted inside the cup, raising local reactive species concentration and enhancing the measured surface disinfection rate. A surface micro-discharge (SMD) device is used as an example of a working plasma source. We report discharge characteristics and disinfection efficiency as a function of pressure and applied voltage.

  17. Magnetic Flux Compression in Plasmas

    Science.gov (United States)

    Velikovich, A. L.

    2012-10-01

    Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.

  18. Flexible plasma linear antenna

    Science.gov (United States)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  19. Enhanced incoherent scatter plasma lines

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

  20. Communication through Plasma Sheaths

    CERN Document Server

    Korotkevich, A O; Zakharov, V E

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  1. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  2. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  3. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  4. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  5. Plasma Flow Past Cometary and Planetary Satellite Atmospheres

    Science.gov (United States)

    Combi, Michael R.; Gombosi, Tamas I.; Kabin, Konstantin

    2000-01-01

    The tenuous atmospheres and ionospheres of comets and outer planet satellites share many common properties and features. Such similarities include a strong interaction with their outer radiation, fields and particles environs. For comets the interaction is with the magnetized solar wind plasma, whereas for satellites the interaction is with the strongly magnetized and corotating planetary magnetospheric plasma. For this reason there are many common or analogous physical regimes, and many of the same modeling techniques are used to interpret remote sensing and in situ measurements in order to study the important underlying physical phenomena responsible for their appearances. We present here a review of various modeling approaches which are used to elucidate the basic properties and processes shaping the energetics and dynamics of these systems which are similar in many respects.

  6. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...

  7. Plasma Dispersion Function for the Kappa Distribution

    Science.gov (United States)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  8. Cyclotron resonance absorption in ionospheric plasma

    Science.gov (United States)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  9. Development of a plasma panel muon detector

    Science.gov (United States)

    Levin, D. S.; Ball, R.; Beene, J. R.; Benhammou, Y.; Chapman, J. W.; Dai, T.; Etzion, E.; Friedman, P. S.; Ben Moshe, M.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; White, S.; Zhou, B.

    2011-10-01

    A radiation detector technology based on plasma display panels (PDPs), the underlying engine of panel plasma television displays, is being investigated. Emerging from this well-established television technology is the Plasma Panel Sensor (PPS), a novel variant of the micro-pattern radiation detector. The PPS is fundamentally a fast, high-resolution detector comprised of an array of plasma discharge cells, operating in a hermetically sealed gas mixture. We report on the PPS development effort, including proof-of-principle results of laboratory signal observations.

  10. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  11. Generalized fluid theory including non-Maxwellian kinetic effects

    CERN Document Server

    Izacard, Olivier

    2016-01-01

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasma come mainly from the use of very CPU-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g., the INMDF [O. Izacard, Phys. Plasmas 23, 082504 (2016)]). One of the main dif...

  12. CAS course on Plasma Wake Acceleration

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Plasma Wake Acceleration, held at CERN, Geneva, Switzerland, from 23 to 29 November 2014.    Following a number of introductory lectures on laser and plasma physics, as well as an overview of conventional accelerators and their limitations, the course covered a large number of aspects of plasma wake acceleration schemes: the creation of plasma by high power lasers or particle beams, a description of the plasma creation process through simulations and the characteristics of the accelerated particle beams, including results of the latest achievements. Lectures on beam diagnostics, the applications of plasma accelerated beams, and topical seminars completed the programme.  The course was very successful, with 109 students of 26 nationalities attending; most participants coming from European counties, but also from the US, Israel, India, South Korea, Russia and Ukraine. Feedback from the participants was...

  13. Simulating the dynamics of complex plasmas

    CERN Document Server

    Schwabe, Mierk

    2014-01-01

    Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.

  14. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    Science.gov (United States)

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  15. On Plasma Theory and Simulation.

    Science.gov (United States)

    2014-09-26

    SHEATH REGION INCLUDING ION REFLECTION Lou Ann Schwager (Prof. C. K. Birdsall, Dr. I. Roth ) A low temperature plasma interacts with a collector plate...Hitchcock. Katz. Lankford. Nelson. Barnes. Borovsky. Forslund. Kwan. Sadowski Lindemuth. Mason . Mostrom. Nielson, Oliphant. Sgro. Thode Department of

  16. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Goodall, D.H.J. (Euratom/UKAEA Fusion Association, Abingdon (UK). Culham Lab.)

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs.

  17. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  18. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  19. Sources of Pressure in Titan's Plasma Environment

    CERN Document Server

    Achilleos, N; Bertucci, C; Guio, P; Romanelli, N; Sergis, N

    2013-01-01

    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main source is the dynamic pressure associated with Saturn's cold, subcorotating plasma. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of five as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by < 10 deg. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet.

  20. The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spence, W.L.

    1985-04-01

    A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)

  1. Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas

    Science.gov (United States)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2015-11-01

    FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.

  2. Scalable graphene production: perspectives and challenges of plasma applications

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various

  3. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  4. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  5. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  6. Dusty Sheaths in Magnetized Plasmas

    Institute of Scientific and Technical Information of China (English)

    Yu. I. Chutov; O. Yu. Kravchenko; S. Masuzaki; A. Sagara; R. D. Smirnov; Yu. Tomita

    2004-01-01

    Parameters of self-consistent magnetized dusty sheaths are investigated using computer simulations of a temporal evolution of one-dimensional slab plasma with dust particles. The evolution is caused by a collection of electrons and ions by both a wall (electrode) and dust particles, which are initially immersed into plasma and distributed in front of the electrode. Obtained results show the existence of oscillations of a self-consistent potential in magnetized dusty sheaths including boundary potentials. Dust particles weaken magnetized sheaths and create additional sheaths close to a boundary of dust particles. The magnetic field does not influence on the dust particle charge.

  7. Plasma Guns for the Plasma Liner Experiment (PLX)

    Science.gov (United States)

    Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.

    2009-11-01

    A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.

  8. A New Atmospheric Pressure Microwave Plasma Source (APMPS)

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Guixin; LI Yinan; ZHU Zhijie; WANG Xinxin; LUO Chengmu

    2008-01-01

    An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It. is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.

  9. Bodies in flowing plasmas - Laboratory studies

    Science.gov (United States)

    Stone, N. H.; Samir, U.

    1981-01-01

    A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.

  10. Unifying physics of accelerators, lasers and plasma

    CERN Document Server

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  11. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  12. Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma

    Science.gov (United States)

    2016-08-04

    traditional Landau -Spitzer approach and from two Chapman-Enskog calculations. Of the latter, one uses a screened Coulomb interaction that includes electron...for κ ¼ 0 and κ ¼ 0.6, respectively [5,6]. The black dashed line represents the Landau - Spitzer (LS) theory for weakly coupled plasmas, which diverges...D. Landau , Kinetic Equation for the Coulomb Effect, Phys. Z. Sowjetunion 10, 154 (1936). [4] G. Bannasch, J. Castro, P. McQuillen, T. Pohl, and T. C

  13. 20. AINSE plasma science and technology conference. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants.

  14. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  15. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Sharon J Pitteri

    Full Text Available The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery.We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease.Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers.

  16. Radiation Belt and Plasma Model Requirements

    Science.gov (United States)

    Barth, Janet L.

    2005-01-01

    Contents include the following: Radiation belt and plasma model environment. Environment hazards for systems and humans. Need for new models. How models are used. Model requirements. How can space weather community help?

  17. Full Boltzmann equations for leptogenesis including scattering

    CERN Document Server

    Hahn-Woernle, F; Wong, Y Y Y

    2009-01-01

    We study the evolution of a cosmological baryon asymmetry produced via leptogenesis by means of the full classical Boltzmann equations, without the assumption of kinetic equilibrium and including all quantum statistical factors. Beginning with the full mode equations we derive the usual equations of motion for the right-handed neutrino number density and integrated lepton asymmetry, and show explicitly the impact of each assumption on these quantities. For the first time, we investigate also the effects of scattering of the right-handed neutrino with the top quark to leading order in the Yukawa couplings by means of the full Boltzmann equations. We find that in our full Boltzmann treatment the final lepton asymmetry can be suppressed by as much as a factor of 1.5 in the weak wash-out regime (K1), the full Boltzmann treatment and the integrated approach give nearly identical final lepton asymmetries (within 10 % of each other at K>3). Finally, we show that the opposing effects of quantum statistics on decays/i...

  18. Cold plasma inactivation of chronic wound bacteria.

    Science.gov (United States)

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  19. Plasma Medicine: Current Achievements and Future Prospects

    Science.gov (United States)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  20. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  1. Plasma Science and Applications at the Intel

    Science.gov (United States)

    Berry, Lee

    2006-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the annual Intel International Science and Engineering Fair (ISEF). The 2006 prize was awarded for a project that investigated the correlation of GPS errors with various measures of near-earth plasma activity. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas. In addition, the CPS has begun as effort to examine the plasma content of state education standards with the goal of promoting the adoption of standards with appropriate plasma conten; e.g. are there three or four states of matter. The success of this and other activities depend on the voluntary labor of CPS members and associates. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  2. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Science.gov (United States)

    Mashayekh, Shahriar; Rajaee, Hajar; Akhlaghi, Morteza; Shokri, Babak; Hassan, Zuhir M.

    2015-09-01

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF2 crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  3. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  4. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  5. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekh, Shahriar [Physics Department, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Rajaee, Hajar; Hassan, Zuhir M. [Imonology Department, Faculty of Medical Science, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Akhlaghi, Morteza [Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Shokri, Babak [Physics Department and Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-09-15

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF{sub 2} crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  6. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans;

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  7. Internet and web projects for fusion plasma science and education. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Timothy E. [Senior Research Associate, Silver Spring, MD (United States)

    1999-08-30

    The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.

  8. Repetitive tabletop plasma focus to produce a tunable damage factor on materials for fusion reactors

    Science.gov (United States)

    Soto, Leopoldo; Pavez, Cristian; Inestrosa-Izurieta, Maria Jose; Moreno, Jose; Davis, Sergio; Bora, Biswajit; Avaria, Gonzalo; Jain, Jalaj; Altamirano, Luis; Panizo, Miguel; Gonzalez, Raquel; Rivera, Antonio

    2016-10-01

    Future thermonuclear reactors, both magnetic and inertial confinement approaches, need materials capable of withstanding the extreme radiation and heat loads expected from high repetition rate plasma. A damage factor (F = qτ1/2) in the order of 104 (W/cm2) s1/2 is expected. The axial plasma dynamics after the pinch in a tabletop plasma focus of hundred joules, PF-400J, was characterized by means of pulsed optical refractive diagnostics. The energy, interaction time and power flux of the plasma burst interacting with targets was obtained. Results show a high dependence of the damage factor with the distance from the anode top where the sample is located. A tunable damage factor in the range 10- 105(W/cm2) s1/2 can be obtained. At present the PF-400J operating at 0.077 Hz is being used to study the effects of fusion-relevant pulses on material target, including nanostructured materials. A new tabletop device to be operated up to 1Hz including tunable damage factor has been designed and is being constructed, thus thousand cumulative shots on materials could be obtained in few minutes. The scaling of the damage factor for plasma foci operating at different energies is discussed. Supported by CONICYT: PIA ACT-1115, PAI 79130026.

  9. Optics and Plasma Research Department annual progress report for 2004

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.

    2005-01-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. Thedepartment has core competencies in optical sensors......, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalibration, and infrared measurement techniques. The research is supported by several EU programmes, including...

  10. Progress in the Development of Plasma Panel Radiation Detectors

    CERN Document Server

    Ball, Robert; Benhammou, Yan; Moshe, Meny Ben; Chapman, J Wehrley; Dai, Tiesheng; Etzion, Erez; Friedman, Peter S; Levin, Daniel S; Silver, Yiftah; Sherman, Guy; Varner, Robert L; Weaverdyck, Curtis; White, Steve; Yu, J; Zhou, Bing

    2011-01-01

    Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, is intended to be a fast, high resolution detector comprised of an array of plasma discharge cells operating in a hermetically sealed gas mixture. We report on the PPS development effort, including recent laboratory measurements.

  11. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  12. Plasma Redshift Cosmology

    Science.gov (United States)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  13. Differential plasma protein binding to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F [School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia); Schiller, Tara; Musumeci, Anthony; Martin, Darren, E-mail: r.minchin@uq.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072 (Australia)

    2009-11-11

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO{sub 2}, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO{sub 2} and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  14. A particle-in-cell plus Monte Carlo study of plasma-induced damage of normal incidence collector optics used in extreme ultraviolet lithography

    NARCIS (Netherlands)

    Wieggers, R. C.; W. J. Goedheer,; M.R. Akdim,; F. Bijkerk,; Zegeling, P. A.

    2008-01-01

    We present a kinetic simulation of the plasma formed by photoionization in the intense flux of an extreme ultraviolet lithography (EUVL) light source. The model is based on the particle-in-cell plus Monte Carlo approach. The photoelectric effect and ionization by electron collisions are included. Th

  15. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  16. Microwave Argon Plasma Torch

    Science.gov (United States)

    2013-07-01

    an electron-ion pair in the discharge. Fig. 2. EEDF is non - Maxwellian and changes along the plasma column The electron–neutral collision...plasma radius. Even at atmospheric pressure the EEDF is non - Maxwellian and it is changing along the plasma column. ...18 31st ICPIG, July 14-19, 2013, Granada, Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  17. Progress in plasma liner modeling for MIF

    Science.gov (United States)

    Loverich, John; Hakim, Ammar; Zhou, Sean

    2009-11-01

    Magnetic confinement fusion and inertial confinement fusion represent the two extremes in terms of density and confinement time in fusion energy research. Both approaches have been studied extensively through the decades pushing technology to the limits. An alternative fusion approach exists between these regimes called magnetized target fusion. In magnetized target fusion longer confinement times are achieved than in ICF through the use of strong magnetic fields, the long confinement time reduces the required plasma density to reach ignition--the approach has advantages over MFE in that it is much more compact and higher density. This work explores computationally a form of magnetized target implosion using a plasma liner. This concept is to be compared with solid liner implosion approach which may not be commercially viable as a reactor due to the ``standoff'' problem, portions of the device are destroyed with each target implosion. We present simulation results of plasma liner formation, jet merging, and plasma jet magnetized target interaction using a fluid plasma code (TxFluids) developed at Tech-X corporation.

  18. The Plasma Universe

    Science.gov (United States)

    Suplee, Curt

    2009-09-01

    Preface; 1. The fourth state of matter; 2. The music and dance of plasmas; 3. The Sun-Earth connection; 4. Bringing the Sun to Earth: the story of controlled thermonuclear fusion; 5. The cosmic plasma theater: galaxies, stars, and accretion disks; 6. Putting plasmas to work; Index.

  19. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  20. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe