WorldWideScience

Sample records for applying rotary jet

  1. Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.;

    2003-01-01

    An approximation to an ideally mixed tank reactor can be obtained by vigorous stirring with mechanical mixers. For an aerated reactor the gas dispersion contributes to the mixing process. Mixing can also be achieved by recirculation of a portion of the liquid through either an internal...... or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads...

  2. Applications of rotary jetting tool with coiled tubing offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Ricardo; Almeida, Victor; Mendez, Alfredo; Dean, Greg [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    It is well known that offshore operators are continuously looking for alternatives to reduce rig time, especially when it comes to work over operations due to high costs. The introduction of a Rotary Jetting Tool (RJT) in conjunction with coiled tubing was successfully tested and proved to be a better alternative not only because of its efficiency but also due to a reduction in the time of intervention operations. The RJT was created to remove scales and well obstructions by utilization of stress-cycling jetting. Stress cycling is a jetting mechanism that consists of pressuring and energizing fluid against a material. This mechanism breaks scales or obstructions and vibrates proppants in gravel pack completions. The RJT is composed of turbines that generate spinning and magnets that control the rotation. Most fluids used in the oil industry for remedial operations are compatible with this tool, hence its wide range of applications. This paper will present case histories that vary from hydrate and scale removal, and matrix stimulations including cleaning of gravel pack completions. The usage of this RJT has demonstrated effectiveness as a new alternative to improve well production and reduce rig time when compared to other methods commonly used in the area. (author)

  3. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; XU Hong-guang

    2008-01-01

    The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experi-mentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.

  4. Mixing by rotary jet heads: Indications of the benefits of head rotation under turbulent and transitional flow conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Vognsen, Marie; Nienow, Alfred W.;

    2008-01-01

    (turbulent and transitional flow). The RJH system is based on mixing by liquid jets, but due to the rotation of the head the position of the jets is continually changing. Experiments were undertaken with RJHs rotating as normal, or held stationary, in order to ascertain whether and to what extent......Mixing times were obtained by the iodine-thiosulphate decolorization technique using rotary jet heads (RJH) for mixing in a Perspex tank with an inner diameter of 0.75 m and an aspect ratio of 2.5 using both water (turbulent flow) and shear-thinning, carboxymethyl cellulose (CMC) solutions...... the 'randomness' imposed by the head motion improves mixing. It was found that the head rotation leads to a decrease in mixing time compared to stationary jets, even under turbulent conditions. However, if the head is rotating too fast, the jets do not reach the top and bottom of the tank whereby the mixing time...

  5. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    Science.gov (United States)

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  6. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  7. Film Cooling Effectiveness Enhancement Applying another Jet in the Upstream Neighbor of the Main Jet-Using LES Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salimi

    2016-01-01

    Full Text Available Flow hydrodynamic effects and film cooling effectiveness of placing a coolant port (upstream jet just upstream of the main cooling jet were numerically investigated. The upstream jet was added such that the total cooling cross section (cross sections of the main and upstream jets remains constant, in comparison to the case of ordinary cooling jet. The finite volume method and the unsteady SIMPLE algorithm on a multiblock non-uniform staggered grid arrangement were applied. The large eddy simulation (LES approach with the one equation subgrid scale model was used. The jet to cross flow velocity ratio (for both of the main and the upstream jets is 0.5 and the cross flow Reynolds number (based on the main jet parameters is equal to 4700. The obtained results showed a significant improvement in the flow control capability and both centerline and span-wise averaged film cooling effectiveness applying the new cooling configuration. Effects of the upstream jet dimensions are also studied here. The obtained results showed that the span-wise width of the upstream jet has more essential influence on the cooling performance than that of its stream-wise width. Moreover, it is demonstrated that the film cooling performance could be enhanced even by applying an upstream jet which its temperature is as same as the cross-flow temperature, i.e. applying a hot upstream jet. Finally, it is shown that presence of the upstream jet decreases the stream-wise component of the velocity near the wall, which decreases the wall shear stress and the skin friction drag coefficient significantly.

  8. Vibration table for molding applying rotary motion and characteristics of sand filling; En undo wo tekiyoshita zokeiyo shindo teburu to sono suna juten tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, A; Kawamoto, M. [Univ. of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Goto, Y. [Sambo Copper Alloy Co. Ltd., Osaka (Japan)

    1996-10-01

    The sand fluidity and compactability improved by rotary motion can be applied very effectively to molding process in expandable pattern casting and self-hardening molds whose flasks are large and pattern dimensions are comparatively large. Out of various vertical and horizontal multiaxial vibration modes being applied to the vibration table for expandable pattern casting, systematic positioning of rotary vibration is arranged from the viewpoints of vibrating method and vibration locus. It is found that the vibrating method employed to obtain the rotary motion given in this report is very simple, can solve problems concerning resonance, heat, and yawing observed with the conventional multi-dimensional simultaneous excitation table, and is useful to produce stable vibration. As a result of evaluation of compactability in various vibration modes, it is elucidated that rotary motion is best, and deterioration is observed in the respective order of vertical-horizontal biaxial vibration, horizontal uniaxial vibration, and vertical uniaxial vibration. This tendency agrees well with the result of fluidity test for sand. 5 refs., 8 figs., 2 tabs.

  9. The diagnostic potential of Fe lines applied to protostellar jets

    CERN Document Server

    Giannini, T; Antoniucci, S; Alcala', J M; Bacciotti, F; Bonito, R; Podio, L; Stelzer, B; Whelan, E T

    2013-01-01

    We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivity with that of [OI] 630 nm. The [FeII] lines indicate ESO-Halpha 574 jet is, on average, colder (T_e = 9000 K), less dense (n_e = 2 10^4 cm^-3) and more ionized (x_e = 0.7) than the Par-Lup 3-4 jet (T_e = 13000 K, n_e = 6 10^4 cm^-3, x_e < 0.4), even if the existence of a higher density component (n_e = 2 10^5 cm^-3) is...

  10. The diagnostic potential of Fe lines applied to protostellar jets

    Energy Technology Data Exchange (ETDEWEB)

    Giannini, T.; Nisini, B.; Antoniucci, S. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (Italy); Alcalá, J. M. [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli (Italy); Bacciotti, F. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Bonito, R.; Stelzer, B. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Podio, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Whelan, E. T. [Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität, D-72076 Tübingen (Germany)

    2013-11-20

    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T {sub e} ∼ 9000 K), less dense (n {sub e} ∼ 2 × 10{sup 4} cm{sup –3}), and more ionized (x {sub e} ∼ 0.7) than the Par-Lup 3-4 jet (T {sub e} ∼ 13,000 K, n {sub e} ∼ 6 × 10{sup 4} cm{sup –3}, x {sub e} < 0.4), even if the existence of a higher density component (n {sub e} ∼ 2 × 10{sup 5} cm{sup –3}) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main

  11. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  12. The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    Science.gov (United States)

    Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E. T.

    2013-11-01

    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T e ~ 9000 K), less dense (n e ~ 2 × 104 cm-3), and more ionized (x e ~ 0.7) than the Par-Lup 3-4 jet (T e ~ 13,000 K, n e ~ 6 × 104 cm-3, x e atomic data, which, however, can be overcome through a statistical approach involving many lines. Based on observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  13. The rotary dual technique for total skin irradiation in the treatment of mycosis fungoides - a description of the applied method

    International Nuclear Information System (INIS)

    Background: The aim of total skin electron irradiation in the therapy of mycosis fungoides is to obtain total or partial remission of the disease while concurrently lowering the toxicity level. Total skin electron radiotherapy should fulfill the EORTC requirements from the year 2002. Aim: The aim of this work is to present the rotary dual method for total skin electron irradiation used in the Great Poland Cancer Centre including its specific c technical and physical aspects. These aspects include the parameters and conditions for the treatment (geometrical conditions of the technique, homogeneity of the dose, patients positioning, additional fields and the method of dose fractionation), the absolute dosimetry (parameters and functions characterizing the electron irradiation beam used in the rotary dual method of the rotary dual method of the total skin electron irradiation) and in-vivo dosimetry conducted during the therapy with rotary dual fields, which allowed to control the dose distribution and to indicate additional skin areas, which should be irradiated with local fields. Materials/Methods: The rotary dual method of the Total Skin Electron Irradiation proposed by the author, is based on the combination of the two most frequently used methods: 1) six dual fields method and 2) rotary method. The original, calculation algorithm elaborated by the author was based on the two dimensional algorithm proposed by Podgorsak et al. Results: The new algorithm, proposed by the author takes into the changes in doses along the vertical and horizontal axis of the object. Moreover the elliptical; shape of the object proposed by the author, is more approximated to the shape of the patient than the cylindrical object proposed by Podgorsak et al. Discussion: Parameters used by authors: nominal energy - 6 MeV, mean energy at the skin surface - 2.8 MeV, values of the PDD (at the skin surface - 100 %, at the 4 mm - 83.6 % and at the 20 mm - 1.8 %), SSD - 300 cm, field size equal to

  14. Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet

    DEFF Research Database (Denmark)

    Wähnström, Maja; George, William K.; Meyer, Knud Erik

    2006-01-01

    Recent experiments on asymptotic high Reynolds number turbulent jet have shown a difference between results from the slice POD applied to the full velocity vector and to the streamwise component of velocity only. In particular, the evolution of the peak in the energy toward azimuthal mode-2...... in the streamwise velocity component decomposition noted in earlier experiments, shifted to mode-1 if all three components of velocity were considered. This is in contrast to what appears to be the case for the jet mixing layer and the axisymmetric wake6 where no such differences were observed. The work reported...... here applies stereoscopic PIV to the far field of the same jet in which the mode-2 phenomenon was first noticed. Indeed azimuthal mode-1 is maximal if all three velocity components are considered, so the new findings are confirmed. This work also addresses a number of outstanding issues from all...

  15. Rotary Transformer

    Science.gov (United States)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  16. Rotary ATPases

    Science.gov (United States)

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  17. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  18. Experimental Validation of Simplified Free Jet Turbulence Models Applied to the Vocal Tract

    CERN Document Server

    Grandchamp, Xavier; Pelorson, Xavier

    2008-01-01

    Sound production due to turbulence is widely shown to be an important phenomenon involved in a.o. fricatives, singing, whispering and speech pathologies. In spite of its relevance turbulent flow is not considered in classical physical speech production models mostly dealing with voiced sound production. The current study presents preliminary results of an experimental validation of simplified turbulence models in order to estimate the time-mean velocity distribution in a free jet downstream of a tube outlet. Aiming a future application in speech production the influence of typical vocal tract shape parameters on the velocity distribution is experimentally and theoretically explored: the tube shape, length and the degree and geometry of the constriction. Simplified theoretical predictions are obtained by applying similarity solutions of the bidimensional boundary layer theory to a plane and circular free jet in still air. The orifice velocity and shape are the main model input quantities. Results are discussed...

  19. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    Science.gov (United States)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  20. Jet Riemann-Lagrange Geometry Applied to Evolution DEs Systems from Economy

    OpenAIRE

    Neagu, Mircea

    2007-01-01

    The aim of this paper is to construct a natural Riemann-Lagrange differential geometry on 1-jet spaces, in the sense of nonlinear connections, generalized Cartan connections, d-torsions, d-curvatures, jet electromagnetic fields and jet Yang-Mills energies, starting from some given non-linear evolution DEs systems modelling economic phenomena, like the Kaldor model of the bussines cycle or the Tobin-Benhabib-Miyao model regarding the role of money on economic growth.

  1. Rotary cup slurry atomization

    Science.gov (United States)

    Sommer, H. T.; Marnicio, R. J.

    1983-06-01

    The theory of a two-phase flow in a rotating cup atomizer is described. The analysis considers the separation of the solid and liquid media thus realistically modeling the flow of two layers along the inner cup wall: a slurry of increasing solids concentration and a supernatent liquid layer. The analysis is based on the earlier work of Hinze and Milborn (1950) which addressed the flow within a rotary cup for a homogeneous liquid. The superimposition of a settling velocity under conditions of high centrifugal acceleration permits the extended analysis of the separation of the two phases. Appropriate boundary conditions have been applied to the film's free surface and the cup wall and to match the flow characteristics at the liquid-slurry interface. The changing slurry viscosity, increasing nonlinearly with growing solid loading, was also considered. A parameter study illustrates the potential for a cup design to provide optimal slurry and liquid film thicknesses for effective atomization.

  2. Oxyfuel combustion in rotary kiln lime production

    OpenAIRE

    Eriksson, Matias; Hökfors, Bodil; Backman, Rainer

    2014-01-01

    The purpose of this article is to study the impact of oxyfuel combustion applied to a rotary kiln producing lime. Aspects of interest are product quality, energy efficiency, stack gas composition, carbon dioxide emissions, and possible benefits related to carbon dioxide capture. The method used is based on multicomponent chemical equilibrium calculations to predict process conditions. A generic model of a rotary kiln for lime production was validated against operational data and literature. T...

  3. Application Research of the Oblique Rotary Jet Mixing Anchor Pile in Deep Foundation Pit Construction%斜向旋喷搅拌加劲桩在深基坑围护结构中的应用研究

    Institute of Scientific and Technical Information of China (English)

    吕善国; 叶继权; 李友生

    2012-01-01

    斜向旋喷搅拌加劲桩技术作为一项基坑支护新技术,与传统的锚杆和土钉相比,它克服了锚杆、土钉在砂土和软弱土层中施工困难的问题,解决了锚杆、土钉锚固力有限问题。此外,它可以取代传统的内支撑结构体系,具有方便土方开挖,缩短工期,节约支护成本等优点。通过对某深基坑工程不同设计方案的对比分析表明,斜向旋喷搅拌加劲桩支护在造价、工期上具明显优势。因此,该项新技术具有很好的推广价值及广阔的应用前景。%Oblique rotary jet mixing anchor pile is a new shoring technique for foundation pit. Compared with the anchor rod and soil nailing, it overcomes the problem of difficult construction in sandy soil and soft soil, and solves the problem of anchor bolt limited. In addition, it can replace the traditional inner supporting struc- ture system. This may facilitate the earth excavation, shorten the construction period, and save the support cost. The different design schemes comparison for a deep foundation pit shows that the new technology in cost, time limit has obvious advantages. Therefore, it has very good popularization value and broad application prospects.

  4. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  5. Magnetic Fields Applied to Paramagnetic Suspensions: The Hump-Jet Transition

    Science.gov (United States)

    Tsai, Scott S. H.; Li, Zhenzhen; Kim, Pilnam; Stone, Howard A.

    2010-11-01

    When a suspension of paramagnetic beads is in a sufficiently strong magnetic field gradient, a jet forms. Based on this approach, we report a technique for depositing an aggregate of paramagnetic beads on a substrate. Our setup is similar to the classical electrohydrodynamic jet setup originally used by Zeleny (1917), Wilson and Taylor (1925), who investigated the case of a single-phase liquid. In contrast, our system consists of a dilute suspension of micron-size paramagnetic beads suspended in the fluid. In response to a weak magnetic field, all of the beads collect at the almost planar interface, which then deforms modestly as the field strength is increased to form a hump. Above a critical field strength, the hump where the beads have collected goes unstable to form a jet. We use high-speed videos to study the system's hump-jet transition. We also propose an analytical scaling model that predicts the critical conditions for the transition by the balance of magnetic and capillary forces acting on the aggregate of beads.

  6. POD applied to stereo PIV data of the far turbulent axisymmetric jet

    DEFF Research Database (Denmark)

    Wänström, Maja; George, William K.; Meyer, Knud Erik

    positions of 60, 70 and 100 diameters using stereoscopic PIV. In addition to the standard PIV processing, a novel application of the snapshot POD was used to filter the data in preparation for the classical POD analysis. The two-point Reynolds stress tensor was reconstructed from the dominant snapshot POD......An experiment was performed to evaluate spatial resolution requirements for multiple and single component POD applications to cross-sections of the far axisymmetic jet. The jet of Gamard et al. was used at an exit Reynolds number of 20,000. Three-component velocity data were obtained at downstream......-modes, and the convex hull of this data set was extended using symmetry conditions. The results are believed to be relevant to not only understanding previous experiments with hot-wires, but also DNS and LES....

  7. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    Science.gov (United States)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff

  8. Modeling of mixed-phasing antenna-plasma interactions applied to JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed (monopole-dipole) phasing of a set of ICRF antennas is potentially useful to optimize tokamak performance and to do interesting physics experiments. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. We explore a possible physical mechanism: parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed

  9. Calculation of Cold Jet and Gas-solid Two Phase Flow in Rotary Kiln%回转窑冷态射流和气固两相流数学计算

    Institute of Scientific and Technical Information of China (English)

    尹洪超; 沈春艳; 刘红; 李德付

    2013-01-01

    The flow rule and coal particles movement characteristics of cold jet and gas-solid two phase flow in rotary kiln were ana-lyzed by using a numerical method. The effect of each duct air supply parameter of four-channel burner on the strength of mixed size, backflow and whirl was investigated, and the numerical method was verifiedvia a single-phase cold model. The discrete phase parti-cle track model was added to the single-phase cold model to analyze the gas movement characteristics and particle distributions when a pulverized coal was injected into the gas phase turbulent flow field. The results show that the center air duct has an effect on the formation of central backflow. It was indicated that a jet with speed difference produced from both the internal rotational wind and direct wind could promote the entrainment and backflow of the high temperature secondary air and profited pulverized coal combus-tion under gravity. The coarser the coal particle size, the greater the pulverized coal deposited at the bottom of the kiln could be. The distribution was more uniform at the particle size of 30μm.%应用数学方法研究了回转窑内冷态射流、气固两相流湍流场的流动特性及颗粒运动轨迹。应用文献中单相冷模实验对数学方法进行了有效验证,并分析四通道燃烧器各风道送风参数对窑内气流混合、回流大小及旋流强度的影响。在单相模型基础上,加入离散相颗粒轨道模型,考察在气相湍流场中喷入煤粉时气体运动及颗粒分布特性。结果表明:中心风对中心回流区的形成有重要影响;若使内旋流风与外直流风形成更强的速差射流,促进一次风对高温二次风的卷吸回流,将有利于煤粉燃烧;在重力作用下,随着煤粉粒径的增大,沉积在窑底部的煤粉越多;粒径为30μm的煤粉颗粒在窑内分布比较均匀。

  10. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft

    Science.gov (United States)

    Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.

    2016-01-01

    A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional

  11. A multiblock grid generation technique applied to a jet engine configuration

    Science.gov (United States)

    Stewart, Mark E. M.

    1992-01-01

    Techniques are presented for quickly finding a multiblock grid for a 2D geometrically complex domain from geometrical boundary data. An automated technique for determining a block decomposition of the domain is explained. Techniques for representing this domain decomposition and transforming it are also presented. Further, a linear optimization method may be used to solve the equations which determine grid dimensions within the block decomposition. These algorithms automate many stages in the domain decomposition and grid formation process and limit the need for human intervention and inputs. They are demonstrated for the meridional or throughflow geometry of a bladed jet engine configuration.

  12. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    Science.gov (United States)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-02-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  13. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Van Deynse, A., E-mail: Annick.VanDeynse@ugent.be [Department Industrial Technology and Construction, Faculty of Engineering & Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Cools, P., E-mail: Pieter.Cools@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Leys, C., E-mail: Christophe.Leys@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); De Geyter, N., E-mail: Nathalie.DeGeyter@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Morent, R., E-mail: Rino.Morent@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-02-15

    Highlights: • Surface modification of polyethylene by an argon atmospheric pressure plasma jet. • Investigation of the influence of the applied power and argon flow rate. • Turbulence in the gas flow leads to a shorter afterglow. • Turbulence in the gas flow results in a lower wettability of the polyethylene. • Increasing the applied power increases the wettability of the polyethylene. - Abstract: Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1–1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the

  14. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    International Nuclear Information System (INIS)

    Highlights: • Surface modification of polyethylene by an argon atmospheric pressure plasma jet. • Investigation of the influence of the applied power and argon flow rate. • Turbulence in the gas flow leads to a shorter afterglow. • Turbulence in the gas flow results in a lower wettability of the polyethylene. • Increasing the applied power increases the wettability of the polyethylene. - Abstract: Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1–1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the

  15. Rotary drum separator system

    Science.gov (United States)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  16. Rotary mechanical latch

    Science.gov (United States)

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  17. Rotary shaft sealing assembly

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  18. Rotary jagas stipendiume

    Index Scriptorium Estoniae

    2009-01-01

    Pärnu Rotary klubi aastapäevapeol 11. mail Ammende villas anti stipendium viiele Pärnumaa noorele, teiste seas pälvis preemia Pärnu Ülejõe Gümnaasiumi muusikaõpetaja Fred Rõigas ja Pärnu Muusikakoolis trompetit õppiv Chris Sommer

  19. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Science.gov (United States)

    Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R.

    2015-02-01

    Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1-1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the discharge power, the concentrations of all oxygen containing groups such as Csbnd O, Cdbnd O and Osbnd Cdbnd O increase. Increasing the flow rate up to 1.25 slm results mainly in an increase in Osbnd Cdbnd O groups. However, from a flow rate of 1.25 slm on, the concentration of all oxygen groups again decreases. Based on these results, the appropriate settings for an efficient plasma treatment can easily be selected.

  20. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    Taratuta V. D.; Belokur K. A.; Serga G. V.

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  1. Multiple Δt strategy for particle image velocimetry (PIV) error correction, applied to a hot propulsive jet

    International Nuclear Information System (INIS)

    PIV (particle image velocimetry) is a measurement technique with growing application to the study of complex flows with relevance to industry. This work is focused on the assessment of some significant PIV measurement errors. In particular, procedures are proposed for estimating, and sometimes correcting, errors coming from the sensor geometry and performance, namely peak-locking and contemporary CCD camera read-out errors. Although the procedures are of general application to PIV, they are applied to a particular real case, giving an example of the methodology steps and the improvement in results that can be obtained. This real case corresponds to an ensemble of hot high-speed coaxial jets, representative of the civil transport aircraft propulsion system using turbofan engines. Errors of ∼0.1 pixels displacements have been assessed. This means 10% of the measured magnitude at many points. These results allow the uncertainty interval associated with the measurement to be provided and, under some circumstances, the correction of some of the bias components of the errors. The detection of conditions where the peak-locking error has a period of 2 pixels instead of the classical 1 pixel has been made possible using these procedures. In addition to the increased worth of the measurement, the uncertainty assessment is of interest for the validation of CFD codes

  2. Optical rotary joint

    Science.gov (United States)

    May, R. G., Jr.

    1982-06-01

    The primary objective of this contract is the design, fabrication, and testing of an optical rotary joint which permits transmission of signals through optical fibers across the interface of two environments rotating relative to each other. Outstanding optical performance is achieved through the use of gradient index lenses to couple radiation across the separation between two fibers. The salient features of this device are bidirectional operation at two wavelengths (850 nm and 1300 nm), low insertion loss, low rotationally induced variation of attenuation, a seven-circuit electrical slip-ring assembly, and rugged construction. The device is designed to facilitate the application of future designs to pressurized, subsea environments.

  3. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    1995-01-01

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  4. Rotary actuator for space applications

    Science.gov (United States)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  5. Equivalent dynamic model of DEMES rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward–feedback compound control.

  6. The method of characteristics and computational fluid dynamics applied to the prediction of underexpanded jet flows in annular geometry

    Science.gov (United States)

    Kim, Sangwon

    2005-11-01

    High pressure (3.4 MPa) injection from a shroud valve can improve natural gas engine efficiency by enhancing fuel-air mixing. Since the fuel jet issuing from the shroud valve has a nearly annular jet flow configuration, it is necessary to analyze the annular jet flow to understand the fuel jet behavior in the mixing process and to improve the shroud design for better mixing. The method of characteristics (MOC) was used as the primary modeling algorithm in this work and Computational Fluid Dynamics (CFD) was used primarily to validate the MOC results. A consistent process for dealing with the coalescence of compression characteristic lines into a shock wave during the MOC computation was developed. By the application of shock polar in the pressure-flow angle plane to the incident shock wave for an axisymmetric underexpanded jet and the comparison with the triple point location found in experimental results, it was found that, in the static pressure ratios of 2--50, a triple point of the jet was located at the point where the flow angle after the incident shock became -5° relative to the axis and this point was situated between the von Neumann and detachment criteria on the incident shock. MOC computations of the jet flow with annular geometry were performed for pressure ratios of 10 and 20 with rannulus = 10--50 units, Deltar = 2 units. In this pressure ratio range, the MOC results did not predict a Mach disc in the core flow of the annular jet, but did indicate the formation of a Mach disc where the jet meets the axis of symmetry. The MOC results display the annular jet configurations clearly. Three types of nozzles for application to gas injectors (convergent-divergent nozzle, conical nozzle, and aerospike nozzle) were designed using the MOC and evaluated in on- and off-design conditions using CFD. The average axial momentum per unit mass was improved by 17 to 24% and the average kinetic energy per unit fuel mass was improved by 30 to 80% compared with a standard

  7. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-02-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  8. Implementation of a correction factor for the Pohlhausen laminar boundary layer applied on the CEVA curved wall jet model

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2013-09-01

    Full Text Available Curved wall jets have many technical applications, ranging from aeronautical circulation controlled wings to micro-fluidics and cryogenics. This paper addresses the issue of correctly estimating the boundary layer separation for laminar curved wall jets. For this, the Pohlhausen model was used in conjunction with the CEVA wall jet model with a semi-empirical modification which increases the accuracy for very thin jets. The method is therefore a mix of analytical equations with curve fitted experimental data in order to produce a simple yet effective way of estimating the boundary layer velocity profile along the curved wall. In order to cross-check the results, Newman’s empirical equation – which only provides a separation location but no information regarding the velocity profile - for boundary layer separation was used with good results. The hereby model could be used as a pre-design tool for rapid assessment of aeronautical high-lift applications such as Upper Surface Blown (USB or entrainment wings.

  9. ROTARY SCREW SYSTEMS IN CEMENT

    Directory of Open Access Journals (Sweden)

    Taratuta V. D.

    2016-01-01

    Full Text Available The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometrical shapes with form inside the screw breaks or smooth edges, screw surfaces and screw grooves. It is shown that the housing of the rotary kiln is expedient to produce helical surfaces whose centers of curvature are located within the housing. Using the proposed constructions rotary kiln during the firing when preparing cement wedge can increase the speed of rotation of the housing, furnaces 5-10 times due to changes in the rotary-screw systems increase efficiency and reduce the size of furnaces

  10. Design Robust Controller for Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  11. Applying multi-physics requirements and loads in FEM analysis and testing—The JET KL11 endoscope design verification process

    International Nuclear Information System (INIS)

    Considering multi-physics requirements and loads in the early design phase as well as during the later experimental verification is especially important for the design of fusion devices due to the extreme environmental conditions and loads. Typical disciplines in design of fusion devices are thermodynamics, structural-mechanics, electro-magnetics, and optics. The interaction of these disciplines as well as an efficient approach to implement this interaction in numerical and experimental simulations is presented as applied at the new JET KL11 divertor endoscope design and verification process. The endoscope's first pictures already showed the very good performance of the instrument

  12. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  13. Application of the Hand-instrument of Measurement of Tyre Gap and Diameter in Cement Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This article is concerned with the cement rotary kiln, the hand-instrument of measurements of tyre gap and the outer diameter. The accuracy of measurements of tyre gap and diameter is less than ±1mm. The hand- instrument wins two patents in China. It has been applied to the measurement for 16 sets of cement rotary kiln in China.

  14. Jet Reconstruction with charged tracks only in CMS

    OpenAIRE

    Azzurri, Paolo

    2009-01-01

    The performance of jet finding using only charged tracks in CMS has been investigated. Different jet algorithms have been applied to QCD di-jet events, to hadronic tt multi-jet events and on Z+jets events. Results using jets made with tracks only or calorimeter towers are compared for energy response, angular resolution and jet matching to the leading partons. The jet reconstruction performance in the presence of pile-up interactions is presented for the Z+jets sample.

  15. Rotary Transformer Seals Power In

    Science.gov (United States)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  16. Testing Dual Rotary Filters - 12373

    International Nuclear Information System (INIS)

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTekR Rotary Micro-filter units to determine the behavior of a multiple filter system and develop a multi-filter automated control scheme. Developing and testing the control of multiple filters was the next step in the development of the rotary filter for deployment. The test stand was assembled using as much of the hardware planned for use in the field including instrumentation and valving. The control scheme developed will serve as the basis for the scheme used in deployment. The multi filter setup was controlled via an Emerson DeltaV control system running version 10.3 software. Emerson model MD controllers were installed to run the control algorithms developed during this test. Savannah River Remediation (SRR) Process Control Engineering personnel developed the software used to operate the process test model. While a variety of control schemes were tested, two primary algorithms provided extremely stable control as well as significant resistance to process upsets that could lead to equipment interlock conditions. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The equipment selected for deployment, including the concentrate discharge control valve, the pressure transmitters, and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual rotary filter system. Experience acquired on a multi-filter system behavior and with the system layout during this test helped to identify areas where the current deployment rotary filter installation design could be improved. Completion of this testing provides the necessary information

  17. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  18. Development of micro rotary swaging tools of graded tool steel via co-spray forming

    Directory of Open Access Journals (Sweden)

    Cui Chengsong

    2015-01-01

    Full Text Available In order to meet the requirements of micro rotary swaging, the local properties of the tools should be adjusted properly with respect to abrasive and adhesive wear, compressive strength, and toughness. These properties can be optimally combined by using different materials in specific regions of the tools, with a gradual transition in between to reduce critical stresses at the interface during heat treatment and in the rotary swaging process. In this study, a newly developed co-spray forming process was used to produce graded tool materials in the form of a flat product. The graded deposits were subsequently hot rolled and heat treated to achieve an optimal microstructure and advanced properties. Micro plunge rotary swaging tools with fine geometrical structures were machined from the hot rolled materials. The new forming tools were successfully applied in the micro plunge rotary swaging of wires of stainless steel.

  19. Development of micro rotary swaging tools of graded tool steel via co-spray forming

    Directory of Open Access Journals (Sweden)

    Cui Chengsong

    2015-01-01

    Full Text Available In order to meet the requirements of micro rotary swaging, the local properties of the tools should be adjusted properly with respect to abrasive and adhesive wear, compressive strength, and toughness. These properties can be optimally combined by using different materials in specific regions of the tools, with a gradual transition in between to reduce critical stresses at the interface during heat treatment and in the rotary swaging process. In this study, a newly developed co-spray forming process was used to produce graded tool material in the form of a flat product. The graded deposit was subsequently hot rolled and heat treated to achieve an optimal microstructure and advanced properties. Micro plunge rotary swaging tools with fine geometrical structures were machined from the hot rolled material. The new forming tools were successfully applied in the micro plunge rotary swaging of wires of stainless steel.

  20. A Study of Vibration Reduction of Rolling Piston Type Rotary Compressor

    Science.gov (United States)

    Yoshimura, Takao; Koyama, Takashi; Morita, Ichiro; Kobayashi, Masanori; Uetuji, Toshio

    In general,the vibration of rolling piston type rotary compressors is greater than that of reciprocating compressors because the compressor-motor unit is fixed to the shell. It is therefore necessary that refrigerators utilizing rotary compressors incorporated a vibration-proof design. This paper refers to the experimental vibration reduction study of rotary compressors (horizontally installed) for household refrigerators and other appliances. The vibration of rotary compressors consists of the rotational vibration caused by the speed variation of the shaft and of the imbalance vibration caused by the mass imbalance in the rotation system. There are various methods for reducing the rotational vibration. This study researched the dynamic damper. It will be shown that the dynamic damper,using a helical extension spring applied to the outside of the shell,is effective in reducing vibration. In regards to the imbalance vibration,this paper researched the influence of the number of correction planes and the accuracy of the balancing.

  1. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; Boer, de Hans; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  2. Jet observables without jet algorithms

    International Nuclear Information System (INIS)

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies

  3. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  4. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  5. Design and analysis of a rotary motion controller

    Directory of Open Access Journals (Sweden)

    Julio Cesar Caye

    2015-12-01

    Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.

  6. Applied Research on High-Pressure Water Jet Cutting Technology in Anti-Terrorist%高压水射流切割技术在反恐中的应用研究

    Institute of Scientific and Technical Information of China (English)

    孙义柯; 龚烈航; 罗晓凯

    2015-01-01

    In this article, the main principle of high-pressure water jet cutting technology is described with focusing on appli-cation of the high-pressure abrasive water jet in counter-terrorism operations. A pre-mixed abrasive high pressure water jet device that is applicative in the counter-terrorism operations is researched and designed so as to provide a kind of protection for the counter-terrorism operations.%介绍了高压水射流切割技术的主要原理,重点介绍了磨料高压水射流在反恐行动中的应用,并研究设计了一种在反恐行动中适用的前混合磨料高压水射流装置,为反恐行动的顺利进行提供一种行动上的保障.

  7. Dynamic Modeling and Analysis of the Large-Scale Rotary Machine with Multi-Supporting

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2011-01-01

    Full Text Available The large-scale rotary machine with multi-supporting, such as rotary kiln and rope laying machine, is the key equipment in the architectural, chemistry, and agriculture industries. The body, rollers, wheels, and bearings constitute a chain multibody system. Axis line deflection is a vital parameter to determine mechanics state of rotary machine, thus body axial vibration needs to be studied for dynamic monitoring and adjusting of rotary machine. By using the Riccati transfer matrix method, the body system of rotary machine is divided into many subsystems composed of three elements, namely, rigid disk, elastic shaft, and linear spring. Multiple wheel-bearing structures are simplified as springs. The transfer matrices of the body system and overall transfer equation are developed, as well as the response overall motion equation. Taken a rotary kiln as an instance, natural frequencies, modal shape, and response vibration with certain exciting axis line deflection are obtained by numerical computing. The body vibration modal curves illustrate the cause of dynamical errors in the common axis line measurement methods. The displacement response can be used for further measurement dynamical error analysis and compensation. The response overall motion equation could be applied to predict the body motion under abnormal mechanics condition, and provide theory guidance for machine failure diagnosis.

  8. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  9. Measurements and searches with matrix element techniques in W+jets signatures - International Union of Pure and Applied Physics (IUPAP) Awards talk

    Energy Technology Data Exchange (ETDEWEB)

    Canelli, Florencia [University of Chicago, Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    The matrix element technique developed over the last decade has improved precision measurements and also helped establish new processes. This is in great part possible due to the availability of CPU and to the improved modeling of the Monte Carlo tools. W+jets physics has given strong SM foundation for beyond SM: Top quark mass measurements; Top quark coupling probes; Single top observation; di-boson w/jets observation; Higgs searches; Heavy quark searches

  10. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  11. CFD Analysis of Oil Discharge Rate in Rotary Compressor

    OpenAIRE

    Deng, Liying; Liang, Shebing; Liu, Qiang; Wu, Jun; Xu, Jia

    2012-01-01

    Oil discharge rate in rotary compressor has a significant influence on heat transfer performance of condenser and evaporator in air conditioning system. In order to find out the influence which caused by the structure of rotary compressor on the oil discharge rate, the flow field of rotary compressor has been calculated by VOF method and the lubricant distribution in rotary compressor can be obtained. At the same time, Oil discharge rate in rotary compressor at different operating conditions ...

  12. Description of Jet Breakup

    Science.gov (United States)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  13. Kinetic characteristic for a synchronal rotary compressor

    Institute of Scientific and Technical Information of China (English)

    Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua

    2007-01-01

    An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply

  14. Rotary endodontics in primary teeth - A review.

    Science.gov (United States)

    George, Sageena; Anandaraj, S; Issac, Jyoti S; John, Sheen A; Harris, Anoop

    2016-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the "gold-standard" over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel-titanium (Ni-Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel-titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  15. CALCULATING CAPACITY TRENDS IN ROTARY DRYERS

    Directory of Open Access Journals (Sweden)

    PACHECO C.R.F.

    1998-01-01

    Full Text Available This paper provides a methodology developed for the calculation of the feed rate and of the exit air conditions in an adiabatic rotary dryer, which operates with granular, non-porous solids having only unbound surface moisture. Some aspects related to the algorithm are also discussed in greater detail, such as the behavior of the wet-bulb temperatures along the dryer and the selection of initial values for the iterative loops. The results have been compared with published data from commercial rotary dryers, and predictions compare within 10% of the available data. The methodology can be used to evaluate trends in the behavior of a rotary dryer where the operating parameters vary, and it is useful for the practical engineer, who has to manage several problems commonly encountered in the operation of a rotary dryer installed in a chemical plant.

  16. Rotary Compressor With The Stationary Crankshaft

    OpenAIRE

    Dreiman, Nelik

    2014-01-01

    A parts of the contemporary rotary compressors are supported as by revolving crankshaft (rotor, roller, etc.), so by the housing (stator, pump, suction accumulator, etc.). Such dual supporting structure complicates assembly of a compressor due to the necessity of precision axial and radial positioning of the pump parts, motor rotor and stator. Developed novel rotary compressor provides a unitary assembly, in which a rotor of the driver -external rotor electric motor, is integrated with concen...

  17. Rotary impeller refinement of 7075Al alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Liping; GUO Erjun; HUANG Yongchang; LU Bin

    2009-01-01

    The effects of four parameters, gas flow, rotational speed, refining time, and stewing time, on the rotary impeller refinement of 7075 Al were studied. The effects of C2Cl6refining, rotary impeller refuting, and composite refining of 7075 AI alloy were compared with each other. The results showed that the greatest impact parameter of rotary impeller refinement was rotational speed, followed by gas flow, refining time, and stewing time. The optimum purification parameters obtained by orthogonal analysis were as follows: rotor speed of 400 r/min, inert gas flow of 0.4 mL/h, refining time of 15 min, and stewing time of 6 min. The best degassing effect can be obtained by the composite refuting of C2Cl6 and rotary impeller. The degassing rate of C2Cl6 rotary impeller, and composite refining was 34.5%, 69.2%, and 78%, respectively. The mechanical properties of the specimen refined by rotary impeller were higher than those by C2C16 refining, but lower than those by composite refining.

  18. Rotary press utilizing a flexible die wall.

    Science.gov (United States)

    Amidon, G E; Smith, D P; Hiestand, E N

    1981-06-01

    A die with a flexible wall was constructed and evaluated on a specially modified instrumented rotary tablet press. The design permits an inward deflection of the die wall by a side punch, which rolls past a side compression roll during compression-decompression. The side compression roll is instrumented to monitor the applied side compression roll forces. On decompression, return of the die wall to its original position permits release of residual die wall pressure. The decreased residual die wall pressure can decrease fracture and capping of tablets for problem formulations. The performance was tested on three experimental formulations. For these formulations, tablets made in a conventional die exhibited severe capping problems. However, most tablets compressed in the special die were superior. With proper adjustment of punch and die wall compression forces, excellent tablets could be manufactured. The merits of the special die and modified tablet machine are substantiated, although this initial design did not provide adequate die wall pressure for all formulations. Further engineering efforts could result in practical production equipment.

  19. Unconditional jetting

    CERN Document Server

    Ganan-Calvo, Alfonso M

    2008-01-01

    Capillary jetting of a fluid dispersed into another immiscible phase is usually limited by a critical Capillary number, a function of the Reynolds number and the fluid properties ratios. Critical conditions are set when the minimum spreading velocity of small perturbations $v^*_-$ along the jet (marginal stability velocity) is zero. Here we identify and describe parametrical regions of high technological relevance, where $v^*_-> 0$ and the jet is always supercritical independently of the dispersed liquid flow rate: within these relatively broad regions, the jet does not undergo the usual dripping-jetting transition, so that either the jet can be made arbitrarily thin (yielding droplets of arbitrarily small size), or its bulk speed can be made zero. In this latter case, requiring a non-zero jet surface velocity and a thin boundary layer, axisymmetric perturbation waves ``surf'' downstream for all given wave numbers, while in the former case (implying small Reynolds flow) we found that the jet profile small slo...

  20. Fuzzy jets

    Science.gov (United States)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  1. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, Richard Clement [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  2. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    OpenAIRE

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measu...

  3. A Millimetre-sized Robot Realized by a Piezoelectric Impact-type Rotary Actuator and a Hardware Neuron Model

    OpenAIRE

    Minami Takato; Masaki Tatani; Hirozumi Oku; Yuki Okane; Junichi Tanida; Shinpei Yamasaki; Ken Saito; Fumio Uchikoba

    2014-01-01

    Micro-robotic systems are increasingly used in medicine and other fields requiring precision engineering. This paper proposes a piezoelectric impact- type rotary actuator and applies it to a millimetre-size robot controlled by a hardware neuron model. The rotary actuator and robot are fabricated by micro-electro- mechanical systems (MEMS) technology. The actuator is composed of multilayer piezoelectric elements. The rotational motion of the rotor is generated by the impact head attached to th...

  4. Experimental measurement of surface temperatures during flame-jet induced thermal spallation

    Science.gov (United States)

    Wilkinson, M. A.; Tester, J. W.

    1993-01-01

    Thermal spallation is a method whereby the surface of a rock is rapidly heated causing small (100 1000 μm) flakes or spalls, to form. When applied to drilling, a supersonic, high temperature (2600 K) gas jet is directed at the rock to provide the heat source and sweep away the spalls. Previous studies of thermal spallation drilling indicate that penetration rates of up to 30 m/hr (100 ft/hr), approximately ten times greater than commonly obtained using conventional rotary mechanical methods, can be achieved in competent, non-fractured hard rock such as granite. A total direct operating cost for drilling in granite using a flame-jet spallation drill was estimated by Browning (1981) to be approximately 9/m in 1991 (about 3/ft) compared to “trouble-free” well drilling costs for conventional rotary methods in similar rock to depths of 3 to 7 km (10000 to 21000 ft) of 300 to 900/m (100 to 300/ft) (Tester and Herzog, 1990, 1992). The Browning estimates for spallation drilling are obviously optimistic in that they don't include capital costs for the rig and associated hardware. However, the substantially higher penetration rates, significantly reduced wear of downhole components, and the high efficiency of rock communition in comparison to rotary methods suggest that substantial cost reductions could be possible in deep drilling applications. For example, in the construction of hot dry rock geothermal power plants where rotary mechanical methods are used for well drilling to depths of (4 to 5 km), about half of the initial capital cost would be required for well drilling alone (Tester and Herzog, 1992). The current study has focused on gaining a better understanding of both the rock failure mechanism that occurs during thermal spallation and the heat transfer from the gas jet to the rock surface. Rock mechanics modeling leads to an expression for the surface temperature during spallation as a function of rock physical properties and the incident heat flux. Surface

  5. Airborne rotary air separator study

    Science.gov (United States)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  6. Man-made rotary nanomotors: a review of recent developments

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-05-01

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  7. Man-made rotary nanomotors: a review of recent developments.

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z X; Zhu, F Q; Fan, D L

    2016-05-19

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  8. Jet Observables Without Jet Algorithms

    CERN Document Server

    Bertolini, Daniele; Thaler, Jesse

    2013-01-01

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applicatio...

  9. System and method for calibrating a rotary absolute position sensor

    Science.gov (United States)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  10. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  11. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  12. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy

    2013-04-11

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.

  13. A linear rotary magnetorheological damper for vehicles

    Institute of Scientific and Technical Information of China (English)

    JIANG Jiandong; LIANG Xichang; ZHANG Bo; XIAO Junli

    2004-01-01

    A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD.

  14. MHz unidirectional rotation of molecular rotary motors

    NARCIS (Netherlands)

    Klok, Martin; Boyle, Nicola; Pryce, Mary T.; Meetsma, Auke; Browne, Wesley R.; Feringa, Ben L.

    2008-01-01

    A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fas

  15. Development of a novel rotary magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime A.; Capovilla, Matheus S.; Trevizoli, Paulo V.;

    2016-01-01

    with approximately 1.7 kg of gadolinium spheres (425-600 μm diameter) were placed in the magnetic gap. Two low-friction rotary valves were developed to synchronize the hydraulic and magnetic cycles. The valves were positioned at the hot end to avoid heat generation in the cold end. In this work, experimental results...

  16. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...

  17. Particle acceleration in the M87 jet

    CERN Document Server

    Eilek, J A; Lobanov, A; Eilek, Jean; Hardee, Philip; Lobanov, Andrei

    2003-01-01

    The wealth of high quality data now available on the M87 jet inspired us to carry out a detailed analysis of the plasma physical conditions in the jet. In a companion paper (Lobanov, Hardee & Eilek, this proceedings) we identify a double-helix structure within the jet, and apply Kelvin-Helmholtz stability analysis to determine the physical state of the jet plasma. In this paper we treat the jet as a test case for in situ particle acceleration. We find that plasma turbulence is likely to exist at levels which can maintain the energy of electrons radiating in the radio to optical range, consistent with the broadband spectrum of the jet.

  18. Modeling and Analysis of A Rotary Direct Drive Servovalve

    Institute of Scientific and Technical Information of China (English)

    YU Jue; ZHUANG Jian; YU Dehong

    2014-01-01

    Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces. Current studies mainly focus on enhancing the driving force, which in turn is limited to the development of the magnetic material. Aiming at reducing the flow forces, a novel rotary direct drive servovalve(RDDV) is introduced in this paper. This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber. The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve. In order to study the RDDV servovalve performance, flow rate model and mechanical model are established, wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained. The model analysis shows that the driving torque can be alleviated due to the proposed valve structure. Computational fluid dynamics(CFD) analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis. In addition, experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out. Both simulation and experimental results conform to the results of the theoretical model analysis, which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics. This research proposes a novel rotary direct drive servovalve, which can reduce the flow forces effectively.

  19. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  20. Rotary Mode Core Sample System availability improvement

    International Nuclear Information System (INIS)

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2

  1. Hole history, rotary hole DC-3

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation.

  2. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  3. Control of Rotary Cranes Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Amjed A. Al-mousa

    2003-01-01

    Full Text Available Rotary cranes (tower cranes are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them has become difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control attractive.

  4. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.

    Science.gov (United States)

    Salah, S Ouled Taleb; Massinon, M; De Cock, N; Schiffers, B; Lebeau, F

    2015-01-01

    Crop protection is mainly achieved by applying Plant Protection Products (PPP) using hydraulic nozzles, which rely on pressure, to produce a wide droplet size distribution. Because of always increased concerns about drift reduction, a wider range of low drift nozzles, such as air induction nozzles, was adopted in order to reduce the finest part of the spray. While successful for some treatments, the efficiency of coarser sprays is dramatically reduced on small and superhydrophobic target, i.e. at early stage weed control. This may be related to the increased proportion of big bouncing and splashing droplets. On the other hand, Controlled Droplet Application (CDA), using shielded rotary atomizers, stands for an improved control of droplets diameters and trajectories compared to hydraulic nozzles. Unfortunately, these atomizers, because of their horizontal droplet release, are widely recognized to produce more drift than hydraulic nozzles. The present contribution investigates whether the setting of a rotary atomizer 60 degrees forward tilted can reduce drift to acceptable levels in comparison with vertical and 60 degrees forward tilted standard and low drift flat fan nozzles for the same flow rate. In a wind tunnel, the drift potential of a medium spray produced by a tilted shielded rotary atomizer Micromax 120 was benchmarked with that of a flat fan nozzle XR11002 fine spray and that of an anti-drift nozzle Hardi Injet 015 medium spray. Operating parameters were set to apply 0.56 l/min for every spray generator. Vertical drift profiles were measured 2.0 m downward from nozzle axis for a 2 m.s(-1) wind speed. The tilted hydraulic nozzles resulted in a significant drift increase while droplets trajectories are affected by the decrease of the droplet initial vertical speed. Droplets emitted by the shielded rotary atomizer drift due to low entrained air and turbulence. A significant reduction of the cumulative drift was achieved by the rotary atomizer in comparison

  5. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  6. Pemodelan dan Simulasi Pengeringan Jagung Pipilan dalam Pengering Rotari Tumpukan

    Directory of Open Access Journals (Sweden)

    Leopold O. Nelwan

    2008-08-01

    Full Text Available A mathematical model of shelled corn drying has been developed in order to simulate the distribution of drying air temperature and humidity as well as the grain moisture content in a rotary bed dryer. The model was based on heat and mass balance of cylindrical packed bed of grain with airflow passing through the bed. Whenever the air relative humidity is higher than the equilibrium moisture content, it is assumed the condensation process will be occurred. Finite difference method with Euler scheme was used to perform the computation. The result showed that the model developed can predict the distribution ofgrain temperature and moisture content. The simulation conducted showed that there would be a wide variation ofmoisture content and temperature if mixing was not applied during the drying process. Mixing was significantly reduced the moisture content variation until a maximum of 0.8% w.b.

  7. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YI Qian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  8. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YIQian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a.shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  9. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    Science.gov (United States)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  10. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    OpenAIRE

    Yan Zhang; Zhengxing Zuo; Jinxiang Liu

    2015-01-01

    The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine†, was used to illustrate the structure and principle of the engine. The aims are to (1) improve the understanding of combustion process, and (2) quantify the influence of rotational speed, excess air rat...

  11. Study on the Oil Supply System for Rotary Compressors

    Science.gov (United States)

    Ito, Takahide; Kobayashi, Hiroyuki; Fujitani, Makoto; Murata, Nobuo

    Research has been undertaken to clarify the shaft oil pump mechanisms and oil supply network systems for rotary compressors. Numerical expressions were developed for each part of the rotary compressor,(such as drive shaft,oil pump and journal bearing grooves)in order to confirm that the calculated values agree with the experimental results. Finally,a computer program has been developed to evaluate the oil supply system performance under steady conditions for rotary compressors.

  12. Tallinna Rotary klubi valis aasta politseiniku ja narkokoera

    Index Scriptorium Estoniae

    2006-01-01

    Tallinna Rotary klubi autasustas parima narkopolitseiniku preemiaga Lõuna politseiprefektuuri narkokuritegude talituse vaneminspektorit Jarek Pavlihhinit ning parima narkokoera tiitliga vene spanjelit Allrighti

  13. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  14. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  15. 转台轴承在立式车床中的应用%Application of Rotary Table Bearing in Vertical Lathe

    Institute of Scientific and Technical Information of China (English)

    范长庚

    2016-01-01

    介绍一种转台轴承,并将其应用于立式车床转台中。与传统的立式车床转台相比,采用转台轴承的转台有结构简单、装配简便、运转精度高等许多优点,适合推广应用。%A kind of rotary table bearing was introduced, it was applied to the rotary table of a vertical lathe.Compared with tra-ditional rotary table of vertical lathe, the rotary table has simple structure, simple assembly and high accuracy.It is suitable for wide application.

  16. Forming of Hollow Shaft Forging From Titanium Alloy Ti6Al4V by Means of Rotary Compression

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-04-01

    Full Text Available This paper presents chosen results of theoretical-experimental works concerning forming of hollow shafts forgings from titanium alloys, which are applied in aviation industry. At the first stage of conducted analysis, the forging forming process was modeled by means of finite element method. Calculations were made using software Simufact Forming. On the basis of performed simulations optimal parameters of rotary compression process were determined. Next, experimental tests of forging forming in laboratory conditions were made. For the research needs, a forging aggregate, designed by the Authors, was used. Conducted research works confirmed the possibility of metal forming (by means of rotary compression of hollow shafts from hard workable titanium alloys. Numerous advantages of rotary compression process, make it attractive both for low series production (aircraft industry and for mass production (automotive industry.

  17. Jet fragmentation

    International Nuclear Information System (INIS)

    Data on jet fragmentation, in particular recent results from e+e- and anti pp collisions, are presented in the framework of phenomenological models. The Lund string model and the Webber QCD cluster model turn out to describe the data quite well. Shortcomings of both models are discussed. (orig.)

  18. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  19. Modelling and optimization of rotary parking system

    Science.gov (United States)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  20. Kinematic Analysis of Rotary Deep-Depth Turning Parameters

    Science.gov (United States)

    Gurtyakov, A. M.; Babaev, A. S.; Chudinova, A. I.

    2016-04-01

    This article offers a parameterization procedure for deep-depth turning without simplifying assumptions. In this paper the authors will show comparative results of researching parameters for rotary turning according to the developed methodology and according to the methodology of finish-machining conditions. A theoretically found kinematic coefficient of rotary cutting is presented in the paper

  1. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; Boer, de H.; Tran, T.; Berg, van den A.; Eijkel, J.C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  2. Prevention of thinning at disc center during rotary forging

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the rotary forging of a disc using a finite element method, which re veals the thinning at the disc center is caused by higher radial and tangential tensile stresses resulting from the local loading of a rotary die and acting at the center of a workpiece, and proposes a new design of rotary die with a hole opened in its center to prevent the continuous occurrence of shortening in the axial direction and elongation in the tan gential and radial directions, and concludes from simulation results that the rotary die with a hole opened in its center is effective for prevention of thinning or cracking at the center of a disc during rotary forging.

  3. A New Cold Rotary Forging Technology for Automotive Starter Guiding Cylinder with Internal Helical Involute Spline

    Directory of Open Access Journals (Sweden)

    Wang Ping

    2016-01-01

    Full Text Available A new cold rotary forging technology of the internal helical involute spline was presented based on an analysis of the structure of automotive starter guide cylinder. 3D rigid-plastic finite element model was employed. Billet deformation, Billet equivalent stress and forming load were investigated under the DEFORM 3D software environment, then the forming process parameters were applied in the forming trials, and the simulation results are conformed with the experimental results. The validity of 3D finite element simulation model has been verified. The research results show that the proposed cold rotary forging technology can be efficient in handling of the forming manufacturing problems of automobile starter guide cylinder with internal helical involute spline.

  4. Dynamics of relativistic jets

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  5. Correlation Development for Sauter Mean Diameter of Rotary Atomizer

    Directory of Open Access Journals (Sweden)

    Murali.K

    2016-08-01

    Full Text Available Atomizers are of many types, among that simplex and duplex types of atomizers are used and recognized often as fuel injectors in aircrafts. Types of atomizers and features are read. Among many types of atomizer, rotary type of atomizer is selected due to its naked evident like easy retrofit to existing spreading system , able to handle large quantities, feed is possible, better economy, high peripheral speed and spread of droplets, uniform liquid feed rate, uniform distribution of feed, higher level of atomization etc., The rotary atomizer specifications and its features are listed, the droplets of rotary atomizer are visualized and readings are taken from experimental methods, such as Laser visualization method .After the droplets data alignment, the (SMD Sauter Mean Diameter is to be taken in and considered, SMD means it is a average particle (droplet size of a given particles, and it is further explained with its given relation. By SMD’s given equated form it is used to compare data between rotary atomizer particles and given particle size. By SMD it is simplified further and used to create a co-relation between SMD and rotary atomizer. The rotary atomizer data values are taken through out with the SMD to find and form a co-related derived pattern for ROTARY ATOMIZE

  6. Highly precise and compact ultrahigh vacuum rotary feedthrough

    Science.gov (United States)

    Aiura, Y.; Kitano, K.

    2012-03-01

    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  7. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  8. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  9. Introduction to curved rotary tomographic apparatus 'TOMOREX'

    International Nuclear Information System (INIS)

    In recent years, panorama X-ray photographic method is widely used for the X-ray diagnosis of teeth, jawbones and faces. One type based on the principle of tomography is curved surface rotary tomographic method utilizing fine-gap X-ray beam. With the synchronous rotation of an X-ray tube and a photographic film around a face, describing a U-shaped tomographic plane along a dental arch, an upper or lower jawbone is photographed. In the ''TOMOREX'' belonging to this type, is different tomographic planes are available, so that by selecting any position in advance, the part can be photographed. Furthermore, patients can be subjected to examination as laid on a stretcher. The mechanism and equipment, and the photographic method for eye sockets, cheekbones, upper jaw cavities and stereoscopic images are described. (J.P.N.)

  10. Rotary seal with improved film distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  11. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  12. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  13. Rotary endodontics in primary teeth – A review

    Directory of Open Access Journals (Sweden)

    Sageena George

    2016-01-01

    Full Text Available Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  14. Research on rotary forming mechanism of cartridge bottom by FEM

    Institute of Scientific and Technical Information of China (English)

    刘钢; 姚雄亮; 黄少东; 唐全波

    2003-01-01

    The rotary forging of a cartridge bottom is simulated by finite element method with DEFORMTM. The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis-symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.

  15. Rotary klubi tuli rannarahvale appi / Anu Jürisson

    Index Scriptorium Estoniae

    Jürisson, Anu

    2005-01-01

    Tallinna Vanalinna Rotary klubi kinkis kolmele Rannametsa perele kümme tuhat krooni jaanuaritormi kahjustuste likvideerimiseks. Klubi presidendiks on Allan Martinson, nimekirjas ka Tõnis Palts, Toomas Hendrik Ilves, Rein Kilk, Hans H. Luik, Vahur Kraft jt.

  16. The ATLAS b-jet Trigger

    CERN Document Server

    Ferreira de Lima, D E; The ATLAS collaboration

    2011-01-01

    The ATLAS b-jet Trigger The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this poster.

  17. A Diagnostic System for Speed-Varying Motor Rotary Faults

    OpenAIRE

    2014-01-01

    This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experime...

  18. Inclusive Jets in PHP

    Science.gov (United States)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  19. Design study of a high power rotary transformer

    Science.gov (United States)

    Weinberger, S. M.

    1982-01-01

    A design study was made on a rotary transformer for transferring electrical power across a rotating spacecraft interface. The analysis was performed for a 100 KW, 20 KHz unit having a ""pancake'' geometry. The rotary transformer had a radial (vertical) gap and consisted of 4-25 KW modules. It was assumed that the power conditioning comprised of a Schwarz resonant circuit with a 20 KHz switching frequency. The rotary transformer, mechanical and structural design, heat rejection system and drive mechanism which provide a complete power transfer device were examined. The rotary transformer losses, efficiency, weight and size were compared with an axial (axial symmetric) gap transformer having the same performance requirements and input characteristics which was designed as part of a previous program. The ""pancake'' geometry results in a heavier rotary transformer primarily because of inefficient use of the core material. It is shown that the radial gap rotary transformer is a feasible approach for the transfer of electrical power across a rotating interface and can be implemented using presently available technology.

  20. Biomechanical determinants of transverse and rotary gallop in cursorial mammals.

    Science.gov (United States)

    Biancardi, Carlo M; Minetti, Alberto E

    2012-12-01

    Transverse and rotary gallop differ in the placement of the leading hindfeet and forefeet: ipsilateral in the former gait, contralateral in the latter. We analysed 351 filmed sequences to assess the gallop type of 89 investigated mammalian species belonging to Carnivora, Artiodactyla and Perissodactyla orders. Twenty-three biometrical, ecological and physiological parameters were collected for each species both from literature data and from animal specimens. Most of the species showed only one kind of gallop: transverse (42%) or rotary (39%), while some species performed rotary gallop only at high speed (19%). In a factorial analysis, the first principal component (PC), which accounted for 40% of the total variance, was positively correlated to the relative speed and negatively correlated to size and body mass. The second PC was correlated to the ratio between distal and proximal limb segments. Large size and longer proximal limb segments were associated with transverse gallop, while rotary and speed-dependent species showed higher metacarpus/humerus and metatarsus/femur length ratio and faster relative speeds. The resulting limb excursion angles were proportional to the square-root of the Froude number, and significantly higher in rotary gallopers. The gait pattern analysis indicated significant differences between transverse and rotary gallop in forelimb and hindlimb duty factor (t-test; Pnumber of mammalian species, and indicate that the gallop pattern depends on diverse environmental, morphometrical and biomechanical characters. PMID:22933611

  1. Top Jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.G.; Lee, S.J.; Perez, G.; Sung, I.; Virzi, J.

    2008-10-06

    We investigatethe reconstruction of high pT hadronically-decaying top quarksat the Large Hadron Collider. One of the main challenges in identifying energetictop quarks is that the decay products become increasingly collimated. This reducesthe efficacy of conventional reconstruction methods that exploit the topology of thetop quark decay chain. We focus on the cases where the decay products of the topquark are reconstructed as a single jet, a"top-jet." The most basic"top-tag" methodbased on jet mass measurement is considered in detail. To analyze the feasibility ofthe top-tagging method, both theoretical and experimental aspects of the large QCDjet background contribution are examined. Based on a factorization approach, wederive a simple analytic approximation for the shape of the QCD jet mass spectrum.We observe very good agreement with the Monte Carlo simulation. We consider high pT tt bar production in the Standard Model as an example, and show that our theoretical QCD jet mass distributions can efficiently characterize the background via sideband analyses. We show that with 25 fb-1 of data, our approach allows us to resolve top-jets with pT _> 1 TeV, from the QCD background, and about 1.5 TeV top-jets with 100 fb-1, without relying on b-tagging. To further improve the significancewe consider jet shapes (recently analyzed in 0807.0234 [hep-ph]), which resolve thesubstructure of energy flow inside cone jets. A method of measuring the top quarkpolarization by using the transverse momentum of the bottom quark is also presented.The main advantages of our approach are: (i) the mass distributions are driven byfirst principle calculations, instead of relying solely on Monte Carlo simulation; (ii) for high pT jets (pT _> 1 TeV), IR-safe jet shape variables are robust against detectorresolution effects. Our analysis can be applied to other boosted massive particlessuch as the electroweak gauge bosons and the Higgs.

  2. A rotary microgripper with locking function via a ratchet mechanism

    Science.gov (United States)

    Hao, Y.; Yuan, W.; Zhang, H.; Kang, H.; Chang, H.

    2016-01-01

    This paper presents a rotary microgripper with locking function enabled by a ratchet mechanism. The ratchet mechanism enables long-time gripping without having to continuously apply the external excitation signal such as the electrical, thermal or magnetic field. Thus the damage to the gripped micro-scale objects caused by the external excitation signals can be significantly reduced. A logic control strategy is proposed to solve the wearing problems of the ratchet mechanism. The stability of the microgripper is improved by increasing the length of the engaged line. The microgripper is fabricated by an improved silicon-on-insulator dicing-free process to protect the delicate device structure from damage during fabrication. The microgripper has a discrete opening range and can handle micro-scale objects with a size of 20 μm, 40 μm and 60 μm based on the current design parameters. A pick-lock-release gripping experiment on a magnolia pollen cell is performed to form a triangle to prove the feasibility of the gripper in handling biological cells.

  3. Design Analysis And Application Of Nylon66 In Rotary Spars

    Directory of Open Access Journals (Sweden)

    P.K. Harish Kumar

    2014-04-01

    Full Text Available Technology has led to the increased use of plastics as replacement to conventional materials in various sectors. The use of alloy steels in various rotary spares such as gears, cams, bearings, valve seats and other bearing and wear applications that requires quite operation, low coefficient of friction and wear resistance shall be replaced with nylon 66 as per requirements. In the present work I am applying nylon66 in gears and sprocket wheels used in automotive it is proposed to substitute the metallic rotating spares like gears and sprockets with nylon 66 to reduce the weight and noise. For this purpose different types of polymers were considered namely Polyethylene, PVC, Polystyrene, Polypropylene and Nylon66 and their viability are checked with their counterpart metallic gear (Cast iron. Based on the static analysis, the best plastic material is recommended for the purpose.3D model of gears and sprocket wheel chain assembly has been modeled by using Pro-E WF4. The models are then pre-processed using hyper mesh 10 .

  4. A rotary microgripper with locking function via a ratchet mechanism

    International Nuclear Information System (INIS)

    This paper presents a rotary microgripper with locking function enabled by a ratchet mechanism. The ratchet mechanism enables long-time gripping without having to continuously apply the external excitation signal such as the electrical, thermal or magnetic field. Thus the damage to the gripped micro-scale objects caused by the external excitation signals can be significantly reduced. A logic control strategy is proposed to solve the wearing problems of the ratchet mechanism. The stability of the microgripper is improved by increasing the length of the engaged line. The microgripper is fabricated by an improved silicon-on-insulator dicing-free process to protect the delicate device structure from damage during fabrication. The microgripper has a discrete opening range and can handle micro-scale objects with a size of 20 μm, 40 μm and 60 μm based on the current design parameters. A pick-lock-release gripping experiment on a magnolia pollen cell is performed to form a triangle to prove the feasibility of the gripper in handling biological cells. (paper)

  5. Transport in rotary drums and ball mills

    International Nuclear Information System (INIS)

    This report contains investigations into the influence exerted by operating conditions, material properties and geometry of the apparatus and of the discharge plate on the transport behaviour of narrow quartz sand fractions in a model apparatus. The transport coefficients are determined in residence time experiments with Na-24-labelling. The dependence obtained between the transport coefficients and the experimental parameters permits a coherent interpretation if the assumption is made that the two types of transport occur in different phases of radial motion: Convection takes place during ascend while axial dispersion is generated in the falling and ranging process. Furthermore, a model has been developed for evaluating the throughput of rotary drums and ball mills, respectively; it is based on the assumption that the throughput is governed by the material flux through the discharge plate. The efflux takes place only in the ascending zone as a result of gravity and centrifugal forces acting parallel to the discharge plate. A deduced relationship describing the material flow through the discharge apertures in connection with the calculable zone of ascend leads to an expression allowing to determine the mass flow rate as a function of material properties, operating conditions and geometry of the discharge plate. A comparison between experimental and calculated data shows good agreement. (orig.)

  6. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  7. Jet Joint Undertaking

    International Nuclear Information System (INIS)

    The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)

  8. b-Jet Identification in CMS

    CERN Document Server

    Beluffi, Camille

    2014-01-01

    A large fraction of the CMS physics program relies on the identification of jets containing the decay of a B hadron (b jets). The b jets can be discriminated from jets produced by the hadronization of light quarks based on characteristic properties of B hadrons, such as the long lifetime or the presence of soft leptons produced during their decay.An overview of the large variety of b-tagging algorithms and the measurement of their performance with data collected in 2011 and 2012 are presented in this talk. A special focus lies on new methods of b-tagging in jet substructure.As the excluded mass regions for new physics beyond the Standard Model continue to increase, searches often focus on boosted final states characterized by particles with large transverse momenta. In the boosted regime the resulting decay products for hadronic decays of heavy particles tend to be collimated and can fall within a single jet, known as fat-jet. In this case, selections based on multiple jets cannot be applied and jet substruct...

  9. Research in TS316 film applied in maintenance of HT200 rotary operation platfrom%TS316减摩涂层在检修HT200旋转工作台环形导轨中的应用

    Institute of Scientific and Technical Information of China (English)

    张春冬

    2011-01-01

    HT200旋转工作台是前苏联产品,由于工作多年没有进行过大修,上、下滑座环形导轨磨损严重,研痕约1.5mm,静压腔泄露,没有浮起,需要修复。按以往的枪修工艺是:车削上、下导轨面,镶环形铜板(需要车削),合研、刮研需要多次翻转工作台面。工艺复杂,副研量很大,维修时间长。但用TS316减摩涂层,上艺简单,减少手工作业量,大大缩短了维修工期且降低了维修成本。%HT rotary operation platform is made in former Soviet Union. Due to lacking of proper maintenance, the upper&lower circular guided rail weared severely, the inquiry mark is around 1.5mm. The previous maintenance procedure is to machine the guided rail surface, embed the circular copper plate (need to be machined) and scriping. To scriping properly, the operation platform need to be turned over several times. It will take a long time for maintenance and seriping. But with the new technology TS316 film, it is easier to perform and cut down the maintenance cost.

  10. The Giant Jet

    Science.gov (United States)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  11. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  12. Calibration of rotary joints in multi-axis machine tools

    Science.gov (United States)

    Khan, Abdul Wahid; Liu, Fei; Chen, Wuyi

    2009-05-01

    A novel technique is developed and implemented for error quantification in a rotary joint of a multi-axis machine tool by using a calibrated double ball bar (DBB) system as a working standard. This technique greatly simplified the measurement setup requirement and accelerated the calibration of rotary joints. In addition it is highly economical by reducing the complex optics and eliminating the usage of various tooling, instrumentation and accessories. This methodology is capable of measuring the five degree of freedom (DOF) errors out of 6DOF of a rotary joint by using the calibrated DBB system and a point locating fixture. The methodology is implemented on rotary joints of a five axis CNC machine tools. Equation solvers and error modeling technique are implemented and validity of the methodology and authenticity of the results obtained are tested through simulation in UG and Matlab software. The methodology is found extremely feasible pragmatic, quite simple, efficient and easy to use for error characterization of rotary joints of multi axis machine tools.

  13. Rotary Mode Core Sampling Control Decision Record

    International Nuclear Information System (INIS)

    A control decision meeting was held on December 19, 2000, to analyze the rotary mode core sampling (RMCS) controls. The agenda for the control decision meeting is included in Appendix A, and the attendee list is included in Appendix B. The purpose of this control decision meeting was to reconcile the Los Alamos National Laboratories safety assessment control allocation for RMCS with the rest of the Tank Farms Authorization Basis (AB). In-mid 1998, calculation note HNF-3228, Rev. 0, Recalculation of Accident Consequences to Account for Rotary Mode Core Sampling, was generated to incorporate RMCS into HNF-SD-WM-B10-001, Tank Waste Remediation System Basis for Interim Operation (BIO), which was the current AB at that time. The Addendum 5 addition to the BIO was based on calculation note HNF-3228 and issued for approval in August 1998. Approval of Addendum 5 has been delayed. Since Addendum 5 was generated, the BIO has been superceded by HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR); numerous changes have been made to the accident analyses; and considerable data have been gathered on aerosol experience during RMCS. These changes necessitated an update to HNF-3228, Rev. 0, to provide a current evaluation of the impact of RMCS activities on the accident analyses in the FSAR before RMCS is incorporated into the FSAR. The scope of this control decision is for RMCS activities only. The AB documents used for this control decision were Revision 2 of the FSAR and Revision 2 of HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, as well as supporting calculation notes HNF-3228/Rev.1, HNF-4240/Rev.1, Organic Solvent Topical Report, and HNF-3588/Rev.1, Organic Complexant Topical Report. The control decision meeting was conducted in accordance with the established and approved process and criteria described in the FSAR. A summary of the control decision process and criteria was presented at the start of the control decision meeting and is included in

  14. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes.

  15. The Jet Energy Scale Uncertainty Derived from γ-jet Events for Small and Large Radius Jets and the Calibration and Performance of Variable R Jets with the ATLAS Detector

    CERN Document Server

    Kogan, Lucy

    In this thesis the jet energy scale uncertainty of small and large radius jets at the ATLAS detector is evaluated in-situ using γ-jet events. The well calibrated photon in the γ-jet events is used to probe the energy scale of the jets. The studies of the jet energy scale of small radius jets are performed using 4.7 fb−1 of data collected at √s = 7 TeV in 2011. The γ-jet methods which were developed are then adapted and applied to large radius jets, using 20.3 fb−1 of data collected at √s = 8 TeV in 2012. The new jet energy scale uncertainties are found to be ∼1 % for |η| 0.8. These uncertainties are significantly lower than the 3-6 % precision which has previously been achieved at ATLAS using track jets as a reference object. Due to the increase in precision, uncertainties due to pile-up and the topology of the jet also had to be evaluated. The total energy scale uncertainties for large radius jets are reduced by ∼1-2 % (0.5-1 %) for |η| 0.8). This reduction will be beneficial to analyses u...

  16. The ATLAS b-jet Trigger

    CERN Document Server

    Hansson Adrian, P; The ATLAS collaboration

    2011-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this contribution.

  17. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  18. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    Science.gov (United States)

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. PMID:27367811

  19. Study of Water Jet Impulse in Water-Jet Looms

    Institute of Scientific and Technical Information of China (English)

    LI Ke-rang; MA Wei-wei; CHEN Ming

    2005-01-01

    The water jet impulse is brought forward to study the traction force of the water jet to the flying weft in water-jet looms. The distribution of the water jet impulse in the shed is tested by a sensor, and the influence of water jet parameters on the water jet impulse is analyzed.

  20. Study of a Novel Rotary Cyclone Gas-Solid Separator

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Ling; Xingyong Deng

    2003-01-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  1. Jets of incipient liquids

    Science.gov (United States)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  2. A Millimetre-sized Robot Realized by a Piezoelectric Impact-type Rotary Actuator and a Hardware Neuron Model

    Directory of Open Access Journals (Sweden)

    Minami Takato

    2014-07-01

    Full Text Available Micro-robotic systems are increasingly used in medicine and other fields requiring precision engineering. This paper proposes a piezoelectric impact- type rotary actuator and applies it to a millimetre-size robot controlled by a hardware neuron model. The rotary actuator and robot are fabricated by micro-electro- mechanical systems (MEMS technology. The actuator is composed of multilayer piezoelectric elements. The rotational motion of the rotor is generated by the impact head attached to the piezoelectric element. The millimetre-size robot is fitted with six legs, three on either side of the developed actuator, and can walk on uneven surfaces like an insect. The three leg parts on each side are connected by a linking mechanism. The control system is a hardware neuron model constructed from analogue electronic circuits that mimic the behaviour of biological neurons. The output signal ports of the controller are connected to the multilayer piezoelectric element. This robot system requires no specialized software programs or A/D converters. The rotation speed of the rotary actuator reaches 60 rpm at an applied neuron frequency of 25 kHz during the walking motion. The width, length and height of the robot are 4.0, 4.6 and 3.6 mm, respectively. The motion speed is 180 mm/min.

  3. Study of supersonic coanda wall jet

    Energy Technology Data Exchange (ETDEWEB)

    Im, C.M.; Kim, H.D.; Lee, Y.K. [Andong National University, Andong (Korea); Setoguchi, T. [Saga University (Japan)

    1999-11-01

    The Coanda effect is the tendency for a fluid jet to attach itself to an adjacent surface and follow its contour without causing an appreciable flow separation. The Coanda effect has long been applied to improve aerodynamic characteristics, such as the drag/lift ratio of flight body, the engine exhaust plume thrust vectoring, and the aerofoil/wing circulation control. The present study was performed to get a better understanding of the supersonic Coanda wall jet flow. Experimental and numerical investigations were carried out in order to clarify the effects of pressure ratios and nozzle configurations on the characteristics of the supersonic Coanda jet. (author). 11 refs., 10 figs.

  4. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  5. The HH 24 Jet Complex: Collimated and Colliding Jets from a Newborn Multiple Stellar System

    Science.gov (United States)

    Reipurth, Bo

    2013-10-01

    The HH 24 complex constitutes the richest concentration of collimated bright Herbig-Haro jets known, and they originate from a small grouping of newborn binary and multiple systems. At least 6 jets are identified in deep groundbased optical interference images, and a similar number of sources in infrared images. We propose to do the first HST study of this complex, using H-alpha and [SII] filters. HST 0.05" to 0.1" angular resolution {20 to 40 AU at d 400 pc} is needed to resolve the shocks and their post-shock cooling layers for comparison with advanced numerical modeling. Our emphasis here is to explore outflows from a multiple system of newborn stars. Many of the jets show clear evidence of wiggling. The theory of jet motion from binary systems coupled with disk precession is now understood, and we will interpret the jet wiggles in this framework. Additionally, two of the HH 24 jets are showing evidence for a collision, a unique situation not seen anywhere else, and HST resolution is needed for comparison with gas-dynamic studies of jet-jet collisions. Two of the HH 24 jets are bright in the infrared [FeII] 1.644 line. In this line the main jet can be traced all the way to the source, which is the most important region for understanding the effects of binarity on the jet structure. We also apply for a second-epoch [SII] image in Cycle 23. This allows us, in addition to deriving the bulk motion, to determine such processes as expansion of the jet beam, sideways ejection in a working surface, turbulent and chaotic motions, and the effect of instabilities.

  6. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system

    DEFF Research Database (Denmark)

    Hua, Ling; Nordkvist, Mikkel; Nielsen, P. M.;

    2007-01-01

    tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However; at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat...... mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a, was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer...

  7. Rotary ATPases: models, machine elements and technical specifications.

    Science.gov (United States)

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  8. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed posit

  9. RICOR development of the next generation highly reliable rotary cryocooler

    Science.gov (United States)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  10. Mass transfer in rolling rotary kilns : a novel approach

    NARCIS (Netherlands)

    Heydenrych, M.D.; Greeff, P.; Heesink, A. Bert M.; Versteeg, G.F.

    2002-01-01

    A novel approach to modeling mass transfer in rotary kilns or rotating cylinders is explored. The movement of gas in the interparticle voids in the bed of the kiln is considered, where particles move concentrically with the geometry of the kiln and gas is entrained by these particles. The approach c

  11. TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS

    Science.gov (United States)

    Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

  12. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...

  13. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  14. Control of spatial correlations between Rydberg excitations using rotary echo

    CERN Document Server

    Thaicharoen, N; Raithel, G

    2016-01-01

    We manipulate correlations between Rydberg excitations in cold atom samples using a rotary-echo technique. The correlations are due to interactions between the Rydberg atoms. In the rotary-echo excitation sequence, the phase of the excitation pulse is flipped at a selected time during the pulse. We measure the resultant change in the spatial pair correlation function of the excitations via direct position-sensitive atom imaging. For zero detuning of the lasers from the interaction-free Rydberg-excitation resonance, the pair-correlation value at the most likely nearest-neighbor Rydberg-atom distance is substantially enhanced when the phase is flipped at the middle of the excitation pulse. In this case, the rotary echo eliminates most uncorrelated (un-paired) atoms, leaving an abundance of correlated atom pairs at the end of the sequence. In off-resonant cases, a complementary behavior is observed. We further characterize the effect of the rotary-echo excitation sequence on the excitation-number statistics of t...

  15. ZrO2-Containing Refractories for Cement Rotary Kilns

    Institute of Scientific and Technical Information of China (English)

    YE Guotian; XU Yanqing

    2002-01-01

    ZrO2-containing refractories have been increasingly used for cement rotary kilns. This paper discusses how the properties and performance of ZrO2-containing. Refractories are inwroved in terms of chemical attack resistance, thermal shock resistance, thermal conductivity and mechanical stress.

  16. Light-Driven Rotary Molecular Motors on Gold Nanoparticles

    NARCIS (Netherlands)

    Pollard, Michael M.; ter Wiel, Matthijs K. J.; van Delden, Richard A.; Vicario, Javier; Koumura, Nagatoshi; van den Brom, Coenraad R.; Meetsma, Auke; Feringa, Ben L.

    2008-01-01

    We report the synthesis of unidirectional light-driven rotary molecular motors based oil chiral overcrowded alkenes and their immobilisation on the surface of gold nanoparticles through two anchors. Using a combination of (1)H and (13)C NMR, UV/Vis and CD spectroscopy, we show that these motors pres

  17. Quantum chromodynamics and hadron jets

    International Nuclear Information System (INIS)

    These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e+ e- annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)

  18. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  19. Substructure of Boosted Jets

    CERN Document Server

    Duchovni, Ehud

    2013-01-01

    Jets with transverse energy of few TeV are becoming now common in LHC data. Most of these jets are produced by QCD processes and some from the collimated decay of highly boosted objects like W, Z, H0 and top-quark. The study of such QCD jets may shed light on QCD showering processes and the identification of the jets coming from decays may test the Standard Model under extreme conditions and may also provide the first hints for Physics Beyond the Standard Model. A short review of jet algorithms, Correction procedures for pile-up effects and commonly used substructure observables are described.

  20. JET Joint Undertaking

    International Nuclear Information System (INIS)

    The paper presents the annual report of the Joint European Torus (JET) Joint Undertaking, 1986. The report is divided into two parts: a part on the scientific and technical programme of the project, and a part setting out the administration and organisation of the Project. The first part includes: a summary of the main features of the JET apparatus, the JET experimental programme, the position of the Project in the overall Euratom programme, and how JET relates to other large fusion devices throughout the world. In addition, the technical status of JET is described, as well as the results of the JET operations in 1986. The final section of the first part outlines the proposed future programme of JET. (U.K.)

  1. Forward central jets correlations

    International Nuclear Information System (INIS)

    The azimuthal correlation between forward and central jets has been measured in pp collisions with the CMS detector at the LHC at the centre-of-mass energy of 7 TeV. The forward jet is required to be reconstructed in the hadronic forward calorimeter, within the pseudo-rapidity 3.2t>35 GeV. The measurement of the azimuthal angle between the jets is performed for different separations in pseudo-rapidity between the jets, with the largest separation being 7.5 units. The measurement is repeated for two subsamples of events, one in which an additional jet is required between the forward and the central jet, and one where the additional jet is vetoed. The measurement is compared to several different Monte Carlo models and tunes.

  2. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  3. Atomic layer deposition on nanoparticles in a rotary reactor

    Science.gov (United States)

    McCormick, Jarod Alan

    Challenges are encountered during atomic layer deposition (ALD) on large quantities of nanoparticles. The particles must be agitated or vigorously mixed to perform the ALD surface reactions in reasonable times and to prevent the particles from being agglomerated by the ALD film. The high surface area of nanoparticles also demands efficient reactant usage because large quantities of reactant are required for the surface reactions to reach completion. To address these challenges, a novel rotary reactor was developed to achieve constant particle agitation during static ALD reactant exposures. In the design of this new reactor, a cylindrical drum with porous metal walls was positioned inside a vacuum chamber. The porous cylindrical drum was rotated by a magnetically coupled rotary feedthrough. By rotating the cylindrical drum to obtain a centrifugal force of less than one gravitational force, the particles were agitated by a continuous "avalanche" of particles. The effectiveness of this rotary reactor was demonstrated by Al 2O3 ALD on ZrO2 particles. A number of techniques including transmission electron microscopy, Fourier transform infrared spectroscopy, scanning Auger spectroscopy and x-ray photoelectron spectroscopy confirmed that the Al2O3 ALD film conformally coats the ZrO 2 particles. Combining static reactant exposures with a very high surface area sample in the rotary reactor also provides unique opportunities for studying the surface chemistry during ALD. Sequential, subsaturating doses can be used to examine the self-limiting behavior of the ALD reactions in the rotary reactor. This dosing method is the first demonstration of self-limiting ALD on bulk quantities of nanoparticles. By combining these sequential, subsaturating doses with quadrupole mass spectrometry, ALD reactions can be analyzed from the gas phase using full mass spectrum analysis. The reaction products are present in a high enough concentration to discern a gas phase mechanism for reactions

  4. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    Turbulent buoyant jets and plumes in flowing ambient environments have been studied theoretically and experimentally. The mechanics of turbulent buoyant jets and plumes in flowing ambients have been discussed. Dimensional analysis was employed to investigate the mean behaviour of the turbulent...... buoyant jets and plumes, such as the jet trajectories and the dilutions. The basic physical processes for a submerged turbulent buoyant jet released from sea outfall have been outlined and divided into four primary stages, namely, the zone of flow establishment, the stage of jet, the stage of intermediate...... and the stage of plume. The stability criteria for the upstream wedge created by the submerged turbulent buoyant jet were established by applying the Bernoulli equations for a two-dimensional problem and by considering the front velocity driven by the buoyancy force for a three-dimensional problem...

  5. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; Subba Rao, V. V.

    2016-08-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  6. Sensorless Viscosity Measurement in a Magnetically-Levitated Rotary Blood Pump.

    Science.gov (United States)

    Hijikata, Wataru; Rao, Jun; Abe, Shodai; Takatani, Setsuo; Shinshi, Tadahiko

    2015-07-01

    Controlling the flow rate in an implantable rotary blood pump based on the physiological demand made by the body is important. Even though various methods to estimate the flow rate without using a flow meter have been proposed, no adequate method for measuring the blood viscosity, which is necessary for an accurate estimate of the flow rate, without using additional sensors or mechanisms in a noninvasive way, has yet been realized. We have developed a sensorless method for measuring viscosity in magnetically levitated rotary blood pumps, which requires no additional sensors or mechanisms. By applying vibrational excitation to the impeller using a magnetic bearing, we measured the viscosity of the working fluid by measuring the phase difference between the current in the magnetic bearing and the displacement of the impeller. The measured viscosity showed a high correlation (R(2)  > 0.992) with respect to a reference viscosity. The mean absolute deviation of the measured viscosity was 0.12 mPa·s for several working fluids with viscosities ranging from 1.18 to 5.12 mPa·s. The proposed sensorless measurement method has the possibility of being utilized for estimating flow rate. PMID:25920684

  7. Application of the finite element method to rotary-wing aeroelasticity. [in helicopter hovering flight

    Science.gov (United States)

    Friedmann, P.; Straub, F.

    1978-01-01

    Recent research in rotary-wing aeroelasticity has indicated that all fundamental problems in this area are inherently nonlinear. The non-linearities in this problem are due to the inclusion of finite slopes, due to moderate deflections, in the structural, inertia and aerodynamic operators associated with this aeroelastic problem. In this paper the equations of motion, which are both time and space dependent, for the aeroelastic problem are first formulated in P.D.E. form. Next the equations are linearized about a suitable equilibrium position. The spatial dependence in these equations is discretized using a local Galerkin method of weighted residuals resulting in a finite element formulation of the aeroelastic problem. As an illustration the method is applied to the coupled flap-lag problem of a helicopter rotor blade in hover. Comparison of the solutions with previously published solutions establishes the convergence properties of the method. It is concluded that this formulation is a practical tool for solving rotary-wing aeroelastic stability or response problems.

  8. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  9. Identifying a new particle with jet substructures

    CERN Document Server

    Lim, Sung Hak; Kim, Doojin; Kim, Minho; Kong, Kyoungchul; Park, Myeonghun

    2016-01-01

    We investigate a potential of measuring properties of a heavy resonance X, exploiting jet substructure techniques. Motivated by heavy higgs boson searches, we focus on the decays of X into a pair of (massive) electroweak gauge bosons. More specifically, we consider a hadronic Z boson, which makes it possible to determine properties of X at an earlier stage. For $m_X$ of O(1) TeV, two quarks from a Z boson would be captured as a "merged jet" in a significant fraction of events. The use of the merged jet enables us to consider a Z-induced jet as a reconstructed object without any combinatorial ambiguity. We apply a conventional jet substructure method to extract four-momenta of subjets from a merged jet. We find that jet substructure procedures may enhance features in some kinematic observables formed with subjets. Subjet momenta are fed into the matrix element associated with a given hypothesis on the nature of X, which is further processed to construct a matrix element method (MEM)-based observable. For both ...

  10. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced

  11. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  12. Jet dynamics and stability

    Directory of Open Access Journals (Sweden)

    Perucho M.

    2013-12-01

    Full Text Available The dynamics and stability of extragalactic jets may be strongly influenced by small (and probable di_erences in pressure between the jet and the ambient and within the jet itself. The former give rise to expansion and recollimation of the jet. This occurs in the form of conical shocks, or Mach disks, if the pressure di_erence is large enough. Pressure asymmetries within the jet may trigger the development of helical patterns via coupling to kink current-driven instability, or to helical Kelvin-Helmholtz instability, depending on the physical conditions in the jet. I summarize here the evidence collected during the last years on the presence of recollimation shocks and waves in jets. In the jet of CTA 102 evidence has been found for (travelingshock-(standingshock interaction in the core-region (0.1 mas from the core, using information from the light-curve of the source combined with VLBI data. The conclusions derived have been confirmed by numerical simulations combined with emission calculations that have allowed to study the spectral evolution of the perturbed jet. Helical structures can also be identified in radio-jets. The ridge-line of emission of the jet of S5 0836+710 has been identified as a physical structure corresponding to a wave developing in the jet flow. I review here the evidence that has allowed to reach this conclusion, along with an associated caveat. Current data do not allow to distinguish between magnetic or hydrodynamical instabilities. I finally discuss the importance of these linear and non-linear waves for jet evolution.

  13. NUMERICAL PREDICTION OF LINE BUOYANT JETS IN CROSS FLOWS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The k-ε turbulence model was used to establish the mathematicalmodel of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line buoyant jets. Only receiving water with uniform density is considered. The distribution of velocity, temperature and turbulent kinetic energy were analyzed, and the variation of the maximum velocity was given. The effect of velocity ratio and densimetric Froude number on line buoyant jets was considered.

  14. Application of water jet cutting for tunnel boring

    OpenAIRE

    Nygårdsvoll, Erik

    2014-01-01

    Water jet cutting has proven to be an effective technology for machining various materials, and providing a distinctive advantage over other cutting methods. Its application in the engineering industry is evolving and improving annually, and is one of the fastest growing machining processes. This thesis addresses the idea of applying water jet cutting technology as a new method for boring through rock in the construction of infrastructural tunnels. So far water jets have only b...

  15. The Interactions of Two Cold Atmospheric Plasma Jets

    Institute of Scientific and Technical Information of China (English)

    TANG Daotan; REN Chunsheng; WANG Dezhen; NIE Qiuyue

    2009-01-01

    This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electrode distance d, three different interaction modes, attraction, repulsion and combination, were observed. It is shown that the interaction modes of the two jets are principally affected by the electrodes, the gas flow rate, the plasma jets and the power supply frequency.

  16. Fluctuation Phenomenon Analysis of an Arc Plasma Spraying Jet

    Institute of Scientific and Technical Information of China (English)

    赵文华; 田阔; 刘笛; 张冠忠

    2001-01-01

    The effects of three factors, including the power supply, the arc behaviour in the arc channel and the fluid dynamic process of the jet, on a plasma spraying jet have been experimentally detected by means of spectroscopic diagnostic techniques. The fast Fourier transform method has been applied to the analysis of the arc voltage and spectral line intensity of the jet. The three factors have been studied and distinguished from each other.

  17. Vetoed jet clustering: The mass-jump algorithm

    CERN Document Server

    Stoll, Martin

    2014-01-01

    A new class of jet clustering algorithms is introduced. A criterion inspired by successful mass-drop taggers is applied which prevents the recombination of two hard prongs if they experience a substantial jump in jet mass. This veto effectively results in jets with variable radius in dense environments. Differences to existing methods are investigated and it is shown for boosted top quarks that the new algorithm has beneficial properties which can lead to improved tagging purity.

  18. One-dimensional reduction of viscous jets

    CERN Document Server

    Pitrou, Cyril

    2015-01-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model, since it amounts to selectively discard some corrections. However, in a fast...

  19. Triggering on W, Z Boson Jets

    CERN Document Server

    Fehr, Armin

    2016-01-01

    The ATLAS trigger performs well for the hadronisation of isolated quarks or gluons, but is not optimised for $\\text{W}^\\pm$ and $\\text{Z}^0$ jets. This can be done with substructure techniques. As the W and Z bosons are highly boosted, the pair of quarks from their decay is heavily collimated and cannot be separated. The result is one single large jet with substructure. As it has two regions in the jet with high energy density (cores), while quarks have only one and gluons have two but a low mass, the existence of two cores plus a mass cut can be used to trigger on the hadronic decay of W and Z. In this project, it was investigated whether an offline tagger for W and Z bosons can be used as a trigger. Trimming, calibration and a tighter mass cut were applied to the jets and the trigger and offline reconstruction performance were compared.

  20. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  1. Reconstructed Jets at RHIC

    CERN Document Server

    Salur, Sevil

    2010-01-01

    To precisely measure jets over a large background such as pile up in high luminosity p+p collisions at LHC, a new generation of jet reconstruction algorithms is developed. These algorithms are also applicable to reconstruct jets in the heavy ion environment where large event multiplicities are produced. Energy loss in the medium created in heavy ion collisions are already observed indirectly via inclusive hadron distributions and di-hadron correlations. Jets can be used to study this energy loss in detail with reduced biases. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the recent progress on jet reconstruction in heavy ion collisions.

  2. TASI Lectures on Jet Substructure

    CERN Document Server

    Shelton, Jessie

    2013-01-01

    Jet physics is a rich and rapidly evolving field, with many applications to physics in and beyond the Standard Model. These notes, based on lectures delivered at the June 2012 Theoretical Advanced Study Institute, provide an introduction to jets at the Large Hadron Collider. Topics covered include sequential jet algorithms, jet shapes, jet grooming, and boosted Higgs and top tagging.

  3. Mini-Jet Controlled Turbulent Round Air Jet

    Institute of Scientific and Technical Information of China (English)

    杜诚; 米建春; 周裕; 詹杰

    2011-01-01

    We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets.The Reynolds number based on the jet exit velocity and diameter is 8000.It is found that once the continuous minijets are replaced with pulsed ones,the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet.For example,the K value is amplified by more than 50% with two(or four)pulsed mini-jets blowing,compared with the continuous mini-jets at the same ratio of the mass flow rate of the mini-jets to that of the main jet.%We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets. The Reynolds number based on the jet exit velocity and diameter is 8000. It is found that once the continuous mini-jets are replaced with pulsed ones, the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet. For example, the K value is amplified by more than 50% with two (or four) pulsed mini-jets blowing, compared with the continuous mini-jets at the same ratio of the mass Sow rate of the mini-jets to that of the main jet.

  4. Hotspots, Jets and Environments

    Science.gov (United States)

    Hardcastle, M. J.

    2008-06-01

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

  5. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  6. JET Joint Undertaking

    International Nuclear Information System (INIS)

    The paper is a JET progress report 1987, and covers the fourth full year of JET's operation. The report contains an overview summary of the scientific and technical advances during the year, and is supplemented by appendices of detailed contributions of the more important JET articles published during 1987. The document is aimed at specialists and experts engaged in nuclear fusion and plasma physics, as well as the general scientific community. (U.K.)

  7. ATLAS Jet Energy Scale

    OpenAIRE

    D. Schouten; Tanasijczuk, A.; Vetterli, M.(Department of Physics, Simon Fraser University, Burnaby, BC, Canada); Collaboration, for the ATLAS

    2012-01-01

    Jets originating from the fragmentation of quarks and gluons are the most common, and complicated, final state objects produced at hadron colliders. A precise knowledge of their energy calibration is therefore of great importance at experiments at the Large Hadron Collider at CERN, while is very difficult to ascertain. We present in-situ techniques and results for the jet energy scale at ATLAS using recent collision data. ATLAS has demonstrated an understanding of the necessary jet energy cor...

  8. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  9. A NEW DESIGN of SIX- PHASE ROTARY CONVERTER ELECTRIC MACHINE

    Directory of Open Access Journals (Sweden)

    K. G. Mohammed

    2012-12-01

    Full Text Available The aim of this research is to design a new ac rotary converter machine to convert the ac single phase voltage to six-phase voltages by using multi stages energy conversion machine. The rotary converter is composed from two main stages and is combined into one frame. These two stages are formed from three main electromagnetic components. The first component represents the input stage that enables the energy from single phase to enter and transformed by the second and third components electro-magnetically to produce six-phase voltages which at the output stage. The programs are created using MATLAB in order to calculate the required dimensions of the converter machine and its parameters for magnetic and electrical circuits.

  10. Ku Band Rotary Joint Design for SNG Vehicles

    Directory of Open Access Journals (Sweden)

    H. Torpi

    2015-12-01

    Full Text Available A wideband I-type rectangular waveguide rotary joint (RJ is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  11. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  12. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ...... fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum...

  13. Mixed Lubrication Analysis for Journal Bearings in Rotary Compressors

    Science.gov (United States)

    Hattori, Hitoshi; Ito, Yasutaka; Hirayama, Takuya; Miura, Kazuhiko

    This paper describes the numerical analysis of mixed lubrication and the calculated results for journal bearings in rotary compressors. In this analysis, the modified Reynolds equation and the elastic contact equation, considering the effect of surface roughness, are solved as a coupled problem, and then influences of the elastic deformation of the bearing surface and the motion of the rotating shaft with bending deformation are also considered. The appearance of solid contact in hydrodynamic lubrication can be addressed by the analysis. Influences of the rotating speed and the surface roughness on the lubrication characteristics of the journal bearing were investigated by using the mixed lubrication analysis. As the results, it is made clear that the solid contact on the bearing surface occurs in the discharge process of rotary compressors. Furthermore, the contact pressure and the contact area decrease, even though the oil film thickness decreases, when the surface roughness becomes small.

  14. Development and testing of a rotary solar engine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, D. B.

    1983-01-01

    A rotary solar engine has been constructed and tested. By sealing Freon (having the environmentally safe composition rather than the conventionally used harmful composition) in its bellows instead of air, sufficiently consistent operation can be achieved to serve the purely mechanical rotary light-load or no-load markets. Although its power efficiency is not sufficient to make it competitive as a prime power generator, even for power outputs as low as a few ounce inches per minute, it simplicity and reliability make it an attractive self-powered source of mechanical control power for critical slow speed actuators. Its simplicity and low cost make it particularly attractive for the small (less than 10 in/sup 3/) display markets. Other markets may now be identified, now that its strength/limitations are known.

  15. Development of Rotary Axis for Wire Electrical Discharge Machining (WEDM)

    OpenAIRE

    M. Parthiban, C. Manigandan, G. Muthu Venkadesh, M. Ranjith Kumar

    2013-01-01

    This paper gives an overview of setting up a rotary axis to the existing WEDM machine to investigate the machining parameters in WEDG of harder materials. There are a number of hybrid machining processes (HMPs) seeking the combined advantage of EDM and other machining techniques. One such combination is wire electrical discharge grinding (WEDG), which is commonly used for micro-machining of fine and hard rods. WEDG employs a single wire guide to confine the wir...

  16. Mathematical modeling of a rotary hearth coke calciner

    OpenAIRE

    Hilde C. Meisingset; Jens G. Balchen

    1995-01-01

    A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this p...

  17. Advanced high-power transfer through rotary interfaces

    Science.gov (United States)

    Jacobson, P.

    1984-01-01

    A roll-ring design that is uniquely suited for rotary signal/power transfer in space applications is described. Two high-power configurations of the roll ring were developed. Present lab-proven hardware is available with power transfer capability of 2 kW at 200 amps and higher power units with 100-kW capability are in the design stage. Theoretical analysis indicated that power levels of kW are possible.

  18. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...... of the temperature on the mechanical resonance frequency is considered and thereby integrated in the final model for long term operations....

  19. Mathematical modeling of a rotary hearth coke calciner

    Directory of Open Access Journals (Sweden)

    Hilde C. Meisingset

    1995-10-01

    Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

  20. Genetic Algorithm Tuned Fuzzy Logic Controller for Rotary Inverted Pendulum

    OpenAIRE

    Tzu-Chun Kuo; Ying-Jeh Huang; Ping-Chou Wu

    2013-01-01

    In this study, a Genetic Algorithm (GA) is proposed to search for the optimal input membership functions of the fuzzy logic controller. With the optimal membership function, the fuzzy logic controller can efficiently control a rotary inverted pendulum. The advantage of the proposed method is tuning the parameters of membership functions automatically rather than tuning them manually. In genetic algorithm, these parameters are converted to a chromosome which is encoded into a binary string. Be...

  1. Periodic Excitation for Jet Vectoring and Enhanced Spreading

    Science.gov (United States)

    Pack, LaTunia G.; Seifert, Avi

    1999-01-01

    The effects of periodic excitation on the evolution of a turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit and excitation was introduced at the junction between the jet exit and the diffuser inlet. The introduction of high amplitude periodic excitation at the jet exit enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Vectoring is achieved by applying the excitation over a fraction of the circumference of the circular jet, enhancing its spreading rate on the excited side and its tendency to reattach to that side. Static deflection studies demonstrate that the presence of the wide-angle diffuser increases the effectiveness of the added periodic momentum due to a favorable interaction between the excitation, the jet shear-layer and the diffuser wall. This point was further demonstrated by the evolution of a wave packet that was excited in the jet shear-layer. Strong amplification of the wave packet was measured with a diffuser attached to the jet exit. The turbulent jet responds quickly (10-20 msec) to step changes in the level of the excitation input. The response scales with the jet exit velocity and is independent of the Reynolds number. Jet deflection angles were found to be highly sensitive to the relative direction between the excitation and the jet flow and less sensitive to the excitation frequency. The higher jet deflection angles were obtained for a diffuser length of about two diameters and for diffusers with half-angles greater than 15 degrees.

  2. Dynamics of Water Jet in Water Jet Looms

    Institute of Scientific and Technical Information of China (English)

    李克让; 陈明

    2001-01-01

    On the base of the study on dynamics of water jet in water jet looms, the parameters of water jet mechanism which affect the speed of water jet are analyzed and optimized. So the stability of the water jet can be improved to raise the speed of water jet as well as weft insertion rate and to enlarge the width of woven fabrics a lot. At the same time it also points out that to increase water jet speed and to prolong its affective jet time depend mainly on the accretion of spring rate (constant)of stiffness and the diminution of plunger's cross sectional area respectively.

  3. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  4. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  5. Evaluation of Alternative Filter Media for the Rotary Microfilter

    International Nuclear Information System (INIS)

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic-stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge

  6. Rotary union for use with ultrasonic thickness measuring probe

    International Nuclear Information System (INIS)

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs

  7. Undergraduates’ opinion after 5-year experience with rotary endodontic instruments

    Directory of Open Access Journals (Sweden)

    Flávia Sens Fagundes Tomazinho

    2011-01-01

    Full Text Available Introduction: Dentistry evolution in the past few years has revolutionized daily practice in some specialties. One of these revolutions has occurred in Endodontics due to the advancement of rotary techniques for root canal preparation and its subsequent incorporation into the teaching of Dentistry undergraduates. Objective: The aim of this study was to report a 5-year experience on the undergraduate laboratorial and clinical use of rotary endodontic preparation at a private university. Material and methods: Data survey was performed by using a questionnaire composed of nine objective questions; the questionnaire was answered by the undergraduates. Results: The results showed a positive acceptance regarding the undergraduate teaching of the rotary technique (94.7%. The following advantages were highlighted: faster root canal preparation (91.6% and reduction of patient’s stress (80.9%. Conclusion: It can be concluded that the experience with the two undergraduate groups was excellent due to the high acceptance level of the new technique by the students.

  8. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  9. Robustness of the rotary catalysis mechanism of F1-ATPase.

    Science.gov (United States)

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.

  10. Design optimization of rotary tiller blades: a critical review

    Directory of Open Access Journals (Sweden)

    Subrata Kr Mandal

    2013-07-01

    Full Text Available Tillage is an operation performed to obtain a desirable soil structure for a seedbed or root bed. A granular structure is desirable to allow rapid infiltration and good retention of rainfall and to minimize resistance to root penetration. Rotavator (also called rotary tiller is a tractor operated cultivating implement that breaks or works the soil with the help of rotating blades. The use of rotavator is increasing due to its versatility in doing a good quality tillage job with minimum number of passes. The rotavator do simultaneous ploughing and harrowing in dry and optimum soil moisture in single operation. The blades are the main critical parts of a rotary tiller which are engaged with soil.  So, wearing takes places at the cutting edges of these blades due to high stresses are coming. In this context a lot of research on rotavator blade has been carried out in different parts of the world. This paper briefly reviews the work done so far on the rotary tillers’ blade design optimization and development.

  11. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    Science.gov (United States)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  12. Evaluation of Alternative Filter Media for the Rotary Microfilter

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  13. Causality and stability of cosmic jets

    Science.gov (United States)

    Porth, Oliver; Komissarov, Serguei S.

    2015-09-01

    In stark contrast to their laboratory and terrestrial counterparts, cosmic jets appear to be very stable. They are able to penetrate vast spaces, which exceed by up to a billion times the size of their central engines. We propose that the reason behind this remarkable property is the loss of causal connectivity across these jets, caused by their rapid expansion in response to fast decline of external pressure with the distance from the `jet engine'. In atmospheres with power-law pressure distribution, pext ∝ z-κ, the total loss of causal connectivity occurs, when κ > 2 - the steepness which is expected to be quite common for many astrophysical environments. This conclusion does not seem to depend on the physical nature of jets - it applies both to relativistic and non-relativistic flows, both magnetically dominated and unmagnetized jets. In order to verify it, we have carried out numerical simulations of moderately magnetized and moderately relativistic jets. The results give strong support to our hypothesis and provide with valuable insights. In particular, we find that the z-pinched inner cores of magnetic jets expand slower than their envelopes and become susceptible to instabilities even when the whole jet is stable. This may result in local dissipation and emission without global disintegration of the flow. Cosmic jets may become globally unstable when they enter flat sections of external atmospheres. We propose that the Fanaroff-Riley (FR) morphological division of extragalactic radio sources into two classes is related to this issue. In particular, we argue that the low power FR-I jets become reconfined, causally connected and globally unstable on the scale of galactic X-ray coronas, whereas more powerful FR-II jets reconfine much further out, already on the scale of radio lobes and remain largely intact until they terminate at hotspots. Using this idea, we derived the relationship between the critical jet power and the optical luminosity of the host

  14. Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Lee Jia-You

    2015-01-01

    Full Text Available This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.

  15. Scottish contributions to rotary wing flight

    OpenAIRE

    Cameron, D.; Thomson, D. G.

    2008-01-01

    This paper charts the history of rotorcraft development in Scotland. Beginning with the early efforts of Mumford to achieve rotor-borne flight, through the major technology advances of G and J Weir in the 30s and 40s up to present day activities. The paper shows that despite being a relatively small country, Scotland’s traditional expertise in engineering when applied to the development of rotorcraft,generated significant technological advances.

  16. Application of coal-water slurry on the rotary calcining kiln of pedgion magnesium reduction process

    Institute of Scientific and Technical Information of China (English)

    LI Hua-qing; XIE Shui-sheng; LIU Jin-ping; WU Peng-yue; HUANG Guo-jie

    2006-01-01

    Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.

  17. Irreversibility analysis of magneto-hydrodynamic nanofluid flow injected through a rotary disk

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The non-linear Navier-Stokes equations governed on the nanofluid flow injected through a rotary porous disk in the presence of an external uniform vertical magnetic field can be changed to a system of non-linear partial differential equations by applying similar parameter. In this study, partial differential equations are analytically solved by the modified differential transform method, Pade differential transformation method to obtain self-similar functions of motion and temperature. A very good agreement is observed between the obtained results of Pade differential transformation method and those of previously published ones. Then it has become possible to do a comprehensive parametric analysis on the entropy generation in this case to demonstrate the effects of physical flow parameters such as magnetic interaction parameter, injection parameter, nanoparticle volume fraction, dimensionless temperature difference, rotational Brinkman number and the type of nanofluid on the problem.

  18. Velocity and pressure distributions in discharge tunnel of rotary-obstruction composite inner energy dissipation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of model test and theoretical analysis of velocity and pressure distributions,an hypothesis is presented that the distribution of tangential velocity in radial direction seems to be a combinational distribution of a quasi-free vortex and a quasi-forced vortex for the discharge tunnel of rotary-obstruction composite inner energy dissipation.The variations of corresponding parameters about the hypothesis are obtained under test conditions in this paper.The formula of pressure distribution in radial direction is deduced theoretically,and the theoretical values of pressure distribution computed by the formula are well consistent with the measured ones,showing that the formula is correct and can be applied to the computation and analysis of pressure distribution of this discharge tunnel.

  19. Design of Rotary Atomizer Using Characteristics of Thin Film Flow on Solid Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Boo Seong; Kim, Bo Hung [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2013-12-15

    A disc-type rotary atomizer affords advantages such as superior paint transfer efficiency, uniformity of paint pattern and particle size, and less consumption of compressed air compared to a spray-gun-type atomizer. Furthermore, it can be applied to all types of painting materials, and it is suitable for large-scale processes such as car painting. The painting quality, which is closely related to the atomizer performance, is determined by the uniformity and droplet size in accordance with the design of the bell disc surface. This study establishes the basics of how to design a surface by modeling the operating bell disc's RPM, diameter, surface angle, and film thickness considering dye characteristics such as the viscosity, density, and surface affinity.

  20. Evaluation of the dentin remaining after flaring using Gates Glidden drills and Protaper rotary files

    OpenAIRE

    Bruno Carvalho de Sousa; José Ribamar Costa Filho; Fábio de Almeida Gomes; Cláudio Maníglia-Ferreira; Eduardo Diogo Gurgel-Filho; Diana Santana de Albuquerque

    2011-01-01

    Introduction: The application of rotary instruments for root canal preparation requires a safe, not harming procedure to the root structure remaining. Objective: The purpose of this study was to analyze the root thickness in 28 mesial canals of lower permanent first molars before and after flaring using two rotary instruments: Gates-Glidden drills and ProTaper rotary files. Material and methods: Teeth were embedded into a muffle system. Samples were obtained by cutting 2mm below the furcation...

  1. JET Joint Undertaking

    International Nuclear Information System (INIS)

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  2. Boosted Higgs boson tagging using jet substructures

    CERN Document Server

    Shvydkin, Pavel

    2016-01-01

    Searching BSM particles via the Higgs boson final state has now become common. The mass of desired BSM particle is more than 1 TeV, thereby its decay products are highly Lorentz-boosted. Hence the jets from b quark-antiquark pair - which the Higgs boson mostly decays into - are very closed to each other, and merged into one jet, that is typically reconstructed using large jet sizes (∆R = 0.8). In this work regression technique is applied to AK8 jets (which defined by anti-kT algorithm, using ΔR = 0.8). The regression makes use of boosted jets with substructure information, coupled with the pecularities of a b quark decay, like the presence of a soft lepton (SL) inside the jet. It has allowed to improve the resolution of the mass reconstruction and transverse momentum of the Higgs boson. This application results in improvement of the mass reconstruction by 3-4 percent. These result may be improved firstly by making more careful pileup rejection. Then it is possible to combine base regression train for dif...

  3. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    Science.gov (United States)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  4. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  5. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  6. Vectoring of parallel synthetic jets

    Science.gov (United States)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  7. Contribution to the development of the simulation model for the rotary cap burner in the marine steam boiler

    Directory of Open Access Journals (Sweden)

    Dvornik Joško

    2015-01-01

    Full Text Available This paper presents the simulation model for determining the intervals of preventive replacement of the system's components. The application of the Weibull distribution has been proved to be efficient in the approximation of many forms of delay, while numerical integration supported by Simpson formula and Fortran software has been applied to simulate optimum values of the preventive replacement of the components of the rotary cap burner SAACKE, type SKV 60 in the marine steam boiler, on the basis of the available data gathered through the system's exploitation and through empirical assumptions.

  8. Controlled residual stresses introduction to improve fatigue resistance of rotary shouldered connections used in oil drilling industry

    Energy Technology Data Exchange (ETDEWEB)

    Korin, I., E-mail: ikorin@uncoma.edu.a [CONICET/San Antonio Internaciona. Instituto de Tecnologia Prof. J. A. Sabato (USAM/CNEA) - Grupo Mecanica de Fractura, UN Comahue. Buenos Aires 1200, Neuquen (CP8300) (Argentina); Perez Ipina, J. [CONICET/UNComa. Grupo Mecanica de Fractura, UN Comahue. Buenos Aires 1200, Neuquen (CP8300) (Argentina)

    2010-12-15

    An innovative technique is proposed with the aim of increasing the fatigue strength of rotary shouldered connections. The objective is to generate controlled compressive residual stresses at the most stressed zones (i.e., the threat root regions) to delay fatigue crack nucleation. The residual stresses are introduced through controlled application of an over-make-up torque of the joint and then returning to the nominal torque. The adequacy of the method was demonstrated through two experimental arrangements at laboratory scale, which employed specimens of reduced size. Results suggest that significant increases in the fatigue life of joints can be achieved applying this technique.

  9. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Science.gov (United States)

    2010-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  10. Anisotropy of partially self-absorbed jets and the jet of Cyg X-1

    CERN Document Server

    Zdziarski, Andrzej A; Rao, A R

    2016-01-01

    We study the angular dependence of the flux from partially synchrotron self-absorbed conical jets (proposed by Blandford & Koenigl. We consider the jet viewed (in the comoving frame) from either a side or close to on axis, and in the latter case, either from the jet top or bottom. We derive analytical formulae for the flux in each of these cases. We find that the maximum of the emission occurs when the jet is viewed from top on-axis, which is contrast to a previous result, which found the maximum at some intermediate angle and null emission on-axis. We then calculate the ratio of the jet-to-counterjet emission for this model, which depends on the viewing angle and the index of power-law electrons. We apply our results to the black-hole binary Cyg X-1. Given the jet-to-counterjet flux ratio of >50 found observationally and the current estimates of the inclination, we find the jet Lorentz factor of Gamma>1.6. We also point out that when the projection effect is taken into account, the radio observations imp...

  11. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  12. Jets and QCD

    International Nuclear Information System (INIS)

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e+e- collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W±,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  13. PENGENALAN STABILISASI TANAH DENGAN JET GROUTING

    OpenAIRE

    Indrastono Dwi Atmanto

    2013-01-01

    Due to restriction of land availability it is frequently we have to build constructions on soft or low bearingcapacity soils, so that soil stabilization must be applied in order to increase its properties. There are manytechniques of soil stabilization, where its applicability depends on many factors regarding appropriateengineering judgement. This paper presents the soil stabilization method by jet grouting, including its theory andpractice.

  14. Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.

    Science.gov (United States)

    Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji

    2011-05-01

    This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed. PMID:21639536

  15. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  16. ATLAS Jet Energy Scale

    CERN Document Server

    Schouten, D; Vetterli, M

    2012-01-01

    Jets originating from the fragmentation of quarks and gluons are the most common, and complicated, final state objects produced at hadron colliders. A precise knowledge of their energy calibration is therefore of great importance at experiments at the Large Hadron Collider at CERN, while is very difficult to ascertain. We present in-situ techniques and results for the jet energy scale at ATLAS using recent collision data. ATLAS has demonstrated an understanding of the necessary jet energy corrections to within \\approx 4% in the central region of the calorimeter.

  17. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    Science.gov (United States)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  18. Experimental results for a novel rotary active magnetic regenerator

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian;

    2012-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology and have great potential in realizing cooling devices with high efficiency, which are highly desirable for a broad range of applications. The technology relies on the magnetocaloric effect...... in a solid refrigerant rather than the temperature change that occurs when a gas is compressed/expanded. This paper presents the general considerations for the design and construction of a high frequency rotary AMR device. Experimental results are presented at various cooling powers for a range of operating...

  19. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    OpenAIRE

    Mikhailov, V; E. Strock

    2012-01-01

    In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  ...

  20. Improvements for rotary viscous dampers used in spacecraft deployment mechanisms

    Science.gov (United States)

    Stewart, Alphonso; Powers, Charles; Lyons, Ron

    1998-01-01

    During component level thermal-vacuum deployment testing of eight rotary viscous dampers for the Tropical Rainfall Measuring Mission (TRMM) satellite, all the dampers failed to provide damping during a region of the deployment. Radiographic examination showed that air in the damping fluid caused the undamped motion when the dampers were operated in a vacuum environment. Improvements in the procedure used to fill the dampers with damping fluid, the installation of a Viton vacuum seal in the damper cover, and improved screening techniques eliminated the problem.

  1. Theoretical Study of a Novel Multi Vane Rotary Compressor

    OpenAIRE

    Mat Sarip, Abd Rahim; Musa, Md. Nor

    2012-01-01

    This paper presents results of a theoretical study on a new novel concept of a multi-vane rotary (MVR) compressor with the axis vertical. In this concept a sleeve (or cylinder) and a mechanical rotor are eccentrically mounted such that both touch each other circumferentially at one linear point of contact during a rotation. One vane (primary) has its rounded end embedded fairly loosely into the sleeve causing it to be rotated along with the vane and at the same time the vane reciprocates in a...

  2. Rotary-wing aeroelasticity with application to VTOL vehicles

    Science.gov (United States)

    Friedmann, Peretz P.

    1993-01-01

    A concise assessment is presented of the state of the art in the field of rotary-wing aeroelasticity (RWE). The basic ingredients of RWE are reviewed, including structural modeling, unsteady aerodynamic modeling, formulation of the equations of motion, and solution methods. Results illustrating these methods are presented for isolated blades and coupled rotor-fuselage problems. The application of active controls to suppress aeromechanical and aeroelastic instabilities and to reduce vibration in rotorcraft is discussed. Structural optimization with aeroelastic constraints, gust response analysis of helicopters, and aeroelastic problems in special VTOL vehicles are briefly examined.

  3. Effective incineration technology with a new-type rotary waste incinerator

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-qiang; ZHU Jian-zhong; CAI Ming-zhao; XIE Xin-yuan

    2003-01-01

    The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl, NOx and SO2 during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.

  4. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  5. Instabilities in astrophysical jets

    International Nuclear Information System (INIS)

    Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)

  6. Nonaxisymmetric Poynting Jets

    CERN Document Server

    Gralla, Samuel E

    2015-01-01

    The relativistic plasma jets from a misaligned black hole-accretion disk system will not be axially symmetric. Here we analyze nonaxisymmetric, stationary, translation invariant jets in the force-free approximation where the field energy dominates the particle energy. We derive a stream equation for these configurations involving the flux function $\\psi$ for the transverse magnetic field, the linear velocity $v(\\psi)$ of field lines along the jet, and the longitudinal magnetic field $B_z(\\psi)$. The equations can be completely solved when $|v|=1$, and when $|v|E^2$. Finally, we write down specific solutions approximating numerical results for the nonaxisymmetric jet produced by a spinning black hole in an external, misaligned magnetic field.

  7. The JET divertor coil

    International Nuclear Information System (INIS)

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  8. Properties of gluon jets

    International Nuclear Information System (INIS)

    We compute the expected properties of gluon jets in a model based on the KUV jet calculus and recombination. Emphasis is placed on: a) the production of baryons, and b) the question of whether hadrons produced by the decays of Zweig rule stable quarkonia (e.g. the upsilon) in e+e- have markedly different energy spectra from those produced by the adjacent quark-antiquark continuum. (orig.)

  9. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity (3). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  10. Multi-Objective Optimization of Mechanical Running Conditions of Large Scale Statically Indeterminate Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaoping; Xiao Yougang; Wang Guangbin

    2006-01-01

    Combined with the second rotary kiln of Alumina Factory in Great Wall Aluminum Company, the mechanics characteristics of statically indeterminate large-scale rotary kiln with variable cross-sections is analyzed. In order to adjusting the runing axis of rotary kiln, taking the force equilibrium of the rollers and the minimum of relative axis deflection as the optimization goal, the multi-objective optimization model of mechanical running conditions of kiln rotary is set up. The mechanical running conditions of the second rotary kiln after multi-objective optimization adjustment are compared with those before adjustment and after routine adjustment. It shows that multi-objective optimization adjustment can make axis as direct as possible and can distribute kiln loads equally.

  11. Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment

    International Nuclear Information System (INIS)

    A novel marine rotary desiccant A/C (air-conditioning) system was developed and studied to improve energy utilization efficiency of ship A/C. The orthogonal experiment was first carried out to investigate the influence of various parameters of the marine rotary desiccant A/C system. During the orthogonal experiment the analysis of variance was used to exclude interference from the secondary influencing factor on system performance. The significant influencing factors of system were studied in great detail using the first and second laws of thermodynamics to find optimal setting parameters for best system performance. It is suggested from the analysis results that as regeneration temperature increases, the COPth (thermal coefficient of performance) and exergy efficiency of system (ηe) decreases by 46.9% and 38.8% respectively. They decrease in proportion to the increase of the temperature. ηe reaches its maximum value of about 23.5% when the inlet humidity ratio of process air is 22 g/kg. Besides, the exergy loss of system concentrates on the regeneration air heater, the desiccant wheel and the regeneration air leaving the desiccant wheel, which account for 68.4%–81% of the total exergy loss. It can be concluded that applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous. - Highlights: • Significant influencing factors of the system are found by the analysis of variance. • The change trends of the COPth and the ηe are nearly proportional with the regeneration temperature. • The ηe reaches its maximum value (about 23.5%) when the inlet humidity ratio of process air is 22 g/kg. • The contribution rate of the dry-bulb temperature of fresh air is up to 73.91% for the COPth. • Applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous

  12. Shock Dynamics In Relativistic Jets

    CERN Document Server

    Cantó, J; Fernández-López, M; González, R F; Hernández-Gómez, A

    2013-01-01

    We present a formalism of the dynamics of internal shocks in relativistic jets where the source has a time-dependent injection velocity and mass-loss rate. The variation of the injection velocity produces a two-shock wave structure, the working surface, that moves along the jet. This new formalism takes into account the fact that momentum conservation is not valid for relativistic flows where the relativistic mass lost by radiation must be taken into account, in contrast to the classic regime. We find analytic solutions for the working surface velocity and radiated energy for the particular case of a step function variability of the injection parameters. We model two cases: a pulse of fast material and a pulse of slow material (with respect to the mean flow). Applying these models to gamma ray burst light curves, one can determine the ratio of the Lorentz factors gamma_2 / gamma_1 and the ratio of the mass-loss rates dot{m_2} / dot{m_1} of the upstream and downstream flows. As an example, we apply this model ...

  13. Jets and QCD

    CERN Document Server

    Ali, Ahmed

    2010-01-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in $e^+ e^-$ collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in $ep$ and $pp/p\\bar{p}$ collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundam...

  14. Cyclotron Maser Emission from Blazar Jets?

    CERN Document Server

    Begelman, M C; Rees, Martin J; Begelman, Mitchell C.; Ergun, Robert E.; Rees, Martin J.

    2005-01-01

    We consider the production of electron cyclotron maser emission by low-density, highly magnetized plasmas in relativistic jets. The population inversion required to drive cyclotron maser instability could occur in localized, transient sites where hydromagnetic instabilities, shocks, and/or turbulence lead to magnetic mirroring along current-carrying flux tubes. The maser is pumped as electrons are accelerated by the parallel electric field that develops as a result of the mirror. We estimate the maximum brightness temperatures that can be obtained in a single maser site and in an array of many masers operating simultaneously, under conditions likely to apply in blazar jets. Synchrotron absorption, by relativistic electrons within the jet, presents the largest obstacle to the escape of the maser radiation, and may render most of it invisible. However, we argue that a high brightness temperature could be produced in a thin boundary layer outside the synchrotron photosphere, perhaps in the shear layer along the ...

  15. Jet pump assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  16. Inductive Measurement of Plasma Jet Electrical Conductivity

    Science.gov (United States)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  17. Holographic Jet Quenching

    Science.gov (United States)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  18. Design Automation Systems for Production Preparation : Applied on the Rotary Draw Bending Process

    OpenAIRE

    Johansson, Joel

    2008-01-01

    Intensive competition on the global market puts great pressure on manufacturing companies to develop and produce products that meet requirements from customers and investors. One key factor in meeting these requirements is the efficiency of the product development and the production preparation process. Design automation is a powerful tool to increase efficiency in these two processes. The benefits of automating the production preparation process are shortened led-time, improved product perfo...

  19. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  20. Predicting the build/drop tendency of rotary drilling assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jogl, P.N.; Burgess, T.M.; Bowling, J.P.

    1988-06-01

    Today, the majority of rotary bottomhole assemblies (BHA's) for directional control are designed through practical experience and trial and error. This approach can produce satisfactory results when a great deal of local experience can be drawn on. It can prove costly, however, during drilling in a new area because of the increased number of trips and correction runs. This paper demonstrates how a BHA model can be used to predict the directional inclination tendencies of rotary assemblies, thus limiting the uncertainty associated with the traditional BHA design techniques. The technique is demonstrated on data from 17 bit runs from three wells on the same platform in the Gulf of Mexico. Predicted tendencies from BHA descriptions alone proved to be accurate (to an error of +-0.1/sup 0//100 ft-0.03/sup 0//10 ml) in more than half the cases. The uncertainty of other predictions appeared to depend on the hole gauge. The distance taken for a BHA to reach a stable build/drop rate after the start of a bit run depends on the length of the BHA. This factor must be taken into account in the prediction of BHA performance.

  1. Electric Field Driven Torque in Biological Rotary Motors

    CERN Document Server

    Miller,, John H; Maric, Sladjana; Infante, Hans L; Claycomb, James R

    2013-01-01

    Ion driven rotary motors, such as Fo-ATP synthase (Fo) and the bacterial flagellar motor, act much like a battery-powered electric motor. They convert energy from ions as they move from high to low potential across a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields, emanating from channels in one or more stators, act on asymmetric charge distributions due to protonated and deprotonated sites in the rotor and drive it to rotate. The model predicts an ideal scaling law between torque and ion motive force, which can be hindered by mitochondrial mutations. The rotor of Fo drives the gamma-subunit to rotate within the ATP-producing complex (F1), working against an opposing torque that rises and falls periodically with angular position. Drawing an analogy with Brownian motion of a particle in a tilted washboard potential, we compute the highly nonlinear ATP production rate vs. proton motive force (pmf), showing a minimum pmf needed to drive ATP production with important me...

  2. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  3. Genetic Algorithm Tuned Fuzzy Logic Controller for Rotary Inverted Pendulum

    Directory of Open Access Journals (Sweden)

    Tzu-Chun Kuo

    2013-06-01

    Full Text Available In this study, a Genetic Algorithm (GA is proposed to search for the optimal input membership functions of the fuzzy logic controller. With the optimal membership function, the fuzzy logic controller can efficiently control a rotary inverted pendulum. The advantage of the proposed method is tuning the parameters of membership functions automatically rather than tuning them manually. In genetic algorithm, these parameters are converted to a chromosome which is encoded into a binary string. Because the membership functions are symmetric to zero, the length of each chromosome could be reduced by half. The computation time will also be shorter with the shorter chromosomes. Moreover, the roulette wheel selection is chosen as reproduction operator and one-point crossover operator and random mutation operator are also used. After the genetic algorithm completes searching for optimal parameters, the optimal membership function will be introduced to the fuzzy logic controller. Finally, simulation results show that the proposed GA-tuned fuzzy logic controller is effective for the rotary inverted pendulum control system with robust stabilization capability.

  4. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  5. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  6. b-jet triggering in ATLAS

    CERN Document Server

    Cavaliere, V; The ATLAS collaboration

    2012-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is in place from the beginning of the 2011 data-taking period and is contributing to keep the total bandwidth to an affordable rate. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and the performance on real data is presented in this contribution. Data-driven techniques to extract the online b-tagging efficiency and mis-tag rate, key ingredients f...

  7. Design and construction of triplet atmospheric cold plasma jet for sterilization

    Directory of Open Access Journals (Sweden)

    F. Sohbatzadeh

    2014-03-01

    Full Text Available In this paper, construction of triplet atmospheric plasma jet using argon, air, oxygen and nitrogen gases is reported. Bactericidal effect of the plasma jet is also investigated. To that end, longitudinal geometric configuration for the electrodes was chosen because it would increase the jet length. Electrical characteristics, jet length dependencies on the applied voltage and gas flow rate were decided, experimentally. Relative concentrations of chemical reactive species such as ozone, atomic oxygen, NOx compounds and hydroxyl were measured using optical emission spectroscopy. It was seen that atomic oxygen and ozone concentrations with triplet plasma jet are more than the concentration of single plasma jet. Triplet plasma jet was also used for sterilization of solid and liquid surfaces to disinfect gram-negative and gram-positive Escherichia coli and Streptococcus pyogenes bacteria. The results verified the effectiveness of the triplet plasma jet for killing bacteria.

  8. Hadronic Calorimeter Shower Size: Challenges and Opportunities for Jet Substructure in the Superboosted Regime

    CERN Document Server

    Bressler, Shikma; Kats, Yevgeny; Lee, Seung J; Perez, Gilad

    2015-01-01

    Hadrons have finite interaction size with dense material, a basic feature common to known forms of hadronic calorimeters (HCAL). We argue that substructure variables cannot use HCAL information to access the microscopic nature of jets narrower than the hadronic shower size, which we call superboosted massive jets. It implies that roughly 15% of their transverse energy profile remains inaccessible due to the presence of long-lived neutral hadrons. This unreachable part of the jet substructure is also subject to order-one fluctuations. We demonstrate that the effects of the fluctuations are not reduced when a global correction to jet variables is applied. The above leads to fundamental limitations in the ability to extract intrinsic information from jets in the superboosted regime. The neutral fraction of a jet is correlated with its flavor. This leads to an interesting and possibly useful difference between superboosted W/Z/h/t jets and their corresponding backgrounds. The QCD jets that form the background to ...

  9. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Kun Shi Zhang; Mei Ling Yu; Lian Shou Liu

    2002-01-01

    The 3-jet events produced in e/sup +/e/sup -/ collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, /sub gluon///sub quark/, has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH, and DELPHI Collaborations, indicating that the method proposed to select gluon and quark jets from ...

  10. A turbulent model for the surface brightness of extragalactic jets

    CERN Document Server

    Lorenzo, Zaninetti

    2009-01-01

    This paper summarizes the known physics of turbulent jets observed in laboratory experiments. The formula, which gives the power released in turbulence describes the concentration of turbulence/relativistic particles in each point of the astrophysical jets. The same expression is also used to analyze the power released in turbulence in the case of pipe and non Newtonian fluids. Through an integral operation it is possible to deduce the intensity of synchrotron radiation for a profile perpendicular or not to a straight jet, a 2D map for a perpendicular, randomly oriented straight jet as well as a 2D map of complex trajectories such as NCC4061 and 3C31. Presented here is a simulation of the spectral index in brightness of 3C273 as well as a 2D map of the degree of linear polarization. The Sobel operator is applied to the theoretical 2D maps of straight perpendicular jets.

  11. LIF Measurement of Interacting Gas Jet Flow with Plane Wall

    Science.gov (United States)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.

    2011-05-01

    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  12. JET Joint Undertaking

    International Nuclear Information System (INIS)

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  13. Sweeping Jet Optimization Studies

    Science.gov (United States)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  14. Measurement of b-quark Jet Shapes at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Alison [Univ. of Oxford (United Kingdom)

    2006-01-01

    The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb-1. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively

  15. Measurement of b-quark Jet Shapes at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Alison

    2006-03-01

    The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb{sup -1}. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively large

  16. Development of a Low-Cost Rotary Steerable Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully

  17. Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76 A TeV at the CERN Large Hadron Collider

    Science.gov (United States)

    Chang, Ning-Bo; Qin, Guang-You

    2016-08-01

    We study the evolution of the full jet shower in quark-gluon plasma by solving a set of coupled differential transport equations for the three-dimensional momentum distributions of quarks and gluons contained in full jets. In our jet evolution equations, we include all partonic splitting processes as well as the collisional energy loss and transverse momentum broadening for both the leading and radiated partons of the full jets. Combining with a realistic (2 +1 )-dimensional viscous hydrodynamic simulation for the spacetime profiles of the hot and dense nuclear medium produced in heavy-ion collisions, we apply our formalism to calculate the nuclear modification of single inclusive full jet spectra, the momentum imbalance of photon-jet and dijet pairs, and the jet shape function (at partonic level) in Pb+Pb collisions at 2.76 A TeV. The roles of various jet-medium interaction mechanisms on the full jet modification are studied. We find that the nuclear modification of jet shape is sensitive to the interplay of different interaction mechanisms as well as the energies of the full jets.

  18. JET Joint Undertaking

    International Nuclear Information System (INIS)

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  19. Laboratory plasma physics experiments using merging supersonic plasma jets

    CERN Document Server

    Hsu, S C; Merritt, E C; Adams, C S; Dunn, J P; Brockington, S; Case, A; Gilmore, M; Lynn, A G; Messer, S J; Witherspoon, F D

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$, sonic Mach number $M_s\\equiv V_{\\rm jet}/C_s>10$, jet diameter $=5$ cm, and jet length $\\approx 20$ cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  20. The collimation of magnetic jets by disc winds

    Science.gov (United States)

    Globus, N.; Levinson, A.

    2016-09-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disc wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disc wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about 10 percents of the jet power. For moderate wind powers, we find gradual collimation. For strong winds, we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfvén crossing times before becoming conical. We estimate that in the later case, the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced provided that the wind injection zone extends to several hundreds gravitational radii, and that its total power is about one-third of the jet power. The radio spectrum can be produced by synchrotron radiation of relativistically hot, thermal electrons in the sheath flow surrounding the inner jet.

  1. Soil-Blade Interaction of a Rotary Tiller: Soil Bin Evaluation

    OpenAIRE

    Subrata Kr Mandal; Dr. Basudeb Bhattacharyya; Dr. Somenath Mukherjee; Dr. S Karmakar

    2014-01-01

    In this paper soil-blade investigation of a rotary tiller in a controlled soil bin is presented. Among the soil cutting agricultural tools currently used, the rotary tiller is one of the most promising equipment, saving operating time and labor. In a rotary tiller working tool is always a blade. For the tillage systems, accurately predicting the required torque and penetration force while cutting of soil with a blade is of prime importance as far as the farming operation is concerned. In the ...

  2. Resolving Boosted Jets with XCone

    CERN Document Server

    Thaler, Jesse

    2015-01-01

    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies---dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs---that demonstrate the physics applications of XCone over a wide kinematic range.

  3. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  4. Negatively buoyant starting jets

    OpenAIRE

    Marugán-Cruz, C.; Rodríguez-Rodríguez, Javier; Martínez-Bazán, C.

    2009-01-01

    The initial development of negatively buoyant jets has been investigated experimentally and numerically, focusing on the role played by gravity in the evolution of the leading vortex ring. Under the experimental conditions considered in this work, the densimetric Froude number, Fr= ρjU²j/[(ρ₀ − ρj) gD] , which represents the ratio between the jet momentum and the buoyancy forces, emerges as the most relevant parameter characterizing the dynamics of the flow. Two different flow regimes h...

  5. Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system.

    Science.gov (United States)

    Godino, Neus; del Campo, Francisco Javier; Muñoz, Francesc Xavier; Hansen, Mikkel Fougt; Kutter, Jörg P; Snakenborg, Detlef

    2010-07-21

    This work features the design, fabrication and characterisation of a miniaturised electroanalytical lab on a chip that allows the performance of a complete bioassay, from the capture of magnetic particles through their functionalisation and sample incubation to the detection of electroactive reaction products. The system is built using mainly polymeric materials such as PMMA and PDMS and fast prototyping techniques such as milling and moulding. The system also includes a set of microelectrodes, photo-lithographed on a silicon chip. The novelty lies in the design of the rotary microvalve, which contains a microreactor so that various reaction and incubation steps can be carried out in isolation from the detection event with zero dead volume. This avoids contamination and fouling of the electrodes by proteins or other organic matter, and extends the useful lifetime of the detector. The system operation is demonstrated by a model example, consisting in the functionalisation of streptavidin-coated magnetic particles with biotinylated beta-galactosidase over periods ranging from 5 to 15 min, at which point the particles saturate. Although the system is intended for the development of enzyme-based electrochemical bioassays, the concept of its rotary microreactor can be applied more broadly.

  6. Detecting substeps in the rotary motors of FoF1-ATP synthase by Hidden Markov Models

    CERN Document Server

    Zarrabi, N; Dueser, M G; Dunn, S D; Reuter, R; Wrachtrup, J

    2007-01-01

    FoF1-ATP synthase is the enzyme that provides the 'chemical energy currency' adenosine triphosphate, ATP, for living cells. The formation of ATP is accomplished by a stepwise internal rotation of subunits within the enzyme. We monitor subunit rotation by a single-molecule fluorescence resonance energy transfer (FRET) approach using two fluorophores specifically attached to the enzyme. To identify the stepsize of rotary movements by the motors of ATP synthase we simulated the confocal single-molecule FRET data of freely diffusing enzymes and developed a step finder algorithm based on 'Hidden Markov Models' (HMM). The HMM is able to find the proximity factors, P, for a three-level system and for a five-level system, and to unravel the dwell times of the simulated rotary movements. To identify the number of hidden states in the system, a likelihood parameter is calculated for the series of one-state to eight-state HMMs applied to each set of simulated data. Thereby, the basic prerequisites for the experimental s...

  7. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  8. Development of Rotary Axis For Wire Electrical Discharge Machining (WEDM

    Directory of Open Access Journals (Sweden)

    M. Parthiban, C. Manigandan, G. Muthu Venkadesh, M. Ranjith Kumar

    2013-08-01

    Full Text Available This paper gives an overview of setting up a rotary axis to the existing WEDM machine to investigate the machining parameters in WEDG of harder materials. There are a number of hybrid machining processes (HMPs seeking the combined advantage of EDM and other machining techniques. One such combination is wire electrical discharge grinding (WEDG, which is commonly used for micro-machining of fine and hard rods. WEDG employs a single wire guide to confine the wire tension within the discharge area between the rod and the front edge of the wire and also to minimize the wire vibration. Other advantages of WEDG include the ability to machine hard- to- machine materials with large aspect ratio.

  9. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    Directory of Open Access Journals (Sweden)

    V. Mikhailov

    2012-01-01

    Full Text Available In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  a sequence which is recommended for determination of consumption characteristics which is formed with due account of multi-directional kinematic perturbations, mechanical clearance, possible emergence of hydraulic backlash and desired throttling law. The factors account makes it possible to obtain an acceptable mathematical analogue of a hydro-mechanical steering for execution of robust investigations. 

  10. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    Science.gov (United States)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  11. Pallet Optimization of the Heavy Rotary Table Load Carrying System

    Science.gov (United States)

    Atapin, V. G.; Bataev, A. A.

    2016-04-01

    The pallet optimization of the heavy rotary table load-carrying system, which is a part of the multi-purpose machine, is considered in terms of the deterministic and probabilistic models. As a result of optimum design in case of the deterministic model the mass of the pallet is reduced by 35.5 % in comparison with a serial model. The evaluation of the influence of optimization problem limitations on design variables confirms the importance of rigidity criterion in relation to other criteria. Calculation for probabilistic model allows reducing the mass of the construction by 27 % in comparison with the deterministic model. Considering a work piece rigidity on the basis of a conventional work piece of the minimum rigidity (without stiffening ribs etc.) leads to reducing of the pallet mass by 22.3 % in comparison with the deterministic model.

  12. Performance analysis of a rotary active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2013-01-01

    Performance results for a novel rotary active magnetic regenerator (AMR) and detailed numerical model of it are presented. The experimental device consists of 24 regenerators packed with gadolinium (Gd) spheres rotating inside a four-pole permanent magnet with magnetic field of 1.24T. A parametric...... study of the temperature span, cooling power, coefficient of performance (COP) and efficiency of the system was carried out over a range of different hot reservoir temperatures, volumetric flow rates and cooling powers. Detailed modeling of the AMR using a 1D model was performed and compared......-equivalent cooling power (ExQ), and the overall second law efficiency, η2nd. Losses mapping indicated that friction and thermal leakage to the ambient are the most important contributors to the reduction of the system performance. Based on modeling results, improvements on the flow distributor design and reduction...

  13. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  14. Low torque hydrodynamic lip geometry for rotary seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  15. Combined anterolateral posterolateral rotary instability: Is posterolateral complex reconstruction necessary?

    Directory of Open Access Journals (Sweden)

    Khalilahah Nazem

    2008-02-01

    Full Text Available

    • BACKGROUND: The treatment of combined anterolateral posterolateral rotary instability has been done by correcting knee alignment, anterior cruciate ligament (ACL reconstruction plus repair or reconstruction of the posterolateral complex. Because of the technical difficulties encountered in these operations and the need for more than two stages, and considering the controversy among the role of posterolateral complex (PLC in valgus knees, this study was designed to observe the results of treating this instability by ACL-reconstruction alone, after correction of varus, without reconstruction of the posterolateral complex or further extra-articular manipulation.
    • METHODS: This was a clinical trial performed on 29 patients (29 knees with combined anterolateral posterolateral rotary nstability. Subjective and objective instability signs were recorded. Arthroscopy was then performed and a valgus osteotomy was done to correct alignment. Then in a second stage, an ACL-reconstruction was carried out. Results, after a mean of 23 months follow-up, were compared to the conditions before surgery. Fisher exact test, X2 and Wilcoxon tests were used to analyze the data. P<0.05 was considered to be meaningful.
    • RESULTS: Pain was relieved in more than half and locking was improved in all of the patients. Giving way of the knee was diminished from 79.3% to 6.9%. Special instability tests showed a significant improvement after surgery (P<0.001. Most of the patients returned to the preinjury level of work or sports.
    • CONCLUSIONS: Based on the results of this study, ACL-reconstruction alone, after correction of varus, can be sufficient to address this combined knee instability without farther procedures on extra-articular structures and posterolateral complex, thus avoiding unnecessary complications and longer rehabilitation.
    • Key words

    • Rotary Steerable Horizontal Directional Drilling: Red River Formation

      Science.gov (United States)

      Cherukupally, A.; Bergevin, M.; Jones, J.

      2011-12-01

      Sperry-Sun Drilling, a Halliburton company provides engineering solutions and sets new records for Horizontal and Vertical Displacement Drilling (HVDD). Halliburton Sperry Drilling, Casper, WY, allowed one student to participate in 12-week experiential learning program this summer as HVDD engineer. HVDD is the science of drilling non-vertical wells and can be differentiated into three main groups; Oilfield Directional Drilling (ODD), Utility Installation Directional Drilling (UIDD) and in-seam directional Drilling. Sperry-Sun prior experience with rotary drilling established a number of principles for the configuration of Bottom Hole Assembly (BHA) that would be prone to drilling crooked hole [1]. Combining Measurement While Drilling survey tools (MWD tools) and BHA designs made HVDD possible. Geologists use the MWD survey data to determine the well placement in the stratigraphic sequence. Through the analysis of this data, an apparent dip of the formation can be calculated, and the bit is directed to stay in the target zone of production. Geological modeling assists in directing the well by creating a map of the target zone surface, an Isopach map. The Isopach map provides contour intervals and changes in formation dip. When the inclination of the formation changes the geologist informs the directional drillers to adjust the drill bits. HVDD provides Halliburton the opportunity to reach more production intervals in a given formation sequence [1]. The Down hole motors powered by fluid flow through the drill string create horsepower and rotation of the bit which enables the use of a bend element in the BHA to create the tilt necessary to deviate the wellbore from vertical displacement drilling path. The rotation of Down hole motors is influenced by temperature and aromatics found in water, oil and diesel based mud. The development of HVDD Rotary Steerable tools hold promise to have almost a complete automated process for drilling highly deviated production well

    • Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

      Science.gov (United States)

      Han, Tao; Reneker, Darrell H.

      2007-03-01

      The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

    • On magnetohydrodynamic solitons in jets

      Science.gov (United States)

      Roberts, B.

      1987-01-01

      Nonlinear solitary wave propagation in a compressible magnetic beam model of an extragalactic radio jet is examined and shown to lead to solitons of the Benjamin-Ono type. A number of similarities between such magnetic beam models of jets and models of solar photospheric flux tubes are pointed out and exploited. A single soliton has the appearance of a symmetric bulge on the jet which propagates faster than the jet's flow.

    • Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view.

      Science.gov (United States)

      Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

      2016-02-29

      Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. PMID:26748363

    • Interplay of discharge and gas flow in atmospheric pressure plasma jets

      Science.gov (United States)

      Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

      2011-05-01

      Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  1. Multi-jet production and jet correlations at CMS

    CERN Document Server

    Veres, Gabor

    2016-01-01

    Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential components of QCD, necessary for the description of the experimental data on hadronic jets, are hard parton radiation and multiple parton interactions. The importance of these components increases for final states including multiple jets. We will show results on observables sensitive to the hard parton radiation, like the azimuthal (de)correlation between jets with small and large rapidity separation. Dijet events with a rapidity gap between them will also be presented and their fraction measured as a function of jet transverse momentum and collision energy.

  2. Branching structure of QCD jets: new jet observables for Quark/Gluon discrimination

    CERN Document Server

    Davighi, Joseph

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behaviour due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level.

  3. Branching structure of QCD jets: new jet observables for quark-gluon discrimination

    CERN Document Server

    Davighi, Joseph (CERN)

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behavior due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level

  4. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Zhang Kun Shi; Yu Mei Ling; LianShouLiu

    2002-01-01

    The 3-jet events produced in e sup + e sup - collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, sub g sub l sub u sub o sub n / sub q sub u sub q sub r sub k , has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH and DELPHI Collaborations, indicating that the method propose...

  5. Jet substructure using semi-inclusive jet functions within SCET

    CERN Document Server

    Kang, Zhong-Bo; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements based upon semi-inclusive jet functions within the framework of Soft Collinear Effective Theory (SCET). In this work we consider the jet fragmentation function, where a hadron $h$ is identified inside a fully reconstructed jet as a first example. We introduce a new semi-inclusive fragmenting jet function ${\\mathcal G}^h_i(z= \\omega_J/\\omega,z_h=\\omega_h/\\omega_J,\\omega_J, R,\\mu)$ which depends on the jet radius $R$ and the large light-cone momenta of the parton '$i$' initiating the jet ($\\omega$), the jet ($\\omega_J$), and the hadron $h$ ($\\omega_h$). We are then able to express the jet fragmentation function as a semi-inclusive jet observable rather than as an exclusive one, which is closer to the actual experimental measurements. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations at next-to-leading order (NLO). We further derive the renormalization gro...

  6. Pythia Jet Finding Study with Trento Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Joseph [United States Naval Academy, Annapolis, MD (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, Ron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-22

    We present results applying the Pythia SlowJet Finder to Pythia generated QCD and QED hard processes in the presence of simulated heavy ion backgrounds. The hard process events are generated with Pythia version 8.219 for √sNN=200 GeV proton-proton collisions and the backgrounds are generated by the Reduced Thickness Event-by-event Nuclear Topology model TRENTo for Au-Au collisions with a nucleon-nucleon cross-section of 4.23 fm2. The TRENTo model is used to calculate the initial entropy and ellipticity from which the total charged particle multiplicity and elliptic ow are determined. We report results in the form of event displays, total pT distributions, and fragmentation distributions for SlowJet applied to Pythia events with and without the simulated heavy ion backgrounds.

  7. The physics of jets

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.

    1987-09-01

    Recent data on the fragmentation of quarks and gluons is discussed in the context of phenomenological models of parton fragmentation. Emphasis is placed on the experimental evidence for parton showers as compared to a fixed order QCD treatment, on new data on inclusive hadron production and on detailed studies of baryon production in jets.

  8. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.

    2003-01-01

    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of o

  9. JET joint undertaking

    International Nuclear Information System (INIS)

    JET began operations on 25 June 1983. This annual report contains administrative information and a general review of scientific and technical developments. Among them are vacuum systems, toroidal and poloidal field systems, power supplies, neutral beam heating, radiofrequency heating, remote handling, tritium handling, control and data acquisition systems and diagnostic systems

  10. Jet Fuel Burns Profits

    Institute of Scientific and Technical Information of China (English)

    WANUXIN

    2005-01-01

    Last month, China's National Development and Reform Commission (NDRC) raised the price of jet fuel to 4,620 yuan (US$513) per ton, a 10.3 percent rise over the 4,190 yuan (US$505) per ton rate set in August last year, itself a 10.6 percent mark-up. This is the third rise since 2003.

  11. Spectroscopy with Supersonic Jets.

    Science.gov (United States)

    Skinner, Anne R.; Chandler, Dean W.

    1980-01-01

    Discusses a new technique that enables spectroscopists to study gas phase molecules at temperatures below 1 K, without traditional cryogenic apparatus. This technique uses supersonic jets as samples for gas molecular spectroscopy. Highlighted are points in the theory of supersonic flow which are important for applications in molecular…

  12. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    Three transects each from the cruises of R V Pioneer (84 , 88 degrees and 92 degrees E) during May-June 1964 and R V Vityaz (77 , 84 degrees and 94 degrees E) during October-November 1962 were used to compare pre and postmonsoon equatorial jets...

  13. Blazar jets the spectra

    CERN Document Server

    Ghisellini, G

    2000-01-01

    The radiation observed by blazars is believed to originate from the transformation of bulk kinetic energy of relativistic jets into random energy. A simple way to achieve this is to have an intermittent central power source, producing shells of plasma with different bulk Lorentz factors. These shells will collide at some distance from the center, producing shocks and then radiation. This scenario, called internal shock model, is thought to be at the origin of the gamma-rays observed in gamma-ray bursts and can work even better in blazars. It accounts for the observed key characteristics of these objects, including the fact that radiation must be preferentially produced at a few hundreds of Schwarzschild radii from the center, but continues to be produced all along the jet. At the kpc scale and beyond, the slowly moving parts of a (straight) jet can be illuminated by the beamed radiation of the core, while the fast parts of the jet will see enhanced cosmic microwave radiation. In both cases the Inverse Compton...

  14. Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    CERN Document Server

    Cogan, Josh; Strauss, Emanuel; Schwarztman, Ariel

    2014-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  15. Methods for determining goals and expectations for fielded jet engines

    OpenAIRE

    Malsbury, John A.

    1995-01-01

    This thesis investigates methods for determining goals and expectations for fielded jet engines. Some of these methods employ concepts used in Reliability Centered Maintenance (RCM). The procedures developed here can be applied to any fielded jet engine. The data used by this thesis was extracted from the Naval Aviation Logistics Data Analysis (NALDA) database. The desktop software programs that were used to attain reliability parameters are readily available to any command. The data analysis...

  16. Methods for performance goal setting of fielded jet engines

    OpenAIRE

    Caudill, Michael R.

    1995-01-01

    This thesis investigates methods for constructing fielded jet engine performance goals using Non-Parametric and Parametric analysis methods. The procedures developed can be applied with any fielded jet engine. Emphasis is placed on demonstrating the use of the Naval Aviation Logistics Analysis (NALDA) database in conjunction with existing spreadsheet software programs to develop performance goals for flight hours between repairs, infant mortality rate and proper mix of scheduled/unscheduled r...

  17. Buoyant jet and two-phase jet-plume modeling for application to large water pools

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Timothy L. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Westinghouse Nuclear, Madison, PA 15663 (United States); Revankar, Shripad T., E-mail: shripad@ecn.purdue.ed [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-780 (Korea, Republic of)

    2011-05-15

    Highlights: A two-phase jet-plume model was developed to predict pool thermal response, pool surface temperature and consequently the pool cover gas pressure in enclosed spaces such as nuclear reactor wetwell. The jet-plume half-width, centerline velocity and temperature along the axis defining the plume's trajectory were solved as variables along the path. The pool surface temperature prediction is comparable to experimental data within 0.5 {sup o}C. - Abstract: Models of a single-phase liquid-into-liquid buoyant jet and a two-phase vapor-into-liquid turbulent jet-plume injected in horizontal orientation were developed for analyzing the dynamics of the mixing characteristics and thermal response for shallow submergence of the source in large pools. These models were developed from the Reynolds averaged Navier-Stokes equations in the cylindrical system for steady axisymmetric flow and incorporated the integral plume theory. The bases for the general assumptions such as self-similarity and use of Gaussian profiles to represent the velocity field across the effluent cross-section are examined. Subroutines were developed to reproduce the governing differential equations formulated from the continuity, momentum and conservation of buoyancy or energy equations which treats the jet-plume's half-width, velocity and temperature as variables and seek solutions of these variables along the jet-plume trajectory. Information on empirical closure relations obtained from experimental data such as the coefficient-of-entrainment, bubble slip velocity, momentum amplification factor, and plume spread-ratios for buoyancy and density-defect which are available for adiabatic cases were applied to the case of steam-into-water. Solutions were obtained without cross-flow in a linearly stratified ambient and then with cross-flow in a homogeneously mixed ambient for the single-phase formulation that represents a complete condensation scenario of a buoyant jet. The model was

  18. Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

    Science.gov (United States)

    Ghasr, M. T.; Case, J. T.; McClanahan, A. D.; Abou-Khousa, M.; Guinn, K.; Kharkovsky, S.; Zoughi, R.; Afaki-Beni, A.; DePaulis, F.; Pommerenke, D.

    2008-01-01

    This is the video that accompanies the "Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System" presentation. It shows the operation of the scanning system, and reviews the results of the scanning of a sample.

  19. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  20. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    Science.gov (United States)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  1. Design and simulation of a novel impact piezoelectric linear-rotary motor

    Science.gov (United States)

    Han, Liling; Zhao, Yahui; Pan, Chengliang; Yu, Liandong

    2016-01-01

    This paper presents a novel impact piezoelectric linear-rotary motor which is driven by a single piezoceramic tube with two parts of electrodes. From the inner and outer electrodes, longitudinal displacement of the tube is generated and used to actuate the shaft with linear motion ability. From the grooved helical interdigitated electrodes, torsional displacement is generated and used to actuate the shaft with rotary motion ability. Working principle and structural design of the motor are introduced and quasi-static longitudinal and torsional displacements of the tube are estimated. With established kinematics model of the motor, the working behaviors of the motor are investigated numerically with MATLAB/Simulink software. The stepping characteristics of the linear and rotary motions are analyzed, compared, and discussed. With optimized material selection, structural design, and driving parameters, the proposed linear-rotary motor will provide remarkable performances as a miniaturized multi-degree driving device for complex positioning and manipulation applications.

  2. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg;

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  3. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  4. Novel Highly Efficient Compact Rotary-Hammering Planetary Sampler Actuated by a Single Piezoelectric Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We had two objectives in this task: 1. Develop effective single low-mass, low-power piezoelectric drive that can actuate rotary-hammer samplers through walls. 2....

  5. Unforgettable Cooperation and Friendship——Retrospection of Exchanges and Cooperation with Rotary US

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Composed of professionals from all walks of life, Rotary International is the largest non-governmental volunteer service organization with the longest tradition in the world. Through providing various social services and humanitarian assistance, it encourages high ethical standards in

  6. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Alliance Spacesystems, LLC produced a rotary percussive drill designed for space use under a NASA-funded Mars Instrument Development Program (MIDP) project ? the...

  7. Experience with Aerosol Generation During Rotary Mode Core Sampling in the Hanford Single Shell Waste Tanks

    International Nuclear Information System (INIS)

    This document provides data on aerosol concentrations in tank head spaces, total mass of aerosols in the tank head space and mass of aerosols sent to the exhauster during Rotary Mode Core Sampling from November 1994 through April 1999

  8. Rotary klubi premeeris Politsei- ja Piirivalveameti töötajaid

    Index Scriptorium Estoniae

    2012-01-01

    Tallinna Rotary klubi noorte politseinike ning parima koerajuhi ja teenistuskoera preemia võitnutest: Raili Pärn, Marit Abram, Valur Pajumäe koeraga Golttvizen Hof Dixon, Hendri Lilbok ja Martin Torim

  9. Ameerika Rotary klubi toetab Maarja küla miljoni krooniga / Kristel Rõss

    Index Scriptorium Estoniae

    Rõss, Kristel, 1967-

    2003-01-01

    Taevaskotta Haavassaarde rajatav Maarja küla oli nädalavahetusel eriliselt rahvarohke, sest puuetega noorte kodu ligi miljoni krooniga toetada lubanud Rotary klubi liikmed Atlantast istutasid Eestimaa mulda tammepuid

  10. PENGENALAN STABILISASI TANAH DENGAN JET GROUTING

    Directory of Open Access Journals (Sweden)

    Indrastono Dwi Atmanto

    2013-10-01

    Full Text Available Due to restriction of land availability it is frequently we have to build constructions on soft or low bearingcapacity soils, so that soil stabilization must be applied in order to increase its properties. There are manytechniques of soil stabilization, where its applicability depends on many factors regarding appropriateengineering judgement. This paper presents the soil stabilization method by jet grouting, including its theory andpractice.

  11. Magnetized laboratory plasma jets: Experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  12. Magnetohydrodynamic solitons and radio knots in jets

    Science.gov (United States)

    Fiedler, R.

    1986-01-01

    Weakly nonlinear surface waves are examined in the context of the beam model for jetlike radio sources. By introducing a finite scale length, viz. the beam radius, geometrical dispersion can act to balance nonlinear wave growth and thereby produce solitons, localized wave packets of stable waveform. A method for obtaining a soliton equation from the MHD equations is presented and then applied to radio knots in jets.

  13. Precision predictions of exclusive jet cross sections at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gangal, Shireen

    2015-10-15

    With the discovery of the Higgs boson, a central objective of the LHC Higgs program is to study its properties in detail by exploring different production and decay channels. This requires precise theoretical predictions of inclusive cross sections as well as differential and exclusive cross sections. In this thesis, we study perturbative uncertainties in the fixed-order (FO) predictions of exclusive jet cross sections and obtain resummed predictions for a new class of rapidity-dependent jet veto observables, focusing on Higgs production via gluon gluon fusion (ggF) at the LHC. Experimental analyses at the LHC often use jet binning and jet selection cuts to distinguish between different Higgs production mechanisms and to separate signal from backgrounds. Such jet vetoes and jet selection cuts induce Sudakov logarithms of the ratio of the veto scale and the hard scale in the process. In the limit of very tight jet vetoes, these logarithms can become large and introduce large uncertainties in the FO predictions of cross sections. By resumming these large logarithms to all orders, the perturbative uncertainties can be considerably reduced. Whether in FO or resummed predictions, a consistent treatment of uncertainties in different jet bins is required. In the first part of the thesis, we studied in detail the perturbative uncertainties in the NLO predictions for pp→H+2-jets via ggF for the vector boson fusion (VBF) selection cuts used by ATLAS and CMS in their H→γγ analyses. Our study shows that, while applying strong restrictions on additional emissions is expected to increase the sensitivity to the VBF signal and reduce the ggF contribution, it is not necessarily beneficial for distinguishing the VBF and ggF production modes because of the quickly increasing ggF uncertainties. In the second part of the thesis, we introduce rapidity-dependent jet veto observables for which the transverse momentum of a jet is weighted by a smooth function of the jet rapidity

  14. Laboratory Studies of Astrophysical Jets

    CERN Document Server

    Ciardi, Andrea

    2009-01-01

    Jets and outflows produced during star-formation are observed on many scales: from the "micro-jets" extending a few hundred Astronomical Units to the "super-jets" propagating to parsecs distances. Recently, a new "class" of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged in the laboratory as a complementary tool to study these complex astrophysical flows. Here I will discuss and review the recent work done on "simulating" protostellar jets in the laboratory using z-pinch machines.

  15. QCD-aware partonic jet clustering for truth-jet flavour labelling

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Pollard, Chris [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)

    2016-02-15

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  16. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    Science.gov (United States)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  17. Impact of various rpm levels on rotary and pendulum spreaders performance:

    OpenAIRE

    Muršec, Bogomir; Ploj, Anton

    2002-01-01

    The paper demonstrates how different levels of shaft revolutions affect the performance of mono-disk rotary and pendulum fertiliser widely used by Slovenian farmers. Tests have been conducted on mono-disk rotary spreader manufactured by the Italian company AGREX, and on a pendulum spreader manufactured by Slovenian companz CREINA fr5om Kranj. To establish the impact of different revolution levels on the transverse spread-dispersion, spread width and flow of a fertiliser, both types of spreade...

  18. Acoustics of Jet Surface Interaction - Scrubbing Noise

    Science.gov (United States)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  19. Magnetized plasma jets in experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  20. Experimental performance and feasibility of a miniature single-degree-of-freedom rotary joint with integrated IPMC actuator

    Science.gov (United States)

    Manley, Sean; McDaid, Andrew; Aw, Kean; Xie, Shane; Haemmerle, Enrico

    2009-03-01

    Ionic Polymer Metal Composite (IPMC) materials are bending actuators that can achieve large tip displacements at voltages less than 10V, but with low force output. Their advantages over traditional actuators include very low mass and size; flexibility; direct conversion of electricity to mechanical energy; biocompatibility; and the potential to build integrated sensing/actuation devices, using their inherent sensing properties. It therefore makes sense to pursue them as a replacement to traditional actuators where the lack of force is less significant, such as micro-robotics; bio-mimetics; medical robotics; and non-contact applications such as positioning of sensors. However, little research has been carried out on using them to drive mechanisms such as the rotary joints. This research explores the potential for applying IPMC to driving a single degree-of-freedom rotary mechanism, for a small-force robotic manipulator or positioning system. Practical issues such as adequate force output and friction are identified and tackled in the development of the mechanical apparatus, to study the feasibility of the actuator once attached to the mechanism. Rigid extensions are then applied to the tip of the IPMC, as well as doubling- and tripling the actuators in a stack to increase force output. Finally, feasibility of the entire concept is considered by comparing the maximum achievable forces and combining the actuator with the mechanism. It is concluded that while the actuator is capable of moving the mechanism, it is non-repeatable and does not achieve a level that allows feedback control to be applied.

  1. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    M Sivapragasam; M D Deshpande; S Ramamurthy; P White

    2014-06-01

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of linear growth of the jet penetration length for the unconfined case when the momentum flux ratio is small. However, for the high momentum flux ratio case corresponding to the confinement, the jet penetration length is shown to reach an asymptotic limit of about 3.57 times the confining duct diameter. This conclusion is contrary to the existing results which predict indefinite growth. A simple modification of an existing similarity solution for the jet in an unconfined counterflow provides a convenient framework for presenting the results of the flowfield and jet penetration length.

  2. Pileup subtraction for jet shapes.

    Science.gov (United States)

    Soyez, Gregory; Salam, Gavin P; Kim, Ji-Hun; Dutta, Souvik; Cacciari, Matteo

    2013-04-19

    Jets in high energy hadronic collisions often contain the fingerprints of the particles that produced them. Those fingerprints, and thus the nature of the particles that produced the jets, can be read off with the help of quantities known as jet shapes. Jet shapes are, however, severely affected by pileup, the accumulation in the detector of the residues of the many simultaneous collisions taking place in the Large Hadron Collider (LHC). We introduce a method to correct for pileup effects in jet shapes. Relative to earlier, limited approaches, the key advance resides in its full generality, achieved through a numerical determination, for each jet, of a given shape's susceptibility to pileup. The method rescues the possibility of using jet shapes in the high pileup environment of current and future LHC running, as we show with examples of quark-gluon discrimination and top tagging.

  3. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    Science.gov (United States)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  4. Preliminary study on rotary ultrasonic machining of Bk-7 optical glass rod

    International Nuclear Information System (INIS)

    This paper presents an experimental observation on rotary ultrasonic machining (RUM) of BK7 optical glass rod. BK7 is a common technical optical glass for high quality optical components due to its high linear optical transmission in the visible range and is chemically stable. RUM is a hybrid machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining (USM) and it is non-thermal, non-chemical, creates no change in the microstructure, chemical or physical properties of the work piece. In the RUM, a controlled static load is applied to the rotating core drill with metal bonded diamond abrasive and is ultrasonically vibrated in the axial direction. A water-soluble coolant was used to cool the tool and sample during machining processes. By using DOE (Design of Experiment) approach, the effect of spindle speed and feed rate to the ultrasonic machinability had been developed. The main effects and two-factor interactions of process parameters (spindle speed) and feed rate) on output variables (MRR, surface roughness, opaqueness, chipping thickness and chipping size) are studied. (author)

  5. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    Science.gov (United States)

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites.

  6. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review

    International Nuclear Information System (INIS)

    From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs. (topical review)

  7. A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation

    Institute of Scientific and Technical Information of China (English)

    Ying-xiang LIU; Jun-kao LIU; Wei-shan CHEN; Xiao-hui YANG

    2012-01-01

    This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring.In the new design,20 trapezoid cross section slots are cut symmetrically in the outer surface of a thick duralumin alloy ring,where 20 PZT stacks are nested.In each slot,two wedging blocks are set between the PZT stack and the two sides of the slot respectively to apply preloading on the PZT ceramics.Two radial bending modes of the stator that have a phase difference of a quarter wavelength on space are generated by using the d33 operating mode of the PZT elements,and then a flexural traveling wave is formed by the superimposing of two standing waves whose amplitudes are equal and phases are different by 90° temporally.Two conical rotors are pressed to each end of the ring type stator by a coiled spring.The finite element method (FEM) simulation is developed to validate the feasibility of the proposed motor.The maximal speed and torque of the prototype are tested to be 126 r/min and 0.8 N·m,respectively.

  8. Plasma confinement at JET

    Science.gov (United States)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is underway and JET has successfully achieved H 98(y,2)  =  1 for plasma currents up

  9. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  10. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  11. Numerical Study of Submerged Vertical Plane Jets Under Progressive Water Surface Waves

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-chao; WANG Ling-ling

    2005-01-01

    When wastewater is discharged into a coastal area through an outfall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier-Stokes equations (NSE) in the σ-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different cases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the re-circulation is about 1.5~2.4 depth of water. The velocity profile of the jet is self-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant α is 0.100 and 0.105 for pure momentum jets with Re numbers 1025 and 2050. The value of α increases from 0.130 to 0.147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.

  12. Experiments in axisymmetric supersonic jets

    Science.gov (United States)

    Moore, Cyrille Dennis

    An experimental study of the effects of exit Mach number and density ratio on the development of axisymmetric jets is described in this thesis. Jet exit Mach numbers of 1.41, 2.0, and 3.0, were studied for jets of helium, argon, and nitrogen. The jets exit into a gas at rest (velocity ratio = 0), in order to better isolate the effects of compressibility and density ratio. Density ratios vary from 0.23 to 5.5.In order to generate shock free-jets, unique nozzles were designed and constructed for each gas and Mach number combination. A plating method for the construction of the nozzles was developed to ensure high-accuracy and a good surface finish at a cost significantly less than direct-machining techniques.The spreading rate of the jet for several downstream locations is measured with a pitot probe. Centerline data are used to characterise the length of the potential core of the jet, which correlates well with the relative spreading rates. Limited frequency data is obtained through the use of piezo-resistive pressure probes. This method is promising for flows that are not conducive to hot-wire probes.Spark shadography is used to visualize both the mean and instantaneous flow, with the minimum spark time being 20 nanoseconds. The convection velocity of large-scale disturbances is estimated from the visible Mach-type acoustic waves emanating from the jet.For a wide range of jet Mach and Reynolds numbers, the convection velocity of the large scale disturbances in the potential core region of the jet is approximately 0.8 times the jet velocity, the approximate velocity of the first helical instability mode of the jet.The main objectives of the present work were to investigate the effects of compressibility and density on the initial development of the axisymmetric jet. Although the data are not sufficient to determine if the convective Mach number concept used in 2-d shear layer research will work in the case of an axisymmetric jet, it is clear that the axisymmetric

  13. Jet impact force studies

    International Nuclear Information System (INIS)

    In sludge procesing and waste removal operations, settled sludge is resuspended using turbulent jets from centrifugal slurry pumps. The effects of these turbulent jets on cooling coil structures in waste tanks have been examined to determine if the use of slurry pumps will lead to damage of the coils or their bottom supports. Force equations and direct force measurements were used to examine three slurry pumps and three tank cooling coil structures. The three pumps were: the Bingham-Willamette Company (BWC) pump; the Quad Volute pump; and the single nozzle pump. The three cooling coil structures were: The Type III tank design with angle iron bottom supports (yield stress - 36,000 psi), the Type I and II tank design with steel rod guides as bottom support (yield stress - 24,000 psi), and the cooling coil bundles found in some Type III tanks such as tanks 32 and 35 (yield stress - 36,000 psi)

  14. SparkJet Efficiency

    Science.gov (United States)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  15. Interacting Jets from Binary Protostars

    CERN Document Server

    Murphy, G C; O'Sullivan, S; Spicer, D; Bacciotti, F; Rosén, A

    2007-01-01

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly pa...

  16. Micromachined chemical jet dispenser

    Energy Technology Data Exchange (ETDEWEB)

    Swierkowski, S.; Ciarlo, D.

    1996-05-13

    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  17. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  18. Plasma jet takes off.

    OpenAIRE

    Frazer, L

    1999-01-01

    Thanks to a series of joint research projects by Los Alamos National Laboratory, Beta Squared of Allen, Texas, and the University of California at Los Angeles, there is now a more environmentally sound method for cleaning semiconductor chips that may also be effective in cleaning up chemical, bacterial, and nuclear contaminants. The Atmospheric Pressure Plasma Jet uses a type of ionized gas called plasma to clean up contaminants by binding to them and lifting them away. In contrast to the cor...

  19. Nonlinear vibration and stability of a rotary truncated conical shell with intercoupling of high and low order modals

    Science.gov (United States)

    Chen, C.; Dai, L.

    2009-01-01

    Truncated conical shell is an important structure that has been widely applied in many engineering fields. The present paper studies the internal dynamic properties of a truncated rotary conical shell and considers the intercoupling of the high and low order modals by utilizing the Harmonic Balance Method. To disclose the detailed intercoupling characteristics of the high order and low order modals of the system, a truncated shallow shell is studied and the internal response properties of the system are investigated by using the Multiple Scale Method. The nonlinear dynamic stabilities of the system are also analyzed using the Incrementation Harmonic Balance Method. Abundant dynamic characteristics are found in the research. The research results show that the high order modals of rotating conical shells have a significant effect on the curves of vibration amplitude and frequency of the shells.

  20. Stationary Relativistic Jets

    CERN Document Server

    Komissarov, S S; Lyutikov, M

    2015-01-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...

  1. Experimental investigation of a free-surface turbulent jet with Coanda effect

    Science.gov (United States)

    Miozzi, M.; Lalli, F.; Romano, G. P.

    2010-07-01

    The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure ( i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.

  2. Dynamic of astrophysical jets in the complex octonion space

    Science.gov (United States)

    Weng, Zi-Hua

    2015-06-01

    The paper aims to consider the strength gradient force as the dynamic of astrophysical jets, explaining the movement phenomena of astrophysical jets. J. C. Maxwell applied the quaternion analysis to describe the electromagnetic theory. This encourages others to adopt the complex quaternion and octonion to depict the electromagnetic and gravitational theories. In the complex octonion space, it is capable of deducing the field potential, field strength, field source, angular momentum, torque, force and so forth. As one component of the force, the strength gradient force relates to the gradient of the norm of field strength only, and is independent of not only the direction of field strength but also the mass and electric charge for the test particle. When the strength gradient force is considered as the thrust of the astrophysical jets, one can deduce some movement features of astrophysical jets, including the bipolarity, matter ingredient, precession, symmetric distribution, emitting, collimation, stability, continuing acceleration and so forth. The above results reveal that the strength gradient force is able to be applied to explain the main mechanical features of astrophysical jets, and is the competitive candidate of the dynamic of astrophysical jets.

  3. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed. PMID:23097986

  4. Chaotic Study in a Large Jetting Fluidized Bed with a Vertical Nozzle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Jetting fluidized beds have been widely applied in such processes as catalytic and flame reactions, combustion and gasification of coal, treatment of waste, cleaning of dusty gases, coating and granulation[1-3]. The flow characteristics of jetting fiuidized beds are relevant to the stable gas jet and the high rates of heat transfer and mass transfer, and the fast chemical reaction pro cess near the gas distributor.

  5. Experimental and numerical analyses of micro rotary shaft pumps

    International Nuclear Information System (INIS)

    This paper presents experimental and numerical results obtained with micro rotary shaft pumps (RSP). Impellers with a diameter of 2.5 mm, different outlet widths and blade number were coupled with semicircular volutes with different eccentricities. Experimental data for every impeller–volute couple were reported and include the flow rate, head and overall efficiency. Different rotational speeds were tested up to 24 000 rpm, obtaining pressure increases up to 5.7 kPa and flow rates up to 80 ml min−1. The non-dimensional performance was also computed obtaining the maximum head coefficient of 0.49 and the maximum flow coefficient of 0.138. Furthermore, experimental data were compared with 3D time-dependent CFD simulations. The focus of the simulation was to study the flow field structure inside the impeller and in the volute. Moreover, CFD data allowed for the calculation of the hydraulic efficiency of the pump and for the impeller to highlight the stator rotor interference influence on the pump characteristics, as well as to show the distribution of losses inside the volute

  6. Resolving Two Dimensional Angular Velocity within a Rotary Tumbler

    Science.gov (United States)

    Helminiak, Nathaniel; Helminiak, David; Cariapa, Vikram; Borg, John

    2015-11-01

    In this study, a horizontally oriented cylindrical tumbler, filled at variable depth with cylindrical media, was rotated at various constant speeds. A monoplane layer of media was photographed with a high-speed camera and images were post processed with Particle Tracking Velocimetry (PTV) algorithms in order to resolve both the translational and rotational flow fields. Although the translational velocity fields have been well characterized, contemporary resources enabled the ability to expand upon and refine data regarding rotational characteristics of particles within a rotary tumbler. The results indicate that particles rotate according to intermittent no-slip interactions between the particles and solid body rotation. Particles within the bed, not confined to solid body rotation, exhibited behavior indicative of gearing between particles; each reacting to the tangential component of contact forming rotation chains. Furthermore, it was observed that solid body interactions corresponded to areas of confined motion, as areas of high interaction dissuaded no-slip rotation, while areas of developing flow tended towards no-slip rotation. Special thanks to: NASA Wisconsin Space Grant Consortium Program as well as Marquette University OPUS College of Engineering.

  7. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    Science.gov (United States)

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate.

  8. Gas phase dispersion in a small rotary kiln

    International Nuclear Information System (INIS)

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m3/h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds

  9. Energy and exergy analysis in an asphalt plant's rotary dryer

    International Nuclear Information System (INIS)

    In this paper, energy and exergy analyses of a rotary dryer employed in a Hot Mix Asphalt (HMA) plant for heating and drying of the aggregates in the mixture is presented. In the analysis, the exergy method in addition to the more conventional energy analysis, is employed to identify and evaluate the thermodynamic losses. The results show that, at design conditions, the plant performs with energy and exergy efficiencies of 0.89 and 0.18, respectively. The energy losses are mainly due to the flue gases. The exergy distribution indicates that the combustion and the heat transfer at different temperatures in the burner yield the highest exergy destruction in the process. A parametric study is conducted for the plant under various operational production parameters, including different humidities of the aggregates and filler content in aggregates, working temperatures and ambient conditions, in order to determine the parameters that affect the plant performance. It is shown that the solids humidity has a great impact on energy requirements. A better and sustainable use of the heat source employed in the dryer is proposed to avoid the high irreversibilities found. Furthermore, operating corrections in the mix or in the exhaust gas temperature are proposed to optimize the performance of the plant. - Research highlights: → Identify main energy losses and irreversibilities in the dryer of an asphalt plant. → Optimize operating conditions in an Asphalt plant. → Improve energy savings and availability of the drying and heating process. → Encourage the use of a cogeneration system.

  10. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    Science.gov (United States)

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate. PMID:26614168

  11. Cutting efficiency of four different rotary nickel: Titanium instruments

    Directory of Open Access Journals (Sweden)

    Doglas Cecchin

    2011-01-01

    Full Text Available Aim : The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods : The number of samples was 10 for each group (n = 10. The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results : The analysis of variance (ANOVA showed that there was a statistically significant difference among the studied groups. The Tukey′s test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022, NiTi Tee (0.00368 ± 0.00023, and Profile (0.00351 ± 0.00026 presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05. The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003 (P < 0.05. Conclusions : It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments.

  12. Angular deflection of rotary nickel titanium files: a comparative study

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2009-12-01

    Full Text Available A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF, Profile, K3 and M2 (NRT. All instruments tested had the same dimensions (taper 0.06 and tip size 25. Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05, than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files.

  13. Study on Efficiency Improvement of Hermetic Rotary Compressors

    Science.gov (United States)

    Matsushima, Masatoshi; Nomura, Tomohiro; Nishimura, Nobuya; Iyota, Hiroyuki; Inaba, Koichi

    This research was conducted in order to better identify the torque loss of a hermetic rotary compressor for one revolution, and to directly obtain the actual shaft power of the compressor. A testing compressor and a gas cycle type simplified calorimeter were developed for direct measurement of the compressor torque. A strain gauge was stuck on the shaft between a compressor and a motor. Thus, the compressor torque could be measured directly by the strain gauge and data were transmitted to out of the compressor's vessel through a slip ring. Rotational speed of the compressor was measured by using a gap sensor also. From these measurement results, actual shaft power was calculated experimentally. On the other hand, effective compressive torque for compressing refrigerant gas was predicted theoretically. From both experimental and theoretical results, torque loss of the compressor was determined as the difference of the compressor torque from the effective compressive torque. Consequently, a loss of over-compression could be revealed from the torque loss experimentally. Furthermore, overall adiabatic efficiencies of compressors obtained by the actual shaft power were 1.1∼3.5% higher than former overall adiabatic efficiencies obtained by the motor output.

  14. Roadside IED detection using subsurface imaging radar and rotary UAV

    Science.gov (United States)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  15. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    Science.gov (United States)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  16. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    Science.gov (United States)

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  17. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  18. Magnetic reconnection acceleration of astrophysical jets for different jet geometries

    International Nuclear Information System (INIS)

    The acceleration mechanisms of relativistic jets are of great importance for understanding various astrophysical phenomena such as gamma-ray bursts, active galactic nuclei and microquasars. One of the most popular scenarios is that the jets are initially Poynting-flux dominated and succumb to magnetohydrodynamic instability leading to magnetic reconnections. We suggest that the reconnection timescale and efficiency could strongly depend on the geometry of the jet, which determines the length scale on which the orientations of the field lines change. In contrast to a usually-assumed conical jet, the acceleration of a collimated jet can be found to be more rapid and efficient (i.e. a much more highly saturated Lorentz factor can be reached) while the jets with lateral expansion show the opposite behavior. The shape of the jet could be formed due to the lateral squeezing on the jet by the stellar envelope of a collapsing massive star or the interaction of the jet with stellar winds. (paper)

  19. Dynamic of astrophysical jets in the complex octonion space

    CERN Document Server

    Weng, Zi-Hua

    2015-01-01

    The paper aims to consider the strength gradient force as the dynamic of astrophysical jets, explaining the movement phenomena of astrophysical jets. J. C. Maxwell applied the quaternion analysis to describe the electromagnetic theory. This encourages others to adopt the complex quaternion and octonion to depict the electromagnetic and gravitational theories. In the complex octonion space, it is capable of deducing the field potential, field strength, field source, angular momentum, torque, force and so forth. As one component of the force, the strength gradient force relates to the gradient of the norm of field strength only, and is independent of not only the direction of field strength but also the mass and electric charge for the test particle. When the strength gradient force is considered as the thrust of the astrophysical jets, one can deduce some movement features of astrophysical jets, including the bipolarity, matter ingredient, precession, symmetric distribution, emitting, collimation, stability, c...

  20. High Multiplicity Searches at the LHC Using Jet Masses

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; /SLAC /Stanford U., Appl. Phys. Dept.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Lisanti, Mariangela; /Princeton U.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-04-24

    This article introduces a new class of searches for physics beyond the Standard Model that improves the sensitivity to signals with high jet multiplicity. The proposed searches gain access to high multiplicity signals by reclustering events into large-radius, or 'fat', jets and by requiring that each event has multiple massive jets. This technique is applied to supersymmetric scenarios in which gluinos are pair-produced and then subsequently decay to final states with either moderate quantities of missing energy or final states without missing energy. In each of these scenarios, the use of jet mass improves the estimated reach in gluino mass by 20% to 50% over current LHC searches.

  1. The Influence of the Supporting Wheel Deflection of Large-scale Rotary Kiln on Maximum Contact Stress

    Institute of Scientific and Technical Information of China (English)

    Li Xuejun; Qiu Weiliang; Yuan Yincai; Li Ping

    2006-01-01

    The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle,which probably will result in accidents correlating to safety. This will provide theory conference for the design,the operating condition analysis and adjusting of the rotary kiln.

  2. Rotary furnace technology - an established heading and heat treatment application; Die Drehherdofentechnologie - Eine etablierte Anwendung zur Erwaermung und Waermebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, F.; Schupe, W. [LOI Thermprocess GmbH, Essen (Germany)

    2004-09-01

    In recent years rotary furnace technology has been increasingly used in heat treatment, supplanting conventional pusher furnaces. This process is additionally favoured by the demands of inline production, as rotary furnaces are particularly suitable for loading and unloading at one and the same point. The higher availability of rotary furnaces is an especially salient factor in inline production. Starting out from the original uses of rotary furnaces in the steel industry, various heat treatment applications are demonstrated with a particular eye to cost savings and reduced energy consumption and CO{sub 2} emission. (orig.)

  3. Wall jets created by single and twin high pressure jet impingement

    Science.gov (United States)

    Miller, P.; Wilson, M.

    1993-03-01

    An extensive experimental investigation into the nature of the wall jets produced by single and twin normal jet impingement has been undertaken. Wall jet velocity profiles have been recorded up to 70 jet diameters from the impingement point, at pressures representative of current VStol technology. The tests used fixed convergent nozzles, with nozzle height and spacing and jet pressure being varied. Single jet impingement displays a consistent effect of nozzle height on wall jet development. For twin jet cases a powerful reinforcement exists along the wall jet interaction plane. Remote from the interaction plane the wall jets are weaker than those produced by a single jet impingement.

  4. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  5. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  6. Control of a Circular Jet

    CERN Document Server

    Gohil, Trushar B; Muralidhar, K

    2010-01-01

    The present study report direct numerical simulation (DNS) of a circular jet and the effect of a large scale perturbation at the jet inlet. The perturbation is used to control the jet for increased spreading. Dual-mode perturbation is obtained by combining an axisymmetric excitation with the helical. In the fluid dynamics videos, an active control of the circular jet at a Reynolds number of 2000 for various frequency ratios (both integer and non-integer) has been demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on a plane is evident. However, for a non-integer frequency ratio, the axisymmetric jet is seen to bloom in all directions.

  7. Fragmentation Function and Jet Shapes

    CERN Document Server

    Asaduzzaman, Muhammad

    2015-01-01

    In this project work, fragmentation function, jet shapes for hard particles and jet shapes for soft particles have been calculated in different $P_{t}$ range using Pythia Monte-Carlo Simulation at $\\sqrt{s}=7$ TeV. For Jet reconstruction, anti-$k_{t}$ algorithm has been used with jet resolution parameter R=0.6 and with momentum cut of particles at 4 GeV. Pseudorapidity was taken to be $|\\eta| 4$ GeV) have been studied. For verification of the working procedure, jet shape for all particles were also calculated with no transverse momentum cut during jet reconstruction and the results were compared to the results of ATLAS measurements. Statistical errors were computed and is well-matched with the order of error with ATLAS measurements.

  8. V+jets production at the CMS

    Directory of Open Access Journals (Sweden)

    Bilin Bugra

    2014-04-01

    Full Text Available Measurements of Vector Boson production in association with jets are presented, using p-p collision data at √s = 7 TeV. The measurements presented include Z + jets azimuthal correlations, event shapes, vector boson + jets differential cross section measurements, hard double-parton scattering using W + jets events and electroweak Z + forward - backward jet production.

  9. Plasma Waves and Jets from Moving Conductors

    CERN Document Server

    Gralla, Samuel E

    2016-01-01

    We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.

  10. Plasma waves and jets from moving conductors

    Science.gov (United States)

    Gralla, Samuel E.; Zimmerman, Peter

    2016-06-01

    We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfvén outflow. Remarkably, this outflow can be written down in closed form for an arbitrary time-dependent, nonaxisymmetric incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.

  11. Jet shapes in dijet events at the LHC in SCET

    Science.gov (United States)

    Hornig, Andrew; Makris, Yiannis; Mehen, Thomas

    2016-04-01

    We consider the class of jet shapes known as angularities in dijet production at hadron colliders. These angularities are modified from the original definitions in e + e - collisions to be boost invariant along the beam axis. These shapes apply to the constituents of jets defined with respect to either k T -type (anti- k T , C/ A, and k T ) algorithms and cone-type algorithms. We present an SCET factorization formula and calculate the ingredients needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-global logarithms are not large. The factorization formula involves previously unstudied "unmeasured beam functions," which are present for finite rapidity cuts around the beams. We derive relations between the jet functions and the shape-dependent part of the soft function that appear in the factorized cross section and those previously calculated for e + e - collisions, and present the calculation of the non-trivial, color-connected part of the soft-function to O({α}_s) . This latter part of the soft function is universal in the sense that it applies to any experimental setup with an out-of-jet p T veto and rapidity cuts together with two identified jets and it is independent of the choice of jet (sub-)structure measurement. In addition, we implement the recently introduced soft-collinear refactorization to resum logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects. While our results are valid for all 2 → 2 channels, we compute explicitly for the qq' → qq' channel the color-flow matrices and plot the NLL resummed differential dijet cross section as an explicit example, which shows that the normalization and scale uncertainty is reduced when the soft function is refactorized. For this channel, we also plot the jet size R dependence, the p T cut dependence, and the dependence on the angularity parameter a.

  12. Heavy quark fragmenting jet functions

    International Nuclear Information System (INIS)

    Heavy quark fragmenting jet functions describe the fragmentation of a parton into a jet containing a heavy quark, carrying a fraction of the jet momentum. They are two-scale objects, sensitive to the heavy quark mass, mQ, and to a jet resolution variable, τN. We discuss how cross sections for heavy flavor production at high transverse momentum can be expressed in terms of heavy quark fragmenting jet functions, and how the properties of these functions can be used to achieve a simultaneous resummation of logarithms of the jet resolution variable, and logarithms of the quark mass. We calculate the heavy quark fragmenting jet function GQQ at O(αs), and the gluon and light quark fragmenting jet functions into a heavy quark, GgQ and GlQ, at O(αs2). We verify that, in the limit in which the jet invariant mass is much larger than mQ, the logarithmic dependence of the fragmenting jet functions on the quark mass is reproduced by the heavy quark fragmentation functions. The fragmenting jet functions can thus be written as convolutions of the fragmentation functions with the matching coefficients Jij, which depend only on dynamics at the jet scale. We reproduce the known matching coefficients Jij at O(αs), and we obtain the expressions of the coefficients JgQ and JlQ at O(αs2). Our calculation provides all the perturbative ingredients for the simultaneous resummation of logarithms of mQ and τN

  13. Impeller for Water Jet Propulsion

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  14. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    Science.gov (United States)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  15. Jet Suppression Measured in ATLAS

    CERN Document Server

    Citron, Zvi Hirsh; The ATLAS collaboration

    2015-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced, and jets propagating through this medium are known to suffer energy loss. This results in a lower yield of jets emerging from the medium than expected in the absence of medium effects, and thus modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. Parton showers initiated by quarks tend to have fewer fragments carrying a larger fraction of the total jet energy than those resulting from gluons. In this talk, the latest ATLAS results on single jet suppression will be presented. Measurements of the nuclear modification factor, RAA, for fully reconstructed jets are shown. The rapidity dependence of jet suppression is discussed, which is sensitive to the relative energy loss between quark and gluon jets. New measurements of single hadron suppression out to pT~150 GeV ...

  16. Opening Angles of Collapsar Jets

    OpenAIRE

    Mizuta, Akira; Ioka, Kunihito

    2013-01-01

    We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by $\\theta_j \\sim 1/5 \\Gamma_{0}$, and infer the initial Lorentz factor of the jet at the central engine, $\\Gamma_0$, is a few for existing observations of $\\theta_j$. The jet keeps the Lorentz factor low inside the star by converging cylindricall...

  17. Jet physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    S. Seidel

    2002-05-29

    Recent analyses by the CDF and D0 Collaborations of jet data produced in p{bar p} collisions at the Fermilab Tevatron Collider are presented. These include new studies of the inclusive jet production cross section, a measurement of the strong coupling constant, the first measurement of subjet multiplicity of quark and gluon jets, examination of ratios of multijet cross sections and their implications for choice of renormalization scale, and a study of charged jet evolution and energy flow in the underlying event. The results are compared to theoretical predictions.

  18. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    Science.gov (United States)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  19. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  20. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles

    Science.gov (United States)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.

    2016-10-01

    This paper presents the development of an innovative seat suspension working with a rotary magnetorheological (MR) fluid damper. Compared with a conventional linear MR damper, the well-designed rotary MR damper possesses several advantages such as usage reduction of magnetorheological fluid, low sealing requirements and lower costs. This research starts with the introduction of the seat suspension structure and the damper design, followed by the property test of the seat suspension using an MTS machine. The field-dependent property, amplitude-dependent performance, and the frequency-dependent performance of the new seat suspension are measured and evaluated. This research puts emphasis on the evaluation of the vibration reduction capability of the rotary MR damper by using both simulation and experimental methods. Fuzzy logic is chosen to control the rotary MR damper in real time and two different input signals are considered as vibration excitations. The experimental results show that the rotary MR damper under fuzzy logic control is effective in reducing the vibrations.

  1. Acoustics of dual-stream high-speed jets

    Science.gov (United States)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  2. Parametric calculations of plasma jets generated by microdischarges

    Science.gov (United States)

    Foletto, M.; Boeuf, J. P.; Pitchford, L. C.

    2014-10-01

    ``Guided streamers'' or ``plasma jets'' can be generated in open air by applying rf or impulse voltages to a microdischarge through which there is a flow of helium. For flow conditions such that a helium column surrounded by air extends some distance (centimeters) past the exit of the microdischarge, a plasma jet can be initiated. Previous works have shown that this is essentially a streamer propagating in the easily-ionized helium column and impeded from branching by the surrounding air. For many applications, it is of interest to understand the parameters controlling the properties of the plasma jet. To this end, we present results from a series of parametric calculations using our previously published model to identify the influence of the microdischarge configuration on the generation, propagation, and properties of the plasma jet. We focus mainly on a geometry with hollow, concentric electrodes separated by a dielectric tube corresponding to the experiments of Douat et al., and we vary the dimensions and relative off-set of the electrodes, applying an impulse voltage or the experimental waveform to the inner electrode. For the same applied voltage waveform, parameters which influence the electric field and electron density in the plasma jet are the dielectric permittivity, the tube diameter, and the dielectric length. Support by the French National Research Agency project PAMPA.

  3. Boosted Jets at the LHC

    Science.gov (United States)

    Larkoski, Andrew

    2015-04-01

    Jets are collimated streams of high-energy particles ubiquitous at any particle collider experiment and serve as proxy for the production of elementary particles at short distances. As the Large Hadron Collider at CERN continues to extend its reach to ever higher energies and luminosities, an increasingly important aspect of any particle physics analysis is the study and identification of jets, electroweak bosons, and top quarks with large Lorentz boosts. In addition to providing a unique insight into potential new physics at the tera-electron volt energy scale, high energy jets are a sensitive probe of emergent phenomena within the Standard Model of particle physics and can teach us an enormous amount about quantum chromodynamics itself. Jet physics is also invaluable for lower-level experimental issues including triggering and background reduction. It is especially important for the removal of pile-up, which is radiation produced by secondary proton collisions that contaminates every hard proton collision event in the ATLAS and CMS experiments at the Large Hadron Collider. In this talk, I will review the myriad ways that jets and jet physics are being exploited at the Large Hadron Collider. This will include a historical discussion of jet algorithms and the requirements that these algorithms must satisfy to be well-defined theoretical objects. I will review how jets are used in searches for new physics and ways in which the substructure of jets is being utilized for discriminating backgrounds from both Standard Model and potential new physics signals. Finally, I will discuss how jets are broadening our knowledge of quantum chromodynamics and how particular measurements performed on jets manifest the universal dynamics of weakly-coupled conformal field theories.

  4. Improvement and Application of Rotated Jet Fan in Coal Mine%矿用旋转射流气动风机的改进和应用

    Institute of Scientific and Technical Information of China (English)

    吕乐礼

    2015-01-01

    介绍了煤矿工作面上隅角旋转射流气动风机的新颖设计理念、技术特点和应用情况.该风机能有效吹排煤矿工作面上隅角积聚的瓦斯和有害气体,是煤矿安全生产,改善局部劳动工作环境的一种新的技术设备.%The paper presented new design concept,technology character,application of rotary jet fan in corner of coal mine surface.The jet fan blows away the gas and noxious gas gathered in the coal mine surface.The jet fan as a new machinery had improved the coal mine work environment and the coal mine producing safety.

  5. Jet Vectoring Control Using a Novel Synthetic Jet Actuator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various applications, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.

  6. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point. PMID:16126584

  7. Global axial-torsional dynamics during rotary drilling

    Science.gov (United States)

    Gupta, Sunit K.; Wahi, Pankaj

    2016-08-01

    We have studied the global dynamics of the bottom hole assembly (BHA) during rotary drilling with a lumped parameter axial-torsional model for the drill-string and a linear cutting force model. Our approach accounts for bit-bounce and stick-slip along with the regenerative effect and is independent of the drill-string and the bit-rock interaction model. Regenerative axial dynamics due to variable depth of cut is incorporated through a functional description of the cut surface profile instead of a delay differential equation with a state-dependent delay. The evolution of the cut surface is governed by a nonlinear partial differential equation (PDE) which is coupled with the ordinary differential equations (ODEs) governing the longitudinal and angular dynamics of the BHA. The boundary condition for the PDE captures multiple regeneration in the event of bit-bounce. Interruption in the torsional dynamics is included by considering separate evolution equations for the various states during the stick period. Finite-dimensional approximation for our coupled PDE-ODE model has been obtained and validated by comparing our results against existing results. Bifurcation analysis of our system reveals a supercritical Hopf bifurcation leading to periodic vibrations without bit-bounce and stick-slip which is followed by solutions involving bit-bounce or stick-slip depending on the operating parameters. Further inroads into the unstable regime leads to a variety of complex behavior including co-existence of periodic and chaotic solutions involving both bit-bounce and stick-slip.

  8. Investigation of heat transfer processes involved liquid impingement jets: a review

    Directory of Open Access Journals (Sweden)

    M. Molana

    2013-09-01

    Full Text Available This review reports research on liquid impingement jets and the abilities, limitations and features of this method of heat transfer. Some available and important correlations for Nusselt number are collected here. Also we demonstrate the capability of nanofluids to be applied in heat transfer processes involved liquid impingement jets.

  9. Multiple impinging jet arrays. An experimental study on flow and heat transfer

    NARCIS (Netherlands)

    Geers, L.F.G.

    2004-01-01

    Because of their high efficiency and their ability to provide high heat transfer rates, impinging jets are applied for rapid cooling and heating in a wide variety of industrial processes. However, the physical phenomena controlling the heat transfer from impinging jets are to a large degree unknown.

  10. Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation

    International Nuclear Information System (INIS)

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic

  11. Numerical Analysis of the Flow Field of an Inclined Turbulent Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-jing

    2013-01-01

    A three-dimensional numerical study has been applied to examine the effects of impinging angle of incline impinging jet on heat transfer and flow field characteristic. Other parameters such as nozzle to plate distance and jet velocity and temperature are also examined to investigate their influences on jet flow. The impinging angle in range of 900-650, the nozzle exit-to-plate spacing (H/D) in range of 2 to 10, the Reynolds number in range of 1.27x102 to 1.27x104 and the jet temperature in range of 323K to 773K have been considered in this project.

  12. Viscous flowfields induced by three-dimensional lift jets in ground effect

    Science.gov (United States)

    Bower, W. W.

    1982-01-01

    The turbulent flowfields associated with single and multiple jets impinging on a ground plane are relevant to the aerodynamics of VTOL aircraft in ground effect. These flowfields are computed using the Reynolds equations and a two-equation turbulence model to describe an isolated jet and two interacting jets with fountain formation. Coordinate transformations are employed to apply the boundary conditions for the governing equations in the far field, and a third-order-accurate upwind-difference scheme is used to discretize the resulting system. Flowfield properties calculated for these impinging-jet configurations are presented and compared with experimental data.

  13. NUMERICAL SIMULATION OF ROCK BREAKING MECHANISM WITH HIGH-PRESSURE WATER JET

    Institute of Scientific and Technical Information of China (English)

    NI Hong-jian

    2004-01-01

    Based on the analysis of experimental results, the rock damage model and the damage coupling model suitable for the whole rock breaking process with water jet were established with continuous damage mechanics and micro damage mechanics, and the numerical method was developed with continuum mechanics and the FEM theory. The rock breaking mechanism with water jet was studied systematically with numerical simulation for the first time in the field of water-jet rock breaking. The numerical results agree with the experimental ones which shows that the presented method is reasonable and can reflect the reality of water-jet rock breaking. The conclusion can be applied in practice.

  14. CONTROL OF TWO DIMENSIONAL JETS USING MINIATURE ZERO MASS FLUX JETS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature-scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two-dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.

  15. Virtual MHD Jets on Grids

    DEFF Research Database (Denmark)

    Lery, Thibaut; Combet, Céline; Murphy, G C;

    2005-01-01

    -computing environments. This will help to address complex problems such as magnetohydrodynamic outflows and jets in order to model and numerically simulate them. Indeed, the numerical modeling of plasma jets requires massive computations, due to the wide range of spatial-temporal scales involved. We present here...

  16. Core shifts in blazar jets

    CERN Document Server

    Zdziarski, Andrzej A; Pjanka, Patryk; Tchekhovskoy, Alexander

    2014-01-01

    We study the effect of core shift in jets, which is the dependence of the position of the jet radio core on the frequency. We derive a new method to measure the jet magnetic field based on both the value of the shift and the observed flux, which compliments the standard method assuming equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, $\\simeq$0.1--0.2 divided by the bulk Lorentz factor, $\\Gamma_{\\rm j}$. Larger values, e.g., $1/\\Gamma_{\\rm j}$, would imply very strong departures from equipartition. A small jet opening angle implies in turn the magnetization parameter of $\\ll 1$. We determine the jet magnetic flux taking this effect into account. We find that the average jet magnetic flux is compatible with the model of jet formation due to black-hole spin energy extraction and accretion being magnetically arrested. We calculate the ...

  17. LHCb; LHCb Jet Reconstruction

    CERN Multimedia

    Augusto, O

    2012-01-01

    The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than $4 \\times 10^{32} cm^{-2} s^{-1}$ and the integrated luminosity reached the value of 1.02 $fb^{-1}$ on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test pertubative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space $\\eta \\times \\phi$ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the calo...

  18. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  19. Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor

    Institute of Scientific and Technical Information of China (English)

    XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu

    2014-01-01

    In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.

  20. Strength and reversibility of stereotypes for a rotary control with linear scales.

    Science.gov (United States)

    Chan, Alan H S; Chan, W H

    2008-02-01

    Using real mechanical controls, this experiment studied strength and reversibility of direction-of-motion stereotypes and response times for a rotary control with horizontal and vertical scales. Thirty-eight engineering undergraduates (34 men and 4 women) ages 23 to 47 years (M=29.8, SD=7.7) took part in the experiment voluntarily. The effects of instruction of change of pointer position and control plane on movement compatibility were analyzed with precise quantitative measures of strength and a reversibility index of stereotype. Comparisons of the strength and reversibility values of these two configurations with those of rotary control-circular display, rotary control-digital counter, four-way lever-circular display, and four-way lever-digital counter were made. The results of this study provided significant implications for the industrial design of control panels for improved human performance.

  1. Influence of Additional Tensile Force on Springback of Tube Under Rotary Draw Bending

    Science.gov (United States)

    E, Daxin; Guan, Zhiping; Chen, Jisheng

    2012-11-01

    According to the characteristics of tube under rotary draw bending, the formulae were derived to calculate the springback angles of tubes subjected to combined bending and additional tension. Especially, as the neutral layer (NL) moves to the inner concave surface of the bend, the analytical values agree very well with the experimental results. The analysis shows that the additional tensile force causes the movement of the NL toward the bending center and makes the deformation behavior under rotary draw bending or numerically controlled (NC) bending different with that under pure bending, and also it could enlarge the springback angle if taking the movement of the NL into consideration. In some range, the springback angle would increase slightly with larger wall thickness/diameter ratio and decrease with wall thinning. The investigation could provide reference for the analysis of rotary draw bending, the design of NC tube bender and the related techniques.

  2. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components.

    Science.gov (United States)

    Ketterer, Philip; Willner, Elena M; Dietz, Hendrik

    2016-02-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  3. Design, development and performance of a disk plow combined with rotary blades

    International Nuclear Information System (INIS)

    Disk plow combined with rotary blades, defined as comboplow, is used for soil preparation for planting. The comboplow includes four units: Chassis, concave disk, transmission system and rotary blades. A multiple tillage operation is reduced in a single pass resulting in a potential reduction of soil compaction, labor, fuel cost and saving in time. The comboplow was tested at University Putra Malaysia Research Park, Serdang, Selangor, Malaysia, on three different plots of 675 m2 in the year 2010/2011. The treatments were three types of blade [(straight (S),curved (c) and L-shaped)] and three rotary speeds (130,147and 165 rpm). The parameters were Mean Weight Diameter Dry Basis (MWDd), Mean weight Diameter Wet Basis (MWDW), Aggregate Stability Index (SI) and Instability Index (II).

  4. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    Energy Technology Data Exchange (ETDEWEB)

    Kascheev, Vladimir; Musatov, Nikolay [Joint Stock Company ' A.A. Bochvar High-Technology Scientific Research Institute of Inorganic Materials' (VNIINM), Rogova st., 5A (Russian Federation)

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  5. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    Science.gov (United States)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  6. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

    Science.gov (United States)

    Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik

    2016-01-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  7. Laboratory plasma physics experiments using merging supersonic plasma jets

    International Nuclear Information System (INIS)

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ∼1016 cm-3, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge Z¯ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper

  8. The collimation of magnetic jets by disk winds

    CERN Document Server

    Globus, Noemie

    2016-01-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disk wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disk wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about ten percents of the jet power. For moderate wind powers we find gradual collimation. For strong winds we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfv\\'en crossing times before becoming conical. We estimate that in the later case the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced ...

  9. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  10. Applied Electromagnetics

    International Nuclear Information System (INIS)

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  11. Jet quenching and heavy quarks

    CERN Document Server

    Renk, Thorsten

    2013-01-01

    Jet quenching and more generally physics at high transverse momentum P_T scales is a cornerstone of the heavy-ion physics program at the LHC. In this work, the current understanding of jet quenching in terms of a QCD shower evolution being modified by the surrounding medium is reviewed along with the evidence for this picture from light parton high P_T observables. Conceptually, the same QCD shower description should also be relevant for heavy quarks, but with several important modifications introduced by the quark masses. Thus especially in the limit of small jet energy over quark mass E_jet/m_q, the relevant physics may be rather different from light quark jets, and several attempts to explain the observed phenomenology of heavy quarks at high P_T are discussed here.

  12. Magnetically driven jets and winds

    Science.gov (United States)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  13. Performance of Jet Algorithms in CMS

    CERN Document Server

    CMS Collaboration

    The CMS Combined Software and Analysis Challenge 2007 (CSA07) is well underway and expected to produce a wealth of physics analyses to be applied to the first incoming detector data in 2008. The JetMET group of CMS supports four different jet clustering algorithms for the CSA07 Monte Carlo samples, with two different parameterizations each: \\fastkt, \\siscone, \\midpoint, and \\itcone. We present several studies comparing the performance of these algorithms using QCD dijet and \\ttbar Monte Carlo samples. We specifically observe that the \\siscone algorithm performs equal to or better than the \\midpoint algorithm in all presented studies and propose that \\siscone be adopted as the preferred cone-based jet clustering algorithm in future CMS physics analyses, as it is preferred by theorists for its infrared- and collinear-safety to all orders of perturbative QCD. We furthermore encourage the use of the \\fastkt algorithm which is found to perform as good as any other algorithm under study, features dramatically reduc...

  14. Jet Cleansing: Pileup Removal at High Luminosity

    CERN Document Server

    Krohn, David; Schwartz, Matthew D; Wang, Lian-Tao

    2013-01-01

    One of the greatest impediments to extracting useful information from high luminosity hadron-collider data is radiation from secondary collisions (i.e. pileup) which can overlap with that of the primary interaction. In this paper we introduce a simple jet-substructure technique termed cleansing which can consistently correct for large amounts of pileup in an observable independent way. Cleansing works at the subjet level, combining tracker and calorimeter-based data to reconstruct the pileup-free primary interaction. The technique can be used on its own, with various degrees of sophistication, or in concert with jet grooming. We apply cleansing to both kinematic and jet shape reconstruction, finding in all cases a marked improvement over previous methods both in the correlation of the cleansed data with uncontaminated results and in measures like S/rt(B). Cleansing should improve the sensitivity of new-physics searches at high luminosity and could also aid in the comparison of precision QCD calculations to co...

  15. Evaluation of the dentin remaining after flaring using Gates Glidden drills and Protaper rotary files

    Directory of Open Access Journals (Sweden)

    Bruno Carvalho Sousa

    2011-04-01

    Full Text Available Introduction: The application of rotary instruments for root canal preparation requires a safe, not harming procedure to the root structure remaining. Objective: The purpose of this study was to analyze the root thickness in 28 mesial canals of lower permanent first molars before and after flaring using two rotary instruments: Gates-Glidden drills and ProTaper rotary files. Material and methods: Teeth were embedded into a muffle system. Samples were obtained by cutting 2mm below the furcation. The images were captured by a digital video system (8X and 12X magnification. For image 0.858 mm and 0.486 mm for ProTaper, respectively. No statistical differences were found in the root thickness of specimens shaped with ProTaper rotary files and Gates Glidden drills. Conclusion: The use of Gates-Glidden drills is as safe as ProTaper rotary files with respect to danger of perforation on the distal side of the mesial roots of lower molars.analysis and processing, Pro-Image Plus 4.1 software was used. Each image captured by the computer was gauged, eliminating any possible distortion. Gates-Glidden drills were used in decreasing order of size (GG#4, GG#3, GG#2. ProTaper was used according to the manufacturer’s recommendations, with hand-piece powered by an electric motor with low torque. 5.25% sodium hypochlorite was utilized as irrigant. Results: The average thickness between the canal and furcation before and after use of rotary instruments were: 0.857 mm and 0.561 mm for Gates-Glidden drills, and

  16. Modeling jet and outflow feedback during star cluster formation

    International Nuclear Information System (INIS)

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  17. Differences in torsional performance of single- and multiple-instrument rotary systems for glide path preparation.

    Science.gov (United States)

    Arias, Ana; Singh, Rupinderpal; Peters, Ove A

    2016-05-01

    A new rotary instrument has been developed to simplify the glide path preparation in root canals before shaping procedures. The purpose of this study was to compare the peak torque and force induced by nickel-titanium PathFile multiple-instrument system and the recently developed M-Wire ProGlider single instrument during glide path preparation of mesial root canals in extracted mandibular molars. Each independent canal of eight mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 and #2 or ProGlider after negotiation with a 10 K-file. Tests were run in a standardized fashion using a torque-testing platform. Peak torque (N cm) and force (N) were registered and analysis of variance and Tukey post-hoc tests were applied. Preliminary data for stationary torque at failure were also obtained and compared with peak torque for each instrument. PathFile #1 and #2 instruments showed statistically lower peak torque (p = 0.001) and peak force (p = 0.008) than ProGlider. Torque at failure according to ADA No. 28/ISO 36030-1 was not significantly different from peak torque during glide path preparation for ProGlider instruments while it was significantly higher for PathFile #1 and #2 (p path preparation compared to ProGlider, which is possibly subjected to a greater contact with the canal walls due to the increase in its flute diameter at middle and coronal levels.

  18. Torsional Oscillation Characteristics of Rotary Shafts Based on Torsion and Bending Coupled Vibration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The torsional oscillation characteristics on the bending and torsion coupled vibration of rotary shaft system were investigated using the elasto-dynamic theory and other mathematic methods, such as difference approach, Fourier transform, and wavelet transform. It is concluded that mass eccentricity and other exciting modalities affect the bending and torsion coupled vibration of rotary shafts. Torsional vibration caused by bending vibration features linearity along with the change of amplitude of bending vibration. Meanwhile, energy spectrum concentrates on high frequency area with the wavelet analysis.

  19. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  20. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  1. Twist in a polar blowout jet

    Institute of Scientific and Technical Information of China (English)

    Jun-Chao Hong; Yun-Chun Jiang; Jia-Yan Yang; Rui-Sheng Zheng; Yi Bi; Hai-Dong Li; Bo Yang

    2013-01-01

    It is well known that some coronal jets exhibit helical structures and untwisting.We attempt to inspect the origin of twist in a blowout jet.By means of multiwavelength and multi-angle observations from Solar Dynamics Observatory (SDO)and Solar Terrestrial Relations Observatory-Ahead (STEREO-A),we firstly report a polar untwisting jet that is a blowout jet which leads to a jet-like coronal mass ejection.From the viewpoint of SDO,the jet shows clear untwisting behavior and two jet-spires.However,from the viewpoint of STEREO-A the jet actually comes from the whiplike prominence eruption and is followed by a white-light jet.Our observations indicate that twist in blowout jets may result from the erupting mini-prominences/minifilaments in the jet base.

  2. Methane Screening in JET Reverse Field Experiments

    International Nuclear Information System (INIS)

    JET plasmas with reverse magnetic field feature a different SOL flow than those with normal field. The observed carbon fueling efficiency from injecting methane gas was similar in reverse and normal field. EDGE2D modeling used an externally applied force to create the SOL flows, without specifying the origin of the force. The resulting flow agreed reasonably with the experimental values between the separatrix and 4 cm mid-plane depth in the SOL. The effect of the flow on the calculated carbon screening was 5 to 15% higher carbon fueling efficiency for the low flow velocity with reverse field

  3. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  4. Resonance Production in Jet

    CERN Document Server

    Markert, Christina

    2007-01-01

    Hadronic resonances with short life times and strong coupling to the dense medium may exhibit mass shifts and width broadening as signatures of chiral symmetry restoration at the phase transition between hadronic and partonic matter. Resonances with different lifetimes are also used to extract information about the time evolution and temperature of the expanding hadronic medium. In order to collect information about the early stage (at the phase transition) of a heavy-ion collision, resonances and decay particles which are unaffected by the hadronic medium have to be used. We explore a possible new technique to extract signals from the early stage through the selection of resonances from jets. A first attempt of this analysis, using the reconstructed $\\phi$(1020) from 200 GeV Au+Au collisions in STAR, is presented.

  5. Impinging Jet Dynamics

    CERN Document Server

    Chen, Xiaodong

    2012-01-01

    In this fluid dynamics video, Ray-tracing data visualization technique was used to obtain realistic and detailed flow motions during impinging of two liquid jets. Different patterns of sheet and rim configurations were presented to shed light into the underlying physics, including liquid chain, closed rim, open rim, unstable rim and flapping sheet. In addition, stationary asymmetrical waves were observed and compared with existing theories. The generation of stationary capillary wave in respect to the liquid rim were explained by the classic shallow water wave theory. The atomization process caused by development of the impact waves were observed in detail, including fragmentation of liquid sheet, formation of liquid ligaments, and breakup of ligament into droplet. The locking-on feature of the wavelength of impact wave were also found to be similar to that of perturbed free shear layers.

  6. Performance of jets at CMS

    Science.gov (United States)

    Schröder, Matthias; CMS Collaboration

    2015-02-01

    The calibration and reconstruction of jets critically relies on the performance of the calorimeters. Extending out to large pseudorapidities, the measurements depend on the interplay between forward calorimeters, central calorimeters, and the tracking system. The high number of additional pile-up interactions poses further complications. In CMS, these difficulties are overcome using the 'particle-flow' approach, which aims at reconstructing individually each particle in the event prior to the jet clustering. Measurements of the jet energy scale and the procedure for jet energy calibration in CMS are reviewed, which are performed with dijet, photon + jet, and Z+jet data collected in proton-proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.6 fb-1. The effect of pile-up interactions and the state of the art mitigation techniques used in CMS as well as the main sources of uncertainty of the jet energy calibration are also presented.

  7. Performance of Jets in CMS

    CERN Document Server

    Schroeder, Matti

    2014-01-01

    The calibration and reconstruction of jets critically relies on the performance of the calorimeters. Extending out to large pseudorapidities, the measurements depend on the interplay between forward calorimeters, central calorimeters, and the tracking system. The high number of additional pile-up interactions poses further complications. In CMS, these difficulties are overcome using the `particle-flow approach, which aims at reconstructing individually each particle in the event prior to the jet clustering. Measurements of the jet energy scale and the procedure for jet energy calibration in CMS are reviewed, which are performed with dijet, photon+jet, and Z+jet data collected in proton-proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.6/fb. The effect of pile-up interactions and the state of the art mitigation techniques used in CMS as well as the main sources of uncertainty of the jet energy calibration are also presented.

  8. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradie

  9. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.;

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gra...

  10. Jet vectoring through nozzle asymmetry

    Science.gov (United States)

    Roh, Chris; Rosakis, Alexandros; Gharib, Morteza

    2015-11-01

    Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  11. Designing a very light jet

    OpenAIRE

    Nyblom, Per

    2009-01-01

    Introduction Very light jet is a hot subject growing stronger and stronger. The new type of air craft is an air plane that weighs less than 10000 pounds and uses a jet engine. Problem The student was proposed to designing a conceptual very light jet that could be used for inspiration and accepted the challenge. Method In this thesis the reader can follow the project progress in detail, the proposed methods and the results. The student divided the project into four activities analysis, creatio...

  12. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  13. Jet Observables in Theory and Reality

    OpenAIRE

    Soper, Davison E.

    1997-01-01

    I discuss the one jet inclusive jet cross section, d sigma /dE_T emphasizing the concept of infrared safety and the cone definition of jets. Then I estimate the size of power corrections to the jet cross section, which become important at smaller values of E_T.

  14. Jet stream related observations by MST radars

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  15. Latest Jet Results from the Tevatron

    CERN Document Server

    Cwiok, Mikolaj

    2007-01-01

    Recent QCD jet production measurements in p-pbar collisions at sqrt(s)=1.96 TeV at the Tevatron Collider at Fermilab are presented. Preliminary: inclusive jet, dijet, isolated photon + jet and Z + jets measurements are compared to available perturbative QCD models.

  16. Jet Joint Undertaking. Progress report 1990

    International Nuclear Information System (INIS)

    This JET Progress Reports provides an overview summary and puts into context the scientific and technical advances made on JET during 1990. In addition, the Report is supplemented by appendices of contributions (in preprint form) of the more important JET articles published during the year, which set out the details of JET activities

  17. Jet performance in Run 2 at ATLAS

    CERN Document Server

    Kunigo, Takuto; The ATLAS collaboration

    2016-01-01

    Slides for the talk "Jet performance in Run 2" at BOOST 2016. In this talk, the jet energy calibration sequence ( including in-situ calibrations at $\\sqrt{s} = 13$ TeV ), jet energy scale and resolution uncertainties and the jet calibration plan for 2016 will be presented.

  18. Coupling H(+) transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor.

    Science.gov (United States)

    Fillingame, R H; Jiang, W; Dmitriev, O Y

    2000-01-01

    H(+)-transporting F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c(12) oligomeric rotor as a result of connections between subunit c and the gamma and epsilon subunits of F(1). In this essay, we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by nuclear magnetic resonance (NMR), is discussed first and used as a basis for the rest of the review. A model for the structural organization of the c(12) oligomer in F(o), deduced from extensive cross-linking studies and by molecular modeling, is then described. The interactions between the the a(1)b(2) 'stator' subcomplex of F(o) and the c(12) oligomer are then considered. A functional interaction between transmembrane helix 4 of subunit a (aTMH-4) and transmembrane helix 2 of subunit c (cTMH-2) during the proton-release step from Asp61 on cTMH-2 is suggested. Current a-c cross-linking data can only be explained by helix-helix swiveling or rotation during the proton transfer steps. A model that mechanically links helix rotation within a single subunit c to the incremental 30 degrees rotation of the c(12) oligomer is proposed. In the final section, the structural interactions between the surface residues of the c(12) oligomer and subunits epsilon and gamma are considered. A molecular model for the binding of subunit epsilon between the exposed, polar surfaces of two subunits c in the oligomer is proposed on the basis of cross

  19. QCD-aware partonic jet clustering for truth-jet flavour labelling

    Science.gov (United States)

    Buckley, Andy; Pollard, Chris

    2016-02-01

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudojet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging.

  20. QCD-aware partonic jet clustering for truth-jet flavour labelling

    CERN Document Server

    Buckley, Andy

    2015-01-01

    We present an algorithm for deriving partonic flavour labels to be applied to truth par- ticle jets in Monte Carlo event simulations. The inputs to this approach are final pre- hadronization partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clus- tered using standard jet algorithms, modified to restrict the allowed pseudojet combina- tions to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, a...

  1. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power.

    Science.gov (United States)

    Schramm-Baxter, Joy; Mitragotri, Samir

    2004-07-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, a quantitative understanding of the energetics of jet injection is still lacking. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B (SRB). The power of the jet at the nozzle was varied from 1 to 600 W by independently altering the nozzle diameter (30-560 microm) and jet velocity (100-200 m/s). The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power. Additional experiments were performed using a model material, polyacrylamide gel, to further understand the dependence of jet penetration on jet power. These experiments demonstrated that jet power also effectively describes gel erosion due to liquid impingement.

  2. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  3. Prediction of Plug Tip Position in Rotary Tube Piercing Mill Using Simulation and Experiment

    Science.gov (United States)

    Lee, Hyoung Wook; Lee, Geun An; Kim, Eung Zu; Choi, Seogou

    Typical seamless tube production processes are an extrusion and a rotary tube piercing. The rotary piercing process is more competitive than the extrusion process from the viewpoint of flexibility. Main components of this equipment are twin rolling mills and a plug. Twin rolling mills are installed on a skew with proper angles in two directions. These angles are called the cross angle and the feed angle. The internal crack initiation and the growth at central area of the billet are gradually progressed due to the Mannesmann effects. The feed angle affects on the position of the crack initiation in the rotary tube piercing process. Adjustable design parameters in the equipment are the feed angle and the plug insertion depth. In this research, the rotary tube piercing equipment was developed. Finite element analyses with the plug and without the plug were carried out in order to predict the internal crack initiation position under good calculation efficiency. Ductile fracture models with the one variable equation were utilized to crack initiation criteria. The forward distance of the plug was determined to be 5 mm through the analysis. It was testified by experiments of a carbon steel billet.

  4. Viscous rotary vane actuator/damper. [for Mariner and Viking programs

    Science.gov (United States)

    Harper, J. D.

    1976-01-01

    A compact viscous rotary actuator/damper for use on the Mariner '71 and Viking Programs was developed. Several functions were combined into this single mechanism to control the deployment, latching, and damping of the solar panel arrays used on these space vehicles. The design, development, and testing of the actuator/damper are described, and major problems encountered are discussed.

  5. Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata; Weber, Felix; Høgsberg, Jan Becker

    2013-01-01

    This paper presents a systematic design and training procedure for the feed-forward backpropagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output...

  6. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Olsen, Kenneth N.; Christoffersen, Martin W.;

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...

  7. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    Directory of Open Access Journals (Sweden)

    Braulio Pasternak-Júnior

    2012-02-01

    Full Text Available OBJECTIVE: This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG. MATERIAL AND METHODS: The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. RESULTS: There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. CONCLUSION: The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.

  8. Feasibility of eliminating premixing for the production of pellets in a rotary processor.

    Science.gov (United States)

    Gu, L; Liew, C V; Soh, J L P; Heng, P W S

    2006-01-01

    This current study aims to explore the feasibility of eliminating the premixing step for making pellets in a rotary processor. Microcrystalline cellulose (MCC) and lactose were used as starting materials. They could be loaded into the rotary processor separately using three different loading configurations (Methods I, II, and III) or as MCC:lactose blend, which was prepared in the separate mixer prior to loading (Method IV). Physical properties of the pellets prepared in Methods I-III were evaluated and compared against those prepared using a premixed blend (Method IV). The effects of loading configuration on pellet quality can be assessed by comparing the pellets prepared in Methods I, II, and III. Physical characterization of pellets included mean size, size distribution, oversized fraction, and shape. No significant difference in pellet properties could be attributed to the effect of premixing. Pellet properties were not significantly affected by the different loading configurations either. This study demonstrated that homogeneous powder blends are not required for the production of pellets in rotary processing. The tumbling action of the powders at the start of rotary processing is sufficient to ensure adequate powder mixing. However, it may be judicious to cofeed the different powders to achieve some preliminary mixing during loading under extreme processing conditions. PMID:16749526

  9. Effect of Particle Size Distribution on Ammonium Sulphate Dried in a Rotary Dryer

    Directory of Open Access Journals (Sweden)

    Susianto Susianto

    2010-08-01

    Full Text Available The aim of this work is to study theoretically, by mathematical model development, the effect of particle size distribution on the performance of rotary dryer to dry ammonium sulphate fertilizer assuming plug flow with axial dispersion pattern (PFDA model for solid particle flow. The mathematical model development was carried out by combining the drying processes model with particle size distribution model. Particle size distribution models used are Rosin-Rommler model and Gamma distribution model. For simplicity, the model of drying processes of solid particles in the rotary dryer was developed by assuming of uniform air conditions (temperature and humidity along the rotary dryer as in the entry conditions. The resulting differential equations were solved analytically under Matlab 6.1 facility.Since this model, solid hold up, and axial dispersion number were obtained from empirical correlations in the literatures. The drying rate of ammonium sulphate fertilizer in rotary dryer was estimated using isothermal diffusion model with effective diffusivity of moisture in the particle obtained from previous study [2]. Using Gamma function distribution, this research showed that for the value of the coefficient of variance (CV less than 0.5, particle size distribution does not have significant effect on dryer performance. For the value of CV greater than 0.5, the dryer performance increase (or outlet solid moisture content decrease with increasing the value of CV. The application of Rosin-Rammler model gives lower prediction of outlet solid moisture content compared to the application of Gamma function model.

  10. Simulation of cavitation in rotary valve of hydraulic power steering gear

    Institute of Scientific and Technical Information of China (English)

    LIU YaHui; JI XueWu

    2009-01-01

    Hydraulic power steering gear supplies assistant power by liquid stream.The stream will be changed greatly for the flow field formed by the rotary valve will vary during steering.And the change of the stream in this narrow field will (be big enough to) cause the fluctuation of the assistance power and noise of the steering gear.3-D meshes of the flow field between the sleeve and the rotor of the valve with different structure parameters such as entry caliber and groove depth were set up and a general CFD code-Fluent was used to analyze the stream performance.The results including pressure and gas-phase's volume fraction were analyzed under certain operation flow rate.It was found that the entry caliber did not affect the operation pressure of the valve under the same flow rate but affected the gas-phase's volume fraction of the flow field, and so did the groove depth of the valve' sleeve and rotor.Many researches have pointed that the noise of steering valve is almost cavitation noise, that is, the gas-phase in the flow field has great correlation with rotary valve noise.Based on these analyses of the stream in the rotary steering valve, this paper gave suggestion that increasing entry caliber of the ro-tary valve and choosing appropriate groove depth will reduce the valve noise.

  11. Simulation of cavitation in rotary valve of hydraulic power steering gear

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hydraulic power steering gear supplies assistant power by liquid stream. The stream will be changed greatly for the flow field formed by the rotary valve will vary during steering. And the change of the stream in this narrow field will (be big enough to) cause the fluctuation of the assistance power and noise of the steering gear. 3-D meshes of the flow field between the sleeve and the rotor of the valve with different structure parameters such as entry caliber and groove depth were set up and a general CFD code-Fluent was used to analyze the stream performance. The results including pressure and gas-phase’s volume fraction were analyzed under certain operation flow rate. It was found that the entry caliber did not affect the operation pressure of the valve under the same flow rate but affected the gas-phase’s volume fraction of the flow field, and so did the groove depth of the valve’ sleeve and rotor. Many researches have pointed that the noise of steering valve is almost cavitation noise, that is, the gas-phase in the flow field has great correlation with rotary valve noise. Based on these analyses of the stream in the rotary steering valve, this paper gave suggestion that increasing entry caliber of the rotary valve and choosing appropriate groove depth will reduce the valve noise.

  12. Operability test report for rotary mode core sampling system number 3

    International Nuclear Information System (INIS)

    This report documents the successful completion of operability testing for the Rotary Mode Core Sampling (RMCS) system number-sign 3. The Report includes the test procedure (WHC-SD-WM-OTP-174), exception resolutions, data sheets, and a test report summary

  13. FLUID CHARACTERISTICS OF ROTARY WING HEAT METER WITH SINGLE-CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Du Guang-sheng; Liu Zheng-gang; LI Li; LIU Yong-hui; MA Yong-kun; MENG Liang

    2008-01-01

    Fluid characteristics of a rotary wing heat meter with single-channel were studied through theretical analysis, numerical simulation and experiments. The obtained results show that the number of vanes can obviously influence the heat meter, but the water temperature seldom influence the meter , and the optimal number of vane is 6-8.

  14. SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2015-01-01

    The combustion of alternative fuels in direct contact with the bed material of the rotary kiln may cause local reducing conditions and, subsequently, decomposition of sulfates from cement raw materials, increasing the SO2 concentration in the gas phase. The decomposition of sulfates increases...

  15. Experience with Aerosol Generation During Rotary Mode Core Sampling in the Hanford Single Shell Waste Tanks

    International Nuclear Information System (INIS)

    This document provides data on aerosol concentrations in tank head spaces, total mass of aerosols in the tank head space and mass of aerosols sent to the exhauster during Rotary Mode Core Sampling from November 1994 through June 1999. A decontamination factor for the RMCS exhauster filter housing is calculated based on operation data

  16. Root canal centering ability of rotary cutting nickel titanium instruments: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Mohan Gundappa

    2014-01-01

    Full Text Available Aim: To systematically review articles on canal centering ability of endodontic rotary cutting Nickel-Titanium (Ni-Ti instruments and subject results to meta-analysis. Materials and Methods: A comprehensive search was initiated on canal centering ability of different rotary cutting Ni-Ti files such as Protaper, Hero Shaper, K3, Mtwo, Race, Wave One by selecting articles published in peer reviewed journals during 1991-2013 using "Pub Med" database. Inclusion and exclusion criteria were established. A data was created by tabulating: Author name, publication year, sample size, number of experimental groups, methods to evaluate canal centering ability, instrument cross section, taper, tip design, rake angle, mean and standard deviation. The data generated was subjected to meta-analysis. Results: Maximum studies were found to be conducted on mesiobuccal canal of mandibular 1 st molar with curvature ranging from 15-60°. The difference in canal centering ability of different rotary cutting Ni-Ti instruments was not statistically significant. Conclusion: All endodontic rotary cutting Ni-Ti instruments are capable of producing centered preparations. Protaper depicted the best centering ability. Computed tomography is an effective method of evaluating canal centering ability.

  17. A Method For Producing Hollow Shafts By Rotary Compression Using A Specially Designed Forging Machine

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-09-01

    Full Text Available The paper presents a new method for manufacturing hollow shafts, where tubes are used as billet. First, the design of a specially designed forging machine for rotary compression is described. The machine is then numerically tested with regard to its strength, and the effect of elastic strains of the roll system on the quality of produced parts is determined. The machine’s strength is calculated by the finite element method using the NX Nastran program. Technological capabilities of the machine are determined, too. Next, the results of the modeling of the rotary compression process for a hollow stepped shafts by the finite element method are given. The process for manufacturing hollow shafts was modeled using the Simufact.Forming simulation program. The FEM results are then verified experimentally in the designed forging machine for rotary compression. The experimental results confirm that axisymmetric hollow shafts can be produced by the rotary compression method. It is also confirmed that numerical methods are suitable for investigating both machine design and metal forming processes.

  18. Dilution in a Dense Bottom Jet in Cross Currents

    DEFF Research Database (Denmark)

    Petersen, O.; Larsen, Torben

    1998-01-01

    A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20......%. The model is applied to a case study where the dilution from two vertical jets at an angle in shallow water is described. It is demonstrated that a 20% increase in dilution is possible. It is concluded that the model may become a valuable tool in diffusor design....

  19. Impinging Jet Resonant Modes at Mach 1.5

    CERN Document Server

    Davis, Timothy

    2013-01-01

    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.

  20. A design of jet mixed tank

    OpenAIRE

    Kailas L. Wasewar

    2006-01-01

    Jet mixing has become alternative to conventional impeller mixing for various applications in process industries. Mixing time is an important design parameter in jet mixing. Many authors have used different parameters like jet velocity, jet diameter, tank height etc to find out the correlation for mixing time. There is no comprehensive review, which tells exclusively about these parameters used for jet mixing. Recently many authors have used CFD in order to overcome experimental limitations f...