WorldWideScience

Sample records for applying rotary jet

  1. Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.

    2003-01-01

    An approximation to an ideally mixed tank reactor can be obtained by vigorous stirring with mechanical mixers. For an aerated reactor the gas dispersion contributes to the mixing process. Mixing can also be achieved by recirculation of a portion of the liquid through either an internal or an exte......An approximation to an ideally mixed tank reactor can be obtained by vigorous stirring with mechanical mixers. For an aerated reactor the gas dispersion contributes to the mixing process. Mixing can also be achieved by recirculation of a portion of the liquid through either an internal...... or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads...... at 1-9 bar gauge pressure into the bulk liquid. Liquid feed can be added to the bulk volume or it may be injected into the pressurized recirculation loop. Gas is always fed to the recirculation loop, and the heat of reaction is removed in a plate-type heat exchanger inserted in the recirculation loop...

  2. Applications of rotary jetting tool with coiled tubing offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Ricardo; Almeida, Victor; Mendez, Alfredo; Dean, Greg [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    It is well known that offshore operators are continuously looking for alternatives to reduce rig time, especially when it comes to work over operations due to high costs. The introduction of a Rotary Jetting Tool (RJT) in conjunction with coiled tubing was successfully tested and proved to be a better alternative not only because of its efficiency but also due to a reduction in the time of intervention operations. The RJT was created to remove scales and well obstructions by utilization of stress-cycling jetting. Stress cycling is a jetting mechanism that consists of pressuring and energizing fluid against a material. This mechanism breaks scales or obstructions and vibrates proppants in gravel pack completions. The RJT is composed of turbines that generate spinning and magnets that control the rotation. Most fluids used in the oil industry for remedial operations are compatible with this tool, hence its wide range of applications. This paper will present case histories that vary from hydrate and scale removal, and matrix stimulations including cleaning of gravel pack completions. The usage of this RJT has demonstrated effectiveness as a new alternative to improve well production and reduce rig time when compared to other methods commonly used in the area. (author)

  3. Visualizations of Gas fuel Jet and Combustion Flame on Hydrogen Rotary Engine

    OpenAIRE

    田端, 道彦; 香川, 良二

    2011-01-01

    [Abstract] In this paper, it is a purpose to obtain basic information of a hydrogen jet and combustion flame characteristics of the hydrogen rotary engine. The jet characteristics of the hydrogen gas injector were measured by using the high-speed shadowgraph method. As the result, the jet penetration of the low density gas was weak. The mixing of the direction of the jet axis was disturbed for the low jet pressure. Next, the combustion flame propagation of the hydrogen rotary engine was visua...

  4. Schlumberger downhole innovations applied at Hibernia : powerdrive rotary steerable systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, P. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2004-07-01

    This presentation described the benefits of using a powerdrive rotary steerable system on the Hibernia offshore drilling platform compared to conventional motor directional drilling. New developments have expanded the operating envelope of rotary steerable services. The powerdrive rotary steerable system has mud actuated pads with fully rotating external parts. This presentation included a series of schematics depicting the control unit; the bias unit and mud flow; and, the drive mechanism. The benefits of the rotary steerable system compared to conventional motors include enhanced performance, better hole quality, less wellbore tortuosity, better hole cleaning, and extra power drive. Graphs depicting the history of power drive performance at Hibernia were included. Greater power drive offers increased drilling footage per year, a smoother well profile, and the ability to hit small targets. Greater power drive also enables extended reach platform wells versus subsea tie-backs. figs.

  5. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; XU Hong-guang

    2008-01-01

    The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experi-mentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.

  6. Mixing by rotary jet heads: Indications of the benefits of head rotation under turbulent and transitional flow conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Vognsen, Marie; Nienow, Alfred W.

    2008-01-01

    Mixing times were obtained by the iodine-thiosulphate decolorization technique using rotary jet heads (RJH) for mixing in a Perspex tank with an inner diameter of 0.75 m and an aspect ratio of 2.5 using both water (turbulent flow) and shear-thinning, carboxymethyl cellulose (CMC) solutions...... (turbulent and transitional flow). The RJH system is based on mixing by liquid jets, but due to the rotation of the head the position of the jets is continually changing. Experiments were undertaken with RJHs rotating as normal, or held stationary, in order to ascertain whether and to what extent...... the 'randomness' imposed by the head motion improves mixing. It was found that the head rotation leads to a decrease in mixing time compared to stationary jets, even under turbulent conditions. However, if the head is rotating too fast, the jets do not reach the top and bottom of the tank whereby the mixing time...

  7. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    Science.gov (United States)

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  8. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  9. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  10. Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets

    Science.gov (United States)

    Heeb, Nicholas S.

    An experimental investigation into the effect of azimuthal variance of chevrons and fluidically enhanced chevrons applied to supersonic jets is presented. Flow field measurements of streamwise and cross-stream particle imaging velocimetry were employed to determine the causes of noise reduction, which was demonstrated through acoustic measurements. Results were obtained in the over- and under- expanded regimes, and at the design condition, though emphasis was placed on the overexpanded regime due to practical application. Surveys of chevron geometry, number, and arrangement were undertaken in an effort to reduce noise and/or incurred performance penalties. Penetration was found to be positively correlated with noise reduction in the overexpanded regime, and negatively correlated in underexpanded operation due to increased effective penetration and high frequency penalty, respectively. The effect of arrangement indicated the beveled configuration achieved optimal abatement in the ideally and underexpanded regimes due to superior BSAN reduction. The symmetric configuration achieved optimal overexpanded noise reduction due to LSS suppression from improved vortex persistence. Increases in chevron number generally improved reduction of all noise components for lower penetration configurations. Higher penetration configurations reached levels of saturation in the four chevron range, with the potential to introduce secondary shock structures and generate additional noise with higher number. Alternation of penetration generated limited benefit, with slight reduction of the high frequency penalty caused by increased shock spacing. The combination of alternating penetration with beveled and clustered configurations achieved comparable noise reduction to the standard counterparts. Analysis of the entire data set indicated initial improvements with projected area that saturated after a given level and either plateaued or degraded with additional increases. Optimal reductions

  11. The diagnostic potential of Fe lines applied to protostellar jets

    CERN Document Server

    Giannini, T; Antoniucci, S; Alcala', J M; Bacciotti, F; Bonito, R; Podio, L; Stelzer, B; Whelan, E T

    2013-01-01

    We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivity with that of [OI] 630 nm. The [FeII] lines indicate ESO-Halpha 574 jet is, on average, colder (T_e = 9000 K), less dense (n_e = 2 10^4 cm^-3) and more ionized (x_e = 0.7) than the Par-Lup 3-4 jet (T_e = 13000 K, n_e = 6 10^4 cm^-3, x_e < 0.4), even if the existence of a higher density component (n_e = 2 10^5 cm^-3) is...

  12. The diagnostic potential of Fe lines applied to protostellar jets

    Energy Technology Data Exchange (ETDEWEB)

    Giannini, T.; Nisini, B.; Antoniucci, S. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (Italy); Alcalá, J. M. [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli (Italy); Bacciotti, F. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Bonito, R.; Stelzer, B. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Podio, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Whelan, E. T. [Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität, D-72076 Tübingen (Germany)

    2013-11-20

    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T {sub e} ∼ 9000 K), less dense (n {sub e} ∼ 2 × 10{sup 4} cm{sup –3}), and more ionized (x {sub e} ∼ 0.7) than the Par-Lup 3-4 jet (T {sub e} ∼ 13,000 K, n {sub e} ∼ 6 × 10{sup 4} cm{sup –3}, x {sub e} < 0.4), even if the existence of a higher density component (n {sub e} ∼ 2 × 10{sup 5} cm{sup –3}) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main

  13. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  14. Cylindrical acoustical holography applied to full-scale jet noise.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated.

  15. Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet

    DEFF Research Database (Denmark)

    Wähnström, Maja; George, William K.; Meyer, Knud Erik

    2006-01-01

    Recent experiments on asymptotic high Reynolds number turbulent jet have shown a difference between results from the slice POD applied to the full velocity vector and to the streamwise component of velocity only. In particular, the evolution of the peak in the energy toward azimuthal mode-2...... in the streamwise velocity component decomposition noted in earlier experiments, shifted to mode-1 if all three components of velocity were considered. This is in contrast to what appears to be the case for the jet mixing layer and the axisymmetric wake6 where no such differences were observed. The work reported...... here applies stereoscopic PIV to the far field of the same jet in which the mode-2 phenomenon was first noticed. Indeed azimuthal mode-1 is maximal if all three velocity components are considered, so the new findings are confirmed. This work also addresses a number of outstanding issues from all...

  16. Smart hybrid rotary damper

    Science.gov (United States)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  17. Rotary ATPases

    Science.gov (United States)

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  18. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  19. Experimental Validation of Simplified Free Jet Turbulence Models Applied to the Vocal Tract

    CERN Document Server

    Grandchamp, Xavier; Pelorson, Xavier

    2008-01-01

    Sound production due to turbulence is widely shown to be an important phenomenon involved in a.o. fricatives, singing, whispering and speech pathologies. In spite of its relevance turbulent flow is not considered in classical physical speech production models mostly dealing with voiced sound production. The current study presents preliminary results of an experimental validation of simplified turbulence models in order to estimate the time-mean velocity distribution in a free jet downstream of a tube outlet. Aiming a future application in speech production the influence of typical vocal tract shape parameters on the velocity distribution is experimentally and theoretically explored: the tube shape, length and the degree and geometry of the constriction. Simplified theoretical predictions are obtained by applying similarity solutions of the bidimensional boundary layer theory to a plane and circular free jet in still air. The orifice velocity and shape are the main model input quantities. Results are discussed...

  20. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    Science.gov (United States)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  1. BFKL Formalism in Quantum Chromodynamics Applied for the Jet-Gap-Jet Processes in Hadron Collisions at High Energies

    CERN Document Server

    Trzebinski, M

    2015-01-01

    The process of jet-gap-jet (JGJ) production is briefly described. The JGJ scattering amplitude parametrisation is discussed. On a basis of full amplitude calculations, the parametrisation formulas for the leading logarithm (LL) and next-to-leading logarithm (NLL) approximations are obtained. For each case a sum over all conformal spins is considered. The obtained agreement is better than 0.25% for LL and 1% for NLL.

  2. Adiabatic Wankel type rotary engine

    Science.gov (United States)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  3. Jet Riemann-Lagrange Geometry Applied to Evolution DEs Systems from Economy

    OpenAIRE

    Neagu, Mircea

    2007-01-01

    The aim of this paper is to construct a natural Riemann-Lagrange differential geometry on 1-jet spaces, in the sense of nonlinear connections, generalized Cartan connections, d-torsions, d-curvatures, jet electromagnetic fields and jet Yang-Mills energies, starting from some given non-linear evolution DEs systems modelling economic phenomena, like the Kaldor model of the bussines cycle or the Tobin-Benhabib-Miyao model regarding the role of money on economic growth.

  4. Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet

    Science.gov (United States)

    Yang, Lanlan; Tu, Yan; Yu, Yongbo; Hu, Dinglan; Zhang, Xiong

    2016-09-01

    A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 nm) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 nm) as the noticeable radiation. At the nozzle opening, the Ne (702 nm) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 nm) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing. supported by National Natural Science Fundation of China (No. 61271053), the Natural Science Foundation of Jiangsu Province of China (No. BK2012737), the Foundation for Excellent Youth Scholars of Southeast University, China

  5. POD applied to stereo PIV data of the far turbulent axisymmetric jet

    DEFF Research Database (Denmark)

    Wänström, Maja; George, William K.; Meyer, Knud Erik

    An experiment was performed to evaluate spatial resolution requirements for multiple and single component POD applications to cross-sections of the far axisymmetic jet. The jet of Gamard et al. was used at an exit Reynolds number of 20,000. Three-component velocity data were obtained at downstream...

  6. Rotary cup slurry atomization

    Science.gov (United States)

    Sommer, H. T.; Marnicio, R. J.

    1983-06-01

    The theory of a two-phase flow in a rotating cup atomizer is described. The analysis considers the separation of the solid and liquid media thus realistically modeling the flow of two layers along the inner cup wall: a slurry of increasing solids concentration and a supernatent liquid layer. The analysis is based on the earlier work of Hinze and Milborn (1950) which addressed the flow within a rotary cup for a homogeneous liquid. The superimposition of a settling velocity under conditions of high centrifugal acceleration permits the extended analysis of the separation of the two phases. Appropriate boundary conditions have been applied to the film's free surface and the cup wall and to match the flow characteristics at the liquid-slurry interface. The changing slurry viscosity, increasing nonlinearly with growing solid loading, was also considered. A parameter study illustrates the potential for a cup design to provide optimal slurry and liquid film thicknesses for effective atomization.

  7. 中心式高压水射流辅助截齿旋转破岩数值研究%Numerical Studying of Cutting Pick Rotary Broken Rock with Centralized High Pressure Water Jet

    Institute of Scientific and Technical Information of China (English)

    段新奇; 江红祥; 郭楚文

    2016-01-01

    In order to study the difference between two different broken rock way , whick included cutting pick broken rock with auxil-iary of high pressue water jet and single cutting pick broken rock, then software LS-DYNA was used, the detailed model was built with finite element method and smooth particle fluid mechanics method ( SPH) , and rotary broken rock process was simulated. The results showed that densely core exist during broken rock process with conical bits, the cutting peak value was smaller than single broken rock with cutting pick when the pressure value of water was smaller than the strength of rock model, but specific energy consumption de-creased unconspicuous, stress state of cutting pick and specific energy improved obviously, when water jet pressure more than rock model strength.%为了研究在高压水射流作用下水射流辅助机械截齿破岩和机械截齿单独破岩两种破岩效果的差别,利用LS-DYNA仿真软件,采用有限单元法FEM、光滑粒子流体动力学方法SPH相结合的建模方法,对旋转破岩过程进行仿真研究。研究结果表明:镐形截齿破岩过程中密实核真实存在;高压水射流压力在岩石模型强度以下时,截割力峰值相对于机械截齿单独破岩有所降低,但比能耗没有明显降低;高压水射流压力大于岩石模型强度时,截齿受力综合水平、比能耗均有明显改善。

  8. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  9. Rotary filtration system

    Science.gov (United States)

    Herman, David T.; Maxwell, David N.

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  10. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    Science.gov (United States)

    Beijer, P. A. C.; Sobota, A.; van Veldhuizen, E. M.; Kroesen, G. M. W.

    2016-03-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1-10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen.

  11. Investigation of the WANKEL Jet-A rotary engine for applicability in general aviation (experimental program). Final report; Untersuchung der Tauglichkeit des WANKEL-Kerosin-Kreiskolbenmotors fuer den Einsatz in der allgemeinen Luftfahrt. Erstellung von drei 2-Laeufer-Motoren und Leistungsnachweis auf dem Motorpruefstand (Experimentalprogramm). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, R.; Eiermann, D.; Kolossow, S.

    1999-12-29

    This report describes a project which was performed within the German national aeronautical research program. Subject of the investigation is the Diesel/Jet-A rotary engine developed by WANKEL ROTARY and its applicability as aero propulsion system by an experimental program. The technologies which were used to adapt the existing basic construction to the specific requirements of an aero engine are presented. The results of the performed theoretical and experimental investigations are explained and evaluated, also in relation to the preconditions and the future possibilities for development. (orig.) [German] Der Bericht beschreibt ein im Rahmen des nationalen Luftfahrt-Forschungsprogramms durchgefuehrtes Vorhaben. Gegenstand der Untersuchung ist der von WANKEL ROTARY entwickelte Diesel/Kerosin-Kreiskolbenmotor und seine Verwendbarkeit als Flugantrieb in einem Experimentalprogramm. Es werden die verwendeten Technologien dargestellt, um die vorhandene Grundkonstruktion an die spezifischen Erfordernisse als Flugantrieb anzupassen. Die Ergebnisse der hierzu durchgefuehrten theoretischen und experimentellen Untersuchungen werden erlaeutert, bewertet und in Bezug zu den Voraussetzungen und zukuenftigen Weiterentwicklungsmoeglichkeiten gesetzt. (orig.)

  12. A Novel Vapor Injection Structure on the Blade for Rotary Compressor

    OpenAIRE

    Wang, Baolong; Liu, Xingru; Shi, Wenxing

    2016-01-01

    Rotary compressors have been extensively used in room air conditioners and household refrigerators for their advantages, including high efficiency, strong adaptability, and low cost. However, when air source heat pumps with rotary compressors are applied in cold regions, a series of problems appear. The gas injection has been proved an effective technology to enhance both the heating capacity and COP of scroll, screw, and rotary compressors. In the one-cylinder rotary compressor with gas in...

  13. A multiblock grid generation technique applied to a jet engine configuration

    Science.gov (United States)

    Stewart, Mark E. M.

    1992-01-01

    Techniques are presented for quickly finding a multiblock grid for a 2D geometrically complex domain from geometrical boundary data. An automated technique for determining a block decomposition of the domain is explained. Techniques for representing this domain decomposition and transforming it are also presented. Further, a linear optimization method may be used to solve the equations which determine grid dimensions within the block decomposition. These algorithms automate many stages in the domain decomposition and grid formation process and limit the need for human intervention and inputs. They are demonstrated for the meridional or throughflow geometry of a bladed jet engine configuration.

  14. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    Science.gov (United States)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-02-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  15. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    Science.gov (United States)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-12-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  16. Novel precision piezoelectric step rotary actuator

    Institute of Scientific and Technical Information of China (English)

    LIU Jianfang; YANG Zhigang; ZHAO Hongwei; CHENG Guangming

    2007-01-01

    A novel piezoelectric (PZT) precision step rotary actuator was developed on the basis of PZT technology.It adopts the principle of bionics and works with an inside anchoring/loosening of the stator and a distortion structure of the uniformly distributed thin flexible hinge to solve problems such as ineffective anchoring/loosening,low step rotary frequency,small travel,poor resolution,low speed and unsteady output.The developed actuator is characterized by high frequency (30 Hz),high speed (380 μrad/s),large travel (>270°),high resolution (1 μrad/step),and work stability.It greatly improves the ability to drive the existing PZT step rotary actuator.The new actuator can be applied in the field of micromanipulation and precision engineering,including precision driving and positioning and optics engineering.

  17. An Improved Rotary Mechanism Engine

    Directory of Open Access Journals (Sweden)

    M.L Kumar

    1977-01-01

    Full Text Available Developments in the field of rotary engines have been reviewed. Potential of scissor action type rotary engine with suitable innovations on linkage and multirotor configuration has been brought out.

  18. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Van Deynse, A., E-mail: Annick.VanDeynse@ugent.be [Department Industrial Technology and Construction, Faculty of Engineering & Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Cools, P., E-mail: Pieter.Cools@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Leys, C., E-mail: Christophe.Leys@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); De Geyter, N., E-mail: Nathalie.DeGeyter@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Morent, R., E-mail: Rino.Morent@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-02-15

    Highlights: • Surface modification of polyethylene by an argon atmospheric pressure plasma jet. • Investigation of the influence of the applied power and argon flow rate. • Turbulence in the gas flow leads to a shorter afterglow. • Turbulence in the gas flow results in a lower wettability of the polyethylene. • Increasing the applied power increases the wettability of the polyethylene. - Abstract: Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1–1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the

  19. Rotary mechanical latch

    Science.gov (United States)

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  20. Rotary jagas stipendiume

    Index Scriptorium Estoniae

    2009-01-01

    Pärnu Rotary klubi aastapäevapeol 11. mail Ammende villas anti stipendium viiele Pärnumaa noorele, teiste seas pälvis preemia Pärnu Ülejõe Gümnaasiumi muusikaõpetaja Fred Rõigas ja Pärnu Muusikakoolis trompetit õppiv Chris Sommer

  1. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Science.gov (United States)

    Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R.

    2015-02-01

    Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1-1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the discharge power, the concentrations of all oxygen containing groups such as Csbnd O, Cdbnd O and Osbnd Cdbnd O increase. Increasing the flow rate up to 1.25 slm results mainly in an increase in Osbnd Cdbnd O groups. However, from a flow rate of 1.25 slm on, the concentration of all oxygen groups again decreases. Based on these results, the appropriate settings for an efficient plasma treatment can easily be selected.

  2. Piezoelectric Rotary Tube Motor

    Science.gov (United States)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  3. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    1994-05-15

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  4. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  5. Rotary and Magnus balances

    Science.gov (United States)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  6. Rotary actuator for space applications

    Science.gov (United States)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  7. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    1995-01-01

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  8. Equivalent dynamic model of DEMES rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  9. The method of characteristics and computational fluid dynamics applied to the prediction of underexpanded jet flows in annular geometry

    Science.gov (United States)

    Kim, Sangwon

    2005-11-01

    High pressure (3.4 MPa) injection from a shroud valve can improve natural gas engine efficiency by enhancing fuel-air mixing. Since the fuel jet issuing from the shroud valve has a nearly annular jet flow configuration, it is necessary to analyze the annular jet flow to understand the fuel jet behavior in the mixing process and to improve the shroud design for better mixing. The method of characteristics (MOC) was used as the primary modeling algorithm in this work and Computational Fluid Dynamics (CFD) was used primarily to validate the MOC results. A consistent process for dealing with the coalescence of compression characteristic lines into a shock wave during the MOC computation was developed. By the application of shock polar in the pressure-flow angle plane to the incident shock wave for an axisymmetric underexpanded jet and the comparison with the triple point location found in experimental results, it was found that, in the static pressure ratios of 2--50, a triple point of the jet was located at the point where the flow angle after the incident shock became -5° relative to the axis and this point was situated between the von Neumann and detachment criteria on the incident shock. MOC computations of the jet flow with annular geometry were performed for pressure ratios of 10 and 20 with rannulus = 10--50 units, Deltar = 2 units. In this pressure ratio range, the MOC results did not predict a Mach disc in the core flow of the annular jet, but did indicate the formation of a Mach disc where the jet meets the axis of symmetry. The MOC results display the annular jet configurations clearly. Three types of nozzles for application to gas injectors (convergent-divergent nozzle, conical nozzle, and aerospike nozzle) were designed using the MOC and evaluated in on- and off-design conditions using CFD. The average axial momentum per unit mass was improved by 17 to 24% and the average kinetic energy per unit fuel mass was improved by 30 to 80% compared with a standard

  10. 掺气水射流应用于低压摇臂喷头的试验%Experiment on aeration water jet applied to low pressure impact sprinkler irrigation

    Institute of Scientific and Technical Information of China (English)

    向清江; 许正典; 陈超; 李红

    2016-01-01

    为解决固定式旋转喷头低压喷灌时,水射流向末端集中形成水量分布不均匀的问题,提出水气两相射流进行喷灌的方法。在摇臂喷头结构的基础上,增加掺气结构,形成掺气射流喷头,以相同工作水压力、射流仰角、喷嘴出口流量相同为约束,以及不考虑副喷嘴对喷洒的影响,对比了掺气与不掺气2种情况下 PY20喷头的射程、径向水量分布、1倍射程间距的正方形组合喷灌均匀系数,雨滴粒径等参数。试验结果表明:原不掺气摇臂喷头出口直径7 mm,安装内径2 mm 的掺气管后出口直径改为8.3 mm,此时两者具有相同的出口流量,2种喷头在相同工作压力下具有近似相等的射程;在掺气喷头工作水压低至100 kPa 情况下,喷头仍具有76 mm 水银柱高差的掺气负压能力;掺气摇臂喷头改善了径向水量分布线射程中段的水量,使水量分布线发生了中段略微增高、末端略下降的变化,从而使1倍间距的正方形组合喷灌均匀系数在低于国家标准工作压力的200 kPa 情况下,从62.8%提高到68.8%;采用激光雨滴谱仪测量射程中部和末端2个地方的水滴粒径表明:掺气状态下射程中部的水量累积百分比中位直径 d50远大于不掺气状态,射流末端对比 d50则小于不掺气状态,说明掺气改变了喷头的雨滴粒径分布。该文试验结果证明掺气摇臂喷头在农业喷灌中应用具有可行性。%Research on sprinkler irrigation is developing toward the low pressure spray. When the fixed rotary sprinkler works at the low pressure, there is too much water concentrating at the end of jet, causing seriously uneven water distribution. In order to solve this sprinkler irrigation problem, an aeration jet method is put forward in this paper. Based on the structures of impact sprinkler PY20, a gas suction component is adopted to form an aeration impact sprinkler. The axis of

  11. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  12. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  13. Design Robust Controller for Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  14. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  15. Multi-Fuel Rotary Engine for General Aviation Aircraft

    Science.gov (United States)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  16. High torque miniature rotary actuator

    Science.gov (United States)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  17. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  18. Application of the Hand-instrument of Measurement of Tyre Gap and Diameter in Cement Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This article is concerned with the cement rotary kiln, the hand-instrument of measurements of tyre gap and the outer diameter. The accuracy of measurements of tyre gap and diameter is less than ±1mm. The hand- instrument wins two patents in China. It has been applied to the measurement for 16 sets of cement rotary kiln in China.

  19. Advancements in rotary steerable technology

    Energy Technology Data Exchange (ETDEWEB)

    Buker, M. [Phoenix Technology Services, Calgary, AB (Canada)

    2001-07-01

    The preferred method of drilling horizontal and directional wells is to use conventional measurement while drilling (MWD) systems and mud motors. However, this method has demonstrated some inefficiencies even though it has been used on thousands of wells. The process of slide drilling can result in undesirable doglegs, hole cleaning problems and reduced weight to the bit. A viable alternative to mud motors is rotary steerable technology, which in recent years, has undergone major transformation. Phoenix Technology Services markets and services a rotary steerable system called the Well Director Automatic Directional Drilling System. This paper described rotary steerable technology in general and then focused on the product developed by Phoenix which is in the final stages of becoming commercially available. The mechanical, hydraulic and data transmission methods for the Well Director were described. The tool has to pass a test of drilling without problems for the length of a bit run, and the re-programming function of the tool has to be de-bugged before the Well Director can be commercialized. Phoenix is confident that the tool offers operators a way to drill wellbores more quickly, smoothly and accurately than with conventional technology. 1 tab., 1 fig.

  20. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  1. Comparative Research on Air Conditioner with Gas-injected Rotary Compressor through Injection Port on Blade

    OpenAIRE

    Xingru, Liu; Baolong, Wang; Wenxing, Shi

    2016-01-01

    Rotary compressors are widely utilized in air conditionders and heat pumps. However, when rotary compressors were applied in room air conditioners, VRFs and domestic water heaters, the systems will experience heavily degradation of the heating capacity and COP as the ambient temperature goes low. Aimed at these problems, considerable research has been carried out to raise a series of solutions, such as economizer technology, cascade-type vapor compression heat pump system and two stage coupli...

  2. Fuzzy & Predictive Control Strategy Applied to Industry Rotary Kiln Control System%模糊和预测控制在工业回转窑控制中的应用

    Institute of Scientific and Technical Information of China (English)

    蔡永昶

    2011-01-01

    Aiming at the automation control effect of Lithopone rotary kiln's calcination process and kilnhead temperature, which is the key process parameter,is not good, the software & hardware system were improved and perfected. According to the difficulty of product's performance index which has to be tested offline, and object structure characteristic and process flow, predictive control strategy was adopted to improve the control of calcination process, on the basis that kiln-head temperature was controlled to be more stable with the use of fuzzy & PID methods. The structure and configuration of hardware system, and the design method of the predictive controller were introduced in detail. The result of application shows the steady-state behavior of the kiln-head is better, and the stability and quality of product's performance index have been improved.%针对锌钡白工业回转窑煅烧过程和关键工艺参数窑头温度的自动控制效果不理想,对软硬件系统进行了改进和完善.根据产品性能指标只能离线检验这一难点,结合对象的结构特点和工艺流程,在采用模糊结合PID的方法对窑头温度进一步控制稳定的基础上,运用预测控制的方法改进了煅烧过程的控制.详细介绍了系统硬件结构和选型,预测控制器的设计方法.运行结果表明,窑头温度稳态性能得到较大改善,产品性能指标的稳定性和质量得到提高.

  3. Design analysis of rotary turret of poucher machine

    Directory of Open Access Journals (Sweden)

    Jigar G. Patel

    2016-09-01

    Full Text Available This paper present design analysis of rotary turret plate of 5 kg capacity for food product packaging machine. The turret plate has been designed considering two different criteria, first one is inertia force approach with only self-weight of turret plate and second is with mass of pouches. A 3-dimenssional CAD model of rotary turret assembly has been prepared in using solid modelling packages CRE-O. The finite element analysis (FEA of turret plate has been carried out using analysis software ANSYS 15.0. Consideration of inertia force is one of the criteria to analyze the performance and behaviour of component in working condition. The rotational velocity is applied at the central axis of turret and friction less support is applied on inner surface, where shaft is being attached. Also, pressure is applied on the same surface to incorporate the shrink fit condition of the assembly of turret plate with shaft. The boundary conditions as fixed support have been considered at the different sixteen faces, where bolts have been attached. The obtained simulation results for induced stress, deformation and strain depict that the modified design of rotary turret plate is well within the allowable stress limits of considered material. And, further optimization can be performed for topological and strength based more efficient design of turret plate.

  4. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; Boer, de Hans; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  5. Design and analysis of a rotary motion controller

    Directory of Open Access Journals (Sweden)

    Julio Cesar Caye

    2015-12-01

    Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.

  6. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  7. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  8. Applied Research on High-Pressure Water Jet Cutting Technology in Anti-Terrorist%高压水射流切割技术在反恐中的应用研究

    Institute of Scientific and Technical Information of China (English)

    孙义柯; 龚烈航; 罗晓凯

    2015-01-01

    In this article, the main principle of high-pressure water jet cutting technology is described with focusing on appli-cation of the high-pressure abrasive water jet in counter-terrorism operations. A pre-mixed abrasive high pressure water jet device that is applicative in the counter-terrorism operations is researched and designed so as to provide a kind of protection for the counter-terrorism operations.%介绍了高压水射流切割技术的主要原理,重点介绍了磨料高压水射流在反恐行动中的应用,并研究设计了一种在反恐行动中适用的前混合磨料高压水射流装置,为反恐行动的顺利进行提供一种行动上的保障.

  9. Dynamic Modeling and Analysis of the Large-Scale Rotary Machine with Multi-Supporting

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2011-01-01

    Full Text Available The large-scale rotary machine with multi-supporting, such as rotary kiln and rope laying machine, is the key equipment in the architectural, chemistry, and agriculture industries. The body, rollers, wheels, and bearings constitute a chain multibody system. Axis line deflection is a vital parameter to determine mechanics state of rotary machine, thus body axial vibration needs to be studied for dynamic monitoring and adjusting of rotary machine. By using the Riccati transfer matrix method, the body system of rotary machine is divided into many subsystems composed of three elements, namely, rigid disk, elastic shaft, and linear spring. Multiple wheel-bearing structures are simplified as springs. The transfer matrices of the body system and overall transfer equation are developed, as well as the response overall motion equation. Taken a rotary kiln as an instance, natural frequencies, modal shape, and response vibration with certain exciting axis line deflection are obtained by numerical computing. The body vibration modal curves illustrate the cause of dynamical errors in the common axis line measurement methods. The displacement response can be used for further measurement dynamical error analysis and compensation. The response overall motion equation could be applied to predict the body motion under abnormal mechanics condition, and provide theory guidance for machine failure diagnosis.

  10. Rotary Valve FY 2016 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Fitsos, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-07

    The fiscal year started with the Rotary Valve (RV) being reassembled after having crashed in June of 2015. The crash occurred when the RV inner surface contacted the housing. The cause of the crash was never confirmed. No particles were found in the 2.5 thousandths of an inch gap and the filters the helium gas passed through were all clean. There were marks on the bearings that looked like electrostatic discharge as shown below in Figure 1. These marks hadn’t been seen before and there were similar discharge marks on some of the ball bearings. Examples of this were found in a literature search of bearing failures. This leads to a possible cause due to this arcing affecting the rotational accuracy of the bearings driving the RV into the housing.

  11. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  12. Measurements and searches with matrix element techniques in W+jets signatures - International Union of Pure and Applied Physics (IUPAP) Awards talk

    Energy Technology Data Exchange (ETDEWEB)

    Canelli, Florencia [University of Chicago, Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    The matrix element technique developed over the last decade has improved precision measurements and also helped establish new processes. This is in great part possible due to the availability of CPU and to the improved modeling of the Monte Carlo tools. W+jets physics has given strong SM foundation for beyond SM: Top quark mass measurements; Top quark coupling probes; Single top observation; di-boson w/jets observation; Higgs searches; Heavy quark searches

  13. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    Science.gov (United States)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  14. Rotary endodontics in primary teeth - A review.

    Science.gov (United States)

    George, Sageena; Anandaraj, S; Issac, Jyoti S; John, Sheen A; Harris, Anoop

    2016-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the "gold-standard" over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel-titanium (Ni-Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel-titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  15. Unidirectional rotary motion in achiral molecular motors.

    Science.gov (United States)

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  16. Kinetic characteristic for a synchronal rotary compressor

    Institute of Scientific and Technical Information of China (English)

    Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua

    2007-01-01

    An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply

  17. Analysis of the Rotary Ultrasonic Machining Mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low material removal rate due to using abrasive slurry limits further application of USM. Rotary ultrasonic machining (rotary USM) superimposes rotational movement on the tool head that vibrates at ultrasonic frequency (20 kHz) simultaneously. The tool is made of mild steel coated or bonded with diamon...

  18. Rotary impeller refinement of 7075Al alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Liping; GUO Erjun; HUANG Yongchang; LU Bin

    2009-01-01

    The effects of four parameters, gas flow, rotational speed, refining time, and stewing time, on the rotary impeller refinement of 7075 Al were studied. The effects of C2Cl6refining, rotary impeller refuting, and composite refining of 7075 AI alloy were compared with each other. The results showed that the greatest impact parameter of rotary impeller refinement was rotational speed, followed by gas flow, refining time, and stewing time. The optimum purification parameters obtained by orthogonal analysis were as follows: rotor speed of 400 r/min, inert gas flow of 0.4 mL/h, refining time of 15 min, and stewing time of 6 min. The best degassing effect can be obtained by the composite refuting of C2Cl6 and rotary impeller. The degassing rate of C2Cl6 rotary impeller, and composite refining was 34.5%, 69.2%, and 78%, respectively. The mechanical properties of the specimen refined by rotary impeller were higher than those by C2C16 refining, but lower than those by composite refining.

  19. Experimental measurement of surface temperatures during flame-jet induced thermal spallation

    Science.gov (United States)

    Wilkinson, M. A.; Tester, J. W.

    1993-01-01

    Thermal spallation is a method whereby the surface of a rock is rapidly heated causing small (100 1000 μm) flakes or spalls, to form. When applied to drilling, a supersonic, high temperature (2600 K) gas jet is directed at the rock to provide the heat source and sweep away the spalls. Previous studies of thermal spallation drilling indicate that penetration rates of up to 30 m/hr (100 ft/hr), approximately ten times greater than commonly obtained using conventional rotary mechanical methods, can be achieved in competent, non-fractured hard rock such as granite. A total direct operating cost for drilling in granite using a flame-jet spallation drill was estimated by Browning (1981) to be approximately 9/m in 1991 (about 3/ft) compared to “trouble-free” well drilling costs for conventional rotary methods in similar rock to depths of 3 to 7 km (10000 to 21000 ft) of 300 to 900/m (100 to 300/ft) (Tester and Herzog, 1990, 1992). The Browning estimates for spallation drilling are obviously optimistic in that they don't include capital costs for the rig and associated hardware. However, the substantially higher penetration rates, significantly reduced wear of downhole components, and the high efficiency of rock communition in comparison to rotary methods suggest that substantial cost reductions could be possible in deep drilling applications. For example, in the construction of hot dry rock geothermal power plants where rotary mechanical methods are used for well drilling to depths of (4 to 5 km), about half of the initial capital cost would be required for well drilling alone (Tester and Herzog, 1992). The current study has focused on gaining a better understanding of both the rock failure mechanism that occurs during thermal spallation and the heat transfer from the gas jet to the rock surface. Rock mechanics modeling leads to an expression for the surface temperature during spallation as a function of rock physical properties and the incident heat flux. Surface

  20. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, Richard Clement [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  1. Man-made rotary nanomotors: a review of recent developments

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-05-01

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  2. Man-made rotary nanomotors: a review of recent developments.

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z X; Zhu, F Q; Fan, D L

    2016-05-19

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  3. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  4. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  5. Jet Observables Without Jet Algorithms

    CERN Document Server

    Bertolini, Daniele; Thaler, Jesse

    2013-01-01

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applicatio...

  6. Increasing Plant Availability by Mechanical Checking of the Cement Rotary Kiln Axis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A periodic check of the cement rotary kiln axis is needed within the framework of preventive maintenance for maintaining high plant availability. The fourth generation “KAS-4” measuring system was developed by Wuhan University of Technology in 1999. The system can be carried out with rotating or stationary kiln plant. The same is true of the measurement of tire and supporting roller diameters, the clearance of tires, the position of rollers, the machining of tires and rollers, the slopes of roller surfaces, the deflection of gear, the axis of kiln. The system has been applied to the measurement for 10 sets of cement rotary kiln in China.

  7. Study on precision piezoelectric rotary step motors with inner anchor/loosen and outer drive

    Institute of Scientific and Technical Information of China (English)

    Jianfang LIU; Zhigang YANG; Ping ZENG; Zunqiang FAN

    2008-01-01

    A new precision rotary piezoelectric(PZT)actuator is proposed to improve its drive performance.Based on piezoelectric technology,the actuator adopts the principle of bionics,with a new method of stator inner anchor/loosen/rotor outer drive and a distortion structure of a thin shelf flexible hinge.This structure improves the stability of the anchor/loosen and step rotary.Its characteristics are evaluated by finite element analysis.The experiment shows that the new rotary PZT actuator works with higher frequency(40 Hz),higher speed (325 μrad/s),wider movement(360°),high resolution (1 μrad/step)and high torque(30 N·cm).The novel actuator can be applied in wide movement and high resolution driving devices such as those for optics engineering,precision positioning and some other micro-manipulation fields.

  8. Coal gasification: New challenge for the Beaumont rotary feeder

    Science.gov (United States)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  9. Pneumatic Rotary Actuator Angle Control System

    Institute of Scientific and Technical Information of China (English)

    王鹏; 彭光正; 伍清河

    2003-01-01

    Based on the adaptive control method, a kind of parameter adjustor was used to control pneumatic rotary actuator to track the expected output. The system uses electropneumatic proportional valve as control device, which adjusts the gas flow of actuator 's two cavities, then changes the pressure of cavity and pushes the piston of actuator to move, so the rotary actuator 's axis can be made to revolve to the required angle at last. According to the characteristic of pneumatic system, the control system was described with a fourth-order mathematic model. The control rule is deduced by model reference adaptive control method. By the result of experiment, it was proved that by using the adaptive control method, the output of rotary actuator could track the expected value timely and accurately.

  10. Kinematic control model for light weighting mechanism of excavator attached to rotary working device

    Science.gov (United States)

    Lee, Choongho; Lee, Sangsik; Cho, Youngtae; Im, Kwanghee

    2007-07-01

    An excavator attached to a rotary working device is used principally in industrial work. In particular, they are used in the building industry and public works. This research concerns the rotary automatic control of an excavator attached to a rotary working device. The drilling excavator is used in the crushed stone industry and the dragline excavation system is employed in the construction industry. Cases of the excavator's use in agriculture have been the subject of a relatively few studies. However, several modified excavator designs have been released in recent years. Applied excavator products are primarily utilized under relatively severe environmental conditions. In this study, we focus on the uses of an excavator in agricultural work. The readjustment of arable land and the reduction of weeds in agricultural applications both require skilled hand-operation of the machines. As such workers have been shown to develop problems with regard to working posture and proper positioning while laboring, a more appropriate excavator design may prove useful in such applications. Therefore, this pilot study is focused primarily on the rotary automatic control of an excavator attached to a rotary working device, and will adapt smart materials to the excavator applications for developing redesigned excavator having a light weight. The excavator is attached to a rotary working device on a normal excavator's platform, and the position and orientation of the mechanism between the joints and the rotary working device was determined. Simulations were also conducted of the excavator attached to the rotary working device. With an eye toward the use of this mechanism in agricultural work, we also conducted a set of kinematic analyses. The rotary working device was assumed to have 3 DOF, and was comprised of 5 links. Computer simulations were also conducted using the developed excavator model. In order to adequately evaluate the possible performance of such a system, kinetic

  11. Jet Reconstruction with charged tracks only in CMS

    CERN Document Server

    Azzurri, Paolo

    2008-01-01

    The performance of jet finding using only charged tracks in CMS has been investigated. Different jet algorithms have been applied to QCD di-jet events, to hadronic $t\\overline{t}$ multi-jet events and on Z+jets events. Results using jets made with tracks only or calorimeter towers are compared for energy response, angular resolution and jet matching to the leading partons. The jet reconstruction performance in the presence of pile-up interactions is presented for the Z+jets sample.

  12. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  13. Development of a novel rotary magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime A.; Capovilla, Matheus S.; Trevizoli, Paulo V.;

    2016-01-01

    A novel rotary magnetic refrigerator was designed and built at the Federal University of Santa Catarina (UFSC). The optimized magnetic circuit is a two-pole system in a rotor-stator configuration with high flux density regions of approximately 1 T. Eight pairs of stationary regenerator beds filled...... with approximately 1.7 kg of gadolinium spheres (425-600 μm diameter) were placed in the magnetic gap. Two low-friction rotary valves were developed to synchronize the hydraulic and magnetic cycles. The valves were positioned at the hot end to avoid heat generation in the cold end. In this work, experimental results...

  14. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy

    2013-04-11

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.

  15. Counteracting ring formation in rotary kilns

    NARCIS (Netherlands)

    Pisaroni, M.; Sadi, R.; Lahaye, D.

    Avoiding the formation of rings in rotary kilns is an issue of primary concern to the cement production industry. We developed a numerical combustion model that revealed that in our case study rings are typically formed in zones of maximal radiative heat transfer. This local overheating causes the o

  16. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    xx  I.  Introduction ...Edge TPV Thermo-Photovoltaic CONCEPTUAL STUDY OF ROTARY-WING MICROROBOTICS I. Introduction Flying micro-robots offer unimaginable military...Tweezers 1989 1 cm3 inch robot 1991 Magnetostrictive mover in pipe 1992 Insect-based robot 1993 Ciliary-motion conveyor 1994 Pipe inspection robot

  17. Numerical Modeling of Rotary Kiln Productivity Increase

    NARCIS (Netherlands)

    Romero-Valle, M.A.; Pisaroni, M.; Van Puyvelde, D.; Lahaye, D.J.P.; Sadi, R.

    2013-01-01

    Rotary kilns are used in many industrial processes ranging from cement manufacturing to waste incineration. The operating conditions vary widely depending on the process. While there are many models available within the literature and industry, the wide range of operating conditions justifies furthe

  18. Rotary Engine Friction Test Rig Development Report

    Science.gov (United States)

    2011-12-01

    5  4.  Friction Rig Development 7  5.  AutoCAD ...Figure 4. Engine friction test rig AutoCAD model. ........................................................................8  Figure 5. Engine...top dead center. 8 5. AutoCAD Model Development A model of the rotary engine friction test rig was developed to determine the optimal

  19. The performance of rotary power tiller using prototype rotary blades in dry-land field

    Directory of Open Access Journals (Sweden)

    Sirisak Chertkiattipol

    2008-11-01

    Full Text Available The effect of shape of prototype rotary blades on the performance of rotary power tiller was investigated in this study. Three sets of rotors, i.e. 14-blade rotor of the Japanese C-shape blade (4.5 cm tilling width of one blade; T1, 14-blade rotor of the prototype rotary blade no. 1 (4.5 cm tilling width of one blade; T2, and 10-blade rotor of the prototype rotary blade no. 2 (6.5 cm tilling width of one blade; T3 were used. The tests were conducted in a dry-land field of clay loam with soil moisture content of 16.04 % (d.b. and dry bulk density of 1.51 g/cm3 at different rotational speeds of 300, 350 and 400 rpm at one and two tilling passes. For all rotors, experimental results showed that the mean soil clod diameter decreased and soil inversion increased with increasing rotational speed of the rotor. The mean soil clod diameter decreased at pass 2. Soil inversion during pass 2 was higher than pass 1. However, the three sets of rotors showed no significant difference on mean soil clod diameter and soil inversion. The shape of blade prototype rotary blade no. 1 and the decreasing number of prototype rotary blade no. 2 did not affect the tillage performance as compared with the Japanese C-shaped blade.

  20. Modeling and Analysis of A Rotary Direct Drive Servovalve

    Institute of Scientific and Technical Information of China (English)

    YU Jue; ZHUANG Jian; YU Dehong

    2014-01-01

    Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces. Current studies mainly focus on enhancing the driving force, which in turn is limited to the development of the magnetic material. Aiming at reducing the flow forces, a novel rotary direct drive servovalve(RDDV) is introduced in this paper. This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber. The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve. In order to study the RDDV servovalve performance, flow rate model and mechanical model are established, wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained. The model analysis shows that the driving torque can be alleviated due to the proposed valve structure. Computational fluid dynamics(CFD) analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis. In addition, experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out. Both simulation and experimental results conform to the results of the theoretical model analysis, which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics. This research proposes a novel rotary direct drive servovalve, which can reduce the flow forces effectively.

  1. Simultaneous Independent Multi-Weft Detector Applied to Water-Jet Looms%喷水织机用多纬同时分别检测装置

    Institute of Scientific and Technical Information of China (English)

    张振奇; 程玮燕

    2001-01-01

    喷水织机多纬同时引入时的织造,只有在纬丝全部同时检测时才能保证产品的质量,提高生产效率;但目前大部分织机上没有此检测装置。文章在对喷水织机原有纬丝检测装置的结构进行全面分析之后,结合其他无梭织机的纬丝检测装置的结构特点,设计了一种利用纺丝机上的感丝器进行检测的装置,经试用,安全可靠,造价低廉,不失为一种有意义的探索,可供其他无梭织机借鉴。%During multi-weft weaving by water-jet loom, only all wefts aresimultaneously detected, can the product quality and high productivity be ensured. However, such detecting devices are unavailable for most of current looms. Through thorough analyses on the structure of the existing weft detectors for water-jet loom and in combination with the structural features of weft detectors for other shuttleless looms, a detecting device is designed on the basis of the yarn detector of spinning machine. It proves to be safe, reliable and low in cost through trial application, offering reference for other shuttleless looms.

  2. Rotary-scanning optical resolution photoacoustic microscopy

    Science.gov (United States)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  3. Rotary Mode Core Sample System availability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  4. A new spin on the rotary engine

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, S.

    1995-04-01

    This article reports on a Canadian company that is trying to develop high-power, low-weight motors based on a novel axial-vane rotary engine concept. A promising new attempt at a practical rotary engine is the Rand Cam engine now being developed by Reg Technologies Inc. The Rand Cam engine is a four-stroke, positive-displacement power plant based on an axial-vane compression/expansion mechanism with only nine moving parts (eight vanes and a rotor). The new engine design uses passive ports rather than mechanically operated valves, and it features lighter-weight reciprocating parts than customary pistons. The Rand Cam operates at lower speeds than a typical Wankel engine (less than 2,000 rpm) and at higher compression ratios. Chamber sealing is accomplished using sliding axial vanes rather than the motion of an eccentric rotor.

  5. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...... measurements of the much larger reflection parameters, hence commonly used nonprecision instruments can be used to determine the transmission errors with sufficient accuracy for the highest precision obtainable in standard laboratories....

  6. Control of Rotary Cranes Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Amjed A. Al-mousa

    2003-01-01

    Full Text Available Rotary cranes (tower cranes are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them has become difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control attractive.

  7. Numerical Modeling of Rotary Kiln Productivity Increase

    OpenAIRE

    2013-01-01

    Rotary kilns are used in many industrial processes ranging from cement manufacturing to waste incineration. The operating conditions vary widely depending on the process. While there are many models available within the literature and industry, the wide range of operating conditions justifies further modeling work to improve the understanding of the processes taking place within the kiln. The kiln being studied in this work produces calcium aluminate cements (CAC). In a first stage of the pro...

  8. Jet quenching via jet collimation

    CERN Document Server

    Casalderrey-Solana, J; Wiedemann, U

    2011-01-01

    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.

  9. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  10. Innovative collaboration important to rotary steerable drilling

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2000-05-01

    Sperry-Sun Drilling Services' recently commercialized Geo-Pilot{sup T}M rotary steerable drilling system is described. The system consists of the Geo-Pilot{sup T}M rotary steerable tool, a logging-while-drilling (LWD) system, specially designed long-gauge bits and the INSITE{sup T}M data acquisition and management system. The system brings a completely new approach to rotary steerable drilling. It uses 'point-the-bit' technology to deflect a rotating drive shaft off center, causing the drive shaft to flex and alter the direction of the drilling. The tool provides real-time steering information and at-bit inclination measurement, both of which are integrated with the INSITE{sup T}M rig information system. The real-time data can be displayed along with other formation evaluation information. The system has been evaluated at the Gas Research Institute's Oklahoma test facility; it has been used commercially by Canadian, Norwegian and US operators, with complete success. Worldwide deployment of the system is in the planning stages.

  11. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  12. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YI Qian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  13. Classification of Implantable Rotary Blood Pump States With Class Noise.

    Science.gov (United States)

    Ooi, Hui-Lee; Seera, Manjeevan; Ng, Siew-Cheok; Lim, Chee Peng; Loo, Chu Kiong; Lovell, Nigel H; Redmond, Stephen J; Lim, Einly

    2016-05-01

    A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.

  14. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YIQian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a.shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  15. Tallinna Rotary klubi valis aasta politseiniku ja narkokoera

    Index Scriptorium Estoniae

    2006-01-01

    Tallinna Rotary klubi autasustas parima narkopolitseiniku preemiaga Lõuna politseiprefektuuri narkokuritegude talituse vaneminspektorit Jarek Pavlihhinit ning parima narkokoera tiitliga vene spanjelit Allrighti

  16. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  17. 转台轴承在立式车床中的应用%Application of Rotary Table Bearing in Vertical Lathe

    Institute of Scientific and Technical Information of China (English)

    范长庚

    2016-01-01

    介绍一种转台轴承,并将其应用于立式车床转台中。与传统的立式车床转台相比,采用转台轴承的转台有结构简单、装配简便、运转精度高等许多优点,适合推广应用。%A kind of rotary table bearing was introduced, it was applied to the rotary table of a vertical lathe.Compared with tra-ditional rotary table of vertical lathe, the rotary table has simple structure, simple assembly and high accuracy.It is suitable for wide application.

  18. Forming of Hollow Shaft Forging From Titanium Alloy Ti6Al4V by Means of Rotary Compression

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-04-01

    Full Text Available This paper presents chosen results of theoretical-experimental works concerning forming of hollow shafts forgings from titanium alloys, which are applied in aviation industry. At the first stage of conducted analysis, the forging forming process was modeled by means of finite element method. Calculations were made using software Simufact Forming. On the basis of performed simulations optimal parameters of rotary compression process were determined. Next, experimental tests of forging forming in laboratory conditions were made. For the research needs, a forging aggregate, designed by the Authors, was used. Conducted research works confirmed the possibility of metal forming (by means of rotary compression of hollow shafts from hard workable titanium alloys. Numerous advantages of rotary compression process, make it attractive both for low series production (aircraft industry and for mass production (automotive industry.

  19. Modelling and optimization of rotary parking system

    Science.gov (United States)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  20. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  1. New Imaging Spectrometric Method for Rotary Object

    Institute of Scientific and Technical Information of China (English)

    方俊永; 赵达尊; 蒋月娟; 楚建军

    2003-01-01

    A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and convenient for computation. In computer simulations with this method, projections of the object are detected by CCD while the object is rotating, and the original spectral images are numerically reconstructed from them by using the algorithm of computed-tomography. Simulation results indicate that the principle of the method is correct and it performs well for both broadband and narrow-band spectral objects.

  2. Light-driven rotary molecular motors : an ultrafast optical study

    NARCIS (Netherlands)

    Augulis, Ramunas; Klok, Martin; Loosdrecht, Paul H.M. van; Feringa, Bernard

    2009-01-01

    Molecular rotary motors, though common in nature, were first synthesized rather recently. One of the most promising categories of light-driven rotary molecular motors which allow for optical control is based on helical overcrowded alkenes. In this category of motors, the rotation of the motor’s roto

  3. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; Boer, de H.; Tran, T.; Berg, van den A.; Eijkel, J.C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  4. Percutaneous transluminal coronary rotary ablation with rotablator (European experience)

    NARCIS (Netherlands)

    M.E. Bertrand (Michel); J.M. Lablanche (Jean Marc); C. Bauters; P.P.T. de Jaegere (Peter); P.W.J.C. Serruys (Patrick); J. Meyer (Jurgen); U. Dietz; R. Erbel (Raimund)

    1992-01-01

    textabstractThis study reports the results from 3 European centers using rotary ablation with Rotablator, a device that is inserted into the coronary artery and removes atheroma by grinding it into millions of tiny fragments. Rotary ablation was performed in 129 patients. Primary success (reduction

  5. Engineering analysis of a rotary dryer: drying of wood particles

    Energy Technology Data Exchange (ETDEWEB)

    Kamke, F.A.

    1984-01-01

    Rotary dryers are the most commonly used wood drying system in the particleboard industry. These dryers also play an increasingly important role in drying wood residues for fuel. A rotary dryer simulation model was developed, in the form of a computer program, for the purpose of analyzing the drying behavior of wood particles. The approach used in the model development analyzed the rotary drying process in a sequential manner. Beginning with a study of particle residence time in a rotary drum, the process of heat transfer, and then mass transfer, were incorporated to yield a complete rotary dryer simulation model. The resultant computer program does not require empirical constants or equations developed for a particular rotary dryer system. Experiments on a commercially manufactured rotary dryer were performed to check the performance of the simulation model as a predictor of overall residence time and drying behavior. Comparison between the predictions and the measured results were good, indicating a percent root mean square error of 22.2 in the prediction of the outlet particle moisture content. The rotary dryer simulation model developed in this study should prove useful for optimizing process parameters in the drying of wood particles.

  6. Prevention of thinning at disc center during rotary forging

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the rotary forging of a disc using a finite element method, which re veals the thinning at the disc center is caused by higher radial and tangential tensile stresses resulting from the local loading of a rotary die and acting at the center of a workpiece, and proposes a new design of rotary die with a hole opened in its center to prevent the continuous occurrence of shortening in the axial direction and elongation in the tan gential and radial directions, and concludes from simulation results that the rotary die with a hole opened in its center is effective for prevention of thinning or cracking at the center of a disc during rotary forging.

  7. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  8. Boosted Jet Tagging with Jet-Images and Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Kagan Michael

    2016-01-01

    Full Text Available Building on the jet-image based representation of high energy jets, we develop computer vision based techniques for jet tagging through the use of deep neural networks. Jet-images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing. We show how applying such techniques using deep neural networks can improve the performance to identify highly boosted W bosons with respect to state-of-the-art substructure methods. In addition, we explore new ways to extract and visualize the discriminating features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods.

  9. Boosted Jet Tagging with Jet-Images and Deep Neural Networks

    Science.gov (United States)

    Kagan, Michael; de Oliveira, Luke; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-11-01

    Building on the jet-image based representation of high energy jets, we develop computer vision based techniques for jet tagging through the use of deep neural networks. Jet-images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing. We show how applying such techniques using deep neural networks can improve the performance to identify highly boosted W bosons with respect to state-of-the-art substructure methods. In addition, we explore new ways to extract and visualize the discriminating features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods.

  10. Noise Reduction Analysis on Inverter Driven Two-Cylinder Rotary Compressor

    Science.gov (United States)

    Nonaka, Ryutaro; Suda, Akihiro; Matumoto, Kenzou

    Two-cylinder rotary compressor is dynamically balanced well because two rollers in each cylinder chamber are located in opposite sides. Thus, it helps to reduce the circumferential vibration based on the tracking torque ripple for gas compression. This concept has been recently applied to room airconditioners (RACs) for the purpose of reducing vibration and noise of the unit. However, it consequently requires the compressor, which is one of the main noise factors, extremely low noise to reduce RAC noise. This paper describes generating mechanisms of the compressor noise established by analysis using signal processing and computer aided engineering. In addition, concrete countermeasures are presented for the noise reduction of the two-cylinder rotary compressor. In conclusion, Countermeasures for resonance in cavities were achieved by reducing 630Hz∼1KHz levels and the effect of muffler in the chamber contributed to the reduction of 3KHz∼6KHz levels.

  11. Dynamic Analysis of Foundation Supporting Rotary Machine

    Directory of Open Access Journals (Sweden)

    Utkarsh S. Patel

    2015-08-01

    Full Text Available With the advancement of technology in the field of industry, high speed machinery has been developed. As the speed of machinery has increased, vibrations also increased. Machines transmit vibrations to the structure supporting them. Hence, it is important to design and develop such structure which sustains the vibrations of machinery. Hence, in this study it has been aimed to execute the study on foundations supporting rotary type of machine like blower. In this paper, the most important parameters like frequency and amplitude are considered while execution of analysis of machine foundation supporting blower type machine. This paper shows, better interface between foundation designer and machine manufacturer for better performance of machine. The design aids/approaches for foundation design is also described in this paper and an attempt has been made to study the dynamic behaviour of a foundation structure for blower type machine subjected to forces due to operation of blower machine. Two different types of foundations for Rotary type Machine that is Blower have been studied in this paper

  12. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  13. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  14. A metering rotary nanopump for microfluidic systems.

    Science.gov (United States)

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  15. Collection of an electrospinning jet

    Science.gov (United States)

    Han, Tao; Reneker, Darrell

    2006-03-01

    Electrospinning [1, 2] of polymer nanofibers involves an electrically driven bending instability of the elongating jet. If the jet is collected on a stationary surface immediately before or after the bending instability occurs, the jet buckles as it stops. Bending and buckling are distinct phenomena. The determination of the behavior of the jet path in the vicinity of the onset of the first bending instability is important for the orderly collection of the nanofiber. Precise adjustment of the fluid flow, the electrical current, and the shape of the region from which the jet issued, produced a very stable jet which was observed with a high frame rate, short exposure time camera. The fluid jet and the resulting nanofibers were collected on a solid, electrically conducting substrate which was moved laterally, and simultaneously, away from the tip. This collected material preserved a record of the straight segment and the bending and buckling instabilities with a minimum of overlapping. The occurrence of a second bending instability was sometimes observed in the dry fiber. 1. Doshi, J.; Reneker, D.H., Journal of Electrostatics; 35, 151, 1995 2. Reneker, D.H. ;Yarin,A.L.Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000

  16. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  17. Highly precise and compact ultrahigh vacuum rotary feedthrough

    Science.gov (United States)

    Aiura, Y.; Kitano, K.

    2012-03-01

    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  18. Correlation Development for Sauter Mean Diameter of Rotary Atomizer

    Directory of Open Access Journals (Sweden)

    Murali.K

    2016-08-01

    Full Text Available Atomizers are of many types, among that simplex and duplex types of atomizers are used and recognized often as fuel injectors in aircrafts. Types of atomizers and features are read. Among many types of atomizer, rotary type of atomizer is selected due to its naked evident like easy retrofit to existing spreading system , able to handle large quantities, feed is possible, better economy, high peripheral speed and spread of droplets, uniform liquid feed rate, uniform distribution of feed, higher level of atomization etc., The rotary atomizer specifications and its features are listed, the droplets of rotary atomizer are visualized and readings are taken from experimental methods, such as Laser visualization method .After the droplets data alignment, the (SMD Sauter Mean Diameter is to be taken in and considered, SMD means it is a average particle (droplet size of a given particles, and it is further explained with its given relation. By SMD’s given equated form it is used to compare data between rotary atomizer particles and given particle size. By SMD it is simplified further and used to create a co-relation between SMD and rotary atomizer. The rotary atomizer data values are taken through out with the SMD to find and form a co-related derived pattern for ROTARY ATOMIZE

  19. Formation of technical requirements for flexible rotary machine nodes

    Science.gov (United States)

    Bulenkov, Y.; Mikhaylov, A.

    2016-11-01

    The method of parameters determining for the flexible rotary machines and lines and its individual components is described in this article. The method is based on the analysis of the fail safe performance probability. It allows determining the fail safe performance probability for tools, transportation and tool changing device nodes, elements of flexible rotary machine and is based on the analysis of flexible rotor line structure. The relationships between rational flexible rotary line structure and parameters of the individual nodes are shown on the flexible rotor line for the screws processing.

  20. Measurement and evaluation of static characteristics of rotary hydraulic motor

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper describes experimental equipment for measurement of static characteristics of rotary hydraulic motor. It is possible to measure flow, pressure, temperature, speed and torque by means of this equipment. It deals with measurement of static characteristics of a gear rotary hydraulic motor. Mineral oil is used as hydraulic liquid in this case. Flow, torque and speed characteristics are evaluated from measured parameters. Measured mechanical-hydraulic, flow and total efficiencies of the rotary hydraulic motor are adduced in the paper. It is possible to diagnose technical conditions of the hydraulic motor (eventually to recommend its exchange from the experimental measurements.

  1. Numerical Evaluation of Brick Lining Status in Rotary Kilns

    OpenAIRE

    2015-01-01

    Rotary kilns are important in a variety of different manufacturing areas for e.g. calcination and sintering of materials. In fact, two of the most produced materials in the world, cement and iron, are likely to start their journey in a rotary kiln.A rotary kiln is a large cylinder-formed furnace which rotates about its axis and where certain chemical and physical reactions take place by the influence of heat. The slope and the rotation make the material inside to move through the kiln from fe...

  2. Rotary seal with improved film distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  3. Rotary fast tool servo system and methods

    Science.gov (United States)

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  4. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  5. Film riding seals for rotary machines

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward; Ruggiero, Eric John; Raj Mohan, Vivek Raja

    2017-03-07

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.

  6. Rotary seal with improved film distribution

    Science.gov (United States)

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  7. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy.

    Science.gov (United States)

    Xie, Yannan; Wang, Sihong; Lin, Long; Jing, Qingshen; Lin, Zong-Hong; Niu, Simiao; Wu, Zhengyun; Wang, Zhong Lin

    2013-08-27

    Harvesting mechanical energy is becoming increasingly important for its availability and abundance in our living environment. Triboelectric nanogenerator (TENG) is a simple, cost-effective, and highly efficient approach for generating electricity from mechanical energies in a wide range of forms. Here, we developed a TENG designed for harvesting tiny-scale wind energy available in our normal living environment using conventional materials. The energy harvester is based on a rotary driven mechanical deformation of multiple plate-based TENGs. The operation mechanism is a hybridization of the contact-sliding-separation-contact processes by using the triboelectrification and electrostatic induction effects. With the introduction of polymer nanowires on surfaces, the rotary TENG delivers an open-circuit voltage of 250 V and a short-circuit current of 0.25 mA, corresponding to a maximum power density of ~39 W/m(2) at a wind speed of ~15 m/s, which is capable of directly driving hundreds of electronic devices such as commercial light-emitting diodes (LEDs), or rapidly charging capacitors. The rotary TENG was also applied as a self-powered sensor for measuring wind speed. This work represents a significant progress in the practical application of the TENG and its great potential in the future wind power technology. This technology can also be extended for harvesting energy from ocean current, making nanotechnology reaching our daily life a possibility in the near future.

  8. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    Science.gov (United States)

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact.

  9. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  10. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  11. Rotary endodontics in primary teeth – A review

    Directory of Open Access Journals (Sweden)

    Sageena George

    2016-01-01

    Full Text Available Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  12. Research on rotary forming mechanism of cartridge bottom by FEM

    Institute of Scientific and Technical Information of China (English)

    刘钢; 姚雄亮; 黄少东; 唐全波

    2003-01-01

    The rotary forging of a cartridge bottom is simulated by finite element method with DEFORMTM. The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis-symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.

  13. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  14. Rotary klubi tuli rannarahvale appi / Anu Jürisson

    Index Scriptorium Estoniae

    Jürisson, Anu

    2005-01-01

    Tallinna Vanalinna Rotary klubi kinkis kolmele Rannametsa perele kümme tuhat krooni jaanuaritormi kahjustuste likvideerimiseks. Klubi presidendiks on Allan Martinson, nimekirjas ka Tõnis Palts, Toomas Hendrik Ilves, Rein Kilk, Hans H. Luik, Vahur Kraft jt.

  15. The ATLAS b-Jet Trigger

    CERN Document Server

    Hansson Adrian, Per

    2011-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers was contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from using the b-jet trigger. An overview of the b-jet trigger menu and performance on data is presented.

  16. The ATLAS b-jet Trigger

    CERN Document Server

    Ferreira de Lima, D E; The ATLAS collaboration

    2011-01-01

    The ATLAS b-jet Trigger The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this poster.

  17. AGN jet physics and apparent opening angles

    CERN Document Server

    Clausen-Brown, Eric; Pushkarev, Alexander B; Kovalev, Yuri Y; Lister, Matthew L

    2013-01-01

    We present a new method to measure Gamma*theta_j in flux-limited samples of active galactic nuclei (AGN) jets, where Gamma is the bulk Lorentz factor and theta_j is the jet's half-opening angle. The Gamma*theta_j parameter is physically important for models of jet launching, and also determines the effectiveness of jet instabilities and magnetic reconnection. We measure Gamma*theta_j by analyzing the observed distribution of apparent opening angles in very long baseline interferometry (VLBI) flux-limited samples of jets, given some prior knowledge of the active galactic nuclei (AGN) radio luminosity function. We then apply this method to the MOJAVE flux-limited sample of radio loud objects and find Gamma*theta_j = 0.1 +- 0.03, which implies that AGN jets are subject to a variety of physical processes that require causal connection.

  18. Lubricants for HFC-134a Compatible Rotary Compressors

    Science.gov (United States)

    Takaichi, Kenji; Sakai, Hisakazu

    In replacing CFC-12 with HFC-134a for refrigerator compressors, the compatibility with lubricating oil, and lubrication in general, are of major concern. HFC-134a dose not have adequate solubility with current lubricating oils because of its molecular structure. Current oils also do not provide enough lubricating action when using HFC-134a. A new oil and new materials have to be utilized in order to use HFC-134a. Developing a new lubricating oil involved numerous tests of different combinations of many polyolester synthetic oils and additives. One of the pre-evaluated methods was pursued via sealed tube tests. Lubricated parts were selected by studies involving a plane-on-roller type of wear test machine and by analyzing the traces of acid material commonly created during the lubricating action. The matrices of new lubricating oils and new lubricated materials were estimated based on durability tests conducted on compressors and refrigerators. Results showed that polyolester synthetic oils having a low total acid value and including certain quantities of additives did not break down into a tar-like substance and they did not produce composite particles in the operating compressors and refrigerators. The study also found that ceramics and anti-corrosion alloy steel possessed good adrasion-reducing qualities. Based on our evaluation, we will implement compressor reliability tests and apply HFC-134a to rotary compressors for refrigerators.

  19. Noise characteristics of the Escherichia coli rotary motor

    Directory of Open Access Journals (Sweden)

    Clausznitzer Diana

    2011-09-01

    Full Text Available Abstract Background The chemotaxis pathway in the bacterium Escherichia coli allows cells to detect changes in external ligand concentration (e.g. nutrients. The pathway regulates the flagellated rotary motors and hence the cells' swimming behaviour, steering them towards more favourable environments. While the molecular components are well characterised, the motor behaviour measured by tethered cell experiments has been difficult to interpret. Results We study the effects of sensing and signalling noise on the motor behaviour. Specifically, we consider fluctuations stemming from ligand concentration, receptor switching between their signalling states, adaptation, modification of proteins by phosphorylation, and motor switching between its two rotational states. We develop a model which includes all signalling steps in the pathway, and discuss a simplified version, which captures the essential features of the full model. We find that the noise characteristics of the motor contain signatures from all these processes, albeit with varying magnitudes. Conclusions Our analysis allows us to address how cell-to-cell variation affects motor behaviour and the question of optimal pathway design. A similar comprehensive analysis can be applied to other two-component signalling pathways.

  20. Design Analysis And Application Of Nylon66 In Rotary Spars

    Directory of Open Access Journals (Sweden)

    P.K. Harish Kumar

    2014-04-01

    Full Text Available Technology has led to the increased use of plastics as replacement to conventional materials in various sectors. The use of alloy steels in various rotary spares such as gears, cams, bearings, valve seats and other bearing and wear applications that requires quite operation, low coefficient of friction and wear resistance shall be replaced with nylon 66 as per requirements. In the present work I am applying nylon66 in gears and sprocket wheels used in automotive it is proposed to substitute the metallic rotating spares like gears and sprockets with nylon 66 to reduce the weight and noise. For this purpose different types of polymers were considered namely Polyethylene, PVC, Polystyrene, Polypropylene and Nylon66 and their viability are checked with their counterpart metallic gear (Cast iron. Based on the static analysis, the best plastic material is recommended for the purpose.3D model of gears and sprocket wheel chain assembly has been modeled by using Pro-E WF4. The models are then pre-processed using hyper mesh 10 .

  1. Inclusive Jets in PHP

    Science.gov (United States)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  2. Rotary Tool Milling Processes and Its Tool%驱动式滚切铣削机理分析及其刀具

    Institute of Scientific and Technical Information of China (English)

    李慎旺; 王西彬; 解丽静; 张好强

    2016-01-01

    Rotary tool cutting process is applied to cutting especially in difficult-to-cut materials cutting with its unique advantages. There is no literature about it. The rotary rate ratio that is the proportional relationship of “rolling” and “cutting” was presented for the first time based on analysis of rotary tool cutting processes was. Combined with the rotary rate ratio, machined surface quality and the contact sliding rate and milling force were studied. An inner driving rotary milling tool was first proposed in this paper. It is the hardware realization of the driving rotary milling tool. The rotary rate ratio of inner driving rotary milling tool not only can be adjusted before cutting processes in accordance with the requirements of parameters, but also can keep the adjusted value in machining process. Results show that the inner driving rotary milling tool has a strong advantage, compared with the traditional self-propelled rotary tool.%为了对驱动式滚切铣削及驱动式滚切铣刀进行深入研究,在充分分析滚切加工特点的基础上,提出了以滚切速率比表征滚压和切削的比例关系,结合滚切速率比对驱动式滚切铣削的加工表面质量、刀具后刀面接触滑动速率、驱动式滚切铣削的铣削力的机理进行了研究。得出了驱动式滚切铣削本身特有的切削规律,并依据这些规律提出了驱动式滚切铣削加工的硬件实现形式“内驱动式滚切铣刀”。结果表明:内驱动式滚切铣刀(又称难加工材料专用铣刀)既能够根据待优化参数的要求在机加工前调节滚切速率比的值,又能够在机加工过程中保持调节好的滚切速率比的值稳定,相对传统的自滚切刀具具有很强的优势。

  3. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Directory of Open Access Journals (Sweden)

    Du huiqi

    2016-01-01

    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  4. Trends toward rotary steerable directional systems

    Energy Technology Data Exchange (ETDEWEB)

    Warren, T.M. [Amoco Exploration and Production Technology Group, Tulsa, OK (United States)

    1997-05-01

    Directional drilling will continue to be important in the petroleum industry for the foreseeable future as reserves in offshore locations, environmentally sensitive areas and locations with restricted surface access are developed. Emphasis on re-entries to extend the life of onshore and offshore production facilities and on horizontal completions to improve production rates and ultimate recovery will continue to place demands on directional drilling technology. Efficiency improvements that may be achieved through introduction of a new technology are often not easy to quantify, even though they may be quite significant. As long as the job gets done with the currently used system, and no better system is immediately available, it is natural to concentrate efforts on improving the existing system rather than introducing a new system. Here, the discussion is aimed at showing that drilling with steerable motor directional systems is inefficient, and that a significant improvement could be gained by introduction of rotary steerable systems. The objective of this article is not to put down motors, which have provided the backbone of directional drilling for three decades, but rather to show that considerable incentive exists for pursuing an alternative system.

  5. Rotary-piston internal combustion engine. Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.

    1991-08-08

    Rotary-piston internal combustion engine in trochoidal design with a slide bearing piston which is controlled by a synchronous gear. The gear is covered by an insert unit which is screwed at the eccentric. The insert unit seals the synchronous gear from the remaining machine parts; it has a hollow cylinder which covers the hollow gear of the synchronous gear and is eccentric to the eccentric shaft; it is sealed with a sealing ring from a shoulder of the piston. A further hollow cylinder is coaxial to the eccentric shaft; it surrounds the mount part with a clearance for the pinion; it projects into the boring at the side of the shaft and it is sealed by a sealing ring from the boring. An annular space which is sealed from the remaining engine rooms is on the other side of the bearing. The oil which escapes from the bearing is led from this annular space through the cooling rooms of the piston to the synchronous gear. The oil is carried off into a drain channel through the space which is formed by the coaxial hollow cylinder in the sidewall.

  6. Unloading arm movement modeling using neural networks for a rotary hearth furnace

    Directory of Open Access Journals (Sweden)

    Iulia Inoan

    2011-12-01

    Full Text Available Neural networks are being applied in many fields of engineering having nowadays a wide range of application. Neural networks are very useful for modeling dynamic processes for which the mathematical modeling is hard to obtain, or for processes that can’t be modeled using mathematical equations. This paper describes the modeling process for the unloading arm movement from a rotary hearth furnace using neural networks with back propagation algorithm. In this case the designed network was trained using the simulation results from a previous calculated mathematical model.

  7. b-Jet Identification in CMS

    CERN Document Server

    Beluffi, Camille

    2014-01-01

    A large fraction of the CMS physics program relies on the identification of jets containing the decay of a B hadron (b jets). The b jets can be discriminated from jets produced by the hadronization of light quarks based on characteristic properties of B hadrons, such as the long lifetime or the presence of soft leptons produced during their decay.An overview of the large variety of b-tagging algorithms and the measurement of their performance with data collected in 2011 and 2012 are presented in this talk. A special focus lies on new methods of b-tagging in jet substructure.As the excluded mass regions for new physics beyond the Standard Model continue to increase, searches often focus on boosted final states characterized by particles with large transverse momenta. In the boosted regime the resulting decay products for hadronic decays of heavy particles tend to be collimated and can fall within a single jet, known as fat-jet. In this case, selections based on multiple jets cannot be applied and jet substruct...

  8. The Giant Jet

    Science.gov (United States)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  9. Plasma Jet Modeling for PLX

    Science.gov (United States)

    Mason, Caroline F.; Mason, Rodney J.; Faehl, R. J.; Kirkpatrick, R. C.

    2011-10-01

    The implicit simulation code ePLAS has been applied to plasma jets generated with mini-rail guns for plasma production and compression aimed at use with PLX. The rails are typically planar, 2.5 cm apart and arranged to transport an initial 1 cm or wider vertical plasma fill some 10 cm into a void. The driving magnetic field is 3.2 T. The plasma singly ionized argon at 1017 cm-3. We use ePLAS in both its traditional implicit/hybrid form where it is restricted by an electron Courant time step, and in a new super-hybrid form that extracts the main electron moments from the E&B-field solutions. This provides numerical stability at ion Courant limits, for at least a 10 times larger time step, thus probing microsecond jet dynamics with computational economy. We examine possible field penetration at the cathode and anode gun electrodes. Cathode erosion and EMHD B - Field penetration are possible at lower jet densities. We examine jet transport beyond the gun, modeling possible ionization with either analytic or tabular EOSs. We study the merger of jets with ions represented as either fluids or particles. Work supported by the USDOE under SBIR GRANT DE-SC0004207.

  10. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  11. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  12. Experimental studies of unbiased gluon jets from $e^{+}e^{-}$ annihilations using the jet boost algorithm

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the en...

  13. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    Science.gov (United States)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  14. Rotary-Balance Testing for Aircraft Dynamics (Les Essais sur Balance Rotative pour l’Etude de la Dynamique du Vol de l’Avion)

    Science.gov (United States)

    1990-01-01

    Applied Yawing Moments by Use of Rotary Balance Data. NACA TN 3321, 1954. 16. Bazzocchi, B.: Un Metodo per la Deterininazione alla Galleria del Vento...and’Barnhart, B. Spin Prediction Techniques. J. of Aircraft, Vol. 20, No. 2, Feb. 1983, pp. 97-101. 2. Valtorta, E.: Analisi delle prove in galleria con

  15. Jet shapes for boosted jet two-prong decays from first-principles

    CERN Document Server

    Dasgupta, Mrinal; Soyez, Gregory

    2015-01-01

    Several boosted jet techniques use jet shape variables to discriminate the multi-pronged signal from Quantum Chromodynamics backgrounds. In this paper, we provide a first-principles study of an important class of jet shapes all of which put a constraint on the subjet mass: the mass-drop parameter ($\\mu^2$), the $N$-subjettiness ratio ($\\tau_{21}^{(\\beta=2)}$) and energy correlation functions ($C_2^{(\\beta=2)}$ or $D_2^{(\\beta=2)}$). We provide analytic results both for QCD background jets as well as for signal processes. We further study the situation where cuts on these variables are applied recursively with Cambridge-Aachen de-clustering of the original jet. We also explore the effect of the choice of axis for $N$-subjettiness and jet de-clustering. Our results bring substantial new insight into the nature, gain and relative performance of each of these methods, which we expect will influence their future application for boosted object searches.

  16. The Jet Energy Scale Uncertainty Derived from γ-jet Events for Small and Large Radius Jets and the Calibration and Performance of Variable R Jets with the ATLAS Detector

    CERN Document Server

    Kogan, Lucy

    In this thesis the jet energy scale uncertainty of small and large radius jets at the ATLAS detector is evaluated in-situ using γ-jet events. The well calibrated photon in the γ-jet events is used to probe the energy scale of the jets. The studies of the jet energy scale of small radius jets are performed using 4.7 fb−1 of data collected at √s = 7 TeV in 2011. The γ-jet methods which were developed are then adapted and applied to large radius jets, using 20.3 fb−1 of data collected at √s = 8 TeV in 2012. The new jet energy scale uncertainties are found to be ∼1 % for |η| 0.8. These uncertainties are significantly lower than the 3-6 % precision which has previously been achieved at ATLAS using track jets as a reference object. Due to the increase in precision, uncertainties due to pile-up and the topology of the jet also had to be evaluated. The total energy scale uncertainties for large radius jets are reduced by ∼1-2 % (0.5-1 %) for |η| 0.8). This reduction will be beneficial to analyses u...

  17. Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Wang Xinwei

    2016-01-01

    Full Text Available In today’s rotary ultrasonic machining (RUM, the power transfer system is based on a contactless power system (rotary transformer rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.

  18. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes.

  19. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  20. The ATLAS b-jet Trigger

    CERN Document Server

    Hansson Adrian, P; The ATLAS collaboration

    2011-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this contribution.

  1. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  2. Simulation Study on Fuzzy Control of Rotary Steering Drilling Trajectory

    Directory of Open Access Journals (Sweden)

    Xue Qi-Long

    2012-07-01

    Full Text Available The purpose of this study is to establish a control method to make borehole trajectory smoother. Considering that the complexity of rotary steerable drilling trajectory control and uncertainty of underground work, analysis of the deficiencies for the traditional trajectory control and the rotary steerable drilling trajectory deviation vector control theory, introduced the concept of "trend Angle", combined with the deviation vector as joint control variables, using fuzzy control algorithm that established of rotary steerable drilling trajectory fuzzy control model. Designed the fuzzy controller using Matlab/Simulink toolbox and dynamic simulation analysis for the fuzzy control systems, simulation results show that the designed fuzzy controller can effectively track the well path design, has a strong adaptability and control results is better than traditional PID control method.

  3. Rotary plug device for use in LMFBR type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Kazuhiko; Imayoshi, Sho.

    1988-02-23

    Purpose: To prevent adhesion of sodium in the rotational gap of a rotational plug. Constitution: One of the walls of a cylindrical gap formed between the outer circumference of a small rotary plug and a large rotary plug that constitute a double rotary plug is cooled to lower than the sodium coagulation temperature, while a stater of a linear motor in a cylindrical shape and wound with linear coils around the iron core is attached to the inside of the other of the walls. Then, one of the walls of the gap to which sodium adheres is cooled to less than sodium coagulation temperature, so that sodium is or tends to be deposited to the wall. Then, eddy currents are resulted to sodium by the current supplied to the stater of the linear motor attached to the other of the walls, to produce thrusting force. Sodium on the wall surface is scraped off by this. (Yoshihara, H.).

  4. Operator in-the-loop control of rotary cranes

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  5. FEM simulation of infeed rotary swaging with structured tools

    Directory of Open Access Journals (Sweden)

    Herrmann Marius

    2015-01-01

    Full Text Available Rotary swaging is an incremental cold forming process for rods and tubes. Infeed rotary swaging with structure in the reduction zone of the tools is investigated using a two dimensional finite element simulation. A few geometrical parameters are varied, for cosine and skew stairway shapes. The effective tool angle is kept constant. The influence is evaluated by the radial and axial process forces. Furthermore, the material flow is visualized by the neutral plane. The simulation results are quantitatively compared to each other to analyse the reaction force FA, which acts against the feeding force. Also, the results serve to find suitable geometries to be transferred to rotary swaging tools for practical application. It is shown that the shapes have a significant effect on the forces and the location of the neutral plane. Finally a first swaging tool is modified with an exemplary geometry for experimental investigations.

  6. Soybean drying characteristics in microwave rotary dryer with forced convection

    Institute of Scientific and Technical Information of China (English)

    Ruifang WANG; Zhanyong LI; Yanhua LI; Jingsheng YE

    2009-01-01

    A new hybrid drying technique by combining microwave and forced convection drying within a rotary drum, i.e., microwave rotary drying, was developed with the purpose to improve the uniformity of microwave drying. In a laboratory microwave rotary dryer, rewetted soybean was utilized as experimental material to study the effects of drum rotating speed, ventilation flow rate, and specific microwave power on the drying kinetics and cracking ratio of soybean. It was found that, with rotation, the cracking ratio can be lowered but without distinct improvement in the drying rate. Increasing ventilation flow rate and specific microwave power can improve the drying rate, but the cracking ratio also increases as a negative result. The cracking ratio lower than 10% can be attained for ventilation flow rate lower than 2.0 m3·h-1 or specific microwave energy lower than 0.4 kW·kg-1 in the present experiments.

  7. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  8. Development of Laser Propelled ``Semi-Perpetual'' Rotary Machine

    Science.gov (United States)

    Gualini, M. M.; Khan, S. A.; Zulfiqar, K.

    2006-05-01

    This paper covers the initial work oriented to develop a semi-perpetual rotary machine propelled by laser ablation propulsion. The laser is equipped with a pulse repetition frequency tuned to the rotational frequency of the flying wheel. Purpose of this work is to establish the potentiality of a self-sustained closed system capable of generating kinetic rotary energy which can be exploited for traction of vehicles and production of electrical energy at very low cost. The work presented is in process of being patented.

  9. Evaluation of different rotary devices on bone repair in rabbits

    OpenAIRE

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro,Daniel Araki; Matsumoto,Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I - pneumatic low-speed r...

  10. Study of a Novel Rotary Cyclone Gas-Solid Separator

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Ling; Xingyong Deng

    2003-01-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  11. Study of Water Jet Impulse in Water-Jet Looms

    Institute of Scientific and Technical Information of China (English)

    LI Ke-rang; MA Wei-wei; CHEN Ming

    2005-01-01

    The water jet impulse is brought forward to study the traction force of the water jet to the flying weft in water-jet looms. The distribution of the water jet impulse in the shed is tested by a sensor, and the influence of water jet parameters on the water jet impulse is analyzed.

  12. A Millimetre-sized Robot Realized by a Piezoelectric Impact-type Rotary Actuator and a Hardware Neuron Model

    Directory of Open Access Journals (Sweden)

    Minami Takato

    2014-07-01

    Full Text Available Micro-robotic systems are increasingly used in medicine and other fields requiring precision engineering. This paper proposes a piezoelectric impact- type rotary actuator and applies it to a millimetre-size robot controlled by a hardware neuron model. The rotary actuator and robot are fabricated by micro-electro- mechanical systems (MEMS technology. The actuator is composed of multilayer piezoelectric elements. The rotational motion of the rotor is generated by the impact head attached to the piezoelectric element. The millimetre-size robot is fitted with six legs, three on either side of the developed actuator, and can walk on uneven surfaces like an insect. The three leg parts on each side are connected by a linking mechanism. The control system is a hardware neuron model constructed from analogue electronic circuits that mimic the behaviour of biological neurons. The output signal ports of the controller are connected to the multilayer piezoelectric element. This robot system requires no specialized software programs or A/D converters. The rotation speed of the rotary actuator reaches 60 rpm at an applied neuron frequency of 25 kHz during the walking motion. The width, length and height of the robot are 4.0, 4.6 and 3.6 mm, respectively. The motion speed is 180 mm/min.

  13. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  14. Hydro-Jet technology in urologic surgery.

    Science.gov (United States)

    Shekarriz, Bijan

    2005-05-01

    Hydro-Jet technology utilizes an extremely thin, high-pressure stream of water. This technology has been routinely used in industry as a cutting tool for different materials such as metal, ceramic, wood and glass. Recently, Hydro-Jet technology has been used for dissection and resection during open and laparoscopic surgical procedures. A high-pressure jet of water allows selective dissection and isolation of vital structures such as blood vessels and nerves. This has resulted in improved dissection and decreased complication rate in recent experimental and clinical studies. This technology has been successfully applied during open and laparoscopic partial nephrectomy, cholecystecomy and retroperitoneal lymphadenectomy.

  15. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF ROTARY ULTRASONIC MOTORS

    Directory of Open Access Journals (Sweden)

    Oana CHIVU

    2013-05-01

    Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of rotary ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

  16. Light-Driven Rotary Molecular Motors on Gold Nanoparticles

    NARCIS (Netherlands)

    Pollard, Michael M.; ter Wiel, Matthijs K. J.; van Delden, Richard A.; Vicario, Javier; Koumura, Nagatoshi; van den Brom, Coenraad R.; Meetsma, Auke; Feringa, Ben L.

    2008-01-01

    We report the synthesis of unidirectional light-driven rotary molecular motors based oil chiral overcrowded alkenes and their immobilisation on the surface of gold nanoparticles through two anchors. Using a combination of (1)H and (13)C NMR, UV/Vis and CD spectroscopy, we show that these motors pres

  17. Rotary ATPases: models, machine elements and technical specifications.

    Science.gov (United States)

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  18. Control of spatial correlations between Rydberg excitations using rotary echo

    CERN Document Server

    Thaicharoen, N; Raithel, G

    2016-01-01

    We manipulate correlations between Rydberg excitations in cold atom samples using a rotary-echo technique. The correlations are due to interactions between the Rydberg atoms. In the rotary-echo excitation sequence, the phase of the excitation pulse is flipped at a selected time during the pulse. We measure the resultant change in the spatial pair correlation function of the excitations via direct position-sensitive atom imaging. For zero detuning of the lasers from the interaction-free Rydberg-excitation resonance, the pair-correlation value at the most likely nearest-neighbor Rydberg-atom distance is substantially enhanced when the phase is flipped at the middle of the excitation pulse. In this case, the rotary echo eliminates most uncorrelated (un-paired) atoms, leaving an abundance of correlated atom pairs at the end of the sequence. In off-resonant cases, a complementary behavior is observed. We further characterize the effect of the rotary-echo excitation sequence on the excitation-number statistics of t...

  19. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed posit

  20. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...

  1. Chemically Optimizing Operational Efficiency of Molecular Rotary Motors

    NARCIS (Netherlands)

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2014-01-01

    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but le

  2. Mass transfer in rolling rotary kilns : a novel approach

    NARCIS (Netherlands)

    Heydenrych, M.D.; Greeff, P.; Heesink, A. Bert M.; Versteeg, G.F.

    2002-01-01

    A novel approach to modeling mass transfer in rotary kilns or rotating cylinders is explored. The movement of gas in the interparticle voids in the bed of the kiln is considered, where particles move concentrically with the geometry of the kiln and gas is entrained by these particles. The approach c

  3. ZrO2-Containing Refractories for Cement Rotary Kilns

    Institute of Scientific and Technical Information of China (English)

    YE Guotian; XU Yanqing

    2002-01-01

    ZrO2-containing refractories have been increasingly used for cement rotary kilns. This paper discusses how the properties and performance of ZrO2-containing. Refractories are inwroved in terms of chemical attack resistance, thermal shock resistance, thermal conductivity and mechanical stress.

  4. Improved performance of linear coal cutting compared with rotary cutting

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, W.W.; Hanson, B.D.; Olson, R.C.; Wingquist, C.F.; Myren, T.A.

    1995-09-01

    The linear cutting system, developed by the US Bureau of Mines uses geometric principles developed by Cardan to produce a nearly constant cut depth. The new system has been extensively tested in a synthetic material under laboratory conditions to verify mechanical capability and to identify operational characteristics. Comparison between 15-rpm linear cutting and 50-rpm rotary cutting systems show significant improvement in respirable dust entrainment, product size distribution, and energy usage. Respirable dust is reduced by as much as 90%. Recovered product showed a 67% reduction in {minus}0.32-cm ({minus}1/8-in) material and a 200% increase in +5.08 cm (+ 2 in) materials. Average power was reduced by 66% for the linear cutting. Because the bit cutting paths differ between linear and rotary cutting, it was necessary to compare the two at the same cut depths and bit types. These comparisons show that low revolution per minute rotary cutting entrains about the same amount of respirable dust as the linear cutting system, but the average shaft torque may be 55 to 130% greater for the rotary system.

  5. RICOR development of the next generation highly reliable rotary cryocooler

    Science.gov (United States)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  6. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  7. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  8. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system

    DEFF Research Database (Denmark)

    Hua, Ling; Nordkvist, Mikkel; Nielsen, P. M.

    2007-01-01

    higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric...... tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However; at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat...

  9. Classification of Jet Fuels by Fuzzy Rule-Building Expert Systems Applied to Three-Way Data by Fast Gas Chromatography-Fast Scanning Quadrupole Ion Trap Mass Spectrometry

    Science.gov (United States)

    2011-01-01

    car - rier gas speed, and a higher head pressure, etc., fast GC separation can be realized. Compared with conventional GC, fast GC offers the...themost common, sensitive, and informativedetectors for GC, MS has promise for the composition-property correlation studyof jet fuels. Time-of-flight ( ToF ... ToF -MS [42]. However, they have the disadvantage of relatively higher costs to purchase and maintain compared to ion trap mass spectrometers. Most

  10. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  11. Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum

    Science.gov (United States)

    Lima, Byron; Cajo, Ricardo; Huilcapi, Víctor; Agila, Wilton

    2017-01-01

    The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller.

  12. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  13. Rotary and unidirectional metal shadowing of VAT: localization of the substrate-binding domain.

    Science.gov (United States)

    Rockel, B; Guckenberger, R; Gross, H; Tittmann, P; Baumeister, W

    2000-11-01

    AAA-ATPases have important roles in manifold cellular processes. VAT (valosine-containing protein-like ATPase of Thermoplasma acidophilum), a hexameric archaeal member of this family, has the tripartite domain structure N-D1-D2 that is characteristic of many members of this family. N, the N-terminal domain of 20.5 kDa, has been implicated in substrate binding. We have applied rotary and unidirectional shadowing to VAT and an N-terminally deleted mutant, VAT(Delta N), in order to map the location of this domain. For the analysis of data derived from unidirectionally shadowed samples we used a new approach combining eigenvector analysis with surface relief reconstruction. Averages of rotary shadowed particles as well as relief reconstructions map the N-terminal domains to the periphery of the hexameric complex and reveal their bipartite structure. Thus, this method appears to be well suited to study the conformational changes that occur during the functional cycle of the protein.

  14. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  15. Identifying a new particle with jet substructures

    CERN Document Server

    Lim, Sung Hak; Kim, Doojin; Kim, Minho; Kong, Kyoungchul; Park, Myeonghun

    2017-01-01

    We investigate a potential of measuring properties of a heavy resonance X, exploiting jet substructure techniques. Motivated by heavy higgs boson searches, we focus on the decays of X into a pair of (massive) electroweak gauge bosons. More specifically, we consider a hadronic Z boson, which makes it possible to determine properties of X at an earlier stage. For $m_X$ of O(1) TeV, two quarks from a Z boson would be captured as a "merged jet" in a significant fraction of events. The use of the merged jet enables us to consider a Z-induced jet as a reconstructed object without any combinatorial ambiguity. We apply a conventional jet substructure method to extract four-momenta of subjets from a merged jet. We find that jet substructure procedures may enhance features in some kinematic observables formed with subjets. Subjet momenta are fed into the matrix element associated with a given hypothesis on the nature of X, which is further processed to construct a matrix element method (MEM)-based observable. For both ...

  16. Identifying a new particle with jet substructures

    CERN Document Server

    Lim, Sung Hak; Kim, Doojin; Kim, Minho; Kong, Kyoungchul; Park, Myeonghun

    2016-01-01

    We investigate a potential of measuring properties of a heavy resonance X, exploiting jet substructure techniques. Motivated by heavy higgs boson searches, we focus on the decays of X into a pair of (massive) electroweak gauge bosons. More specifically, we consider a hadronic Z boson, which makes it possible to determine properties of X at an earlier stage. For $m_X$ of O(1) TeV, two quarks from a Z boson would be captured as a "merged jet" in a significant fraction of events. The use of the merged jet enables us to consider a Z-induced jet as a reconstructed object without any combinatorial ambiguity. We apply a conventional jet substructure method to extract four-momenta of subjets from a merged jet. We find that jet substructure procedures may enhance features in some kinematic observables formed with subjets. Subjet momenta are fed into the matrix element associated with a given hypothesis on the nature of X, which is further processed to construct a matrix element method (MEM)-based observable. For both ...

  17. Jet pump noise analysis for BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Duran, R.; Hernandez-lopez, H.; Ortiz-Villafuerte, J.; Alonso-Vargas, G. [Instituto Nacional de Investigaciones Nucleares, Mexico (Mexico); Calleros-Micheland, G. [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Veracruz (Mexico)

    2004-07-01

    The use of noise analysis for detection of BWR component malfunction is a powerful tool in determining abnormal operation conditions, during the life of a nuclear power plant. Since the eighties, several nuclear reactors have reported problems related with jet pumps and recirculation loops. The NRC (Nuclear Regulatory Commission) recommends performing periodic monitoring to individual pressure drop jet pumps, to prevent structural failure. In this work, noise analysis methods are used for detection of jet pumps abnormal operation conditions in a BWR. Power signals obtained from the backup process computer of a BWR are analyzed with a home-developed software, called NOISE, for noise diagnostic of power signals. The computer program takes individual signals from the tabular report of the process computer. The normalized power spectral density (NPSD) is then obtained, using a Prime Factor Algorithm to calculate the Fast Fourier Transform. The NPSD of the jet pumps pressure drop, of Unit 2 of the Laguna Verde Nuclear Power Plant, showed a noticeable change in jet pump 6 during 2003, considering the period from the startup test to operation during 2003. This abnormal condition was due to that the jet pump throat was partially blocked. The noise analysis methodology is shown to be a useful tool for malfunction detection, and could be applied to create a data bank for monitoring the dynamic behavior of BWR jet pumps. (authors)

  18. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  19. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced

  20. Fluctuation Phenomenon Analysis of an Arc Plasma Spraying Jet

    Institute of Scientific and Technical Information of China (English)

    赵文华; 田阔; 刘笛; 张冠忠

    2001-01-01

    The effects of three factors, including the power supply, the arc behaviour in the arc channel and the fluid dynamic process of the jet, on a plasma spraying jet have been experimentally detected by means of spectroscopic diagnostic techniques. The fast Fourier transform method has been applied to the analysis of the arc voltage and spectral line intensity of the jet. The three factors have been studied and distinguished from each other.

  1. NUMERICAL PREDICTION OF LINE BUOYANT JETS IN CROSS FLOWS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The k-ε turbulence model was used to establish the mathematicalmodel of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line buoyant jets. Only receiving water with uniform density is considered. The distribution of velocity, temperature and turbulent kinetic energy were analyzed, and the variation of the maximum velocity was given. The effect of velocity ratio and densimetric Froude number on line buoyant jets was considered.

  2. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Shabala, S. S.; Santoso, J. S. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Godfrey, L. E. H. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  3. The Interactions of Two Cold Atmospheric Plasma Jets

    Institute of Scientific and Technical Information of China (English)

    TANG Daotan; REN Chunsheng; WANG Dezhen; NIE Qiuyue

    2009-01-01

    This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electrode distance d, three different interaction modes, attraction, repulsion and combination, were observed. It is shown that the interaction modes of the two jets are principally affected by the electrodes, the gas flow rate, the plasma jets and the power supply frequency.

  4. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  5. Triggering on W, Z Boson Jets

    CERN Document Server

    Fehr, Armin

    2016-01-01

    The ATLAS trigger performs well for the hadronisation of isolated quarks or gluons, but is not optimised for $\\text{W}^\\pm$ and $\\text{Z}^0$ jets. This can be done with substructure techniques. As the W and Z bosons are highly boosted, the pair of quarks from their decay is heavily collimated and cannot be separated. The result is one single large jet with substructure. As it has two regions in the jet with high energy density (cores), while quarks have only one and gluons have two but a low mass, the existence of two cores plus a mass cut can be used to trigger on the hadronic decay of W and Z. In this project, it was investigated whether an offline tagger for W and Z bosons can be used as a trigger. Trimming, calibration and a tighter mass cut were applied to the jets and the trigger and offline reconstruction performance were compared.

  6. One-dimensional reduction of viscous jets

    CERN Document Server

    Pitrou, Cyril

    2015-01-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model, since it amounts to selectively discard some corrections. However, in a fast...

  7. TASI Lectures on Jet Substructure

    CERN Document Server

    Shelton, Jessie

    2013-01-01

    Jet physics is a rich and rapidly evolving field, with many applications to physics in and beyond the Standard Model. These notes, based on lectures delivered at the June 2012 Theoretical Advanced Study Institute, provide an introduction to jets at the Large Hadron Collider. Topics covered include sequential jet algorithms, jet shapes, jet grooming, and boosted Higgs and top tagging.

  8. Mini-Jet Controlled Turbulent Round Air Jet

    Institute of Scientific and Technical Information of China (English)

    杜诚; 米建春; 周裕; 詹杰

    2011-01-01

    We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets.The Reynolds number based on the jet exit velocity and diameter is 8000.It is found that once the continuous minijets are replaced with pulsed ones,the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet.For example,the K value is amplified by more than 50% with two(or four)pulsed mini-jets blowing,compared with the continuous mini-jets at the same ratio of the mass flow rate of the mini-jets to that of the main jet.%We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets. The Reynolds number based on the jet exit velocity and diameter is 8000. It is found that once the continuous mini-jets are replaced with pulsed ones, the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet. For example, the K value is amplified by more than 50% with two (or four) pulsed mini-jets blowing, compared with the continuous mini-jets at the same ratio of the mass Sow rate of the mini-jets to that of the main jet.

  9. Jet propagation and deceleration

    CERN Document Server

    Perucho, Manel

    2013-01-01

    Extragalactic jets in active galactic nuclei (AGN) are divided into two morphological types, namely Fanaroff-Riley I (FRI) and Fanaroff-Riley II (FRII). The former show decollimated structure at the kiloparsec scales and are thought to be decelerated by entrainment within the first kiloparsecs of evolution inside the host galaxy. The entrainment and deceleration can be, at least partly, due to the interaction of jets with stellar winds and gas clouds that enter in the jet as they orbit around the galactic centre. In this contribution, I review recent simulations to study the dynamic effect of entrainment from stellar winds in jets and the direct interaction of jets with gas clouds and stellar winds. I also briefly describe the importance of these interactions as a possible scenario of high-energy emission from extragalactic jets.

  10. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  11. A NEW DESIGN of SIX- PHASE ROTARY CONVERTER ELECTRIC MACHINE

    Directory of Open Access Journals (Sweden)

    K. G. Mohammed

    2012-12-01

    Full Text Available The aim of this research is to design a new ac rotary converter machine to convert the ac single phase voltage to six-phase voltages by using multi stages energy conversion machine. The rotary converter is composed from two main stages and is combined into one frame. These two stages are formed from three main electromagnetic components. The first component represents the input stage that enables the energy from single phase to enter and transformed by the second and third components electro-magnetically to produce six-phase voltages which at the output stage. The programs are created using MATLAB in order to calculate the required dimensions of the converter machine and its parameters for magnetic and electrical circuits.

  12. Dry coal fly ash cleaning using rotary triboelectrostatic separator

    Institute of Scientific and Technical Information of China (English)

    TAO Daniel; FAN Mao-ming; JIANG Xin-kai

    2009-01-01

    More than 80 million metric tons of fly ash is produced annually in the U.S. As coal combustion by-product. Coal fly ash can be converted to value-added products if unburned carbon is reduced to less than 2.5%. However, most of fly ash is currently landfilled as waste due to lack of efficient purification technologies to separate unburned carbon from fly ash. A rotary triboelectrostatic separator has been developed and patented recently at the University of Kentucky with unique features. Several fly ash samples have been used to understand the effects of major process parameters on the separation performance. The results show that compared to existing triboelectrostatic separators, the rotary triboelectrostatic separator has significant advantages in particle charging efficiency, solids throughput, separation efficiency, applicable particle size range.

  13. Ku Band Rotary Joint Design for SNG Vehicles

    Directory of Open Access Journals (Sweden)

    H. Torpi

    2015-12-01

    Full Text Available A wideband I-type rectangular waveguide rotary joint (RJ is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  14. Incidence of instrument separation using LightSpeed rotary instruments.

    Science.gov (United States)

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  15. Development and testing of a rotary solar engine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, D. B.

    1983-01-01

    A rotary solar engine has been constructed and tested. By sealing Freon (having the environmentally safe composition rather than the conventionally used harmful composition) in its bellows instead of air, sufficiently consistent operation can be achieved to serve the purely mechanical rotary light-load or no-load markets. Although its power efficiency is not sufficient to make it competitive as a prime power generator, even for power outputs as low as a few ounce inches per minute, it simplicity and reliability make it an attractive self-powered source of mechanical control power for critical slow speed actuators. Its simplicity and low cost make it particularly attractive for the small (less than 10 in/sup 3/) display markets. Other markets may now be identified, now that its strength/limitations are known.

  16. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  17. Hotspots, Jets and Environments

    Science.gov (United States)

    Hardcastle, M. J.

    2008-06-01

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

  18. Mathematical modeling of a rotary hearth coke calciner

    Directory of Open Access Journals (Sweden)

    Hilde C. Meisingset

    1995-10-01

    Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

  19. Development of a rotary instrumentation system, phase 2

    Science.gov (United States)

    Adler, A.; Skidmore, W.

    1982-12-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  20. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln

    OpenAIRE

    2006-01-01

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rot...

  1. Experimental results for a novel rotary active magnetic regenerator

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian

    2012-01-01

    in a solid refrigerant rather than the temperature change that occurs when a gas is compressed/expanded. This paper presents the general considerations for the design and construction of a high frequency rotary AMR device. Experimental results are presented at various cooling powers for a range of operating...... conditions near room temperature. The device exhibited a no-load temperature span of over 25 K and can absorb a 100 W cooling load at a 20.5 K temperature span....

  2. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    OpenAIRE

    2014-01-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materia...

  3. Plastic forming behavior of axisymmetric bimetal products with rotary swaging

    Institute of Scientific and Technical Information of China (English)

    Song Tao; Zhao Shengdun; Yan Guanhai; Liu Hongbao

    2013-01-01

    In this paper,an elasto-viscoplastic three-dimension (3D) finite element model is developed to simulate the processing of bimetal tube with rotary swaging.Through simulation,the effects of high-frequency pulse stroking on the distribution and histories of stress,stain and loading are clarified.The stress in inner tube is compressive and higher than the minimum bonding force.Meanwhile,the stiffness of inner tube impacts outer tube extension in length.

  4. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  5. Rotation of artificial rotor axles in rotary molecular motors.

    Science.gov (United States)

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  6. Undergraduates’ opinion after 5-year experience with rotary endodontic instruments

    Directory of Open Access Journals (Sweden)

    Flávia Sens Fagundes Tomazinho

    2011-01-01

    Full Text Available Introduction: Dentistry evolution in the past few years has revolutionized daily practice in some specialties. One of these revolutions has occurred in Endodontics due to the advancement of rotary techniques for root canal preparation and its subsequent incorporation into the teaching of Dentistry undergraduates. Objective: The aim of this study was to report a 5-year experience on the undergraduate laboratorial and clinical use of rotary endodontic preparation at a private university. Material and methods: Data survey was performed by using a questionnaire composed of nine objective questions; the questionnaire was answered by the undergraduates. Results: The results showed a positive acceptance regarding the undergraduate teaching of the rotary technique (94.7%. The following advantages were highlighted: faster root canal preparation (91.6% and reduction of patient’s stress (80.9%. Conclusion: It can be concluded that the experience with the two undergraduate groups was excellent due to the high acceptance level of the new technique by the students.

  7. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  8. Behavioral changes in preschoolers treated with/without rotary instruments

    Science.gov (United States)

    Maru, Viral Pravin; Kumar, Amit; Badiyani, Bhumika Kamal; Sharma, Anant Raghav; Sharma, Jitendra; Dobariya, Chintan Vinodbhai

    2014-01-01

    Background: Behavioral dentistry is an interdisciplinary science which needs to be learned, practiced, and reinforced in order to provide quality dental care in children. Aim: To assess the anxiety experienced during dental treatment in preschool children with/without rotary instruments using behavioral scale. Study and Design: Sixty pediatric patients of preschool age with bilateral occlusal carious lesions extending into dentin were selected for the study. Carious lesions were removed using conventional rotary instruments on one side and Papacarie – chemomechanical caries removal of approach on contra lateral side. Both cavities were restored with glass ionomer cement (Fuji IX). Anxiety scores were determined using ‘Modified Child Dental Anxiety Scale’ (Wong et al, 1998) during the various clinical stages of the treatment course. Results: Children experienced relaxed behavior when subjected to Papacarie method of caries removal compared to conventional method using rotary instruments. Conclusion: This study helped us to provide behavioral measures and introduce children to dentistry in a nonthreatening setting. PMID:25254189

  9. Virtual Prototyping and Development of Rotary Field Ferrite Phase Shifter

    Directory of Open Access Journals (Sweden)

    Meenakshi Aggarwal

    2016-03-01

    Full Text Available Review of the virtual prototyping and physical development of the rotary field ferrite phase shifter is presented. A description of the basic principle of operation of the rotary field ferrite phase shifter has been given along with the key aspects about the design and virtual prototyping of various parts of the phase shifter viz ferrite rod, yoke, polarisers and matching section using HFSS and 3-D Maxwell softwares. Calibrated simulation performance of the phase shifters is presented and it shows good agreement with physical measurement results. Three prototypes and one hundred production capable phase shifter modules were fabricated, functionally tested and RF characterised. This is an indigenous development of the physical prototypes of rotary field class of ferrite phase shifters of C-band. This class of ferrite phase shifters finds application in phased array radars, such as battery level radar and weapon locating radar, because of its high phase accuracy and high power handling capability.Defence Science Journal, Vol. 66, No. 2, March 2016, pp. 156-161, DOI: http://dx.doi.org/10.14429/dsj.66.9309

  10. Robustness of the rotary catalysis mechanism of F1-ATPase.

    Science.gov (United States)

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.

  11. Evaluation of Alternative Filter Media for the Rotary Microfilter

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  12. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  13. Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Lee Jia-You

    2015-01-01

    Full Text Available This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.

  14. [Kelvin-Helmholtz instability in protostellar jets

    Science.gov (United States)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  15. Magnetic collimation of the relativistic jet in M 87

    NARCIS (Netherlands)

    Gracia, JG; Tsinganos, KT; Bogovalov, SV

    2005-01-01

    We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-nonrelativistic outer disk-wind. The relativistic outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a n

  16. Application of coal-water slurry on the rotary calcining kiln of pedgion magnesium reduction process

    Institute of Scientific and Technical Information of China (English)

    LI Hua-qing; XIE Shui-sheng; LIU Jin-ping; WU Peng-yue; HUANG Guo-jie

    2006-01-01

    Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.

  17. Velocity and pressure distributions in discharge tunnel of rotary-obstruction composite inner energy dissipation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of model test and theoretical analysis of velocity and pressure distributions,an hypothesis is presented that the distribution of tangential velocity in radial direction seems to be a combinational distribution of a quasi-free vortex and a quasi-forced vortex for the discharge tunnel of rotary-obstruction composite inner energy dissipation.The variations of corresponding parameters about the hypothesis are obtained under test conditions in this paper.The formula of pressure distribution in radial direction is deduced theoretically,and the theoretical values of pressure distribution computed by the formula are well consistent with the measured ones,showing that the formula is correct and can be applied to the computation and analysis of pressure distribution of this discharge tunnel.

  18. Design of Rotary Atomizer Using Characteristics of Thin Film Flow on Solid Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Boo Seong; Kim, Bo Hung [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2013-12-15

    A disc-type rotary atomizer affords advantages such as superior paint transfer efficiency, uniformity of paint pattern and particle size, and less consumption of compressed air compared to a spray-gun-type atomizer. Furthermore, it can be applied to all types of painting materials, and it is suitable for large-scale processes such as car painting. The painting quality, which is closely related to the atomizer performance, is determined by the uniformity and droplet size in accordance with the design of the bell disc surface. This study establishes the basics of how to design a surface by modeling the operating bell disc's RPM, diameter, surface angle, and film thickness considering dye characteristics such as the viscosity, density, and surface affinity.

  19. A mobile auto-focus actuator based on a rotary VCM with the zero holding current.

    Science.gov (United States)

    Kim, Kyung-Ho; Lee, Seung-Yop; Kim, Sookyung

    2009-03-30

    In this work, an auto-focus actuator moving lens in mobile phone cameras is developed by applying a rotary VCM (voice coil motor). A novel inclined cam structure is used to convert the rotational motion by the VCM by into the linear motion of the focusing lens. The new focusing design enables the zero holding current required to maintain the lens module in the focusing position as well as the reduction of the module thickness. This paper presents the theoretical analysis and optimal design for the VCM actuator, cam structure and preload spring. We manufacture a prototype module with the size of 9.9x9.9x5.9 mm(3). The experimental results agree with the theoretical predictions and meet the required specifications for mobile camera applications.

  20. Irreversibility analysis of magneto-hydrodynamic nanofluid flow injected through a rotary disk

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The non-linear Navier-Stokes equations governed on the nanofluid flow injected through a rotary porous disk in the presence of an external uniform vertical magnetic field can be changed to a system of non-linear partial differential equations by applying similar parameter. In this study, partial differential equations are analytically solved by the modified differential transform method, Pade differential transformation method to obtain self-similar functions of motion and temperature. A very good agreement is observed between the obtained results of Pade differential transformation method and those of previously published ones. Then it has become possible to do a comprehensive parametric analysis on the entropy generation in this case to demonstrate the effects of physical flow parameters such as magnetic interaction parameter, injection parameter, nanoparticle volume fraction, dimensionless temperature difference, rotational Brinkman number and the type of nanofluid on the problem.

  1. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System

    Science.gov (United States)

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    Objective: To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. Methods: A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P .05) between the two groups. Conclusion: The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied. PMID:28217185

  2. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  3. Dynamics of Water Jet in Water Jet Looms

    Institute of Scientific and Technical Information of China (English)

    李克让; 陈明

    2001-01-01

    On the base of the study on dynamics of water jet in water jet looms, the parameters of water jet mechanism which affect the speed of water jet are analyzed and optimized. So the stability of the water jet can be improved to raise the speed of water jet as well as weft insertion rate and to enlarge the width of woven fabrics a lot. At the same time it also points out that to increase water jet speed and to prolong its affective jet time depend mainly on the accretion of spring rate (constant)of stiffness and the diminution of plunger's cross sectional area respectively.

  4. Causal connection in parsec-scale relativistic jets: results from the MOJAVE VLBI survey

    Science.gov (United States)

    Clausen-Brown, E.; Savolainen, T.; Pushkarev, A. B.; Kovalev, Y. Y.; Zensus, J. A.

    2013-10-01

    We report that active galactic nucleus (AGN) jets are causally connected on parsec scales, based on 15 GHz Very Long Baseline Array (VLBA) data from a sample of 133 AGN jets. This result is achieved through a new method for measuring the product of the jet Lorentz factor and the intrinsic opening angle Γθj from measured apparent opening angles in flux density limited samples of AGN jets. The Γθj parameter is important for jet physics because it is related to the jet-frame sidewise expansion speed and causal connection between the jet edges and its symmetry axis. Most importantly, the standard model of jet production requires that the jet be causally connected with its symmetry axis, implying that Γθj ≲ 1. When we apply our method to the MOJAVE flux density limited sample of radio loud objects, we find Γθj ≈ 0.2, implying that AGN jets are causally connected. We also find evidence that AGN jets viewed very close to the line of sight effectively have smaller intrinsic opening angles compared with jets viewed more off-axis, which is consistent with Doppler beaming and a fast inner spine/slow outer sheath velocity field. Notably, gamma-ray burst (GRB) jets have a typical Γθj that is two orders of magnitude higher, suggesting that different physical mechanisms are at work in GRB jets compared to AGN jets. A useful application of our result is that a jet's beaming parameters can be derived. Assuming Γθj is approximately constant in the AGN jet population, an individual jet's Doppler factor and Lorentz factor (and therefore also its viewing angle) can be determined using two observable quantities: apparent jet opening angle and the apparent speed of jet components.

  5. Contribution to the development of the simulation model for the rotary cap burner in the marine steam boiler

    Directory of Open Access Journals (Sweden)

    Dvornik Joško

    2015-01-01

    Full Text Available This paper presents the simulation model for determining the intervals of preventive replacement of the system's components. The application of the Weibull distribution has been proved to be efficient in the approximation of many forms of delay, while numerical integration supported by Simpson formula and Fortran software has been applied to simulate optimum values of the preventive replacement of the components of the rotary cap burner SAACKE, type SKV 60 in the marine steam boiler, on the basis of the available data gathered through the system's exploitation and through empirical assumptions.

  6. Controlled residual stresses introduction to improve fatigue resistance of rotary shouldered connections used in oil drilling industry

    Energy Technology Data Exchange (ETDEWEB)

    Korin, I., E-mail: ikorin@uncoma.edu.a [CONICET/San Antonio Internaciona. Instituto de Tecnologia Prof. J. A. Sabato (USAM/CNEA) - Grupo Mecanica de Fractura, UN Comahue. Buenos Aires 1200, Neuquen (CP8300) (Argentina); Perez Ipina, J. [CONICET/UNComa. Grupo Mecanica de Fractura, UN Comahue. Buenos Aires 1200, Neuquen (CP8300) (Argentina)

    2010-12-15

    An innovative technique is proposed with the aim of increasing the fatigue strength of rotary shouldered connections. The objective is to generate controlled compressive residual stresses at the most stressed zones (i.e., the threat root regions) to delay fatigue crack nucleation. The residual stresses are introduced through controlled application of an over-make-up torque of the joint and then returning to the nominal torque. The adequacy of the method was demonstrated through two experimental arrangements at laboratory scale, which employed specimens of reduced size. Results suggest that significant increases in the fatigue life of joints can be achieved applying this technique.

  7. Causality and stability of cosmic jets

    CERN Document Server

    Porth, O

    2014-01-01

    In stark contrast to their laboratory and terrestrial counterparts, the cosmic jets appear to be very stable. The are able to penetrate vast spaces, which exceed by up to a billion times the size of their central engines. We propose that the reason behind this remarkable property is the loss of causal connectivity across these jets, caused by their rapid expansion in response to fast decline of external pressure with the distance from the "jet engine". In atmospheres with power-law pressure distribution, the total loss of causal connectivity occurs, when the power index k>2 - the steepness which is expected to be quite common for many astrophysical environments. This conclusion does not seem to depend on the physical nature of jets - it applies both to relativistic and non-relativistic flows, both magnetically-dominated and unmagnetized jets. In order to verify it, we have carried out numerical simulations of moderately magnetized and moderately relativistic jets. Their results give strong support to our hypo...

  8. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  9. Electrospun jets launched from polymeric bubbles

    Directory of Open Access Journals (Sweden)

    J.S. Varabhas

    2009-12-01

    Full Text Available In this paper the launching of liquid polymer jetsfrom the apex of gas bubbles on thepolyvinylpyrrolidone in ethanol (PVP solutionsurface due to an applied electrical potential isinvestigated. Jets of polymer launched from bubbleprovide an alternative method for electrospinningpolymer nanofibers that may be scalable forcommercial production. Bubbles were experimentallycreated on the surface of a polymer solution byforcing air through a syringe into the polymersolution. An electric potential was applied to thesolution to launch the jets. The polymer solutionconcentration was varied to determine the optimumconcentration. The semi-angle of the apex of bubblejust prior to jet launch was observed to be close to thetheoretical value of 49.3 degrees for a pendant drop.

  10. Evaluation of conventional, protaper hand and protaper rotary instrumentation system for apical extrusion of debris, irrigants and bacteria- An in vitro randomized trial

    Science.gov (United States)

    Kalra, Pinky; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna

    2017-01-01

    Background Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. Aim The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Design Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis. Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Statistical analysis Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Results Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Conclusions Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words:Protaper, rotary, periapical extrusion. PMID:28210445

  11. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  12. Anisotropy of partially self-absorbed jets and the jet of Cyg X-1

    CERN Document Server

    Zdziarski, Andrzej A; Rao, A R

    2016-01-01

    We study the angular dependence of the flux from partially synchrotron self-absorbed conical jets (proposed by Blandford & Koenigl. We consider the jet viewed (in the comoving frame) from either a side or close to on axis, and in the latter case, either from the jet top or bottom. We derive analytical formulae for the flux in each of these cases. We find that the maximum of the emission occurs when the jet is viewed from top on-axis, which is contrast to a previous result, which found the maximum at some intermediate angle and null emission on-axis. We then calculate the ratio of the jet-to-counterjet emission for this model, which depends on the viewing angle and the index of power-law electrons. We apply our results to the black-hole binary Cyg X-1. Given the jet-to-counterjet flux ratio of >50 found observationally and the current estimates of the inclination, we find the jet Lorentz factor of Gamma>1.6. We also point out that when the projection effect is taken into account, the radio observations imp...

  13. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  14. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  15. Anisotropy of partially self-absorbed jets and the jet of Cyg X-1

    Science.gov (United States)

    Zdziarski, Andrzej A.; Paul, Debdutta; Osborne, Ruaraidh; Rao, A. R.

    2016-12-01

    We study the angular dependence of the flux from partially synchrotron self-absorbed conical jets (proposed by Blandford & Königl). We consider the jet viewed from either a side or close to on axis, and in the latter case, either from the jet top or bottom. We derive analytical formulae for the flux in each of these cases, and find the exact solution for an arbitrary angle numerically. We find that the maximum of the emission occurs when the jet is viewed from top on-axis, which is contrast to a previous result, which found the maximum at some intermediate angle and null emission on-axis. We then calculate the ratio of the jet-to-counterjet emission for this model, which depends on the viewing angle and the index of power-law electrons. We apply our results to the black hole binary Cyg X-1. Given the jet-to-counterjet flux ratio of ≳ 50 found observationally and the current estimates of the inclination, we find the jet velocity to be ≳0.8c. We also point out that when the projection effect is taken into account, the radio observations imply the jet half-opening angle of ≲ 1°, a half of the value given before. When combined with the existing estimates of Γj, the jet half-opening angle is low, ≪1/Γj, and much lower than values observed in blazars, unless Γj is much higher than currently estimated.

  16. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.

    Science.gov (United States)

    Schüle, Chan Yong; Thamsen, Bente; Blümel, Bastian; Lommel, Michael; Karakaya, Tamer; Paschereit, Christian Oliver; Affeld, Klaus; Kertzscher, Ulrich

    2016-04-18

    Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal.

  17. Jets with Variable R

    CERN Document Server

    Krohn, David; Wang, Lian-Tao

    2009-01-01

    We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

  18. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...... the physical behavior of the real system. This paper highlights the importance of the electromechanical coupling factor, which is responsible for the electrical to mechanical energy conversion. The emphasis is put on the difference between the effective coupling factor and the modal coupling factor. The effect...

  19. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  20. Shear Stress Transmission Model for the Flagellar Rotary Motor

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2008-09-01

    Full Text Available Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the charasteristic torque-velocity relationship of the flagellar rotation.

  1. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    OpenAIRE

    Mikhailov, V; E. Strock

    2012-01-01

    In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  ...

  2. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    Science.gov (United States)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  3. Performance analysis of a rotary active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2013-01-01

    -equivalent cooling power (ExQ), and the overall second law efficiency, η2nd. Losses mapping indicated that friction and thermal leakage to the ambient are the most important contributors to the reduction of the system performance. Based on modeling results, improvements on the flow distributor design and reduction......Performance results for a novel rotary active magnetic regenerator (AMR) and detailed numerical model of it are presented. The experimental device consists of 24 regenerators packed with gadolinium (Gd) spheres rotating inside a four-pole permanent magnet with magnetic field of 1.24T. A parametric...

  4. Estimation of drying parameters in rotary dryers using differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, F S; Jr, V Steffen; Barrozo, M A S; Arruda, E B, E-mail: vsteffen@mecanica.ufu.br, E-mail: masbarrozo@ufu.br

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  5. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  6. Effective incineration technology with a new-type rotary waste incinerator

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-qiang; ZHU Jian-zhong; CAI Ming-zhao; XIE Xin-yuan

    2003-01-01

    The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl, NOx and SO2 during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.

  7. Design and experimental tests of a rotary active magnetic regenerator prototype

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2015-01-01

    A rotary active magnetic regenerator (AMR) prototype with efficiency and compact design as focus points has been designed and built. The main objective is to demonstrate improved efficiency for rotary devices by reducing heat leaks from the environment and parasitic mechanical work losses while o...... identified and improvements are outlined for future work. © 2015 Elsevier Ltd and IIR. All rights reserved....

  8. 1×N rotary vertical micromirror for optical switching applications

    Science.gov (United States)

    Tu, Ching-Chen; Fanchiang, Kuohao; Liu, Cheng-Hsien

    2005-01-01

    We report a 1xN rotary optical switching mirror actuated by an electrostatic comb-driver for the optical networking. A variety of MEMS optical switching mirrors have been recently proposed. Some of these devices utilize surface micromachined films as reflection micromirrors and result in optical degradation. Some of these devices fabricated by bulk micromachining highly rely on delicate assembly for the micromirrors to the top of the actuators. In this paper, we focus on developing a rotary optical switching micromirror with no need of delicate assembly. The rotary actuator and the switching micromirror are both fabricated by deep RIE in our design. We use the Spin-On-Glass (SOG), which is used as the intermediated layer in the low temperature boning, to fabricate a rotary MEMS optical switching mirror with self-assembly. We successfully assemble the micromirror on top of the rotor stage of the rotary actuator. Experimental results show that our rotary vertical micromirror rotates about 1.5° under 150 volts. The first vibration mode of this rotary switching MEMS mirror is a rotary mode and appears around 3.4 kHz, which is measured via a Polytec laser doppler vibrometer.

  9. Environmental impact assessment of combustible wastes utilization in rotary cement kilns

    OpenAIRE

    2013-01-01

    This study focuses on the environmental impact assessment of the coal combustion and its substitution by alternative fuels from combustible wastes during Portland cement clinker sinterization in rotary cement kiln. Environmental impact assessment was carried out based on the fuels chemical composition and operating parameters of a rotary cement kiln in accordance with EURITS and IMPACT 2002+ methods.

  10. AGN Jet Mass Loading and Truncation by Stellar Winds

    CERN Document Server

    Hubbard, A; Blackman, Eric G.; Hubbard, Alexander

    2006-01-01

    Active Galactic Nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centers implies that there will be many jet/star interactions, which can mass-load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass-loading by stellar winds for a broader spectrum of wind mass-loss rates than has been previously considered. Given the observed stellar mass distributions in galactic centers, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses $M_{BH} \\la 10^4M_{\\odot}$ are rapidly mass loaded and quenched by stellar winds. For $10^4 M_{\\odot}jets is independent of the jet's mechanical luminosity. Stellar wind mass-loading is unable to quench efficient jets f...

  11. Multi-Objective Optimization of Mechanical Running Conditions of Large Scale Statically Indeterminate Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaoping; Xiao Yougang; Wang Guangbin

    2006-01-01

    Combined with the second rotary kiln of Alumina Factory in Great Wall Aluminum Company, the mechanics characteristics of statically indeterminate large-scale rotary kiln with variable cross-sections is analyzed. In order to adjusting the runing axis of rotary kiln, taking the force equilibrium of the rollers and the minimum of relative axis deflection as the optimization goal, the multi-objective optimization model of mechanical running conditions of kiln rotary is set up. The mechanical running conditions of the second rotary kiln after multi-objective optimization adjustment are compared with those before adjustment and after routine adjustment. It shows that multi-objective optimization adjustment can make axis as direct as possible and can distribute kiln loads equally.

  12. Jet lag prevention

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000719.htm Jet lag prevention To use the sharing features on this page, ... Headache Irritability Stomach upset Sore muscles Tips for Prevention Before your trip: Get plenty of rest, eat ...

  13. Astrophysics: Cosmic jet engines

    Science.gov (United States)

    Young, Andy

    2010-02-01

    In some galaxies, matter falling onto a supermassive black hole is ejected in narrow jets moving at close to the speed of light. New observations provide insight into the workings of these cosmic accelerators.

  14. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  15. Liver resection using a water jet.

    Science.gov (United States)

    Une, Y; Uchino, J; Horie, T; Sato, Y; Ogasawara, K; Kakita, A; Sano, F

    1989-01-01

    The water-jet method has been used during hepatic resection. The instrument cuts the hepatic tissue with the high pressure of the fine water flow, while the exposed elastic intrahepatic vessels are spared injury. A comparative study on the water-jet method with the previously employed conventional methods was undertaken. Hepatic resections were performed on 35 patients using the water-jet method. Cirrhosis of the liver was associated with 10 of the 24 patients with hepatocellular carcinoma. An ordinary saline solution was used as the jet, which was projected at a pressure of between 12 kg/cm2 and 20 kg/cm2 through a 0.15/mm-diameter nozzle. A higher jet pressure was needed to cut the fibrotic hepatic parenchyma. In the case of normal liver, the intrahepatic vessels of more than 0.2 mm were well preserved. In most of the cases, the loss of blood when cutting the hepatic parenchyma can be easily reduced with a jet pressure of 15-16 kg/cm2, thus preserving the fine vessels more than 0.2 mm in diameter without injury. When the same pressure was applied in the cutting of a cirrhotic liver, it took much longer time compared to that of a non-cirrhotic normal liver parenchyma. The cut surface was smooth compared to that after using CUSA, although its disadvantages lie in the formation of air bubbles, which obscure the operative field. The controlled projection of a jet of water under optimal pressure may ensure a safe hepatic resection of both normal and cirrhotic livers. Furthermore, because of its uncomplicated form, a wide range of applications can be expected, while the lower cost will also expedite its large-scale use for economic reasons.

  16. [Spectral diagnosis of plasma jet at atmospheric pressure].

    Science.gov (United States)

    Li, Chi; Tang, Xiao-liang; Qiu, Gao

    2008-12-01

    A new approach to surface modification of materials using dielectric barrier discharge (DBD) plasma jet at atmospheric pressure is presented in the present paper. The emission spectral lines of argon plasma jet at atmospheric pressure were recorded by the grating spectrograph HR2000 and computer software. The argon plasma emission spectra, ranging from 300nm to 1000 nm, were measured at different applied voltage. Compared to air plasma emission spectra under the same circumstance, it is shown that all of the spectral lines are attributed to neutral argon atoms. The spectral lines 763.51 and 772.42 nm were chosen to estimate the electron excitation temperature. The purpose of the study is to research the relationship between the applied voltage and temperature to control the process of materials' surface modification promptly. The results show that electron excitation temperature is in the range of 0.1-0.5 eV and increases with increasing applied voltage. In the process of surface modification under the plasma jet, the infrared radiation thermometer was used to measure the material surface temperature under the plasma jet. The results show that the material surface temperature is in the range of 50-100 degrees C and it also increases with increasing applied voltage. Because the material surface was under the plasma jet and its temperature was decided by the plasma, and the material surface temperature increased with increasing the macro-temperature of plasma jet, the relationship between the surface temperature and applied voltage indicates the relationship between the macro-temperature of the plasma jet and the applied voltage approximately. The experimental results indicate that DBD plasma jet at atmospheric pressure is a new approach to improving the quality of materials' surface modification, and spectral diagnosis has proved to be a kind of workable method by choosing suitable applied voltage.

  17. Jet Engine Noise Reduction

    Science.gov (United States)

    2009-04-01

    Technology Solutions, Lockheed Martin Robert S. Carnes , M.D. NRAC Member, Battelle Memorial Institute MajGen Paul A. Fratarangelo, USMC (Ret) NRAC...Development, Acquisition) (VADM Architzel). The Naval Research Advisory Committee members (Bowes, Bowler, Carnes and Fratarangelo) have broad...Lockheed Martin ADP Boeing: Jet Engine Noise Reduction for Tactical Fighter Aircraft Mr. Tom Kaemming, K. Viswanathan, Ph . D. Tactical Jet Noise

  18. Inductive Measurement of Plasma Jet Electrical Conductivity

    Science.gov (United States)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  19. Jet pump assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  20. Design Automation Systems for Production Preparation : Applied on the Rotary Draw Bending Process

    OpenAIRE

    Johansson, Joel

    2008-01-01

    Intensive competition on the global market puts great pressure on manufacturing companies to develop and produce products that meet requirements from customers and investors. One key factor in meeting these requirements is the efficiency of the product development and the production preparation process. Design automation is a powerful tool to increase efficiency in these two processes. The benefits of automating the production preparation process are shortened led-time, improved product perfo...

  1. High Bandwidth Short Stroke Rotary Fast Tool Servo

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  2. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  3. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  4. A new rotary ultrasonic motor using longitudinal vibration transducers

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhou

    2015-05-01

    Full Text Available To simplify the design process and improve the motor performance, a rotary ultrasonic motor with rotationally symmetrical structure has been designed, fabricated, and characterized. The stator consists of four connected sandwich-type transducers and eight driving feet. The rotor, a disk, and a disk-shaft are pressed on the two sides of the stator by a nut–spring system. To drive the rotor, two orthogonal longitudinal vibration modes of the stator should be excited. The operating principle of the rotary motor was analyzed by a mathematical model. By using finite element analysis, the feasibility of the operating principle was validated, and the optimal structure dimensions of stator were determined in order to improve the driving teeth motion. The overall dimensions of the prototype stator are 30 mm (width × 30 mm (width × 50 mm (length. Driven by alternating current signals with the driving frequency of 50.93 kHz and voltage 300 VP-P, the motor gave a maximal no-load speed of 157.9 r/min and a maximal output torque of 11.76 mN m.

  5. Miniature electrically tunable rotary dual-focus lenses

    Science.gov (United States)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  6. Electric Field Driven Torque in Biological Rotary Motors

    CERN Document Server

    Miller,, John H; Maric, Sladjana; Infante, Hans L; Claycomb, James R

    2013-01-01

    Ion driven rotary motors, such as Fo-ATP synthase (Fo) and the bacterial flagellar motor, act much like a battery-powered electric motor. They convert energy from ions as they move from high to low potential across a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields, emanating from channels in one or more stators, act on asymmetric charge distributions due to protonated and deprotonated sites in the rotor and drive it to rotate. The model predicts an ideal scaling law between torque and ion motive force, which can be hindered by mitochondrial mutations. The rotor of Fo drives the gamma-subunit to rotate within the ATP-producing complex (F1), working against an opposing torque that rises and falls periodically with angular position. Drawing an analogy with Brownian motion of a particle in a tilted washboard potential, we compute the highly nonlinear ATP production rate vs. proton motive force (pmf), showing a minimum pmf needed to drive ATP production with important me...

  7. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  8. 'n Beoordeling van die Rotarier-bewe^in.u

    Directory of Open Access Journals (Sweden)

    Deon Kempff

    1963-03-01

    Full Text Available Heeds vir ’n paar maande hel Harris met enkele van sy jong vriendegepraat oor die moontlikheid 0111 'n soort kluh of vereniging te stig ommekaar beter te leer ken en mekaar te help. Non ii vier van 1 mile, Harris,Schiele (kole-handelaar, Loehr I myn-ingenieur en Shorey (snyer,saam in ’ 11 kantoor in hierdie stad. Die saak word bespreek en daarword besluit 0111 ’11 klul> te stig. Daarna word meer samekomste gehou,telkens in ’ 11 ander kantoor sodat daar afwisseling of rotasie van vergaderplekis. So ontstaan die naam Rotary. As embleem word spoedig gekies"n wawiel-met-speke. wat later ( 19231 gewysig is na die bekerulc (masjien-/■«i-motief. Die ledetal word gestadig meer en selfs in 1934 is die Rotariërklubvan Chicago die grootsle enkele kluh (meer as 000 lede, juis0 0 k onulat in hierdie stad nie meerdere klnbs gestig word soos watelders gebeur nie.

  9. Predicting the build/drop tendency of rotary drilling assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jogl, P.N.; Burgess, T.M.; Bowling, J.P.

    1988-06-01

    Today, the majority of rotary bottomhole assemblies (BHA's) for directional control are designed through practical experience and trial and error. This approach can produce satisfactory results when a great deal of local experience can be drawn on. It can prove costly, however, during drilling in a new area because of the increased number of trips and correction runs. This paper demonstrates how a BHA model can be used to predict the directional inclination tendencies of rotary assemblies, thus limiting the uncertainty associated with the traditional BHA design techniques. The technique is demonstrated on data from 17 bit runs from three wells on the same platform in the Gulf of Mexico. Predicted tendencies from BHA descriptions alone proved to be accurate (to an error of +-0.1/sup 0//100 ft-0.03/sup 0//10 ml) in more than half the cases. The uncertainty of other predictions appeared to depend on the hole gauge. The distance taken for a BHA to reach a stable build/drop rate after the start of a bit run depends on the length of the BHA. This factor must be taken into account in the prediction of BHA performance.

  10. Jet engine. Strahltriebwerk

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.J.

    1990-11-15

    A gas turbine axial-flow compressor aggregate is mounted in a jet engine consisting of a high-temperature combustion chamber that is composed of conical rings forming slits and set together to a ring column and reaches up to the propelling nozzle, a compressed-air generator supplying the jet engine with compressed air at subsonic speeds and running into the propelling nozzle and a shell encasing the jet engine while leaving a certain intermediate space. The compressor aggregate has a relatively high fuel consumption and high emission rates, involves high production and maintenance costs and puts the blades at a high risk of overheating. The problem basic to the invention was to install a compressed-air generator in the jet engine that has lower fuel consumption and emission rates and is cheaper to manufacture and to service. The invention provides free-piston compressors for compressed-air generators arranged in a circle around the central high-temperature combustion chamber. The ring of compressors can rotate on bearings against the jet engine shell, so that each compressor can be turned to the bottom and serviced there. The jet engine is suitable as an engine for supersonic aircraft.

  11. Jets and QCD

    CERN Document Server

    Ali, Ahmed

    2010-01-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in $e^+ e^-$ collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in $ep$ and $pp/p\\bar{p}$ collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundam...

  12. Jet Mass Spectra in Higgs + One Jet at NNLL

    CERN Document Server

    Jouttenus, Teppo T; Tackmann, Frank J; Waalewijn, Wouter J

    2013-01-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m_jet^2/p_T^jet scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the je...

  13. b-jet triggering in ATLAS

    CERN Document Server

    Cavaliere, V; The ATLAS collaboration

    2012-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is in place from the beginning of the 2011 data-taking period and is contributing to keep the total bandwidth to an affordable rate. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and the performance on real data is presented in this contribution. Data-driven techniques to extract the online b-tagging efficiency and mis-tag rate, key ingredients f...

  14. Design and construction of triplet atmospheric cold plasma jet for sterilization

    Directory of Open Access Journals (Sweden)

    F. Sohbatzadeh

    2014-03-01

    Full Text Available In this paper, construction of triplet atmospheric plasma jet using argon, air, oxygen and nitrogen gases is reported. Bactericidal effect of the plasma jet is also investigated. To that end, longitudinal geometric configuration for the electrodes was chosen because it would increase the jet length. Electrical characteristics, jet length dependencies on the applied voltage and gas flow rate were decided, experimentally. Relative concentrations of chemical reactive species such as ozone, atomic oxygen, NOx compounds and hydroxyl were measured using optical emission spectroscopy. It was seen that atomic oxygen and ozone concentrations with triplet plasma jet are more than the concentration of single plasma jet. Triplet plasma jet was also used for sterilization of solid and liquid surfaces to disinfect gram-negative and gram-positive Escherichia coli and Streptococcus pyogenes bacteria. The results verified the effectiveness of the triplet plasma jet for killing bacteria.

  15. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Kun Shi Zhang; Mei Ling Yu; Lian Shou Liu

    2002-01-01

    The 3-jet events produced in e/sup +/e/sup -/ collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, /sub gluon///sub quark/, has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH, and DELPHI Collaborations, indicating that the method proposed to select gluon and quark jets from ...

  16. LIF Measurement of Interacting Gas Jet Flow with Plane Wall

    Science.gov (United States)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.

    2011-05-01

    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  17. Measurement of b-quark Jet Shapes at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Alison [Univ. of Oxford (United Kingdom)

    2006-01-01

    The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb-1. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively

  18. Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76 A TeV at the CERN Large Hadron Collider

    Science.gov (United States)

    Chang, Ning-Bo; Qin, Guang-You

    2016-08-01

    We study the evolution of the full jet shower in quark-gluon plasma by solving a set of coupled differential transport equations for the three-dimensional momentum distributions of quarks and gluons contained in full jets. In our jet evolution equations, we include all partonic splitting processes as well as the collisional energy loss and transverse momentum broadening for both the leading and radiated partons of the full jets. Combining with a realistic (2 +1 )-dimensional viscous hydrodynamic simulation for the spacetime profiles of the hot and dense nuclear medium produced in heavy-ion collisions, we apply our formalism to calculate the nuclear modification of single inclusive full jet spectra, the momentum imbalance of photon-jet and dijet pairs, and the jet shape function (at partonic level) in Pb+Pb collisions at 2.76 A TeV. The roles of various jet-medium interaction mechanisms on the full jet modification are studied. We find that the nuclear modification of jet shape is sensitive to the interplay of different interaction mechanisms as well as the energies of the full jets.

  19. Development of a Low-Cost Rotary Steerable Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully

  20. Laboratory plasma physics experiments using merging supersonic plasma jets

    CERN Document Server

    Hsu, S C; Merritt, E C; Adams, C S; Dunn, J P; Brockington, S; Case, A; Gilmore, M; Lynn, A G; Messer, S J; Witherspoon, F D

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$, sonic Mach number $M_s\\equiv V_{\\rm jet}/C_s>10$, jet diameter $=5$ cm, and jet length $\\approx 20$ cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  1. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  2. The collimation of magnetic jets by disc winds

    Science.gov (United States)

    Globus, N.; Levinson, A.

    2016-09-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disc wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disc wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about 10 percents of the jet power. For moderate wind powers, we find gradual collimation. For strong winds, we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfvén crossing times before becoming conical. We estimate that in the later case, the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced provided that the wind injection zone extends to several hundreds gravitational radii, and that its total power is about one-third of the jet power. The radio spectrum can be produced by synchrotron radiation of relativistically hot, thermal electrons in the sheath flow surrounding the inner jet.

  3. Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system.

    Science.gov (United States)

    Godino, Neus; del Campo, Francisco Javier; Muñoz, Francesc Xavier; Hansen, Mikkel Fougt; Kutter, Jörg P; Snakenborg, Detlef

    2010-07-21

    This work features the design, fabrication and characterisation of a miniaturised electroanalytical lab on a chip that allows the performance of a complete bioassay, from the capture of magnetic particles through their functionalisation and sample incubation to the detection of electroactive reaction products. The system is built using mainly polymeric materials such as PMMA and PDMS and fast prototyping techniques such as milling and moulding. The system also includes a set of microelectrodes, photo-lithographed on a silicon chip. The novelty lies in the design of the rotary microvalve, which contains a microreactor so that various reaction and incubation steps can be carried out in isolation from the detection event with zero dead volume. This avoids contamination and fouling of the electrodes by proteins or other organic matter, and extends the useful lifetime of the detector. The system operation is demonstrated by a model example, consisting in the functionalisation of streptavidin-coated magnetic particles with biotinylated beta-galactosidase over periods ranging from 5 to 15 min, at which point the particles saturate. Although the system is intended for the development of enzyme-based electrochemical bioassays, the concept of its rotary microreactor can be applied more broadly.

  4. Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation

    NARCIS (Netherlands)

    Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Meliani, Z.

    2013-01-01

    Astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angul

  5. Characteristics of Rotary Electromagnet with Large Tooth-pitch Angle

    Directory of Open Access Journals (Sweden)

    Ruan Jian

    2012-10-01

    Full Text Available Since the conventional electro-mechanical converter of 2D valve had problems of step lose due to its small tooth-pitch angle, a novel rotary electromagnet with large tooth-pitch angle and coreless rotor structure was proposed. Combined with the approaches of magnetic circuit analysis, finite element simulation and experimental study, the static and dynamic characteristics of electromagnet including torque-angle characteristics, frequency response and step response were studied. The experimental results are in a close agreement with the simulated results. The electromagnet has sinusoidal torque-angle characteristics and good dynamic response. The maximum static torque is approximately 0.083N.M, and its frequency width is about 125Hz/-3dB, 130Hz/-90°, respectively, and the rise time is about 5.5 ms. It is appropriate to be used as the electro-mechanical converter of 2D proportional valve.

  6. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ......The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO2 emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...

  7. FINITE ELEMENT MODELLING OF AN ULTRASONIC ROTARY MOTOR

    Directory of Open Access Journals (Sweden)

    OANA CHIVU

    2014-05-01

    Full Text Available This paper tackles the use of ultrasonic motors with three degrees of freedom in view of various applications. In nanotechnology, due to their high precision values, fast speeds and response, the piezo positioning systems have become a key component in nano printing, nano production, nano assembling, high density data acquisition etc. The present paper deals with an in-depth final element analysis of the piezoceramic and turret disk of the ultrasonic rotary motor. Hence, the variation of nodal displacements for two driving values of the. Electrodes and the angular velocity in time will be illustrated. Moreover, the research renders the frequencies of the piezoelements and ultrasonic motor drive systems according to the travelling wave and various nodal displacements.

  8. Active magnetic regenerator refrigeration with rotary multi-bed technology

    DEFF Research Database (Denmark)

    Eriksen, Dan

    magnetic regenerator (AMR) prototypes. The starting point is the design and ex- periments with a rotary multi-bed prototype at the Technical University of Denmark. Promising results were obtained with this machine in terms of temperature span and cooling power. However, issues limiting the energy......Magnetic refrigeration is an emerging cooling technology with potential ad- vantages over conventional vapor compression, the most important being higher efficiency. This thesis presents experimental and theoretical research into the possibilities of realizing this potential with actual active...... revealed a necessary trade off between the amount of magnetocaloric material and an insulating air gap in the magnetized volume provided by the Halbach-like cylindrical permanent magnet system, when designing for high efficiency rather than maximum cooling power. The central part of the magnet system...

  9. Low torque hydrodynamic lip geometry for rotary seals

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  10. Rotary forcespun styrofoam fibers as a soilless growing medium

    Science.gov (United States)

    Fauzi, Ahmad; Edikresnha, Dhewa; Munir, Muhammad Miftahul; Khairurrijal

    2016-04-01

    To make styrofoam fibers from used styrofoam, rotary forcespinning technique was used because it offers high production rate and affordable production cost. The used styrofoam was dissolved in acetone to obtain styrofoam solution as a precursor of syrofoam fibers. Since the technique utilizes centrifugal force, the precursor was thrown out and its phase changed to be solid following acetone solvent evaporation. Long, clean and light styrofoam fibers were then produced. To determine if the styrofoam fibers is a good soilless growing medium, physico-chemical properties including pH and electrical conductivity, bulk density, water retention and wettability were measured. Rockwool, which is the most popular soilless growing medium and easily obtained from local farm suppliers, was selected as a benchmark to evaluate the styrofoam fibers.

  11. Solid state lighting devices and methods with rotary cooling structures

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  12. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  13. Real-Time Prognostics of a Rotary Valve Actuator

    Science.gov (United States)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  14. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    Directory of Open Access Journals (Sweden)

    V. Mikhailov

    2012-01-01

    Full Text Available In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  a sequence which is recommended for determination of consumption characteristics which is formed with due account of multi-directional kinematic perturbations, mechanical clearance, possible emergence of hydraulic backlash and desired throttling law. The factors account makes it possible to obtain an acceptable mathematical analogue of a hydro-mechanical steering for execution of robust investigations. 

  15. Development of Rotary Axis For Wire Electrical Discharge Machining (WEDM

    Directory of Open Access Journals (Sweden)

    M. Parthiban, C. Manigandan, G. Muthu Venkadesh, M. Ranjith Kumar

    2013-08-01

    Full Text Available This paper gives an overview of setting up a rotary axis to the existing WEDM machine to investigate the machining parameters in WEDG of harder materials. There are a number of hybrid machining processes (HMPs seeking the combined advantage of EDM and other machining techniques. One such combination is wire electrical discharge grinding (WEDG, which is commonly used for micro-machining of fine and hard rods. WEDG employs a single wire guide to confine the wire tension within the discharge area between the rod and the front edge of the wire and also to minimize the wire vibration. Other advantages of WEDG include the ability to machine hard- to- machine materials with large aspect ratio.

  16. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  17. Impact drive rotary precision actuator with piezoelectric bimorphs

    Institute of Scientific and Technical Information of China (English)

    Hongzhuang ZHANG; Ping ZENG; Shunming HUA; Guangming CHENG; Zhigang YANG

    2008-01-01

    An impact drive rotary precision actuator with end-loaded piezoelectric cantilever bimorphs is proposed. According to finite element analysis and experiments of the dynamic characteristics of end-loaded piezoelectric cantilever bimorphs, a specific fixed-frequency and adjustable-amplitude is confirmed to control the actua-tor. The results show that an actuator excited by fixed-frequency and the adjustable-amplitude ramp voltage waveform works with a large travel range (180°), high resolution (1 μrad), speed (0.2 rad/min) and heavy-load ability (0.02 Nm). With advantages of high-precision positioning ability, simple structure and only one percent the cost of traditional impact drive mechanisms, the actuator is expected to be widely used in precision industries.

  18. Multichannel discharge between jet electrolyte cathode and jet electrolyte anode

    NARCIS (Netherlands)

    Shakirova, E. F.; Gaitsin, Al. F.; Son, E. E.

    2011-01-01

    We present the results of an experimental study of multichannel discharge between a jet electrolyte cathode and jet electrolyte anode within a wide range of parameters. We pioneer the reveal of the burning particularities and characteristics of multichannel discharge with jet electrolyte and droplet

  19. Jet Substructure by Accident

    CERN Document Server

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong

    2012-01-01

    We propose a new search strategy for high-multiplicity hadronic final states. When new particles are produced at threshold, the distribution of their decay products is approximately isotropic. If there are many partons in the final state, it is likely that several will be clustered into the same large-radius jet. The resulting jet exhibits substructure, even though the parent states are not boosted. This "accidental" substructure is a powerful discriminant against background because it is more pronounced for high-multiplicity signals than for QCD multijets. We demonstrate how to take advantage of accidental substructure to reduce backgrounds without relying on the presence of missing energy. As an example, we present the expected limits for several R-parity violating gluino decay topologies. This approach allows for the determination of QCD backgrounds using data-driven methods, which is crucial for the feasibility of any search that targets signatures with many jets and suppressed missing energy.

  20. Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation

    Science.gov (United States)

    Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Meliani, Z.

    2013-08-01

    Astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three active galactic nuclei jet models in 2.5D of which two have been given a radial structure. The first model is a homogeneous jet, the only model that does not carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon. We consider steady jets that have been active for 23 Myr. All jets have developed the same number of strong internal shocks along their jet axis at the final time of simulation. These shocks arise when vortices are being shed by the jet-head. We find that all three jets maintain their stability all the way up to the jet-head. The isothermal jet maintains part of its structural integrity at the jet-head where the distinction between jet spine and jet sheath material can still be made. In this case, mixing between jet spine and jet sheath within the jet is fairly inefficient. The isochoric jet, on the other hand, loses its structural jet integrity fairly quickly after the jet is injected. At its jet-head, little structure is maintained and the central part of the jet predominantly consists of jet sheath material. In this case, jet spine and jet sheath material mix efficiently within the jet

  1. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

    Science.gov (United States)

    Han, Tao; Reneker, Darrell H.

    2007-03-01

    The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

  2. Interplay of discharge and gas flow in atmospheric pressure plasma jets

    Science.gov (United States)

    Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

    2011-05-01

    Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  3. 环形加热炉电气控制策略的优化%Optimization of electric control system for rotary hearth furnace

    Institute of Scientific and Technical Information of China (English)

    杨金鼎; 戚丙申; 王骥; 李建江

    2011-01-01

    Rotary hearth furnaces are blank heated furnaces for roll lines of seamless pipes.The level of electric control system and the heating process of rotary hearth furnace have direct correlation with production of rolls line.The author has been engaging in design of rotary hearth furnace for many years, according to experience, the flaw of the electric control system and deficiency of application is discussed.The electric control system of the heating furnace mechanical equipment is improved in the practice process.A better progress has been achieved from the investment construction cost to the operational performance by applying the electric control system.%环形加热炉是无缝钢管热轧生产线上的管坯加热设备,其电气控制水平高低直接影响环形加热炉的加热过程和轧线的生产情况.根据多年从事环形炉的设计经验,对环形炉在电气控制方面存在的缺陷及使用中的不足之处进行了探讨,对环形加热炉机械设备的电气控制在实践过程中做了改进.经实际验证,从投资造价和使用性能上都取得了较好效果.

  4. Resolving Boosted Jets with XCone

    CERN Document Server

    Thaler, Jesse

    2015-01-01

    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies---dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs---that demonstrate the physics applications of XCone over a wide kinematic range.

  5. Generation of Overpressure due to Condensation in Moist Air Jet

    Institute of Scientific and Technical Information of China (English)

    Yumiko OTOBE; Hideo KASHIMURA; Shigeru MATSUO; Masanori TANAKA; Toshiaki SETOGUCHI

    2007-01-01

    In the present study, a computational fluid dynamics method has been applied to investigate the effects of initial degree of supersaturation at reservoir condition on under-expanded sonic jet structures, such as Mach disk location and diameter, barrel shock wave and jet boundary. The axisymmetric nozzle geometry investigated was a converging nozzle with straight part. As a result, it was found that the overpressures due to condensation generate and the characteristics of flow with generation of overpressure due to condensation in the jet were different from those without condensation.

  6. Jet Photoproduction at THERA

    OpenAIRE

    Klasen, M.

    2001-01-01

    We demonstrate that a future high-energy electron-proton collider like THERA could largely extend the current HERA program in jet photoproduction of testing QCD and determining the partonic structure of the proton and the photon. Depending on the electron beam energy (250-500 GeV) and the collider mode ($ep$ or $\\gamma p$), the range in the hard transverse energy scale of the jets could be increased by a factor of 2-3 and the reach in the momentum fraction $x$ of the partons in the proton or ...

  7. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  8. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  9. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Zhang Kun Shi; Yu Mei Ling; LianShouLiu

    2002-01-01

    The 3-jet events produced in e sup + e sup - collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, sub g sub l sub u sub o sub n / sub q sub u sub q sub r sub k , has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH and DELPHI Collaborations, indicating that the method propose...

  10. The Prediction of Broadband Shock-Associated Noise from Dualstream and Rectangular Jets Using RANS CFD

    Science.gov (United States)

    Miller, Steven A.; Morris, Philip J.

    2010-01-01

    Supersonic jets operating off-design produce broadband shock-associated noise. Broadband shock-associated noise is characterized by multiple broadband peaks in the far-field and is often the dominant source of noise towards the sideline and upstream direction relative to the jet axis. It is due to large scale coherent turbulence structures in the jet shear layers interacting with the shock cell structure. A broadband shock-associated noise model recently developed by the authors predicts this noise component from solutions to the Reynolds averaged Navier-Stokes equations using a two-equation turbulence model. The broadband shock-associated noise model is applied to dualstream and rectangular nozzles operating supersonically, heated, and off-design. The dualstream jet broadband shock-associated noise predictions are conducted for cases when the core jet is supersonic and the fan jet is subsonic, the core jet is subsonic and the fan jet is supersonic, and when both jet streams operate supersonically. Rectangular jet predictions are shown for a convergent-divergent nozzle operating both over- and under-expanded for cold and heated conditions. The original model implementation has been heavily modified to make accurate predictions for the dualstream jets. It is also argued that for over-expanded jets the oblique shock wave attached to the nozzle lip contributes little to broadband shock-associated noise. All predictions are compared with experiments.

  11. Design of a MRI-compatible dielectric elastomer powered jet valve

    Science.gov (United States)

    Proulx, Sylvain; Chouinard, Patrick; Lucking Bigue, Jean-Philippe; Miron, Geneviève; Plante, Jean-Sébastien

    2011-04-01

    Binary Pneumatic Air Muscles (PAM) arranged in an elastically-averaged configuration can form a cost effective solution for Magnetic Resonance Imaging (MRI) guided robotic interventions like prostate cancer biopsies and brachytherapies. Such binary pneumatic manipulators require about 10 to 20 MRI-compatible valves to control the pressure state of each PAM. In this perspective, this paper presents the design of a novel dielectric elastomer actuator (DEA) driven jet-valve to control the states of the PAMs. DEAs are MRI compatible actuators that are well suited to the simplicity and cost-effectiveness of the binary manipulation approach. The key feature of the proposed valve design is its 2 stages configuration in which the pilot stage is moved with minimal mechanical friction by a rotary antagonistic DEA made with acrylic polymer films. The prismatic geometry also integrates the jet nozzle within the DEA volume to provide a compact embodiment with a reduced number of parts. The low actuation stretches enabled by the rotary configuration minimize viscoelastic losses, and thus, maximize the frequency response of the actuator while maximizing its reliability potential. The design space of the proposed jet valve is studied using an Ogden hyperelastic model and the valve dynamics is predicted with a 1D Bergstrom-Boyce viscoelastic model. Altogether, the low friction of the pilot stage and optimized DEA dynamics provide an experimental shifting time of the complete assembly in the 200-300ms range. Results from this work suggest that the DEA driven jet valve has great potential for switching a large number of pneumatic circuits in a MRI environment with a compact, low cost and simple embodiment.

  12. Branching structure of QCD jets: new jet observables for quark-gluon discrimination

    CERN Document Server

    Davighi, Joseph (CERN)

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behavior due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level

  13. Branching structure of QCD jets: new jet observables for Quark/Gluon discrimination

    CERN Document Server

    Davighi, Joseph

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behaviour due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level.

  14. Pythia Jet Finding Study with Trento Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Joseph [United States Naval Academy, Annapolis, MD (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, Ron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-22

    We present results applying the Pythia SlowJet Finder to Pythia generated QCD and QED hard processes in the presence of simulated heavy ion backgrounds. The hard process events are generated with Pythia version 8.219 for √sNN=200 GeV proton-proton collisions and the backgrounds are generated by the Reduced Thickness Event-by-event Nuclear Topology model TRENTo for Au-Au collisions with a nucleon-nucleon cross-section of 4.23 fm2. The TRENTo model is used to calculate the initial entropy and ellipticity from which the total charged particle multiplicity and elliptic ow are determined. We report results in the form of event displays, total pT distributions, and fragmentation distributions for SlowJet applied to Pythia events with and without the simulated heavy ion backgrounds.

  15. Novel Highly Efficient Compact Rotary-Hammering Planetary Sampler Actuated by a Single Piezoelectric Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We had two objectives in this task: 1. Develop effective single low-mass, low-power piezoelectric drive that can actuate rotary-hammer samplers through walls. 2....

  16. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Alliance Spacesystems, LLC produced a rotary percussive drill designed for space use under a NASA-funded Mars Instrument Development Program (MIDP) project ? the...

  17. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    Science.gov (United States)

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.

  18. Two-Step Water Splitting with Concentrated Solar Heat Using Rotary-Type Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, H.; Fuse, A.; Miura, T.; Ishihara, H.; Tamara, Y.

    2006-07-01

    The rotary-type solar furnace has been developed and fabricated for solar hydrogen production by a two-step water splitting reaction using the special reactive ceramic. The rotary-type solar furnace is the dual cell solar reactor, which has two different type reaction rooms, one is for discharging oxygen and another is for water splitting reaction. The detailed specification and the efficiency of the rotary-type solar furnace were examined. Successive evolutions of oxygen and hydrogen were observed in the discharging oxygen and water splitting reaction cells, respectively. Two-step water splitting process using newly developed rotary type solar furnace was achieved. The optimum reaction temperatures of the oxygen releasing reaction and hydrogen generation reaction with Ni,Mn-ferrite were 1173 K and 1473 K, respectively. (Author)

  19. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    Science.gov (United States)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  20. Unforgettable Cooperation and Friendship——Retrospection of Exchanges and Cooperation with Rotary US

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Composed of professionals from all walks of life, Rotary International is the largest non-governmental volunteer service organization with the longest tradition in the world. Through providing various social services and humanitarian assistance, it encourages high ethical standards in

  1. Design and simulation of a novel impact piezoelectric linear-rotary motor

    Science.gov (United States)

    Han, Liling; Zhao, Yahui; Pan, Chengliang; Yu, Liandong

    2016-01-01

    This paper presents a novel impact piezoelectric linear-rotary motor which is driven by a single piezoceramic tube with two parts of electrodes. From the inner and outer electrodes, longitudinal displacement of the tube is generated and used to actuate the shaft with linear motion ability. From the grooved helical interdigitated electrodes, torsional displacement is generated and used to actuate the shaft with rotary motion ability. Working principle and structural design of the motor are introduced and quasi-static longitudinal and torsional displacements of the tube are estimated. With established kinematics model of the motor, the working behaviors of the motor are investigated numerically with MATLAB/Simulink software. The stepping characteristics of the linear and rotary motions are analyzed, compared, and discussed. With optimized material selection, structural design, and driving parameters, the proposed linear-rotary motor will provide remarkable performances as a miniaturized multi-degree driving device for complex positioning and manipulation applications.

  2. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  3. Ameerika Rotary klubi toetab Maarja küla miljoni krooniga / Kristel Rõss

    Index Scriptorium Estoniae

    Rõss, Kristel, 1967-

    2003-01-01

    Taevaskotta Haavassaarde rajatav Maarja küla oli nädalavahetusel eriliselt rahvarohke, sest puuetega noorte kodu ligi miljoni krooniga toetada lubanud Rotary klubi liikmed Atlantast istutasid Eestimaa mulda tammepuid

  4. Rotary klubi premeeris Politsei- ja Piirivalveameti töötajaid

    Index Scriptorium Estoniae

    2012-01-01

    Tallinna Rotary klubi noorte politseinike ning parima koerajuhi ja teenistuskoera preemia võitnutest: Raili Pärn, Marit Abram, Valur Pajumäe koeraga Golttvizen Hof Dixon, Hendri Lilbok ja Martin Torim

  5. Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jing; JIANG ji-hai; LI Shang-yi

    2010-01-01

    In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.

  6. Simulation and Analysis of Microstructure Evolution of IN718 in Rotary Forgings by FEM

    Institute of Scientific and Technical Information of China (English)

    YU Zhong-qi; MA Qiu; LIN Zhong-qin

    2008-01-01

    A numerical analysis was performed to study the influence of process parameters on the microstructure evolution of IN718 alloy in rotary forging using the finite element method (FEM).For this purpose,a constitutive equation considering the effects of strain hardening and dynamic softening of IN718 alloy was built.The constitutive equation and microstructure models were implemented into the finite element code to investigate the microstructure evolution during rotary forging subject to large deformations.The simulations were carried out in the ratio of initial height to diameter range 0.2-0.8,the angle of the rocker 3°-7° and the relative feed per revolution range 0.01-0.1 r-1.The research results revealed the deformation mechanism and the correlation of process parameters with the grain size evolution of IN718 alloy during rotary forging.These provide evidence for the selection of rotary forging parameters.

  7. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg;

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  8. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  9. Jet substructure using semi-inclusive jet functions within SCET

    CERN Document Server

    Kang, Zhong-Bo; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements based upon semi-inclusive jet functions within the framework of Soft Collinear Effective Theory (SCET). In this work we consider the jet fragmentation function, where a hadron $h$ is identified inside a fully reconstructed jet as a first example. We introduce a new semi-inclusive fragmenting jet function ${\\mathcal G}^h_i(z= \\omega_J/\\omega,z_h=\\omega_h/\\omega_J,\\omega_J, R,\\mu)$ which depends on the jet radius $R$ and the large light-cone momenta of the parton '$i$' initiating the jet ($\\omega$), the jet ($\\omega_J$), and the hadron $h$ ($\\omega_h$). We are then able to express the jet fragmentation function as a semi-inclusive jet observable rather than as an exclusive one, which is closer to the actual experimental measurements. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations at next-to-leading order (NLO). We further derive the renormalization gro...

  10. Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    CERN Document Server

    Cogan, Josh; Strauss, Emanuel; Schwarztman, Ariel

    2014-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  11. Precision predictions of exclusive jet cross sections at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gangal, Shireen

    2015-10-15

    With the discovery of the Higgs boson, a central objective of the LHC Higgs program is to study its properties in detail by exploring different production and decay channels. This requires precise theoretical predictions of inclusive cross sections as well as differential and exclusive cross sections. In this thesis, we study perturbative uncertainties in the fixed-order (FO) predictions of exclusive jet cross sections and obtain resummed predictions for a new class of rapidity-dependent jet veto observables, focusing on Higgs production via gluon gluon fusion (ggF) at the LHC. Experimental analyses at the LHC often use jet binning and jet selection cuts to distinguish between different Higgs production mechanisms and to separate signal from backgrounds. Such jet vetoes and jet selection cuts induce Sudakov logarithms of the ratio of the veto scale and the hard scale in the process. In the limit of very tight jet vetoes, these logarithms can become large and introduce large uncertainties in the FO predictions of cross sections. By resumming these large logarithms to all orders, the perturbative uncertainties can be considerably reduced. Whether in FO or resummed predictions, a consistent treatment of uncertainties in different jet bins is required. In the first part of the thesis, we studied in detail the perturbative uncertainties in the NLO predictions for pp→H+2-jets via ggF for the vector boson fusion (VBF) selection cuts used by ATLAS and CMS in their H→γγ analyses. Our study shows that, while applying strong restrictions on additional emissions is expected to increase the sensitivity to the VBF signal and reduce the ggF contribution, it is not necessarily beneficial for distinguishing the VBF and ggF production modes because of the quickly increasing ggF uncertainties. In the second part of the thesis, we introduce rapidity-dependent jet veto observables for which the transverse momentum of a jet is weighted by a smooth function of the jet rapidity

  12. Active Control of Jet Engine Inlet Flows

    Science.gov (United States)

    2007-03-31

    investigation was performed with no pressure applied across the fan. To measure the high-frequency, unsteady jet velocity, an IFA 300 hot - wire anemometry ...flow at the engine face. Recommendations for the measurement devices include hot -film or hot - wire sensors and wall-mounted, high frequency pressure...the blade and creates flow instabilities that convect through the later compressor stages. This report presents a study performed to gain an

  13. Magnetized laboratory plasma jets: Experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  14. Failure analysis of jet engine turbine blade

    OpenAIRE

    MILAN T. JOVANOVIĆ; Vesna Maksimović; Ivana Cvijović-Alagić

    2016-01-01

    Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM), transmission electron microscopy (TEM) using replica technique, scaning electron microscopy (SEM) and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating abov...

  15. Failure analysis of jet engine turbine blade

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2016-03-01

    Full Text Available Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM, transmission electron microscopy (TEM using replica technique, scaning electron microscopy (SEM and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating above the exploitation temperature.

  16. Asymetrical structure in coastal river flows and jets

    Science.gov (United States)

    Redondo, Jose M.; Sekula, Emil; Bateman, Allen

    2010-05-01

    We apply visual scaling methods to both laboratory experiments and to satellite images of coastal flows as a tool to understand jet/boundary interactions in the environment. We compare the structure of SAR(Synthetic Aperture Radar) images of coastal jets and vortices and to experiments of jets of different Reynolds numbers and their images searching for common scaling and structural relationship between these two kinds of jets taking advantage of the self-similarity of the mixing processes. In order to investigate the structure of ocean surface detected jets (SAR)and vortices near the coast, we compare wall and boundary effects on the structure of turbulent jets (3D and 2D) which are non-homogeneous. We also use the multifractal analysis of SAR and experimental jets (plumes) images looking for relationship between these two kinds of jets. The SAR images exhibit a large variation of natural features produced by winds, internal waves, the bathymetric distribution, by thermal or solutal convection by rain, etc. These produce variations in the sea surface roughness. The satellite-borne SAR is able to detect oceanic features with a range of scales. The spatial cross-correlation may give an indication of the length over which such features are correlated. We compare the inner and outer jet boundaries detecting a clear asymetry, A similar effect is detected in laboratory experiments at large Reynolds number when a wall is near one of the sides of the jet. The geometrical constrains are seen to affect also the scale to scale energy transfer.

  17. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.

    2003-01-01

    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of o

  18. QCD-aware partonic jet clustering for truth-jet flavour labelling

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Pollard, Chris [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)

    2016-02-15

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  19. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    Science.gov (United States)

    2013-12-13

    Meteorological Conditions ISR Intelligence, Surveillance, and Reconnaissance NVGs Night Vision Goggles UCAR Unmanned Combat Armed Rotorcraft U.S. United...Army The U.S. Army first became interested in unmanned rotary-wing aircraft in 2004 and established the Unmanned Combat Armed Rotorcraft ( UCAR ...program.14 Both Northrop Grumman and Kaman were the lead contractors for the unmanned rotary prototype. The UCAR was designed to be an autonomous strike

  20. Experimental performance and feasibility of a miniature single-degree-of-freedom rotary joint with integrated IPMC actuator

    Science.gov (United States)

    Manley, Sean; McDaid, Andrew; Aw, Kean; Xie, Shane; Haemmerle, Enrico

    2009-03-01

    Ionic Polymer Metal Composite (IPMC) materials are bending actuators that can achieve large tip displacements at voltages less than 10V, but with low force output. Their advantages over traditional actuators include very low mass and size; flexibility; direct conversion of electricity to mechanical energy; biocompatibility; and the potential to build integrated sensing/actuation devices, using their inherent sensing properties. It therefore makes sense to pursue them as a replacement to traditional actuators where the lack of force is less significant, such as micro-robotics; bio-mimetics; medical robotics; and non-contact applications such as positioning of sensors. However, little research has been carried out on using them to drive mechanisms such as the rotary joints. This research explores the potential for applying IPMC to driving a single degree-of-freedom rotary mechanism, for a small-force robotic manipulator or positioning system. Practical issues such as adequate force output and friction are identified and tackled in the development of the mechanical apparatus, to study the feasibility of the actuator once attached to the mechanism. Rigid extensions are then applied to the tip of the IPMC, as well as doubling- and tripling the actuators in a stack to increase force output. Finally, feasibility of the entire concept is considered by comparing the maximum achievable forces and combining the actuator with the mechanism. It is concluded that while the actuator is capable of moving the mechanism, it is non-repeatable and does not achieve a level that allows feedback control to be applied.

  1. Relativistic AGN jets II. Jet properties and mixing effects for episodic jet activity

    CERN Document Server

    Walg, Sander; Markoff, Sera; Keppens, Rony; Porth, Oliver

    2013-01-01

    Various radio galaxies show signs of having gone through episodic jet outbursts in the past. An example is the class of double-double radio galaxies (DDRGs). However, to follow the evolution of an individual source in real-time is impossible due to the large time scales involved. Numerical studies provide a powerful tool to investigate the temporal behavior of episodic jet outbursts in a (magneto-)hydrodynamical setting. We simulate the injection of two jets from active galactic nuclei (AGN), separated by a short interruption time. Three different jet models are compared. We find that an AGN jet outburst cycle can be divided into four phases. The most prominent phase occurs when the restarted jet is propagating completely inside the hot and inflated cocoon left behind by the initial jet. In that case, the jet-head advance speed of the restarted jet is significantly higher than the initial jet-head. While the head of the initial jet interacts strongly with the ambient medium, the restarted jet propagates almos...

  2. Maximum entropy deconvolution of the optical jet of 3C 273

    Science.gov (United States)

    Evans, I. N.; Ford, H. C.; Hui, X.

    1989-01-01

    The technique of maximum entropy image restoration is applied to the problem of deconvolving the point spread function from a deep, high-quality V band image of the optical jet of 3C 273. The resulting maximum entropy image has an approximate spatial resolution of 0.6 arcsec and has been used to study the morphology of the optical jet. Four regularly-spaced optical knots are clearly evident in the data, together with an optical 'extension' at each end of the optical jet. The jet oscillates around its center of gravity, and the spatial scale of the oscillations is very similar to the spacing between the optical knots. The jet is marginally resolved in the transverse direction and has an asymmetric profile perpendicular to the jet axis. The distribution of V band flux along the length of the jet, and accurate astrometry of the optical knot positions are presented.

  3. Magnetized plasma jets in experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  4. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    Science.gov (United States)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  5. A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation

    Institute of Scientific and Technical Information of China (English)

    Ying-xiang LIU; Jun-kao LIU; Wei-shan CHEN; Xiao-hui YANG

    2012-01-01

    This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring.In the new design,20 trapezoid cross section slots are cut symmetrically in the outer surface of a thick duralumin alloy ring,where 20 PZT stacks are nested.In each slot,two wedging blocks are set between the PZT stack and the two sides of the slot respectively to apply preloading on the PZT ceramics.Two radial bending modes of the stator that have a phase difference of a quarter wavelength on space are generated by using the d33 operating mode of the PZT elements,and then a flexural traveling wave is formed by the superimposing of two standing waves whose amplitudes are equal and phases are different by 90° temporally.Two conical rotors are pressed to each end of the ring type stator by a coiled spring.The finite element method (FEM) simulation is developed to validate the feasibility of the proposed motor.The maximal speed and torque of the prototype are tested to be 126 r/min and 0.8 N·m,respectively.

  6. Observation of Oil Flow Characteristics in Rolling Piston Rotary Compressor for Reducing Oil Circulation Rate

    Science.gov (United States)

    Song, S. j.; Noh, K. Y.; Min, B. C.; Yang, J. S.; Choi, G. M.; Kim, D. J.

    2015-08-01

    The oil circulation rate (OCR) of the rolling piston rotary compressor is a significant factor which affects the performance of refrigeration system. The increase of oil discharge causes decreasing of the heat transfer efficiency in the heat exchanger, pressure drop and lack of oil in lubricate part in compressor. In this study, the internal flow of compressor was visualized to figure out the oil droplet flow characteristics. The experiments and Computational Fluid Dynamics (CFD) simulations were conducted in various frequency of compressor to observe the effect of operation frequency on oil droplet flow characteristics for reducing OCR. In situ, measurement of oil droplet diameter and velocity were conducted by using high speed image visualization and Particle Image Velocimetry (PIV). The flow paths were dominated by copper wire parts driving the motor which was inserted in compressor. In order to verify the reliability of CFD simulation, the tendency of oil flow characteristics in each flow path and the compressor operating conditions were applied in CFD simulation. For reducing OCR, the structure such as vane, disk and ring is installed in the compressor to restrict the main flow path of oil particle. The effect of additional structure for reducing OCR was evaluated using CFD simulation and the results were discussed in detail.

  7. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    Science.gov (United States)

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites.

  8. Phoenix well director{sup R}-rotary steerable tool technology

    Energy Technology Data Exchange (ETDEWEB)

    Buker, M. [Phoenix Technology Services Ltd., Calgary, AB (Canada)

    2000-06-01

    This paper presented a new technology developed to replace steerable mud motor drilling used in horizontal or directional drilling. The rotary steerable tool (RTS) called the Well Director{sup R} Automatic Directional Drilling System will be marketed and serviced by Phoenix Technology Services Ltd. RTS technology is more efficient and is becoming an economically viable and good alternative to steerable mud motor drilling. The benefits include enhanced rate of penetration, improved hole cleaning, plus the ability to drill extended reach wells. It also offers time and cost savings for oil well operators. In RTS technology, the drill string is continually rotating while steering the bit toward a pre-determined target. Over the past fifteen years, the tool has been in operation in more than 100 wells for the mining industry in Europe. Recent advances in the technology has rendered it commercially viable for the oil and gas industry. The Well Director{sup R} is made up a rotating mandrel which is in constant rotation, and a non-rotating sleeve which stays stationary in the well bore when the tool is functioning. A measurement while drilling (MWD) system with a positive pulser is also included in the non-rotative sleeve. The tool is totally computer controlled. The Well Director{sup R} always knows the orientation of its' four steering ribs in the hole so it can continually monitor which rib has to have pressure applied. Two well tests were successfully completed in the winter of 1999. 1 fig.

  9. Application of numerical analysis to jet engine combustor design. Jet engine nenshoki sekkei eno suchi kaiseki no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, H. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1990-11-01

    Numerical methods are applied in practice to complement and support jet engine combustor design and development. Part of the conventional design-trial fabrication-testing performance evaluation cycle replaced by iterated numerical analysis applied in a preliminary cycle of design-evaluation, undertaken before proceeding to actual trial fabrication testing and final evaluation. Presented examples are of numerical methods applied to design/development of a high temperature combustor of airblast fuel injector type, in which analysis is undertaken of flows through diffuser and through combustion liner, of temperature distributions, of flows through liner cooling slots, and liner skin temperature distributions. Furthermore, results of three-dimensional flow analysis are applied to optimizing the design parameters of a jet-swirl combustor and to calculation of the centrifugal force in a jet swirl combustion liner. 3 refs., 18 figs., 1 tab.

  10. Real vs. simulated relativistic jets

    CERN Document Server

    Gómez, J L; Agudo, I; Marscher, A P; Jorstad, S G; Aloy, M A

    2005-01-01

    Intensive VLBI monitoring programs of jets in AGN are showing the existence of intricate emission patterns, such as upstream motions or slow moving and quasi-stationary componentes trailing superluminal features. Relativistic hydrodynamic and emission simulations of jets are in very good agreement with these observations, proving as a powerful tool for the understanding of the physical processes taking place in the jets of AGN, microquasars and GRBs. These simulations show that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or ambient medium. Both observations and simulations suggest that shock-in-jet models may be an overly simplistic idealization when interpreting the emission structure observed in actual jets.

  11. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    M Sivapragasam; M D Deshpande; S Ramamurthy; P White

    2014-06-01

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of linear growth of the jet penetration length for the unconfined case when the momentum flux ratio is small. However, for the high momentum flux ratio case corresponding to the confinement, the jet penetration length is shown to reach an asymptotic limit of about 3.57 times the confining duct diameter. This conclusion is contrary to the existing results which predict indefinite growth. A simple modification of an existing similarity solution for the jet in an unconfined counterflow provides a convenient framework for presenting the results of the flowfield and jet penetration length.

  12. Pileup subtraction for jet shapes.

    Science.gov (United States)

    Soyez, Gregory; Salam, Gavin P; Kim, Ji-Hun; Dutta, Souvik; Cacciari, Matteo

    2013-04-19

    Jets in high energy hadronic collisions often contain the fingerprints of the particles that produced them. Those fingerprints, and thus the nature of the particles that produced the jets, can be read off with the help of quantities known as jet shapes. Jet shapes are, however, severely affected by pileup, the accumulation in the detector of the residues of the many simultaneous collisions taking place in the Large Hadron Collider (LHC). We introduce a method to correct for pileup effects in jet shapes. Relative to earlier, limited approaches, the key advance resides in its full generality, achieved through a numerical determination, for each jet, of a given shape's susceptibility to pileup. The method rescues the possibility of using jet shapes in the high pileup environment of current and future LHC running, as we show with examples of quark-gluon discrimination and top tagging.

  13. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  14. Expected performance of ATLAS for measurements of jets, b-jets, tau-jets, and ETmis

    CERN Document Server

    Sapinski, M

    2002-01-01

    Jets and missing energy are among the most important objects of LHC physics. The accuracy of measurements of missing energy and direction and energy of jets put strong requirements on the detector performance. These requirements and the ATLAS Calorimeter system which is projected to fulfill these requirements are presented. The jet reconstruction algorithms and jet energy scale calibration are shortly discussed. Forward jet tagging, b-tagging and tau-tagging are important issues of many physical analyses. Reconstruction of resonances is an example of complex use of calorimeter performance

  15. Description of the ATLAS jet veto measurement and jet gap jet events at hadronic colliders

    CERN Document Server

    Royon, C

    2014-01-01

    We present a new QCD description of the ATLAS jet veto measurement, using the Banfi- Marchesini-Smye equation to constrain the inter-jet QCD radiation. This equation resums emis- sions of soft gluons at large angles and leads to a very good description of data. We also investigate jet gap jet events in hadron-hadron collisions, in which two jets are produced and separated by a large rapidity gap. Using a renormalisation-group improved NLL kernel implemented in the HERWIG Monte Carlo program, we show that the BFKL predictions are in good agreement with the Tevatron data, and present predictions that could be tested at the LHC.

  16. 脂溶性农药旋动射流混药器结构分析与混合均匀性试验%Structural analysis and mixing uniformity experiments of swirling jet mixer for applying fat-soluble pesticides

    Institute of Scientific and Technical Information of China (English)

    宋海潮; 徐幼林; 郑加强; 汪希伟; 张敏

    2016-01-01

    pesticide tank, pesticide pump, pesticide flowmeter, pesticide manometer and pesticide piezometer. The water and the pesticide were mixed straightway by the pesticide mixer before they were sprayed by a nozzle. The experimental results showed that the pressures of the water piezometer, the pesticide piezometer and the outlet of the mixer were separately 0.23, 0.22 and 0.22 MPa. The maximum mixing ratio was 99.442 5% at the outlet of the mixer, so the mixer had significant uniformity index for the fat-soluble pesticide. The simulations and the verification tests indicated that the mixing uniformity was very good in the swirling jet mixer when applying fat-soluble pesticides through on-line injection spray. Therefore, the new swirling jet mixer would solve the non-uniform mixture problem associated with conventional mixers and could significantly improve the on-line injection technology to reduce pesticide waste. The swirling jet mixer was desirable, and its structure was compact. Furthermore, there were mandatory and optional items, and we could choose what we needed according to the spraying conditions. It is conducive to the application and marketing promotion of the plant protection machineries.

  17. Numerical Study of Submerged Vertical Plane Jets Under Progressive Water Surface Waves

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-chao; WANG Ling-ling

    2005-01-01

    When wastewater is discharged into a coastal area through an outfall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier-Stokes equations (NSE) in the σ-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different cases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the re-circulation is about 1.5~2.4 depth of water. The velocity profile of the jet is self-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant α is 0.100 and 0.105 for pure momentum jets with Re numbers 1025 and 2050. The value of α increases from 0.130 to 0.147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.

  18. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  19. WOBBLING AND PRECESSING JETS FROM WARPED DISKS IN BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnezami, Somayeh [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Fendt, Christian, E-mail: nezami@mpia.de, E-mail: fendt@mpia.de [Max Planck Institute for Astronomy, Heidelberg (Germany)

    2015-12-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion–ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star–disk–jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  20. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    Science.gov (United States)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  1. Causal connection in parsec-scale relativistic jets: results from the MOJAVE VLBI survey

    CERN Document Server

    Clausen-Brown, E; Pushkarev, A B; Kovalev, Y Y; Zensus, J A

    2013-01-01

    We report that active galactic nuclei jets are causally connected on parsec scales, based on 15 GHz Very Long Baseline Array (VLBA) data from a sample of 133 AGN jets. This result is achieved through a new method to measure the product of jet Lorentz factor and intrinsic opening angle, Gamma*theta_j, from measured apparent opening angles in flux density limited samples of active galactic nuclei (AGN) jets. The Gamma*theta_j parameter is important for jet physics since it is related to the jet-frame sidewise expansion speed and causal connection between the jet edges and its symmetry axis. Most importantly, the standard model of jet production requires that the jet be causally connected with its symmetry axis, implying that Gamma*theta_j<1. When we apply our method to the MOJAVE flux density limited sample of radio loud objects, we find Gamma*theta_j ~ 0.2, implying that AGN jets are causally connected. We also find evidence that AGN jets viewed very close to the line of sight effectively have smaller intri...

  2. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible........ The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...

  3. Chaotic Study in a Large Jetting Fluidized Bed with a Vertical Nozzle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Jetting fluidized beds have been widely applied in such processes as catalytic and flame reactions, combustion and gasification of coal, treatment of waste, cleaning of dusty gases, coating and granulation[1-3]. The flow characteristics of jetting fiuidized beds are relevant to the stable gas jet and the high rates of heat transfer and mass transfer, and the fast chemical reaction pro cess near the gas distributor.

  4. TeV-scale jet energy calibration using multijet events including close-by jet effects at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    With the large number of proton-proton collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\\sqrt{s}=7$ TeV in 2011, it became possible to probe the jet transverse momentum (pT) scale beyond the TeV range in events with multijet production. The jet energy scale (JES) uncertainty, which is one of the most important sources of systematic uncertainties for new physics searches at high pT, is evaluated using in-situ techniques based on the pT balance in events with a photon or $Z$ boson as well as in dijet events. Exploiting the pT balance technique between a system of low-pT jets and a leading jet at high pT in multijet events, with the calibration (provided by the gamma-jet and Z+jet events) applied to the low-pT jets, allows the extension of the in-situ determination of JES calibration and uncertainty to the TeV-scale. Results are presented for the JES uncertainty using the multijet balance technique based on the ATLAS data collected in 2011 corresponding to an integrated luminosity...

  5. Interacting Jets from Binary Protostars

    CERN Document Server

    Murphy, G C; O'Sullivan, S; Spicer, D; Bacciotti, F; Rosén, A

    2007-01-01

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly pa...

  6. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV and 8 TeV centre-of-mass LHC operation periods allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  7. SparkJet Efficiency

    Science.gov (United States)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  8. Astrophysical Jets and Outflows

    CERN Document Server

    De Gouveia dal Pino, E M

    2004-01-01

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical si...

  9. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    Science.gov (United States)

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  10. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    Science.gov (United States)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  11. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    Science.gov (United States)

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  12. Spherical rotary piston machine as an artificial heart.

    Science.gov (United States)

    Wipf, S L

    1991-01-01

    A positive displacement pump with six rotary pistons was proposed as an artificial heart. The pump's design was characterized by high symmetry and compactness. Thus, a spherical volume of 4 1/4 inch diameter sufficed for a pump delivering 10 L/min at 120 pulses/min with the pistons turning at 30 rpm. The pistons and four connecting gears were the only moving parts. The pump functions in two separate halves as left and right ventricles, with two of the six pistons each having inlet and outlet passages, and one of them replacing mitral and pulmonary valves with the other, tricuspid and aortic valves. The function of the intraventricular septum was provided by the other four pistons whose interiors also accommodated driving motors each capable of 0.4 Nm torque for a combined power of 5 watts. There were no stagnant regions in the pumping volume, and at all internal surfaces in contact with blood, there was periodic shear stress not exceeding approximately 300 Pa.

  13. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    Science.gov (United States)

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate.

  14. A novel in-plane mode rotary ultrasonic motor

    Directory of Open Access Journals (Sweden)

    Lu Xiaolong

    2014-04-01

    Full Text Available Ultrasonic motors have the merits of high ratio of torque to volume, high positioning precision, intrinsic holding torque, etc., compared to the conventional electromagnetic motors. There have been several potential applications for this type of motor in aerospace exploration, but bearings and bonding mechanism of the piezoelectric ring in the motors limit the performance of them in the space operation conditions. It is known that the Langevin type transducer has excellent energy efficiency and reliability. Hence using the Langevin type transducer in ultrasonic motors may improve the reliability of piezoelectric motors for space applications. In this study, a novel in-plane mode rotary ultrasonic motor is designed, fabricated, and characterized. The proposed motor operates in in-plane vibration mode which is excited by four Langevin-type bending vibrators separately placed around a ring-shaped stator. Two tapered rotors are assembled to the inner ring of the stator and clamped together by a screw nut. In order to make the motor more stable and convenient to fix, a thin cylindrical support is placed under the stator ring. Due to its no-bearing structure and Langevin transducer excitation, the prototype ultrasonic motor may operate well in aeronautic and astronautic environments.

  15. Resolving Two Dimensional Angular Velocity within a Rotary Tumbler

    Science.gov (United States)

    Helminiak, Nathaniel; Helminiak, David; Cariapa, Vikram; Borg, John

    2015-11-01

    In this study, a horizontally oriented cylindrical tumbler, filled at variable depth with cylindrical media, was rotated at various constant speeds. A monoplane layer of media was photographed with a high-speed camera and images were post processed with Particle Tracking Velocimetry (PTV) algorithms in order to resolve both the translational and rotational flow fields. Although the translational velocity fields have been well characterized, contemporary resources enabled the ability to expand upon and refine data regarding rotational characteristics of particles within a rotary tumbler. The results indicate that particles rotate according to intermittent no-slip interactions between the particles and solid body rotation. Particles within the bed, not confined to solid body rotation, exhibited behavior indicative of gearing between particles; each reacting to the tangential component of contact forming rotation chains. Furthermore, it was observed that solid body interactions corresponded to areas of confined motion, as areas of high interaction dissuaded no-slip rotation, while areas of developing flow tended towards no-slip rotation. Special thanks to: NASA Wisconsin Space Grant Consortium Program as well as Marquette University OPUS College of Engineering.

  16. Gas phase dispersion in a small rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1981-07-01

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m/sup 3//h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds.

  17. Cutting efficiency of four different rotary nickel: Titanium instruments

    Directory of Open Access Journals (Sweden)

    Doglas Cecchin

    2011-01-01

    Full Text Available Aim : The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods : The number of samples was 10 for each group (n = 10. The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results : The analysis of variance (ANOVA showed that there was a statistically significant difference among the studied groups. The Tukey′s test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022, NiTi Tee (0.00368 ± 0.00023, and Profile (0.00351 ± 0.00026 presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05. The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003 (P < 0.05. Conclusions : It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments.

  18. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    Science.gov (United States)

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility.

  19. Roadside IED detection using subsurface imaging radar and rotary UAV

    Science.gov (United States)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  20. The Influence of the Supporting Wheel Deflection of Large-scale Rotary Kiln on Maximum Contact Stress

    Institute of Scientific and Technical Information of China (English)

    Li Xuejun; Qiu Weiliang; Yuan Yincai; Li Ping

    2006-01-01

    The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle,which probably will result in accidents correlating to safety. This will provide theory conference for the design,the operating condition analysis and adjusting of the rotary kiln.

  1. Instability wave control in turbulent jet by plasma actuators

    Science.gov (United States)

    Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu

    2014-12-01

    Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.

  2. High Multiplicity Searches at the LHC Using Jet Masses

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; /SLAC /Stanford U., Appl. Phys. Dept.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Lisanti, Mariangela; /Princeton U.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-04-24

    This article introduces a new class of searches for physics beyond the Standard Model that improves the sensitivity to signals with high jet multiplicity. The proposed searches gain access to high multiplicity signals by reclustering events into large-radius, or 'fat', jets and by requiring that each event has multiple massive jets. This technique is applied to supersymmetric scenarios in which gluinos are pair-produced and then subsequently decay to final states with either moderate quantities of missing energy or final states without missing energy. In each of these scenarios, the use of jet mass improves the estimated reach in gluino mass by 20% to 50% over current LHC searches.

  3. The effect of working gas impurities on plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. Y.; He, M. B., E-mail: pulhmb@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, D. W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, Shanxi 710049 (China)

    2015-04-15

    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with the concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.

  4. Stationary Relativistic Jets

    CERN Document Server

    Komissarov, S S; Lyutikov, M

    2015-01-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...

  5. Astrophysical jets and outflows

    Science.gov (United States)

    de Gouveia Dal Pino, Elisabete M.

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems are either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models particularly to YSOs and AGN jets are addressed.

  6. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  7. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  8. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  9. Wall jets created by single and twin high pressure jet impingement

    Science.gov (United States)

    Miller, P.; Wilson, M.

    1993-03-01

    An extensive experimental investigation into the nature of the wall jets produced by single and twin normal jet impingement has been undertaken. Wall jet velocity profiles have been recorded up to 70 jet diameters from the impingement point, at pressures representative of current VStol technology. The tests used fixed convergent nozzles, with nozzle height and spacing and jet pressure being varied. Single jet impingement displays a consistent effect of nozzle height on wall jet development. For twin jet cases a powerful reinforcement exists along the wall jet interaction plane. Remote from the interaction plane the wall jets are weaker than those produced by a single jet impingement.

  10. Decelerating relativistic two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin an

  11. Decelerating relativistc two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin an

  12. Control of a Circular Jet

    CERN Document Server

    Gohil, Trushar B; Muralidhar, K

    2010-01-01

    The present study report direct numerical simulation (DNS) of a circular jet and the effect of a large scale perturbation at the jet inlet. The perturbation is used to control the jet for increased spreading. Dual-mode perturbation is obtained by combining an axisymmetric excitation with the helical. In the fluid dynamics videos, an active control of the circular jet at a Reynolds number of 2000 for various frequency ratios (both integer and non-integer) has been demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on a plane is evident. However, for a non-integer frequency ratio, the axisymmetric jet is seen to bloom in all directions.

  13. Cleaning efficiency of nickel-titanium GT and .04 rotary files when used in a torque-controlled rotary handpiece.

    Science.gov (United States)

    Suffridge, Calvin B; Hartwell, Gary R; Walker, Thomas L

    2003-05-01

    This study determined if the cleaning efficiency of nickel-titanium rotary files in an endodontic electric handpiece using a no-torque control setting was superior to that obtained when using the torque-control feature. Fifty extracted human anterior teeth with straight canals were divided into two groups of 20 and two control groups of 5. Canals were instrumented with GT and .04 ProFile nickel-titanium files until a size 35 advanced to working length. Samples were sectioned and the apical 6 mm of the canal was photographed (x20) and projected onto a 3- x 4-foot grid with squares measuring 0.5 inches each. Total debris was the percentage of the number of squares containing debris versus the total number of squares. The teeth in the torque-controlled group showed an average of 24.99% debris versus 15.55% for the teeth in the no-torque group. The difference was not statistically significant; therefore, no difference can be said to exist between the two torque settings in terms of cleaning efficiency.

  14. Material Transport with Air Jet

    Directory of Open Access Journals (Sweden)

    István Patkó

    2005-11-01

    Full Text Available In the field of industry, there are only a very few examples of material transportwith air jet, and one of these is the air jet loom. In this weaving technology, the weft (thetransversal yarn of the fabric is shot by air jet. This paper will set up the mathematicalmodel of yarn end movement. For a special case, I will specify a solution of the model.

  15. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    Science.gov (United States)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  16. Jet Suppression Measured in ATLAS

    CERN Document Server

    Citron, Zvi Hirsh; The ATLAS collaboration

    2015-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced, and jets propagating through this medium are known to suffer energy loss. This results in a lower yield of jets emerging from the medium than expected in the absence of medium effects, and thus modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. Parton showers initiated by quarks tend to have fewer fragments carrying a larger fraction of the total jet energy than those resulting from gluons. In this talk, the latest ATLAS results on single jet suppression will be presented. Measurements of the nuclear modification factor, RAA, for fully reconstructed jets are shown. The rapidity dependence of jet suppression is discussed, which is sensitive to the relative energy loss between quark and gluon jets. New measurements of single hadron suppression out to pT~150 GeV ...

  17. Jet physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    S. Seidel

    2002-05-29

    Recent analyses by the CDF and D0 Collaborations of jet data produced in p{bar p} collisions at the Fermilab Tevatron Collider are presented. These include new studies of the inclusive jet production cross section, a measurement of the strong coupling constant, the first measurement of subjet multiplicity of quark and gluon jets, examination of ratios of multijet cross sections and their implications for choice of renormalization scale, and a study of charged jet evolution and energy flow in the underlying event. The results are compared to theoretical predictions.

  18. The formation of interstellar jets

    Science.gov (United States)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  19. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    Science.gov (United States)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  20. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles

    Science.gov (United States)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.

    2016-10-01

    This paper presents the development of an innovative seat suspension working with a rotary magnetorheological (MR) fluid damper. Compared with a conventional linear MR damper, the well-designed rotary MR damper possesses several advantages such as usage reduction of magnetorheological fluid, low sealing requirements and lower costs. This research starts with the introduction of the seat suspension structure and the damper design, followed by the property test of the seat suspension using an MTS machine. The field-dependent property, amplitude-dependent performance, and the frequency-dependent performance of the new seat suspension are measured and evaluated. This research puts emphasis on the evaluation of the vibration reduction capability of the rotary MR damper by using both simulation and experimental methods. Fuzzy logic is chosen to control the rotary MR damper in real time and two different input signals are considered as vibration excitations. The experimental results show that the rotary MR damper under fuzzy logic control is effective in reducing the vibrations.

  1. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  2. Inertia charging system with a rotary valve. Kaitenben wo mochiita kansei kakyu system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, H.; Ji, D. (The University of Tokyo, Tokyo (Japan). Faculty of Engineering); Kanesaka, H.; Lee, D.

    1991-10-01

    An inertia charger which is used to raise the output of an internal combustion engine can raise the volumetric efficiency by using the dynamic effect of intake air vibration which takes place in the intake system during the intake process. This paper described the trial manufacturing of an inertia charging system aiming at the high volumetric efficiency by arranging the rotary valve in the intake passage and by adjusting the operating time of the rotary valve and the studied result to improve the effect of inertia charging over the wide range of engine rotational speed. The experimental equipment was a 399cc single cylinder gasoline engine for a bicycle to which intake port a rotary valve was fitted. The engine number of rotation, volumetric efficiency, crank angle and the pressure change near the rotary valve were studied. As a result, the aerofoil rotary valve could improve the volumetric efficiency over a wide range of engine number of rotation, compared with the conventional inertia charging system. The optimized calculation result by which the future expansion of this system was studied, was shown. 3 refs., 4 figs., 3 tabs.

  3. Numerical investigation of mixing in parallel jets

    Energy Technology Data Exchange (ETDEWEB)

    Durve, Ameya [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Patwardhan, Ashwin W., E-mail: aw.patwardhan@ictmumbai.edu.in [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Banarjee, Indraneel; Padmakumar, G.; Vaidyanathan, G. [Experimental thermal Hydraulics Section, Separation Technology and Hydraulics Division, Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The effect of adjacent third jet on the mixing of two plane parallel jets is studied using computational fluid dynamics (CFD). Black-Right-Pointing-Pointer Validation of CFD model with experimental data. Black-Right-Pointing-Pointer Comparison of mixing behavior of two jet flow and three jet flow. Black-Right-Pointing-Pointer Three jet systems provide more efficient mixing than single jet and two jet systems. Black-Right-Pointing-Pointer Turbulent fluctuations occurring in the two jet flow are smaller as compared to the three jet flow. - Abstract: A system of parallel jets is widely encountered in many industrial applications. Wide spread applications necessitate the study of the basic mixing phenomenon of parallel jets. In the present study, the mixing phenomenon in the two jet flow and the three jet flow has been studied numerically by solving the Reynolds Averaged Navier Stokes equations. The results predicted by the Reynolds stress model compare well with the experimental data of axial velocity and shear stress available in literature. An attempt has been made to predict the critical mixing regions such as the merge point and the combine point by correlating them with jet spacing and jet exit conditions. A comparison between single jet, two jet and three jet systems has been carried out to evaluate the effect of presence of the second and the third jet on the mixing phenomenon and turbulent fluctuations.

  4. Acoustics of dual-stream high-speed jets

    Science.gov (United States)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  5. Improvement and Application of Rotated Jet Fan in Coal Mine%矿用旋转射流气动风机的改进和应用

    Institute of Scientific and Technical Information of China (English)

    吕乐礼

    2015-01-01

    介绍了煤矿工作面上隅角旋转射流气动风机的新颖设计理念、技术特点和应用情况.该风机能有效吹排煤矿工作面上隅角积聚的瓦斯和有害气体,是煤矿安全生产,改善局部劳动工作环境的一种新的技术设备.%The paper presented new design concept,technology character,application of rotary jet fan in corner of coal mine surface.The jet fan blows away the gas and noxious gas gathered in the coal mine surface.The jet fan as a new machinery had improved the coal mine work environment and the coal mine producing safety.

  6. Investigation of heat transfer processes involved liquid impingement jets: a review

    Directory of Open Access Journals (Sweden)

    M. Molana

    2013-09-01

    Full Text Available This review reports research on liquid impingement jets and the abilities, limitations and features of this method of heat transfer. Some available and important correlations for Nusselt number are collected here. Also we demonstrate the capability of nanofluids to be applied in heat transfer processes involved liquid impingement jets.

  7. Multiple impinging jet arrays. An experimental study on flow and heat transfer

    NARCIS (Netherlands)

    Geers, L.F.G.

    2004-01-01

    Because of their high efficiency and their ability to provide high heat transfer rates, impinging jets are applied for rapid cooling and heating in a wide variety of industrial processes. However, the physical phenomena controlling the heat transfer from impinging jets are to a large degree unknown.

  8. Chemically optimizing operational efficiency of molecular rotary motors.

    Science.gov (United States)

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R

    2014-07-09

    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.

  9. Global axial-torsional dynamics during rotary drilling

    Science.gov (United States)

    Gupta, Sunit K.; Wahi, Pankaj

    2016-08-01

    We have studied the global dynamics of the bottom hole assembly (BHA) during rotary drilling with a lumped parameter axial-torsional model for the drill-string and a linear cutting force model. Our approach accounts for bit-bounce and stick-slip along with the regenerative effect and is independent of the drill-string and the bit-rock interaction model. Regenerative axial dynamics due to variable depth of cut is incorporated through a functional description of the cut surface profile instead of a delay differential equation with a state-dependent delay. The evolution of the cut surface is governed by a nonlinear partial differential equation (PDE) which is coupled with the ordinary differential equations (ODEs) governing the longitudinal and angular dynamics of the BHA. The boundary condition for the PDE captures multiple regeneration in the event of bit-bounce. Interruption in the torsional dynamics is included by considering separate evolution equations for the various states during the stick period. Finite-dimensional approximation for our coupled PDE-ODE model has been obtained and validated by comparing our results against existing results. Bifurcation analysis of our system reveals a supercritical Hopf bifurcation leading to periodic vibrations without bit-bounce and stick-slip which is followed by solutions involving bit-bounce or stick-slip depending on the operating parameters. Further inroads into the unstable regime leads to a variety of complex behavior including co-existence of periodic and chaotic solutions involving both bit-bounce and stick-slip.

  10. Jet flavor tomography of quark gluon plasmas at RHIC and LHC.

    Science.gov (United States)

    Buzzatti, Alessandro; Gyulassy, Miklos

    2012-01-13

    A new Monte Carlo model of jet quenching in nuclear collisions, CUJET1.0, is applied to predict the jet flavor dependence of the nuclear modification factor for fragments f=π,D,B,e(-) from quenched jet flavors g,u,c,b in central collisions at RHIC and LHC. The nuclear modification factors for different flavors are predicted to exhibit a novel level crossing pattern over a transverse momentum range 5jet-medium dynamics in quark gluon plasmas.

  11. Numerical Analysis of the Flow Field of an Inclined Turbulent Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-jing

    2013-01-01

    A three-dimensional numerical study has been applied to examine the effects of impinging angle of incline impinging jet on heat transfer and flow field characteristic. Other parameters such as nozzle to plate distance and jet velocity and temperature are also examined to investigate their influences on jet flow. The impinging angle in range of 900-650, the nozzle exit-to-plate spacing (H/D) in range of 2 to 10, the Reynolds number in range of 1.27x102 to 1.27x104 and the jet temperature in range of 323K to 773K have been considered in this project.

  12. NUMERICAL SIMULATION OF ROCK BREAKING MECHANISM WITH HIGH-PRESSURE WATER JET

    Institute of Scientific and Technical Information of China (English)

    NI Hong-jian

    2004-01-01

    Based on the analysis of experimental results, the rock damage model and the damage coupling model suitable for the whole rock breaking process with water jet were established with continuous damage mechanics and micro damage mechanics, and the numerical method was developed with continuum mechanics and the FEM theory. The rock breaking mechanism with water jet was studied systematically with numerical simulation for the first time in the field of water-jet rock breaking. The numerical results agree with the experimental ones which shows that the presented method is reasonable and can reflect the reality of water-jet rock breaking. The conclusion can be applied in practice.

  13. Viscous flowfields induced by three-dimensional lift jets in ground effect

    Science.gov (United States)

    Bower, W. W.

    1982-01-01

    The turbulent flowfields associated with single and multiple jets impinging on a ground plane are relevant to the aerodynamics of VTOL aircraft in ground effect. These flowfields are computed using the Reynolds equations and a two-equation turbulence model to describe an isolated jet and two interacting jets with fountain formation. Coordinate transformations are employed to apply the boundary conditions for the governing equations in the far field, and a third-order-accurate upwind-difference scheme is used to discretize the resulting system. Flowfield properties calculated for these impinging-jet configurations are presented and compared with experimental data.

  14. Effect of lubricant jet location on spiral bevel gear operating temperatures

    Science.gov (United States)

    Handschuh, Robert F.

    1992-04-01

    An experimental study was conducted to determine the effect of lubricant jet location on spiral bevel gear bulk temperatures. Transient surface temperatures were also measured. Tests were conducted on aircraft quality spiral bevel gears in a closed loop test facility. Thermocoupled pinions and an infrared microscope were used to collect the pertinent data. A single fan jet lubricated the test gears. Lubricant flow rate (lubricant jet pressure) and applied torque were also varied. The results showed that jet placement had a significant effect on the gear bulk temperatures.

  15. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  16. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, Ramj; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  17. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2012-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  18. Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Porth, Oliver Joachim Georg

    2011-11-09

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic

  19. Jet Vectoring Control Using a Novel Synthetic Jet Actuator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various applications, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.

  20. Protostellar jets the best laboratories for investigating astrophysical jets

    CERN Document Server

    De Gouveia dal Pino, E M

    1995-01-01

    Highly collimated supersonic jets are observed to emerge from a wide variety of astrophysical objects, ranging from Active Nuclei of Galaxies (AGN's) to Young Stellar Objects (YSOs) within our own Galaxy. Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. Thanks to the proximity and relatively small timescales, which permit direct observations of evolutionary changes, YSO jets are, perhaps, the best laboratories for cosmic jet investigation. In this lecture, the formation, structure, and evolution of the YSO jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models to AGN jets are also addressed.

  1. CONTROL OF TWO DIMENSIONAL JETS USING MINIATURE ZERO MASS FLUX JETS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature-scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two-dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.

  2. Neutron streaming along ducts and labyrinths at the JET biological shielding: Effect of concrete composition

    Science.gov (United States)

    Vasilopoulou, T.; Stamatelatos, I. E.; Batistoni, P.; Conroy, S.; Obryk, B.; Popovichev, S.; Syme, D. B.

    2015-11-01

    Experiments and Monte Carlo simulations were performed at the Joint European Torus (JET) in order to validate the computational tools and methods applied for neutron streaming calculations through penetrations in the JET Hall biological shielding. In the present work the sensitivity of the simulations on the hydrogen and boron content in concrete shielding was investigated. MCNP code was used to simulate neutron streaming along the JET Hall personnel entrance labyrinth for deuterium-deuterium and deuterium-tritium plasma sources for different concrete wall compositions. Neutron fluence and ambient dose equivalent along the labyrinth were calculated. Simulation results for the "as built" JET concrete composition were compared against measurements performed using thermoluminescence detectors. This study contributes to the optimization of the radiation shielding of JET and, furthermore, provides information from JET experience that may assist in optimizing and validating the radiation shielding design methodology used in its successor fusion devices ITER and DEMO.

  3. Modeling shear-induced CHO cell damage in a rotary positive displacement pump.

    Science.gov (United States)

    Kamaraju, Hari; Wetzel, Kenneth; Kelly, William J

    2010-01-01

    Rotary lobe pumps are commonly used in the biotechnology industry for a variety of purposes. Shear damage to animal cells within the rotary lobe pump can adversely affect the product yield or purity during, for example, cell concentration via cross-flow filtration. In this research, CHO cells grown in 20-L bioreactors were fed to a rotary lobe pump in both single pass and recycle experiments were conducted at different RPMs and "slip" conditions. The results indicate that the slip flow rate more severely impacts the viability of the CHO cells than the pump RPM. A novel mathematical modeling approach is presented that predicts shear rates in all of the positive displacement pump's slip regions, and then predicts cell death vs. operating conditions. This model accounts for the complex flow situation that results from changes to RPM, backpressure and pump geometry (i.e., clearances).

  4. Strength and reversibility of stereotypes for a rotary control with linear scales.

    Science.gov (United States)

    Chan, Alan H S; Chan, W H

    2008-02-01

    Using real mechanical controls, this experiment studied strength and reversibility of direction-of-motion stereotypes and response times for a rotary control with horizontal and vertical scales. Thirty-eight engineering undergraduates (34 men and 4 women) ages 23 to 47 years (M=29.8, SD=7.7) took part in the experiment voluntarily. The effects of instruction of change of pointer position and control plane on movement compatibility were analyzed with precise quantitative measures of strength and a reversibility index of stereotype. Comparisons of the strength and reversibility values of these two configurations with those of rotary control-circular display, rotary control-digital counter, four-way lever-circular display, and four-way lever-digital counter were made. The results of this study provided significant implications for the industrial design of control panels for improved human performance.

  5. Light-driven rotary molecular motors without point chirality: a minimal design.

    Science.gov (United States)

    Wang, Jun; Oruganti, Baswanth; Durbeej, Bo

    2017-03-08

    A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-adiabatic molecular dynamics simulations based on multiconfigurational quantum chemistry to demonstrate that this chiral feature is not essential for inducing unidirectional rotary motion in molecules that incorporate a cyclohexenylidene moiety into a protonated Schiff-base framework. Rather, the simulations show that it is possible to exploit the intrinsic asymmetry of the puckered cyclohexenylidene to control the direction of photoinduced rotation.

  6. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

    Science.gov (United States)

    Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik

    2016-01-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  7. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    Energy Technology Data Exchange (ETDEWEB)

    Kascheev, Vladimir; Musatov, Nikolay [Joint Stock Company ' A.A. Bochvar High-Technology Scientific Research Institute of Inorganic Materials' (VNIINM), Rogova st., 5A (Russian Federation)

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  8. Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor

    Institute of Scientific and Technical Information of China (English)

    XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu

    2014-01-01

    In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.

  9. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  10. The collimation of magnetic jets by disk winds

    CERN Document Server

    Globus, Noemie

    2016-01-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disk wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disk wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about ten percents of the jet power. For moderate wind powers we find gradual collimation. For strong winds we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfv\\'en crossing times before becoming conical. We estimate that in the later case the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced ...

  11. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  12. Core shifts in blazar jets

    CERN Document Server

    Zdziarski, Andrzej A; Pjanka, Patryk; Tchekhovskoy, Alexander

    2014-01-01

    We study the effect of core shift in jets, which is the dependence of the position of the jet radio core on the frequency. We derive a new method to measure the jet magnetic field based on both the value of the shift and the observed flux, which compliments the standard method assuming equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, $\\simeq$0.1--0.2 divided by the bulk Lorentz factor, $\\Gamma_{\\rm j}$. Larger values, e.g., $1/\\Gamma_{\\rm j}$, would imply very strong departures from equipartition. A small jet opening angle implies in turn the magnetization parameter of $\\ll 1$. We determine the jet magnetic flux taking this effect into account. We find that the average jet magnetic flux is compatible with the model of jet formation due to black-hole spin energy extraction and accretion being magnetically arrested. We calculate the ...

  13. Jet charge at the LHC.

    Science.gov (United States)

    Krohn, David; Schwartz, Matthew D; Lin, Tongyan; Waalewijn, Wouter J

    2013-05-24

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the standard model and for characterizing potential beyond-the-standard-model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pileup, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as standard model tests, such as jet charge in dijet events or in hadronically decaying W bosons in tt[over ¯] events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multihadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte Carlo fragmentation models.

  14. Momentum transfer by astrophysical jets

    CERN Document Server

    Chernin, L M; De Gouveia dal Pino, E M; Benz, W

    1994-01-01

    We have used 3-D smoothed particle hydrodynamical simulations to study the basic properties of the outflow that is created by a protostellar jet in a dense molecular cloud. The dynamics of the jet/cloud interaction is strongly affected by the cooling in the shocked gas behind the bow shock at the head of the jet. We show that this cooling is very rapid, with the cooling distance of the gas much less than the jet radius. Thus, although ambient gas is initially driven away from the jet axis by the high thermal pressure odf the post-shock gas, rapid cooling reduces the pressure and the outflow subsequently evolves in a momentum-conserving snowplow fashion. The velocity of the ambient gas is high in the vicinity of the jet head, but decreases rapidly as more material is swept up. Thus, this type of outflow produces extremely high velocity clumps of post shock gas which resemble the features seen in outflows. We have investigated the transfer of momentum from the jet to the ambient medium as a function of the jet ...

  15. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  16. Jet Cleansing: Pileup Removal at High Luminosity

    CERN Document Server

    Krohn, David; Schwartz, Matthew D; Wang, Lian-Tao

    2013-01-01

    One of the greatest impediments to extracting useful information from high luminosity hadron-collider data is radiation from secondary collisions (i.e. pileup) which can overlap with that of the primary interaction. In this paper we introduce a simple jet-substructure technique termed cleansing which can consistently correct for large amounts of pileup in an observable independent way. Cleansing works at the subjet level, combining tracker and calorimeter-based data to reconstruct the pileup-free primary interaction. The technique can be used on its own, with various degrees of sophistication, or in concert with jet grooming. We apply cleansing to both kinematic and jet shape reconstruction, finding in all cases a marked improvement over previous methods both in the correlation of the cleansed data with uncontaminated results and in measures like S/rt(B). Cleansing should improve the sensitivity of new-physics searches at high luminosity and could also aid in the comparison of precision QCD calculations to co...

  17. Evaluation of suction detection during different pumping states in an implantable rotary blood pump.

    Science.gov (United States)

    Ng, Siew-Cheok; Lim, Einly; Mason, David G; Avolio, Alberto P; Lovell, Nigel H

    2013-08-01

    In recent times, the problem of noninvasive suction detection for implantable rotary blood pumps has attracted substantial research interest. Here, we compare the performance of various suction indices for different types of suction and non-suction events based on pump speed irregularity. A total of 171 different indices that consist of previously proposed as well as newly introduced suction indices are tested using regularized logistic regression. These indices can be classified as amplitude based (derived from the mean, maximum, and minimum values of a cycle), duration based (derived from the duration of a cycle), gradient based (derived from the first order as well as higher order differences) and frequency based (derived from the power spectral density). The non-suction event data consists of ventricular ejection with or without arrhythmia and intermittent and continuous non-opening of the aortic valve. The suction event data consists of partial ventricular collapse that occurs intermittently as well as continuously with or without arrhythmia. In addition, we also attempted to minimize the usage of multiple indices by applying the sequential forward floating selection method to find which combination of indices gives the best performance. In general, the amplitude-based and gradient-based indices performed quite well while the duration-based and frequency-based indices performed poorly. By having only two indices ([i] the maximum gradient change in positive slope; and [ii] the standard deviation of the maximum value in a cycle), we were able to achieve a sensitivity of 98.9% and a specificity of 99.7%.

  18. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    Science.gov (United States)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  19. Differences in torsional performance of single- and multiple-instrument rotary systems for glide path preparation.

    Science.gov (United States)

    Arias, Ana; Singh, Rupinderpal; Peters, Ove A

    2016-05-01

    A new rotary instrument has been developed to simplify the glide path preparation in root canals before shaping procedures. The purpose of this study was to compare the peak torque and force induced by nickel-titanium PathFile multiple-instrument system and the recently developed M-Wire ProGlider single instrument during glide path preparation of mesial root canals in extracted mandibular molars. Each independent canal of eight mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 and #2 or ProGlider after negotiation with a 10 K-file. Tests were run in a standardized fashion using a torque-testing platform. Peak torque (N cm) and force (N) were registered and analysis of variance and Tukey post-hoc tests were applied. Preliminary data for stationary torque at failure were also obtained and compared with peak torque for each instrument. PathFile #1 and #2 instruments showed statistically lower peak torque (p = 0.001) and peak force (p = 0.008) than ProGlider. Torque at failure according to ADA No. 28/ISO 36030-1 was not significantly different from peak torque during glide path preparation for ProGlider instruments while it was significantly higher for PathFile #1 and #2 (p path preparation compared to ProGlider, which is possibly subjected to a greater contact with the canal walls due to the increase in its flute diameter at middle and coronal levels.

  20. LHCb; LHCb Jet Reconstruction

    CERN Multimedia

    Augusto, O

    2012-01-01

    The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than $4 \\times 10^{32} cm^{-2} s^{-1}$ and the integrated luminosity reached the value of 1.02 $fb^{-1}$ on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test pertubative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space $\\eta \\times \\phi$ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the calo...

  1. Influence of the Hard-Faced Layer Welded on Tangential-Rotary Pick Operational Part on to Its Wear Rate

    Science.gov (United States)

    Krauze, Krzysztof; Skowronek, Tadeusz; Mucha, Kamil

    2016-12-01

    Problems related with abrasive wear of tangential-rotary picks during cutting process and its limitations, have been discussed in the present study. Essential for the parameters of cutting process geometrical, kinematic and material parameters of tangential-rotary picks and types of their wear, have been discussed. Testing procedure in aspect of the wear of tangential-rotary picks and their durability estimation, has been described. Manners of the abrasion of pick body and pick edge of the tangential-rotary picks, have been determined. Particular attention was paid to procedure of hard facing of the pick operational part and its influence onto mining process. Results of examination of tangential-rotary picks with hard facing layer on operational part near insert made of abrasion sintered carbide are also cited.

  2. 焦罐车旋转机构的改进%Improvement of Rotary Device of Coke Tank Truck

    Institute of Scientific and Technical Information of China (English)

    宫文龙

    2015-01-01

    This paper firstly analyzes the research status of the coke tank truck rotary device ,and then discusses the advatages and disadvantages of traditional coke tank truck rotary device .On this basis ,some measures to improve the rotary device are put for-ward ,and the superiority of the improved coke tank truck rotary device is discussed .This work may lay the basis for the design of large coke tank truck rotary device and other rotating mechanism .%对焦罐车旋转机构的现状进行了分析 ,探讨了传统焦罐车旋转机构的优劣 ,在此基础上对旋转机构进行了改进 ,改进后的焦罐车旋转机构可作为大型焦罐车旋转机构的设计依据.

  3. 3D finite elements method (FEM Analysis of basic process parameters in rotary piercing mill

    Directory of Open Access Journals (Sweden)

    Z. Pater

    2012-10-01

    Full Text Available In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results of calculations were compared with results of stand test with use of 100Cr6 steel. The comparisons of numerical and experimental tests confirm good agreement between obtained results.

  4. In the zone - first rotary steerable liner-while-drilling system; Drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Statoil recently successfully tested the world's first rotary steerable liner-while-drilling system from its Brage platform in the Norwegian sector of the North Sea. This innovative technology - with applications in new and mature fields - was jointly developed by Statoil and Baker Hughes Incorporated. The concept of a rotary steerable system that gives operators the ability to accurately drill and log three-dimensional well profiles with a liner attached directly to the drillstring is entirely new. The system is designed to withstand high circulation rates and high torque loads while providing liner connect and disconnect capabilities. (Author)

  5. Fault Diagnosis of a Rotary Machine Based on Information Entropy and Rough Set

    Institute of Scientific and Technical Information of China (English)

    LI Jian-lan; HUANG Shu-hong

    2007-01-01

    There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.

  6. Torsional Oscillation Characteristics of Rotary Shafts Based on Torsion and Bending Coupled Vibration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The torsional oscillation characteristics on the bending and torsion coupled vibration of rotary shaft system were investigated using the elasto-dynamic theory and other mathematic methods, such as difference approach, Fourier transform, and wavelet transform. It is concluded that mass eccentricity and other exciting modalities affect the bending and torsion coupled vibration of rotary shafts. Torsional vibration caused by bending vibration features linearity along with the change of amplitude of bending vibration. Meanwhile, energy spectrum concentrates on high frequency area with the wavelet analysis.

  7. SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2015-01-01

    The combustion of alternative fuels in direct contact with the bed material of the rotary kiln may cause local reducing conditions and, subsequently, decomposition of sulfates from cement raw materials, increasing the SO2 concentration in the gas phase. The decomposition of sulfates increases......-temperature rotary drum, focusing on the influence of the fuel particle size and volatile content. The SO2 release increased with a decreasing fuel particle size and with an increasing fuel volatile content. Furthermore, CO, H2, and CH4, which are the main reducing gases released during fuel devolatilization, were...

  8. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  9. Removal of adsorbent particles od copper ions by Jet flotation; Remocion de particulas adsorbentes de iones cobre por flotacion Jet

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-07-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m{sup -}3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  10. Optical technology applied to jet engine; Jet engine seigyo eno hikari gijutsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, T.; Ebina, K.; Endo, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-09-01

    Pyrometer that can be mounted on an aircraft engine is developed for measuring engine turbine blade temperatures. Energy radiated from the blade surface is collected by a lens and then forwarded to a photoelectric conversion photodiode through a heat-resistant optical fiber. A cleaning/purging mechanism is provided in case the lens collects dirt that will attenuate the signal for the indication of a temperature that is lower than the true temperature (in a cold shift phenomenon). The pyrometer is tested on an engine, when a measurement accuracy of {+-}10degC is attained without cold shift taking place. It responds to changes more swiftly than conventional types, which justifies its application to the control of engines. Since it works effectively to connect a bunch of optical fibers, rather than conventional electric wires, to the printed circuit board for guiding optical signals to a printed circuit board in a digital control unit, an optical backplane structure is developed. This structure is designed to be an optical waveguide type which can incorporate into itself some mechanisms of synthesizer, optical waveguide coupler, and light filter, in case of need for handling multiple transmission. The pyrometer is tested on an aircraft engine in operation at high and low temperatures, and demonstrates satisfying light-receiving and light-emitting properties. 4 refs., 10 figs.

  11. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak

    2013-01-01

    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  12. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    The details of jet energy loss, as measured at RHIC with single particles and mu lti-particle correlations, are unresolved, and new experimental measurements are necessary in order to shed light on the mechanism and behavior of energy loss. Utilizing the ATLAS electromagnetic and hadronic calorimetry, full jet reconstru ction in a heavy ion environment will be performed over a wide range of $p_T$ an d rapidity. With fully reconstructed jets, new and more sensitive probes are ava ilable to test models of energy loss. In this talk, we present a series of obser vables such as the jet $R_{AA}$, the transverse momentum, $j_T$, spectrum of fra gments, the fragmentation function $D(z)$, jet shapes, and di-jet correlations, that aresensitive to perturbative and non-perturbative energy loss. We also disc uss the current level of sensitivity to expected modifications using several dif ferent jet algorithms, the cone, $k_T$, and anti-$k_T$ algorithms.

  13. Jet Formation Mechanisms in the presence of Topography

    Science.gov (United States)

    Boland, Emma; Haynes, Peter; Shuckburgh, Emily

    2013-04-01

    Despite over 35 years of discussion, there still remain a range of theories describing the formation of jets on a beta plane. One such theory, first proposed by Rhines (1975), is that jets form as a result of an inverse cascade of energy that is halted by the excitation of Rossby waves. We present the results of an investigation in which we attempt to apply this theory to the case of tilted jets forming over a uniform slope in bottom topography in a quasi-geostrophic, two-layer, doubly periodic model. The forms of the Rossby wave frequencies of this system depend on the Rossby deformation radius, and have two limits: a shortwave limit in which the two frequencies are the equivalent layer-wise frequencies, and orientated with the layer-wise PV gradients; and a longwave limit in which the two frequencies are barotropic- and baroclinic-like, and orientated with the barotropic PV gradient. Freely decaying simulations of the system show that the anisotropy of the frequencies successfully predicts the orientation of the jets that form, which are found to be decoupled and follow layer-wise PV gradients in the shortwave limit, and to be coupled and follow the barotropic PV gradient in the longwave limit. Introducing shear and bottom friction does not change the qualitative form of the Rossby wave frequencies, but due to the forcing by baroclinic instability occurring close to the deformation radius, all such quasi-equilibrated simulations are in the longwave limit and jets follow the barotropic PV gradient. However, only some simulations demonstrate the predicted inverse cascade and associated cascade barrier. Other simulations do not have a well developed inverse cascade, and yet still show jet formation. Previous studies have also shown that significant non-local transfers of energy occur in quasi-geostrophic systems with jets, which suggests a richer picture of jet formation. We thus propose that Rossby waves provide a barrier to further energy transfer, and their

  14. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  15. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gra...

  16. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradie

  17. Technique of Oil Jet Tank Cleaning Equipment%以油洗油的清罐设备与技术研究

    Institute of Scientific and Technical Information of China (English)

    薛胜雄; 王永强; 巴胜富; 陈正文; 朱华清

    2011-01-01

    Basd on crude oil storage tank cleaning & recovery technique, the writer' s innovation achievements of oil jet tank cleaning equipment technique was introduced, as followings: the routing of oil jet cleaning sludge; technique characteristic of tank cleaning equipment; design & test of cavitation jet nozzle tips; key technique of 3-D rotary nozzle; making effective use of oil jet force. The test results of cavitation jet, produced through inserting the nozzle core into nozzle tips, shows that the jet effective range of Organ model nozzle tips is increased by 20%. It enhances the cleaning efficiency of tank bottom sludge.%基于原油储罐清洗与回收技术,介绍了清罐设备成套技术和关键点,其中包括:以油洗油的工艺路线、清罐成套设备的技术特点、空化射流喷嘴的设计与试验研究和三维旋转喷枪油射流打击力的有效利用等.通过对喷嘴中置入喷嘴芯形成的空化射流试验证实:将传统管风琴式喷嘴的射流射程提高了20%以上,仅此一点,极大地提高了罐底油泥的破碎效率.

  18. Magnetic Dissipation in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Yosuke Mizuno

    2016-10-01

    Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.

  19. Resonance Production in Jet

    CERN Document Server

    Markert, Christina

    2007-01-01

    Hadronic resonances with short life times and strong coupling to the dense medium may exhibit mass shifts and width broadening as signatures of chiral symmetry restoration at the phase transition between hadronic and partonic matter. Resonances with different lifetimes are also used to extract information about the time evolution and temperature of the expanding hadronic medium. In order to collect information about the early stage (at the phase transition) of a heavy-ion collision, resonances and decay particles which are unaffected by the hadronic medium have to be used. We explore a possible new technique to extract signals from the early stage through the selection of resonances from jets. A first attempt of this analysis, using the reconstructed $\\phi$(1020) from 200 GeV Au+Au collisions in STAR, is presented.

  20. Impinging Jet Dynamics

    CERN Document Server

    Chen, Xiaodong

    2012-01-01

    In this fluid dynamics video, Ray-tracing data visualization technique was used to obtain realistic and detailed flow motions during impinging of two liquid jets. Different patterns of sheet and rim configurations were presented to shed light into the underlying physics, including liquid chain, closed rim, open rim, unstable rim and flapping sheet. In addition, stationary asymmetrical waves were observed and compared with existing theories. The generation of stationary capillary wave in respect to the liquid rim were explained by the classic shallow water wave theory. The atomization process caused by development of the impact waves were observed in detail, including fragmentation of liquid sheet, formation of liquid ligaments, and breakup of ligament into droplet. The locking-on feature of the wavelength of impact wave were also found to be similar to that of perturbed free shear layers.