Neural networks techniques applied to reservoir engineering
Energy Technology Data Exchange (ETDEWEB)
Flores, M. [Gerencia de Proyectos Geotermoelectricos, Morelia (Mexico); Barragan, C. [RockoHill de Mexico, Indiana (Mexico)
1995-12-31
Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
Applying neural networks to optimize instrumentation performance
Energy Technology Data Exchange (ETDEWEB)
Start, S.E.; Peters, G.G.
1995-06-01
Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
The harmonics detection method based on neural network applied ...
African Journals Online (AJOL)
user
Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ... Recently, some methods based on artificial intelligence have been applied In order to improve ..... The effect is the reduction of.
Chaotic neural network applied to two-dimensional motion control.
Yoshida, Hiroyuki; Kurata, Shuhei; Li, Yongtao; Nara, Shigetoshi
2010-03-01
Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.
Neural network method applied to particle image velocimetry
Grant, Ian; Pan, X.
1993-12-01
realised. An important class of neural network is the multi-layer perceptron. The neurons are distributed on surfaces and linked by weighted interconnections. In the present paper we demonstrate how this type of net can developed into a competitive, adaptive filter which will identify PIV image pairs in a number of commonly occurring flow types. Previous work by the authors in particle tracking analysis (1, 2) has shown the efficiency of statistical windowing techniques in flows without systematic (in time or space) variations. The effectiveness of the present neural net is illustrated by applying it to digital simulations ofturbulent and rotating flows. Work reported by Cenedese et al (3) has taken a different approach in examining the potential for neural net methods applied to PIV.
Fuzzy neural network methodology applied to medical diagnosis
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Tamara Gvozdenović
2007-06-01
Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.
GMDH and neural networks applied in temperature sensors monitoring
Energy Technology Data Exchange (ETDEWEB)
Bueno, Elaine Inacio, E-mail: ebueno@cefetsp.b [Instituto Federal de Educacao, Ciencia e Tecnologia, Braganca Paulista, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2009-07-01
In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)
Applying Neural Network in Evaporative Cooler Performance Prediction
Institute of Scientific and Technical Information of China (English)
QIANG Tian-wei; SHEN Heng-gen; HUANG Xiang; XUAN Yong-mei
2007-01-01
The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.
Artificial neural networks applied to forecasting time series.
Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar
2011-04-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.
APPLIED CRYPTOGRAPHY IN PASSWORD ENCRYPTION USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Venkata Karthik Gullapalli
2015-09-01
Full Text Available Today the world depends on computers and information systems for processing information in various fields. These systems must be developed in such a way that they are less vulnerable to attacks and more reliable and secured. These systems are more vulnerable to technical issues and many cases of data trawling have been reported as a result of password breaches. Encryption and decryption plays a major role in the modern era as the rate of data flow increased tremendously. Social networking sites such as Facebook and Google stores the most important and private data of people electronically in the servers. Artificial intelligence took over many functions of computer systems in different fields including data security. Neural networks process information with care and certainty like human mind does. This paper proposes a methodology to implement encryption and decryption using the feed forward neural networks and to improve the security of information systems.
Convolutional Neural Networks Applied to House Numbers Digit Classification
Sermanet, Pierre; LeCun, Yann
2012-01-01
We classify digits of real-world house numbers using convolutional neural networks (ConvNets). ConvNets are hierarchical feature learning neural networks whose structure is biologically inspired. Unlike many popular vision approaches that are hand-designed, ConvNets can automatically learn a unique set of features optimized for a given task. We augmented the traditional ConvNet architecture by learning multi-stage features and by using Lp pooling and establish a new state-of-the-art of 94.85% accuracy on the SVHN dataset (45.2% error improvement). Furthermore, we analyze the benefits of different pooling methods and multi-stage features in ConvNets. The source code and a tutorial are available at eblearn.sf.net.
Wavelet neural networks applied to pulping of oil palm fronds.
Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran
2011-12-01
In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neural networks (NN applied to the commercial properties valuation
Directory of Open Access Journals (Sweden)
J. M. Núñez Tabales
2017-03-01
Full Text Available Several agents, such as buyers and sellers, or local or tax authorities need to estimate the value of properties. There are different approaches to obtain the market price of a dwelling. Many papers have been produced in the academic literature for such purposes, but, these are, almost always, oriented to estimate hedonic prices of residential properties, such as houses or apartments. Here these methodologies are used in the field of estimate market price of commercial premises, using AI techniques. A case study is developed in Cordova —city in the South of Spain—. Neural Networks are an attractive alternative to the traditional hedonic modelling approaches, as they are better adapted to non-linearities of causal relationships and they also produce smaller valuation errors. It is also possible, from the NN model, to obtain implicit prices associated to the main attributes that can explain the variability of the market price of commercial properties.
Artificial metaplasticity neural network applied to credit scoring.
Marcano-Cedeño, Alexis; Marin-de-la-Barcena, A; Jimenez-Trillo, J; Piñuela, J A; Andina, D
2011-08-01
The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring.
Neural network applied to elemental archaeological Marajoara ceramic compositions
Energy Technology Data Exchange (ETDEWEB)
Toyota, Rosimeiri G.; Munita, Casimiro S., E-mail: rosimeiritoy@yahoo.com.b, E-mail: camunita@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Boscarioli, Clodis, E-mail: boscarioli@gmail.co [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas. Colegiado de Informatica; Hernandez, Emilio D.M., E-mail: boscarioli@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Neves, Eduardo G.; Demartini, Celia C., E-mail: eduardo@pq.cnpq.b [Museu de Arqueologia e Etnologia (MAE/USP), Sao Paulo, SP (Brazil)
2009-07-01
In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)
Review of Artificial Neural Networks (ANN) applied to corrosion monitoring
Mabbutt, S.; Picton, P.; Shaw, P.; Black, S.
2012-05-01
The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.
Mota-Hernandez, Cinthya; Alvarado-Corona, Rafael
2014-01-01
Tectonic earthquakes of high magnitude can cause considerable losses in terms of human lives, economic and infrastructure, among others. According to an evaluation published by the U.S. Geological Survey, 30 is the number of earthquakes which have greatly impacted Mexico from the end of the XIX century to this one. Based upon data from the National Seismological Service, on the period between January 1, 2006 and May 1, 2013 there have occurred 5,826 earthquakes which magnitude has been greater than 4.0 degrees on the Richter magnitude scale (25.54% of the total of earthquakes registered on the national territory), being the Pacific Plate and the Cocos Plate the most important ones. This document describes the development of an Artificial Neural Network (ANN) based on the radial topology which seeks to generate a prediction with an error margin lower than 20% which can inform about the probability of a future earthquake one of the main questions is: can artificial neural networks be applied in seismic forecast...
Applying Artificial Neural Network to Predict Semiconductor Machine Outliers
Directory of Open Access Journals (Sweden)
Keng-Chieh Yang
2013-01-01
Full Text Available Advanced semiconductor processes are produced by very sophisticated and complex machines. The demand of higher precision for the monitoring system is becoming more vital when the devices are shrunk into smaller sizes. The high quality and high solution checking mechanism must rely on the advanced information systems, such as fault detection and classification (FDC. FDC can timely detect the deviations of the machine parameters when the parameters deviate from the original value and exceed the range of the specification. This study adopts backpropagation neural network model and gray relational analysis as tools to analyze the data. This study uses FDC data to detect the semiconductor machine outliers. Data collected for network training are in three different intervals: 6-month period, 3-month period, and one-month period. The results demonstrate that 3-month period has the best result. However, 6-month period has the worst result. The findings indicate that machine deteriorates quickly after continuous use for 6 months. The equipment engineers and managers can take care of this phenomenon and make the production yield better.
A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A.J.G. da Cruz
1997-12-01
Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data
Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
Energy Technology Data Exchange (ETDEWEB)
Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Fernandez, R. Castillo; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anad?n, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Sanchez, L. Escudero; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C. -M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Caicedo, D. A. Martinez; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; S?ldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. -T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-03-01
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber
Acciarri, R; An, R; Asaadi, J; Auger, M; Bagby, L; Baller, B; Barr, G; Bass, M; Bay, F; Bishai, M; Blake, A; Bolton, T; Bugel, L; Camilleri, L; Caratelli, D; Carls, B; Fernandez, R Castillo; Cavanna, F; Chen, H; Church, E; Cianci, D; Collin, G H; Conrad, J M; Convery, M; Crespo-Anadón, J I; Del Tutto, M; Devitt, D; Dytman, S; Eberly, B; Ereditato, A; Sanchez, L Escudero; Esquivel, J; Fleming, B T; Foreman, W; Furmanski, A P; Garvey, G T; Genty, V; Goeldi, D; Gollapinni, S; Graf, N; Gramellini, E; Greenlee, H; Grosso, R; Guenette, R; Hackenburg, A; Hamilton, P; Hen, O; Hewes, J; Hill, C; Ho, J; Horton-Smith, G; James, C; de Vries, J Jan; Jen, C -M; Jiang, L; Johnson, R A; Jones, B J P; Joshi, J; Jostlein, H; Kaleko, D; Karagiorgi, G; Ketchum, W; Kirby, B; Kirby, M; Kobilarcik, T; Kreslo, I; Laube, A; Li, Y; Lister, A; Littlejohn, B R; Lockwitz, S; Lorca, D; Louis, W C; Luethi, M; Lundberg, B; Luo, X; Marchionni, A; Mariani, C; Marshall, J; Caicedo, D A Martinez; Meddage, V; Miceli, T; Mills, G B; Moon, J; Mooney, M; Moore, C D; Mousseau, J; Murrells, R; Naples, D; Nienaber, P; Nowak, J; Palamara, O; Paolone, V; Papavassiliou, V; Pate, S F; Pavlovic, Z; Porzio, D; Pulliam, G; Qian, X; Raaf, J L; Rafique, A; Rochester, L; von Rohr, C Rudolf; Russell, B; Schmitz, D W; Schukraft, A; Seligman, W; Shaevitz, M H; Sinclair, J; Snider, E L; Soderberg, M; Söldner-Rembold, S; Soleti, S R; Spentzouris, P; Spitz, J; John, J St; Strauss, T; Szelc, A M; Tagg, N; Terao, K; Thomson, M; Toups, M; Tsai, Y -T; Tufanli, S; Usher, T; Van de Water, R G; Viren, B; Weber, M; Weston, J; Wickremasinghe, D A; Wolbers, S; Wongjirad, T; Woodruff, K; Yang, T; Zeller, G P; Zennamo, J; Zhang, C
2016-01-01
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-03-01
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
Energy Technology Data Exchange (ETDEWEB)
Jammes, B.; Marpinard, J.C.
1995-12-31
Neural networks are scarcely applied to power electronics. This attempt includes two different topics: optimal control and computerized simulation. The learning has been performed through output error feedback. For implementation, a buck converter has been used as a voltage pulse generator. (D.L.) 7 refs.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Ant colony optimization and neural networks applied to nuclear power plant monitoring
Energy Technology Data Exchange (ETDEWEB)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE
Energy Technology Data Exchange (ETDEWEB)
Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl
2006-08-15
An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.
Directory of Open Access Journals (Sweden)
Hanene Rouabeh
2016-02-01
Full Text Available This Paper presents a new hybrid technique for digit recognition applied to the speed limit sign recognition task. The complete recognition system consists in the detection and recognition of the speed signs in RGB images. A pretreatment is applied to extract the pictogram from a detected circular road sign, and then the task discussed in this work is employed to recognize digit candidates. To realize a compromise between performances, reduced execution time and optimized memory resources, the developed method is based on a conjoint use of a Neural Network and a Decision Tree. A simple Network is employed firstly to classify the extracted candidates into three classes and secondly a small Decision Tree is charged to determine the exact information. This combination is used to reduce the size of the Network as well as the memory resources utilization. The evaluation of the technique and the comparison with existent methods show the effectiveness.
Applying Hopfield neural network to QoS routing in communication network
Institute of Scientific and Technical Information of China (English)
WANG Li; SHEN Jin-yuan; CHANG Sheng-jiang; ZHANG Yan-xin
2005-01-01
The main goal of routing solutions is to satisfy the requirements of the Quality of Service (QoS) for every admitted connection as well as to achieve a global efficiency in resource utilization.In this paper proposes a solution based on Hopfield neural network (HNN) to deal with one of representative routing problems in uni-cast routing,i.e.the multi-constrained(MC) routing problem.Computer simulation shows that we can obtain the optimal path very rapidly with our new Lyapunov energy functions.
Applying long short-term memory recurrent neural networks to intrusion detection
Directory of Open Access Journals (Sweden)
Ralf C. Staudemeyer
2015-07-01
Full Text Available We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge. To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We found networks with four memory blocks containing two cells each offer a good compromise between computational cost and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to 1,000 epochs showed good results. We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes. Our results show that the LSTM classifier provides superior performance in comparison to results previously published results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.
APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-04-01
Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.
Applying neural networks to the solution of forward and inverse heat conduction problems
Energy Technology Data Exchange (ETDEWEB)
Deng, S.; Hwang, Y. [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Dashi Jen, Taoyuan 33509, Taiwan (Taiwan)
2006-12-15
This paper employs the continuous-time analogue Hopfield neural network to compute the temperature distribution in forward heat conduction problems and solves inverse heat conduction problems by using a back propagation neural (BPN) network to identify the unknown boundary conditions. The weak generalization capacity of BPN networks is improved by employing the Bayesian regularization algorithm. The feasibility of the proposed method is examined in a series of numerical simulations. The results show that the proposed neural network analysis method successfully solves forward heat conduction problems and is capable of predicting the unknown parameters in inverse problems with an acceptable error. (author)
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Applying the Artificial Neural Network to Predict the Soil Responses in the DEM Simulation
Li, Z.; Chow, J. K.; Wang, Y. H.
2017-06-01
This paper aims to bridge the soil properties and the soil response in the discrete element method (DEM) simulation using the artificial neural network (ANN). The network was designed to output the stress-strain-volumetric response from inputting the soil properties. 31 biaxial shearing tests with varying soil parameters were generated using the DEM simulations. Based on these 31 training samples, a three-layer neural network was established. 2 extra samples were generated to examine the validity of the network, and the predicted curves using the ANN were well matched with those from the DEM simulations. Overall, the ANN was found promising in effectively modelling the soil behaviour.
Energy Technology Data Exchange (ETDEWEB)
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)
2006-07-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Directory of Open Access Journals (Sweden)
Shokoufe Tayyebi
2013-01-01
Full Text Available Biosurfactants are surface active compounds produced by various microorganisms. Production of biosurfactants via fermentation of immiscible wastes has the dual benefit of creating economic opportunities for manufacturers, while improving environmental health. A predictor system, recommended in such processes, must be scaled-up. Hence, four neural networks were developed for the dynamic modeling of the biosurfactant production kinetics, in presence of soybean oil or refinery wastes including acid oil, deodorizer distillate and soap stock. Each proposed feed forward neural network consists of three layers which are not fully connected. The input and output data for the training and validation of the neural network models were gathered from batch fermentation experiments. The proposed neural network models were evaluated by three statistical criteria (R2, RMSE and SE. The typical regression analysis showed high correlation coefficients greater than 0.971, demonstrating that the neural network is an excellent estimator for prediction of biosurfactant production kinetic data in a two phase liquid-liquid batch fermentation system. In addition, sensitivity analysis indicates that residual oil has the significant effect (i.e. 49% on the biosurfactant in the process.
Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.
1995-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Pabisek, Ewa; Waszczyszyn, Zenon
2015-12-01
A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.
Garcia-Allende, Pilar Beatriz; Conde, Olga M.; Madruga, Francisco J.; Cubillas, Ana M.; Lopez-Higuera, Jose M.
2008-03-01
A non-intrusive infrared sensor for the detection of spurious elements in an industrial raw material chain has been developed. The system is an extension to the whole near infrared range of the spectrum of a previously designed system based on the Vis-NIR range (400 - 1000 nm). It incorporates a hyperspectral imaging spectrograph able to register simultaneously the NIR reflected spectrum of the material under study along all the points of an image line. The working material has been different tobacco leaf blends mixed with typical spurious elements of this field such as plastics, cardboards, etc. Spurious elements are discriminated automatically by an artificial neural network able to perform the classification with a high degree of accuracy. Due to the high amount of information involved in the process, Principal Component Analysis is first applied to perform data redundancy removal. By means of the extension to the whole NIR range of the spectrum, from 1000 to 2400 nm, the characterization of the material under test is highly improved. The developed technique could be applied to the classification and discrimination of other materials, and, as a consequence of its non-contact operation it is particularly suitable for food quality control.
Energy Technology Data Exchange (ETDEWEB)
Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)
A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems
Directory of Open Access Journals (Sweden)
Agustín Flores
2014-01-01
Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.
A modular neural network scheme applied to fault diagnosis in electric power systems.
Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio
2014-01-01
This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.
RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels
Institute of Scientific and Technical Information of China (English)
YOU Wei; LIU Ya-xiu; BAI Bing-zhe; FANG Hong-sheng
2008-01-01
RBF model, a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels. The errors of the ANN model are. MSE 0. 052 1, MSRE 17. 85%, and VOF 1. 932 9. The results obtained are satisfactory. The method is a powerful aid for designing new steels.
Directory of Open Access Journals (Sweden)
Satish Kumar
2012-09-01
Full Text Available In this study, a method of artificial neural network applied for the solution of inverse kinematics of 2-link serial chain manipulator. The method is multilayer perceptrons neural network has applied. This unsupervised method learns the functional relationship between input (Cartesian space and output (joint space based on a localized adaptation of the mapping, by using the manipulator itself under joint control and adapting the solution based on a comparison between the resulting locations of the manipulator's end effectors in Cartesian space with the desired location. Even when a manipulator is not available; the approach is still valid if the forward kinematic equations are used as a model of the manipulator. The forward kinematic equations always have a unique solution, and the resulting Neural net can be used as a starting point for further refinement when the manipulator does become available. Artificial neural network especially MLP are used to learn the forward and the inverse kinematic equations of two degrees freedom robot arm. A set of some data sets were first generated as per the formula equation for this the input parameter X and Y coordinates in inches. Using these data sets was basis for the training and evaluation or testing the MLP model. Out of the sets data points, maximum were used as training data and some were used for testing for MLP. Backpropagation algorithm was used for training the network and for updating the desired weights. In this work epoch based training method was applied.
Fuzzy Optimization of an Elevator Mechanism Applying the Genetic Algorithm and Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization.The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.
Directory of Open Access Journals (Sweden)
Vasconcelos Ana Tereza R
2008-06-01
Full Text Available Abstract Background Little is known about bacterial transcriptional regulatory networks (TRNs. In Escherichia coli, which is the organism with the largest wet-lab validated TRN, its set of interactions involves only ~50% of the repertoire of transcription factors currently known, and ~25% of its genes. Of those, only a small proportion describes the regulation of processes that are clinically relevant, such as drug resistance mechanisms. Results We designed feed-forward (FF and bi-fan (BF motif predictors for E. coli using multi-layer perceptron artificial neural networks (ANNs. The motif predictors were trained using a large dataset of gene expression data; the collection of motifs was extracted from the E. coli TRN. Each network motif was mapped to a vector of correlations which were computed using the gene expression profile of the elements in the motif. Thus, by combining network structural information with transcriptome data, FF and BF predictors were able to classify with a high precision of 83% and 96%, respectively, and with a high recall of 86% and 97%, respectively. These results were found when motifs were represented using different types of correlations together, i.e., Pearson, Spearman, Kendall, and partial correlation. We then applied the best predictors to hypothesize new regulations for 16 operons involved with multidrug resistance (MDR efflux pumps, which are considered as a major bacterial mechanism to fight antimicrobial agents. As a result, the motif predictors assigned new transcription factors for these MDR proteins, turning them into high-quality candidates to be experimentally tested. Conclusion The motif predictors presented herein can be used to identify novel regulatory interactions by using microarray data. The presentation of an example motif to predictors will make them categorize whether or not the example motif is a BF, or whether or not it is an FF. This approach is useful to find new "pieces" of the TRN, when
Willingness to purchase Genetically Modified food: an analysis applying artificial Neural Networks
Salazar-Ordóñez, M.; Rodríguez-Entrena, M.; Becerra-Alonso, D.
2014-01-01
Findings about consumer decision-making process regarding GM food purchase remain mixed and are inconclusive. This paper offers a model which classifies willingness to purchase GM food, using data from 399 surveys in Southern Spain. Willingness to purchase has been measured using three dichotomous questions and classification, based on attitudinal, cognitive and socio-demographic factors, has been made by an artificial neural network model. The results show 74% accuracy to forecast the willin...
Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels
Petkov, T.; Mustafa, Z.; Sotirov, S.; Milina, R.; Moskovkina, M.
2016-03-01
A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC) and Gas Chromatography - mass spectrometry (GC-MS) were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters) profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, "unknown" were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3) and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety "unknown" samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.
Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels
Directory of Open Access Journals (Sweden)
Petkov T.
2016-03-01
Full Text Available A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC and Gas Chromatography - mass spectrometry (GC-MS were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, “unknown” were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3 and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety “unknown” samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.
Directory of Open Access Journals (Sweden)
Koivistoinen Teemu
2007-01-01
Full Text Available As we know, singular value decomposition (SVD is designed for computing singular values (SVs of a matrix. Then, if it is used for finding SVs of an -by-1 or 1-by- array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD.'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal. This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs for ballistocardiogram (BCG data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo
2006-12-01
As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
Directory of Open Access Journals (Sweden)
Alpo Värri
2007-01-01
Full Text Available As we know, singular value decomposition (SVD is designed for computing singular values (SVs of a matrix. Then, if it is used for finding SVs of an m-by-1 or 1-by-m array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ‘‘time-frequency moments singular value decomposition (TFM-SVD.’’ In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal. This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs for ballistocardiogram (BCG data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using Resilient Back Propagation in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. From 30 patients, 57 distinct EEG recordings have been collected prior to during anaesthesia of different levels. The applied artificial neural network is composed of three layers, namely the input layer, the middle layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. Prediction has been made by means of ANN. Training and testing the ANN have been used previous anaesthesia amount, total power/normal power and total power/previous. The system has been able to correctly purposeful responses in average accuracy of 95% of the cases. This method is also computationally fast and acceptable real-time clinical performance has been obtained.
Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements
Energy Technology Data Exchange (ETDEWEB)
Campi, G.; Pezzotti, G. [Institute of Crystallography, CNR, via Salaria Km 29.300, I-00015, Monterotondo Roma (Italy); Fratini, M. [Centro Fermi -Museo Storico della Fisica e Centro Studi e Ricerche ' Enrico Fermi' , Roma (Italy); Ricci, A. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Burghammer, M. [European Synchrotron Radiation Facility, B. P. 220, F-38043 Grenoble Cedex (France); Cancedda, R.; Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro, and Dipartimento di Medicina Sperimentale dell' Università di Genova and AUO San Martino Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova (Italy); Bukreeva, I.; Cedola, A. [Institute for Chemical and Physical Process, CNR, c/o Physics Dep. at Sapienza University, P-le A. Moro 5, 00185, Roma (Italy)
2013-12-16
We monitored bone regeneration in a tissue engineering approach. To visualize and understand the structural evolution, the samples have been measured by X-ray micro-diffraction. We find that bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific diffraction signal. The large amount of data have been classified according to their structure and associated to the process they came from combining Neural Networks algorithms with least square pattern analysis. In this way, we obtain spatial maps of the different components of the tissues visualizing the complex kinetic at the base of the bone regeneration.
Granja Martins, F. M.; Neto Paixão, H. M.; Jordán, A.; Zavala, L. M.; Bellinfante, N.
2012-04-01
The study of the soil erosion risk is the starting point for development and sustainable land management. The intensity of soil erosion risk is conditioned by soil erodibility, slope, land use and vegetation cover. The objective of this work is mapping the erosive status of the Ria Formosa catchment using "Fuzzy ARTMAP" neural network. The study area is the catchment of Ria Formosa, which includes a shallow coastal lagoon with an area of about 16000 ha located in Algarve (southern Portugal). It is protected by EU and national laws, and is classified as a wetland of international importance under the RAMSAR convention. Previously to the construction of the artificial neuronal network model, it was necessary to establish the training areas (proposed by the Priority Action Plan/Regional Activity Centre (PAP/RAC, 1997). The differences between both methods were about 1% of the total area. Both maps were validated with field observations and analysis of aerial photographs.
Higher-Order Neural Networks Applied to 2D and 3D Object Recognition
Spirkovska, Lilly; Reid, Max B.
1994-01-01
A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.
Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee
2016-02-01
The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.
Constructive neural network learning
Lin, Shaobo; Zeng, Jinshan; Zhang, Xiaoqin
2016-01-01
In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also ...
Applying Bayesian neural networks to identify pion, kaon and proton in BES Ⅱ
Institute of Scientific and Technical Information of China (English)
XU Ye; HOU Jian; ZHU Kai-En
2008-01-01
The Monte-Carlo samples of pion, kaon and proton generated from 0.3 GeV/c to 1.2 GeV/c by the 'tester' generator from SIMBES which are used to simulate the detector of BES Ⅱ are identified with the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously better at high momentum region using BNN than the methods of X2 analysis of dE/dX and TOF information.The kaon identification and misidentification efficiencies are obviously better from 0.3 GeV/c to 1.2 GeV/c using BNN than the methods of X2 analysis. The proton identification and misidentification efficiencies using BNN are basically consistent with the ones of X2 analysis. The anti-proton identification and misidentification efficiencies are better below 0.6 GeV/c using BNN than the methods of X2 analysis.
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.
Generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2013-03-01
In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.
Gupta, S; Gupta, Sanjay
2002-01-01
This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...
Connectivity strategies for higher-order neural networks applied to pattern recognition
Spirkovska, Lilly; Reid, Max B.
1990-01-01
Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Artificial Neural Network applied as a methodology of mosquito species identification.
Lorenz, Camila; Ferraudo, Antonio Sergio; Suesdek, Lincoln
2015-12-01
There are about 200 species of mosquitoes (Culicidae) known to be vectors of pathogens that cause diseases in humans. Correct identification of mosquito species is an essential step in the development of effective control strategies for these diseases; recognizing the vectors of pathogens is integral to understanding transmission. Unfortunately, taxonomic identification of mosquitoes is a laborious task, which requires trained experts, and it is jeopardized by the high variability of morphological and molecular characters found within the Culicidae family. In this context, the development of an automatized species identification method would be a valuable and more accessible resource to non-taxonomist and health professionals. In this work, an artificial neural network (ANN) technique was proposed for the identification and classification of 17 species of the genera Anopheles, Aedes, and Culex, based on wing shape characters. We tested the hypothesis that classification using ANN is better than traditional classification by discriminant analysis (DA). Thirty-two wing shape principal components were used as input to a Multilayer Perceptron Classification ANN. The obtained ANN correctly identified species with accuracy rates ranging from 85.70% to 100%, and classified species more efficiently than did the traditional method of multivariate discriminant analysis. The results highlight the power of ANNs to diagnose mosquito species and to partly automatize taxonomic identification. These findings also support the hypothesis that wing venation patterns are species-specific, and thus should be included in taxonomic keys. Copyright © 2015 Elsevier B.V. All rights reserved.
Bayesian model selection applied to artificial neural networks used for water resources modeling
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Chaotic diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.
Chung-Ming Kuan
2006-01-01
Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.
Directory of Open Access Journals (Sweden)
Braz Calderano Filho
2014-12-01
Full Text Available Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+ sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13. Excluding the variable profile curvature (set 12, overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Logic Mining Using Neural Networks
Sathasivam, Saratha
2008-01-01
Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Neural networks have been successfully applied in wide range of supervised and unsupervised learning applications. Neural network methods are not commonly used for data mining tasks, because they often produce incomprehensible models, and require long training times. One way in which the collective properties of a neural network may be used to implement a computational task is by way of the concept of energy minimization. The Hopfield network is well-known example of such an approach. The Hopfield network is useful as content addressable memory or an analog computer for s...
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171
Directory of Open Access Journals (Sweden)
Ana-Isabel de Castro
2012-01-01
Full Text Available In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC analysis and two neural networks, specifically, multilayer perceptron (MLP and radial basis function (RBF. Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
Energy Technology Data Exchange (ETDEWEB)
Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real (Spain); Piuleac, Ciprian-George; Curteanu, Silvia [Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, ' ' Gh. Asachi' ' Technical University Iasi Bd. D. Mangeron, No. 71A, 700050 IASI (Romania)
2010-08-15
This article shows the application of a very useful mathematical tool, artificial neural networks, to predict the fuel cells results (the value of the tortuosity and the cell voltage, at a given current density, and therefore, the power) on the basis of several properties that define a Gas Diffusion Layer: Teflon content, air permeability, porosity, mean pore size, hydrophobia level. Four neural networks types (multilayer perceptron, generalized feedforward network, modular neural network, and Jordan-Elman neural network) have been applied, with a good fitting between the predicted and the experimental values in the polarization curves. A simple feedforward neural network with one hidden layer proved to be an accurate model with good generalization capability (error about 1% in the validation phase). A procedure based on inverse neural network modelling was able to determine, with small errors, the initial conditions leading to imposed values for characteristics of the fuel cell. In addition, the use of this tool has been proved to be very attractive in order to predict the cell performance, and more interestingly, the influence of the properties of the gas diffusion layer on the cell performance, allowing possible enhancements of this material by changing some of its properties. (author)
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models....... - Control concepts including parameter estimation - Control concepts including inverse modelling - Control concepts including optimal control For each of the three groups, different control concepts and specific training methods are detailed described.Further, all control concepts are tested on the same......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...
Directory of Open Access Journals (Sweden)
Yu-Tzu Chang
2012-01-01
Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Comparison of canny and V1 neural network based edge detectors applied to road extraction
CSIR Research Space (South Africa)
Hauptfleisch, AC
2006-11-01
Full Text Available The Anti-parallel edge Centerline Extractor (ACE) algorithm is designed to extract road networks from high resolution satellite images. The primary mechanism used by the algorithm to detect the presence of roads is a filter that detects parallel...
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Neural networks and graph theory
Institute of Scientific and Technical Information of China (English)
许进; 保铮
2002-01-01
The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2016-07-14
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Neural networks in seismic discrimination
Energy Technology Data Exchange (ETDEWEB)
Dowla, F.U.
1995-01-01
Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.
Rule Extraction using Artificial Neural Networks
2010-01-01
Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...
Institute of Scientific and Technical Information of China (English)
白雪武; 梁东伟; 马友利
2012-01-01
As a rapid development of nonlinear science in dealing with some background unclear and extremely complex information, neural network will show its unique superiority. This article applies Elman neural network to deformation monitoring of landslide to set up the forecasting model and Matlab neural network toolbox of MATLAB program design is applied to concrete examples. Through the model of prediction accuracy, the Elman neural network model to landslide monitoring and forecasting of feasibility is verified.%神经网络作为一门快速发展起来的非线性科学,在处理一些背景不清楚而且极其复杂信息的时候,就会显示出其独特的优越性。本文通过Elman神经网络应用到滑坡变形监测中,建立预报模型,并以Matlab神经网络工具箱进行程序设计,最后运用到具体实例中,通过模型的预报精度,来验证Elman神经网络模型在滑坡监测预报中的可行性。
A Fuzzy Quantum Neural Network and Its Application in Pattern Recognition
Institute of Scientific and Technical Information of China (English)
MIAOFuyou; XIONGYan; CHENHuanhuan; WANGXingfu
2005-01-01
This paper proposes a fuzzy quantum neural network model combining quantum neural network and fuzzy logic, which applies the fuzzy logic to design the collapse rules of the quantum neural network, and solves the character recognition problem. Theoretical analysis and experimental results show that fuzzy quantum neural network improves recognizing veracity than the traditional neural network and quantum neural network.
Fuzzy Multiresolution Neural Networks
Ying, Li; Qigang, Shang; Na, Lei
A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.
Rule Extraction:Using Neural Networks or for Neural Networks?
Institute of Scientific and Technical Information of China (English)
Zhi-Hua Zhou
2004-01-01
In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.
Neural Network Algorithm for Particle Loading
Energy Technology Data Exchange (ETDEWEB)
J. L. V. Lewandowski
2003-04-25
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Compressing Convolutional Neural Networks
Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin
2015-01-01
Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Critical branching neural networks.
Kello, Christopher T
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.
Optimizing neural network forecast by immune algorithm
Institute of Scientific and Technical Information of China (English)
YANG Shu-xia; LI Xiang; LI Ning; YANG Shang-dong
2006-01-01
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.
Generalized Adaptive Artificial Neural Networks
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
[Application of artificial neural networks in infectious diseases].
Xu, Jun-fang; Zhou, Xiao-nong
2011-02-28
With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.
Interval probabilistic neural network.
Kowalski, Piotr A; Kulczycki, Piotr
2017-01-01
Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.
Ghani, N. Ab; Abrahart, R. J.; Clifford, N. J.
2009-04-01
Neural networks can be trained to model the sediment-discharge relationship: numerous illustrative applications exist. The standard method of reporting involves using a scatterplot of observed versus predicted records, plus a handful of global statistics, to support an assessment of model skill. This traditional approach will nevertheless result in undesirable side effects since it reinforces the 'black box' criticisms and associated demonisation that is sometimes levelled at computational intelligence solutions: no 'line-of-best-fit' is ever supplied. This paper in contrast compares and evaluates six computational methods for modelling the sediment-discharge relationship from a structural and behavioural standpoint in which the exact nature of each model is visualised for the purposes of diagnostic appraisal and scientific enlightenment. The following methods are compared: backpropagation neural network; corrected power function; simple linear regression; piecewise linear regression using an M5 Model Tree; LOWESS; and Robust LOWESS. Modelling is restricted to a consideration of bivariate relationships. The models were developed on daily river discharge and sediment concentration datasets for two rivers in Missouri: Lower Salt River and Little Black River. Each dataset was divided into two parts using different methods and each model was first calibrated on one sub-set and thereafter tested on the other. The datasets were next swapped over and the process repeated. Each model is also evaluated using statistical measures calculated in HydroTest (http://www.hydrotest.org.uk/). The need for more benchmarking exercises of a similar nature is highlighted.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analog electronic neural network circuits
Energy Technology Data Exchange (ETDEWEB)
Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))
1989-07-01
The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.
Learning Processes of Layered Neural Networks
Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.
1995-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
Learning Algorithms of Multilayer Neural Networks
Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.
1996-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward multilayer neural network, with far interlayer synaptic connections, and we obtain a learning rule similar to that of the Boltzmann machine on the same multilayer structure. By applying a mean field approximation to the stochastic feed-forward neural network, the generalized error back-propagation learning rule is derived for a deterministic analog feed-forward multilayer network with the far interlay...
Wavelet Neural Networks for Adaptive Equalization
Institute of Scientific and Technical Information of China (English)
JIANGMinghu; DENGBeixing; GIELENGeorges; ZHANGBo
2003-01-01
A structure based on the Wavelet neural networks (WNNs) is proposed for nonlinear channel equalization in a digital communication system. The construction algorithm of the Minimum error probability (MEP) is presented and applied as a performance criterion to update the parameter matrix of wavelet networks. Our experimental results show that performance of the proposed wavelet networks based on equalizer can significantly improve the neural modeling accuracy, perform quite well in compensating the nonlinear distortion introduced by the channel, and outperform the conventional neural networks in signal to noise ratio and channel non-llnearity.
Rule Extraction using Artificial Neural Networks
Kamruzzaman, S M
2010-01-01
Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...
Directory of Open Access Journals (Sweden)
Kapil Nahar
2012-12-01
Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.
Neural networks for triggering
Energy Technology Data Exchange (ETDEWEB)
Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Kapil Nahar
2012-12-01
Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.
A new formulation for feedforward neural networks.
Razavi, Saman; Tolson, Bryan A
2011-10-01
Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.
VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK
African Journals Online (AJOL)
VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF RUMUOLA DISTRIBUTION NETWORK. ... The artificial neural networks controller engaged to controlling the dynamic voltage ... Article Metrics.
Combining neural networks for protein secondary structure prediction
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1995-01-01
In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designe...... is better than most secondary structure prediction methods based on single sequences even though this model contains much fewer parameters...
A Direct Feedback Control Based on Fuzzy Recurrent Neural Network
Institute of Scientific and Technical Information of China (English)
李明; 马小平
2002-01-01
A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .
Speech Recognition Method Based on Multilayer Chaotic Neural Network
Institute of Scientific and Technical Information of China (English)
REN Xiaolin; HU Guangrui
2001-01-01
In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Remote Sensing Image Segmentation with Probabilistic Neural Networks
Institute of Scientific and Technical Information of China (English)
LIU Gang
2005-01-01
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Threshold control of chaotic neural network.
He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki
2008-01-01
The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.
Directory of Open Access Journals (Sweden)
J. Reyes-Reyes
2000-01-01
Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.
Acute appendicitis diagnosis using artificial neural networks.
Park, Sung Yun; Kim, Sung Min
2015-01-01
Artificial neural networks is one of pattern analyzer method which are rapidly applied on a bio-medical field. The aim of this research was to propose an appendicitis diagnosis system using artificial neural networks (ANNs). Data from 801 patients of the university hospital in Dongguk were used to construct artificial neural networks for diagnosing appendicitis and acute appendicitis. A radial basis function neural network structure (RBF), a multilayer neural network structure (MLNN), and a probabilistic neural network structure (PNN) were used for artificial neural network models. The Alvarado clinical scoring system was used for comparison with the ANNs. The accuracy of the RBF, PNN, MLNN, and Alvarado was 99.80%, 99.41%, 97.84%, and 72.19%, respectively. The area under ROC (receiver operating characteristic) curve of RBF, PNN, MLNN, and Alvarado was 0.998, 0.993, 0.985, and 0.633, respectively. The proposed models using ANNs for diagnosing appendicitis showed good performances, and were significantly better than the Alvarado clinical scoring system (p < 0.001). With cooperation among facilities, the accuracy for diagnosing this serious health condition can be improved.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Equivalence of Conventional and Modified Network of Generalized Neural Elements
Directory of Open Access Journals (Sweden)
E. V. Konovalov
2016-01-01
Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.
Nonlinear System Control Using Neural Networks
Directory of Open Access Journals (Sweden)
Jaroslava Žilková
2006-10-01
Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.
Novis, Shenia; Machado, Felipe; Costa, Victor B; Foguel, Debora; Cruz, Marcia W; de Seixas, José Manoel
2017-09-01
Hereditary (familial) amyloid polyneuropathy (FAP) is a systemic disease that includes a sensorimotor polyneuropathy related to transthyretin (TTR) mutations. So far, a scale designed to classify the severity of this disease has not yet been validated. This work proposes the implementation of an artificial neural network (ANN) in order to develop a severity scale for monitoring the disease progression in FAP patients. In order to achieve this goal, relevant symptoms and laboratory findings were collected from 98 Brazilian patients included in THAOS - the Transthyretin Amyloidosis Outcomes Survey. Ninety-three percent of them bore Val30Met, the most prevalent variant of TTR worldwide; 63 were symptomatic and 35 were asymptomatic. These data were numerically codified for the purpose of constructing a Self-Organizing Map (SOM), which maps data onto a grid of artificial neurons. Mapped data could be clustered by similarity into five groups, based on increasing FAP severity (from Groups 1 to 5). Most symptoms were virtually absent from patients who mapped to Group 1, which also includes the asymptomatic patients. Group 2 encompasses the patients bearing symptoms considered to be initial markers of FAP, such as first signs of walking disabilities and lack of sensitivity to temperature and pain. Interestingly, the patients with cardiac symptoms, which also carry cardiac-associated mutations of the TTR gene (such as Val112Ile and Ala19Asp), were concentrated in Group 3. Symptoms such as urinary and fecal incontinence and diarrhea characterized particularly Groups 4 and 5. Renal impairment was found almost exclusively in Group 5. Model validation was accomplished by considering the symptoms from a sample with 48 additional Brazilian patients. The severity scores proposed here not only identify the current stage of a patient's disease but also offer to the physician an easy-to-read, 2D map that makes it possible to track disease progression.
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural network regulation driven by autonomous neural firings
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Decentralized Neural Backstepping Control Applied to a Robot Manipulator
Ramon Garcia-Hernandez; Ruz-Hernandez, Jose A.; Jose L. Rullan-Lara
2013-01-01
This paper presents a discrete‐time decentralized control scheme for trajectory tracking of a two degrees of freedom (DOF) robot manipulator. A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The weights for each neural network are adapted online by an extended Kalman filter training algorithm. The motion for each joint is controlled independently using only local angu...
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Neural Network Based 3D Surface Reconstruction
Directory of Open Access Journals (Sweden)
Vincy Joseph
2009-11-01
Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...... (HNNs) with much fewer parameters than conventional HMMs and other hybrids can obtain comparable performance, and for the broad class task it is illustrated how the HNN can be applied as a purely transition based system, where acoustic context dependent transition probabilities are estimated by neural...
Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo
2003-01-01
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.
Energy Technology Data Exchange (ETDEWEB)
Gong, Y; Yu, J; Yeung, V; Palmer, J; Yu, Y; Lu, B; Babinsky, L; Burkhart, R; Leiby, B; Siow, V; Lavu, H; Rosato, E; Winter, J; Lewis, N; Sama, A; Mitchell, E; Anne, P; Hurwitz, M; Yeo, C; Bar-Ad, V [Thomas Jefferson University Hospital, Philadelphia, PA (United States); and others
2015-06-15
Purpose: Artificial neural networks (ANN) can be used to discover complex relations within datasets to help with medical decision making. This study aimed to develop an ANN method to predict two-year overall survival of patients with peri-ampullary cancer (PAC) following resection. Methods: Data were collected from 334 patients with PAC following resection treated in our institutional pancreatic tumor registry between 2006 and 2012. The dataset contains 14 variables including age, gender, T-stage, tumor differentiation, positive-lymph-node ratio, positive resection margins, chemotherapy, radiation therapy, and tumor histology.After censoring for two-year survival analysis, 309 patients were left, of which 44 patients (∼15%) were randomly selected to form testing set. The remaining 265 cases were randomly divided into training set (211 cases, ∼80% of 265) and validation set (54 cases, ∼20% of 265) for 20 times to build 20 ANN models. Each ANN has one hidden layer with 5 units. The 20 ANN models were ranked according to their concordance index (c-index) of prediction on validation sets. To further improve prediction, the top 10% of ANN models were selected, and their outputs averaged for prediction on testing set. Results: By random division, 44 cases in testing set and the remaining 265 cases have approximately equal two-year survival rates, 36.4% and 35.5% respectively. The 20 ANN models, which were trained and validated on the 265 cases, yielded mean c-indexes as 0.59 and 0.63 on validation sets and the testing set, respectively. C-index was 0.72 when the two best ANN models (top 10%) were used in prediction on testing set. The c-index of Cox regression analysis was 0.63. Conclusion: ANN improved survival prediction for patients with PAC. More patient data and further analysis of additional factors may be needed for a more robust model, which will help guide physicians in providing optimal post-operative care. This project was supported by PA CURE Grant.
Hopfield neural network based on ant system
Institute of Scientific and Technical Information of China (English)
洪炳镕; 金飞虎; 郭琦
2004-01-01
Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters.This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.
Medical diagnosis using neural network
Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque
2010-01-01
This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...
Artificial Neural Network Analysis System
2007-11-02
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
Directory of Open Access Journals (Sweden)
Nemesio J. Rodríguez-Fernández
2016-11-01
Full Text Available A method to retrieve soil moisture (SM from Advanced Scanning Microwave Radiometer—Earth Observing System Sensor (AMSR-E observations using Soil Moisture and Ocean Salinity (SMOS Level 3 SM as a reference is discussed. The goal is to obtain longer time series of SM with no significant bias and with a similar dynamical range to that of the SMOS SM dataset. This method consists of training a neural network (NN to obtain a global non-linear relationship linking AMSR-E brightness temperatures ( T b to the SMOS L3 SM dataset on the concurrent mission period of 1.5 years. Then, the NN model is used to derive soil moisture from past AMSR-E observations. It is shown that in spite of the different frequencies and sensing depths of AMSR-E and SMOS, it is possible to find such a global relationship. The sensitivity of AMSR-E T b ’s to soil temperature ( T s o i l was also evaluated using European Centre for Medium-Range Weather Forecast Interim/Land re-analysis (ERA-Land and Modern-Era Retrospective analysis for Research and Applications-Land (MERRA-Land model data. The best combination of AMSR-E T b ’s to retrieve T s o i l is H polarization at 23 and 36 GHz plus V polarization at 36 GHz. Regarding SM, several combinations of input data show a similar performance in retrieving SM. One NN that uses C and X bands and T s o i l information was chosen to obtain SM in the 2003–2011 period. The new dataset shows a low bias (<0.02 m3/m3 and low standard deviation of the difference (<0.04 m3/m3 with respect to SMOS L3 SM over most of the globe’s surface. The new dataset was evaluated together with other AMSR-E SM datasets and the Climate Change Initiative (CCI SM dataset against the MERRA-Land and ERA-Land models for the 2003–2011 period. All datasets show a significant bias with respect to models for boreal regions and high correlations over regions other than the tropical and boreal forest. All of the global SM datasets including AMSR-E NN were also
Modular, Hierarchical Learning By Artificial Neural Networks
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents
Sher, Gene I
2011-01-01
Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
The holographic neural network: Performance comparison with other neural networks
Klepko, Robert
1991-10-01
The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.
Neural Network Communications Signal Processing
1994-08-01
Technical Information Report for the Neural Network Communications Signal Processing Program, CDRL A003, 31 March 1993. Software Development Plan for...track changing jamming conditions to provide the decoder with the best log- likelihood ratio metrics at a given time. As part of our development plan we...Artificial Neural Networks (ICANN-91) Volume 2, June 24-28, 1991, pp. 1677-1680. Kohonen, Teuvo, Raivio, Kimmo, Simula, Oli, Venta , 011i, Henriksson
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
VLSI implementation of neural networks.
Wilamowski, B M; Binfet, J; Kaynak, M O
2000-06-01
Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Estimates on compressed neural networks regression.
Zhang, Yongquan; Li, Youmei; Sun, Jianyong; Ji, Jiabing
2015-03-01
When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given.
An Approach to Structural Approximation Analysis by Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
陆金桂; 周济; 王浩; 陈新度; 余俊; 肖世德
1994-01-01
This paper theoretically proves that a three-layer neural network can be applied to implementing exactly the function between the stresses and displacements and the design variables of any elastic structure based on the Kolmogorov’s mapping neural network existence theorem. A new approach to the structural approximation analysis with the global characteristic based on artificial neural networks is presented. The computer simulation experiments made by this paper show that the new approach is effective.
Models of neural networks with fuzzy activation functions
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
Neural network technologies for image classification
Korikov, A. M.; Tungusova, A. V.
2015-11-01
We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.
Temporal difference learning for the game Tic-Tac-Toe 3D: Applying structure to neural networks
Van De Steeg, Michiel; Drugan, Madalina M.; Wiering, Marco
2016-01-01
When reinforcement learning is applied to large state spaces, such as those occurring in playing board games, the use of a good function approximator to learn to approximate the value function is very important. In previous research, multi-layer perceptrons have often been quite successfully used as
Directory of Open Access Journals (Sweden)
Hong-Dar Lin
2005-06-01
Full Text Available Thin Film Transistor Liquid Crystal Display (TFT-LCD has excellent properties such as lower voltage to start and less occupied space if comparing with traditional Cathode-Ray Tube (CRT. But screen flaw points and display color deviation defects on image display exist in TFT-LCD products. This research proposes a new automated visual inspection method to solve the problems. We first use multivariate Hotelling T2 statistic for integrating coordinates of color models to construct a T2 energy diagram for inspecting defects and controlling patterns in TFT-LCD display images. An Ant Colony based approach that integrates computer vision techniques is developed to detect the flaw point defects. Then, Back Propagation Network (BPN model is proposed to inspect small deviation defects of the LCD display colors. Experimental results show the proposed system can provide good effects and practicality.
Neural network models: Insights and prescriptions from practical applications
Energy Technology Data Exchange (ETDEWEB)
Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)
1995-12-31
Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.
Modeling of Magneto-Rheological Damper with Neural Network
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
With the revival of magnetorheological technology research in the 1980's, its application in vehicles is increasingly focused on vibration suppression. Based on the importance of magnetorheological damper modeling, nonparametric modeling with neural network, which is a promising development in semi-active online control of vehicles with MR suspension, has been carried out in this study. A two layer neural network with 7 neurons in a hidden layer and 3 inputs and 1 output was established to simulate the behavior of MR damper at different excitation currents. In the neural network modeling, the damping force is a function of displacement, velocity and the applied current. A MR damper for vehicles is fabricated and tested by MTS; the data acquired are utilized for neural network training and validation. The application and validation show that the predicted forces of the neural network match well with the forces tested with a small variance, which demonstrates the effectiveness and precision of neural network modeling.
Relations Between Wavelet Network and Feedforward Neural Network
Institute of Scientific and Technical Information of China (English)
刘志刚; 何正友; 钱清泉
2002-01-01
A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.
Micheli, A; Sperduti, A; Starita, A; Bianucci, A M
2001-01-01
An application of recursive cascade correlation (CC) neural networks to quantitative structure-activity relationship (QSAR) studies is presented, with emphasis on the study of the internal representations developed by the neural networks. Recursive CC is a neural network model recently proposed for the processing of structured data. It allows the direct handling of chemical compounds as labeled ordered directed graphs, and constitutes a novel approach to QSAR. The adopted representation of molecular structure captures, in a quite general and flexible way, significant topological aspects and chemical functionalities for each specific class of molecules showing a particular chemical reactivity or biological activity. A class of 1,4-benzodiazepin-2-ones is analyzed by the proposed approach. It compares favorably versus the traditional QSAR treatment based on equations. To show the ability of the model in capturing most of the structural features that account for the biological activity, the internal representations developed by the networks are analyzed by principal component analysis. This analysis shows that the networks are able to discover relevant structural features just on the basis of the association between the molecular morphology and the target property (affinity).
Expert System Based on Data Mining and Neural Networks
Institute of Scientific and Technical Information of China (English)
NI Zhi-wei; JIA Rui-yu
2001-01-01
On the basis of data mining and neural network, this paper proposes a general framework of the neural network expert system and discusses the key techniques in this kind of system. We apply these ideas on agricultural expert system to find some unknown useful knowledge and get some satisfactory results.
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the
Porosity Log Prediction Using Artificial Neural Network
Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier
2016-08-01
Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
user
This article presents a novel technique to distinguish between magnetizing inrush ... Protective relaying, Probabilistic neural network, Active power relays, Power ... Forward Neural Network (MFFNN) with back-propagation learning technique.
Neural Network for Sparse Reconstruction
Directory of Open Access Journals (Sweden)
Qingfa Li
2014-01-01
Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.
The Physics of Neural Networks
Gutfreund, Hanoch; Toulouse, Gerard
The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References
Distribution network planning algorithm based on Hopfield neural network
Institute of Scientific and Technical Information of China (English)
GAO Wei-xin; LUO Xian-jue
2005-01-01
This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn't need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Meta-Learning Evolutionary Artificial Neural Networks
Abraham, Ajith
2004-01-01
In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the compara...
Building a Chaotic Proved Neural Network
Bahi, Jacques M; Salomon, Michel
2011-01-01
Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.
System Identification, Prediction, Simulation and Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...... a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...
Move Ordering using Neural Networks
Kocsis, L.; Uiterwijk, J.; Van Den Herik, J.
2001-01-01
© Springer-Verlag Berlin Heidelberg 2001. The efficiency of alpha-beta search algorithms heavily depends on the order in which the moves are examined. This paper focuses on using neural networks to estimate the likelihood of a move being the best in a certain position. The moves considered more like
Neural Network based Consumption Forecasting
DEFF Research Database (Denmark)
Madsen, Per Printz
2016-01-01
This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...
Spin glasses and neural networks
Energy Technology Data Exchange (ETDEWEB)
Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)
1989-07-01
The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).
Artificial neural networks in medicine
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.
1994-07-01
This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.
IDENTIFICATION AND CONTROL OF AN ASYNCHRONOUS MACHINE USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A ZERGAOUI
2000-06-01
Full Text Available In this work, we present the application of artificial neural networks to the identification and control of the asynchronous motor, which is a complex nonlinear system with variable internal dynamics. We show that neural networks can be applied to control the stator currents of the induction motor. The results of the different simulations are presented to evaluate the performance of the neural controller proposed.
Competition Based Neural Networks for Assignment Problems
Institute of Scientific and Technical Information of China (English)
李涛; LuyuanFang
1991-01-01
Competition based neural networks have been used to solve the generalized assignment problem and the quadratic assignment problem.Both problems are very difficult and are ε approximation complete.The neural network approach has yielded highly competitive performance and good performance for the quadratic assignment problem.These neural networks are guaranteed to produce feasible solutions.
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Analysis of Neural Networks through Base Functions
Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.
2002-01-01
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
A fuzzy neural network evolved by particle swarm optimization
Institute of Scientific and Technical Information of China (English)
PENG Zhi-ping; PENG Hong
2007-01-01
A cooperative system of a fuzzy logic model and a fuzzy neural network (CSFLMFNN) is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model. Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization (PSO) into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network. The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching. PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment, in which the cooperative system is proved to be effective. It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.
Neural network approach for differential diagnosis of interstitial lung diseases
Asada, Naoki; Doi, Kunio; MacMahon, Heber; Montner, Steven M.; Giger, Maryellen L.; Abe, Chihiro; Wu, Chris Y.
1990-07-01
A neural network approach was applied for the differential diagnosis of interstitial lung diseases. The neural network was designed for distinguishing between 9 types of interstitial lung diseases based on 20 items of clinical and radiographic information. A database for training and testing the neural network was created with 10 hypothetical cases for each of the 9 diseases. The performance of the neural network was evaluated by ROC analysis. The optimal parameters for the current neural network were determined by selecting those yielding the highest ROC curves. In this case the neural network consisted of one hidden layer including 6 units and was trained with 200 learning iterations. When the decision performances of the neural network chest radiologists and senior radiology residents were compared the neural network indicated high performance comparable to that of chest radiologists and superior to that of senior radiology residents. Our preliminary results suggested strongly that the neural network approach had potential utility in the computer-aided differential diagnosis of interstitial lung diseases. 1_
One pass learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2016-01-01
Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright
The EEG Signal Prediction by Using Neural Network
Directory of Open Access Journals (Sweden)
Jitka Mohylova
2008-01-01
Full Text Available The neural network is computational model based on the features abstraction of biological neural systems. The neural networks have many ways of usage in technical field. They have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents or autonomous robots. In this paper is described usage of neural networks for ECG signal prediction. The ECG signal prediction can be used for automated detection of irregular heartbeat – extrasystole. The automated detection system of unexpected abnormalities is also described in this paper
Neural network for image segmentation
Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.
2000-10-01
Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Face Recognition using Eigenfaces and Neural Networks
Directory of Open Access Journals (Sweden)
Mohamed Rizon
2006-01-01
Full Text Available In this study, we develop a computational model to identify the face of an unknown persons by applying eigenfaces. The eigenfaces has been applied to extract the basic face of the human face images. The eigenfaces is then projecting onto human faces to identify unique features vectors. This significant features vector can be used to identify an unknown face by using the backpropagation neural network that utilized euclidean distance for classification and recognition. The ORL database for this investigation consists of 40 people with various 400 face images had been used for the learning. The eigenfaces including implemented Jacobis method for eigenvalues and eigenvectors has been performed. The classification and recognition using backpropagation neural network showed impressive positive result to classify face images.
Implementing Signature Neural Networks with Spiking Neurons
Directory of Open Access Journals (Sweden)
José Luis Carrillo-Medina
2016-12-01
Full Text Available Spiking Neural Networks constitute the most promising approach to develop realistic ArtificialNeural Networks (ANNs. Unlike traditional firing rate-based paradigms, information coding inspiking models is based on the precise timing of individual spikes. Spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition. In recent years, majorbreakthroughs in neuroscience research have discovered new relevant computational principles indifferent living neural systems. Could ANNs benefit from some of these recent findings providingnovel elements of inspiration? This is an intriguing question and the development of spiking ANNsincluding novel bio-inspired information coding and processing strategies is gaining attention. Fromthis perspective, in this work, we adapt the core concepts of the recently proposed SignatureNeural Network paradigm – i.e., neural signatures to identify each unit in the network, localinformation contextualization during the processing and multicoding strategies for informationpropagation regarding the origin and the content of the data – to be employed in a spiking neuralnetwork. To the best of our knowledge, none of these mechanisms have been used yet in thecontext of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicabilityin such networks. Computer simulations show that a simple network model like the discussed hereexhibits complex self-organizing properties. The combination of multiple simultaneous encodingschemes allows the network to generate coexisting spatio-temporal patterns of activity encodinginformation in different spatio-temporal spaces. As a function of the network and/or intra-unitparameters shaping the corresponding encoding modality, different forms of competition amongthe evoked patterns can emerge even in the absence of inhibitory connections. These parametersalso
Quantum computing in neural networks
Gralewicz, P
2004-01-01
According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits. This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance of neural circuits implementing universal quantum gates. A discussion on the physiological plausibility of proposed coding scheme is also provided.
Energy Technology Data Exchange (ETDEWEB)
Hernandez P, C. F.; Martinez B, M. R.; Leon P, A. A.; Espinoza G, J. G.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); De Sousa L, M. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)
2016-10-15
Neutron dosimetry is of great importance in radiation protection as aims to provide dosimetric quantities to assess the magnitude of detrimental health effects due to exposure of neutron radiation. To quantify detriment to health is necessary to evaluate the dose received by the occupationally exposed personnel using different detection systems called dosimeters, which have very dependent responses to the energy distribution of neutrons. The neutron detection is a much more complex problem than the detection of charged particles, since it does not carry an electric charge, does not cause direct ionization and has a greater penetration power giving the possibility of interacting with matter in a different way. Because of this, various neutron detection systems have been developed, among which the Bonner spheres spectrometric system stands out due to the advantages that possesses, such as a wide range of energy, high sensitivity and easy operation. However, once obtained the counting rates, the problem lies in the neutron spectrum deconvolution, necessary for the calculation of the doses, using different mathematical methods such as Monte Carlo, maximum entropy, iterative methods among others, which present various difficulties that have motivated the development of new technologies. Nowadays, methods based on artificial intelligence technologies are being used to perform neutron dosimetry, mainly using the theory of artificial neural networks. In these new methods the need for spectrum reconstruction can be eliminated for the calculation of the doses. In this work an artificial neural network or reverse propagation was trained for the calculation of 15 equivalent doses from the counting rates of the Bonner spheres spectrometric system using a set of 7 spheres, one of 2 spheres and two of a single sphere of different sizes, testing different error values until finding the most appropriate. The optimum network topology was obtained through the robust design
Learning in Neural Networks: VLSI Implementation Strategies
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Diagnosing process faults using neural network models
Energy Technology Data Exchange (ETDEWEB)
Buescher, K.L.; Jones, R.D.; Messina, M.J.
1993-11-01
In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.
Fault detection and diagnosis using neural network approaches
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
Impulsive Neural Networks Algorithm Based on the Artificial Genome Model
Directory of Open Access Journals (Sweden)
Yuan Gao
2014-05-01
Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks
Supervised Learning in Multilayer Spiking Neural Networks
Sporea, Ioana
2012-01-01
The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.
Sonar discrimination of cylinders from different angles using neural networks neural networks
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, Whiwlow; Larsen, Jan
1999-01-01
This paper describes an underwater object discrimination system applied to recognize cylinders of various compositions from different angles. The system is based on a new combination of simulated dolphin clicks, simulated auditory filters and artificial neural networks. The model demonstrates its...
Discontinuities in recurrent neural networks.
Gavaldá, R; Siegelmann, H T
1999-04-01
This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time.
Forex Market Prediction Using NARX Neural Network with Bagging
Directory of Open Access Journals (Sweden)
Shahbazi Nima
2016-01-01
Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.
Fuzzy logic systems are equivalent to feedforward neural networks
Institute of Scientific and Technical Information of China (English)
李洪兴
2000-01-01
Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.
Prediction Model of Sewing Technical Condition by Grey Neural Network
Institute of Scientific and Technical Information of China (English)
DONG Ying; FANG Fang; ZHANG Wei-yuan
2007-01-01
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics' mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
Application of Artificial Neural Networks to Contraception Study
Institute of Scientific and Technical Information of China (English)
周利锋; 高尔生; 金丕焕
1998-01-01
As a newly developed border line science, the artificial neural network (ANN)has been applied in many fields. The ANN was used in the selection of contraceptives in the article, and the performances of the artificial neural networks and traditional multivariate logistic regression analysis method were compared with the training data and the testing data by receiver operating characteristic (ROC) curves. The results imply that ANN may be applied and developed further in statistics and medical fields hopefully.
Fiber optic Adaline neural networks
Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla
1993-02-01
Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Neural Networks for Speech Application.
1987-11-01
operation and neurocrience theories of how neurons process information in the brain. design. Early studies by McCulloch and Pitts dunng the forties led to...developed the commercially available Mark III and Mark IV neurocom- established by McCulloch and Pits. puters that model neural networks and run...ORGANIZERS Infonuiaonienes (1986) FOR Lashley, K. Brain Mehaius and Cblali (129)SPEECHOTECH McCullch. W and Pitts . W, ’A Logical Calculusof the
Fast implementation of neural network classification
Seo, Guiwon; Ok, Jiheon; Lee, Chulhee
2013-09-01
Most artificial neural networks use a nonlinear activation function that includes sigmoid and hyperbolic tangent functions. Most artificial networks employ nonlinear functions such as these sigmoid and hyperbolic tangent functions, which incur high complexity costs, particularly during hardware implementation. In this paper, we propose new polynomial approximation methods for nonlinear activation functions that can substantially reduce complexity without sacrificing performance. The proposed approximation methods were applied to pattern classification problems. Experimental results show that the processing time was reduced by up to 50% without any performance degradations in terms of computer simulation.
Multilingual Text Detection with Nonlinear Neural Network
Directory of Open Access Journals (Sweden)
Lin Li
2015-01-01
Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Process Neural Networks Theory and Applications
He, Xingui
2010-01-01
"Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg
Neural network subtyping of depression.
Florio, T M; Parker, G; Austin, M P; Hickie, I; Mitchell, P; Wilhelm, K
1998-10-01
To examine the applicability of a neural network classification strategy to examine the independent contribution of psychomotor disturbance (PMD) and endogeneity symptoms to the DSM-III-R definition of melancholia. We studied 407 depressed patients with the clinical dataset comprising 17 endogeneity symptoms and the 18-item CORE measure of behaviourally rated PMD. A multilayer perception neural network was used to fit non-linear models of varying complexity. A linear discriminant function analysis was also used to generate a model for comparison with the non-linear models. Models (linear and non-linear) using PMD items only and endogeneity symptoms only had similar rates of successful classification, while non-linear models combining both PMD and symptoms scores achieved the best classifications. Our current non-linear model was superior to a linear analysis, a finding which may have wider application to psychiatric classification. Our non-linear analysis of depressive subtypes supports the binary view that melancholic and non-melancholic depression are separate clinical disorders rather than different forms of the same entity. This study illustrates how non-linear modelling with neural networks is a potentially fruitful approach to the study of the diagnostic taxonomy of psychiatric disorders and to clinical decision-making.
Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.
2016-07-01
Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1 % of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
Identifying Broadband Rotational Spectra with Neural Networks
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Application of a neural network for reflectance spectrum classification
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks
Institute of Scientific and Technical Information of China (English)
ZHANG Sen-lin; LIU Mei-qin
2005-01-01
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs' stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
Neural network fault diagnosis method optimization with rough set and genetic algorithms
Institute of Scientific and Technical Information of China (English)
SUN Hong-yan; XIE Zhi-jiang; OUYANG Qi
2006-01-01
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.
Multi-Dimensional Recurrent Neural Networks
Graves, Alex; Schmidhuber, Juergen
2007-01-01
Recurrent neural networks (RNNs) have proved effective at one dimensional sequence learning tasks, such as speech and online handwriting recognition. Some of the properties that make RNNs suitable for such tasks, for example robustness to input warping, and the ability to access contextual information, are also desirable in multidimensional domains. However, there has so far been no direct way of applying RNNs to data with more than one spatio-temporal dimension. This paper introduces multi-dimensional recurrent neural networks (MDRNNs), thereby extending the potential applicability of RNNs to vision, video processing, medical imaging and many other areas, while avoiding the scaling problems that have plagued other multi-dimensional models. Experimental results are provided for two image segmentation tasks.
Functional expansion representations of artificial neural networks
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
OM PRAKASH PATEL; ARUNA TIWARI
2016-11-01
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically and gives large search space to find optimal value of required parameters using Gaussian random number generator. The neural network structure forms constructively having three number of layers input layer: hidden layer and output layer. A constructive way of deciding the network eliminates the unnecessary training of neural network. A new parameter that is a quantum separability parameter (QSP) is introduced here, which finds an optimal separability plane to classify input samples. During learning, it searches for an optimal separability plane. This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and produces improved results than existing quantum inspired and other classification approaches.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Understanding Neural Networks for Machine Learning using Microsoft Neural Network Algorithm
National Research Council Canada - National Science Library
Nagesh Ramprasad
2016-01-01
.... In this research, focus is on the Microsoft Neural System Algorithm. The Microsoft Neural System Algorithm is a simple implementation of the adaptable and popular neural networks that are used in the machine learning...
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Neural Network Approach to Locating Cryptography in Object Code
Energy Technology Data Exchange (ETDEWEB)
Jason L. Wright; Milos Manic
2009-09-01
Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.
Mizera, Mikołaj; Talaczyńska, Alicja; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta
2015-05-01
A sensitive and fast HPLC method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS) was developed for the determination of tebipenem pivoxyl and in the presence of degradation products formed during thermolysis. The chromatographic separations were performed on stationary phases produced in core-shell technology with particle diameter of 5.0 µm. The mobile phases consisted of formic acid (0.1%) and acetonitrile at different ratios. The flow rate was 0.8 mL/min while the wavelength was set at 331 nm. The stability characteristics of tebipenem pivoxyl were studied by performing stress tests in the solid state in dry air (RH=0%) and at an increased relative air humidity (RH=90%). The validation parameters such as selectivity, accuracy, precision and sensitivity were found to be satisfying. The satisfied selectivity and precision of determination were obtained for the separation of tebipenem pivoxyl from its degradation products using a stationary phase with 5.0 µm particles. The evaluation of the chemical structure of the 9 degradation products of tebipenem pivoxyl was conducted following separation based on the stationary phase with a 5.0 µm particle size by applying a Q-TOF-MS/MS detector. The main degradation products of tebipenem pivoxyl were identified: a product resulting from the condensation of the substituents of 1-(4,5-dihydro-1,3-thiazol-2-yl)-3-azetidinyl]sulfanyl and acid and ester forms of tebipenem with an open β-lactam ring in dry air at an increased temperature (RH=0%, T=393 K) as well as acid and ester forms of tebipenem with an open β-lactam ring at an increased relative air humidity and an elevated temperature (RH=90%, T=333 K). Retention times of tebipenem pivoxyl and its degradation products were used as training data set for predictive model of quantitative structure-retention relationship. An artificial neural network with adaptation protocol and extensive feature selection process
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
A new approach to artificial neural networks.
Baptista Filho, B D; Cabral, E L; Soares, A J
1998-01-01
A novel approach to artificial neural networks is presented. The philosophy of this approach is based on two aspects: the design of task-specific networks, and a new neuron model with multiple synapses. The synapses' connective strengths are modified through selective and cumulative processes conducted by axo-axonic connections from a feedforward circuit. This new concept was applied to the position control of a planar two-link manipulator exhibiting excellent results on learning capability and generalization when compared with a conventional feedforward network. In the present paper, the example shows only a network developed from a neuronal reflexive circuit with some useful artifices, nevertheless without the intention of covering all possibilities devised.
Discriminating lysosomal membrane protein types using dynamic neural network.
Tripathi, Vijay; Gupta, Dwijendra Kumar
2014-01-01
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.
dos Santos, Paulo C C; Lopes, Helder F S; Alcalde, Rosana; Gonsalez, Cláudio R; Abe, Jair M; Lopez, Luis F
2016-03-01
The high variability of HIV-1 as well as the lack of efficient repair mechanisms during the stages of viral replication, contribute to the rapid emergence of HIV-1 strains resistant to antiretroviral drugs. The selective pressure exerted by the drug leads to fixation of mutations capable of imparting varying degrees of resistance. The presence of these mutations is one of the most important factors in the failure of therapeutic response to medications. Thus, it is of critical to understand the resistance patterns and mechanisms associated with them, allowing the choice of an appropriate therapeutic scheme, which considers the frequency, and other characteristics of mutations. Utilizing Paraconsistents Artificial Neural Networks, seated in Paraconsistent Annotated Logic Et which has the capability of measuring uncertainties and inconsistencies, we have achieved levels of agreement above 90% when compared to the methodology proposed with the current methodology used to classify HIV-1 subtypes. The results demonstrate that Paraconsistents Artificial Neural Networks can serve as a promising tool of analysis.
Wiszniowski, Jan
2016-12-01
This paper presents a study of the nonlinear estimation of the ground motion prediction equation (GMPE) using neural networks. The general regression neural network (GRNN) was chosen for its high learning rate. A separate GRNN was tested as well as a GRNN in cascade connection with linear regression (LR). Measurements of induced seismicity in the Legnica-Głogów Copper District were used in this study. Various sets of input variables were tested. The basic variables used in every case were seismic energy and epicentral distance, while the additional variables were the location of the epicenter, the location of the seismic station, and the direction towards the epicenter. The GRNN improves the GMPE. The best results were obtained when the epicenter location was used as an additional input. The GRNN model was analysed for how it can improve the GMPE with respect to LR. The bootstrap re-sampling method was used for this purpose. It proved the statistical significance of the improvement of the GMPE. Additionally, this method allows the determination of smoothness parameters for the GRNN. Parameters derived through this method have better generalisation capabilities than the smoothness parameters estimated using the holdout method.
Salience-Affected Neural Networks
Remmelzwaal, Leendert A; Ellis, George F R
2010-01-01
We present a simple neural network model which combines a locally-connected feedforward structure, as is traditionally used to model inter-neuron connectivity, with a layer of undifferentiated connections which model the diffuse projections from the human limbic system to the cortex. This new layer makes it possible to model global effects such as salience, at the same time as the local network processes task-specific or local information. This simple combination network displays interactions between salience and regular processing which correspond to known effects in the developing brain, such as enhanced learning as a result of heightened affect. The cortex biases neuronal responses to affect both learning and memory, through the use of diffuse projections from the limbic system to the cortex. Standard ANNs do not model this non-local flow of information represented by the ascending systems, which are a significant feature of the structure of the brain, and although they do allow associational learning with...
Directory of Open Access Journals (Sweden)
Jiao-Hong Yi
2016-01-01
Full Text Available Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2 are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.
Dynamic Analysis of Structures Using Neural Networks
Directory of Open Access Journals (Sweden)
N. Ahmadi
2008-01-01
Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.
A New Approach for Diagnosing Epilepsy by Using Wavelet Transform and Neural Networks
2001-10-25
by using wavelet transform and an artificial neural network model. EEG signals are separated into delta, theta, alpha, and beta spectral components...by using wavelet transform . These spectral components are applied to the inputs of the neural network. Then, neural network is trained to give three outputs to signify the health situation of the patients
Neural Networks through Shared Maps in Mobile Devices
Directory of Open Access Journals (Sweden)
William Raveane
2014-12-01
Full Text Available We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.
Fast Algorithms for Convolutional Neural Networks
Lavin, Andrew; Gray, Scott
2015-01-01
Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...
Modelling Microwave Devices Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Andrius Katkevičius
2012-04-01
Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Forecasting Exchange Rate Using Neural Networks
Raksaseree, Sukhita
2009-01-01
The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...
Semantic Interpretation of An Artificial Neural Network
1995-12-01
ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of
Feature Weight Tuning for Recursive Neural Networks
2014-01-01
This paper addresses how a recursive neural network model can automatically leave out useless information and emphasize important evidence, in other words, to perform "weight tuning" for higher-level representation acquisition. We propose two models, Weighted Neural Network (WNN) and Binary-Expectation Neural Network (BENN), which automatically control how much one specific unit contributes to the higher-level representation. The proposed model can be viewed as incorporating a more powerful c...
Sparse coding for layered neural networks
Katayama, Katsuki; Sakata, Yasuo; Horiguchi, Tsuyoshi
2002-07-01
We investigate storage capacity of two types of fully connected layered neural networks with sparse coding when binary patterns are embedded into the networks by a Hebbian learning rule. One of them is a layered network, in which a transfer function of even layers is different from that of odd layers. The other is a layered network with intra-layer connections, in which the transfer function of inter-layer is different from that of intra-layer, and inter-layered neurons and intra-layered neurons are updated alternately. We derive recursion relations for order parameters by means of the signal-to-noise ratio method, and then apply the self-control threshold method proposed by Dominguez and Bollé to both layered networks with monotonic transfer functions. We find that a critical value αC of storage capacity is about 0.11|a ln a| -1 ( a≪1) for both layered networks, where a is a neuronal activity. It turns out that the basin of attraction is larger for both layered networks when the self-control threshold method is applied.
Alfina, Ommi
2012-01-01
As one of the information processing systems, artificial neural networks (ANN) which resembles biological neural networks has grown rapidly. One application of artificial neural networks is in the field of biology which to categorize plant species. In order to determine the species of a plant, one usually looks at its flowers or its leaves. In this research, two artificial neural networks (ANN) methods which are backpropagation and simple perceptron are applied separately in order to evalua...
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Neural network parameters affecting image classification
Directory of Open Access Journals (Sweden)
K.C. Tiwari
2001-07-01
Full Text Available The study is to assess the behaviour and impact of various neural network parameters and their effects on the classification accuracy of remotely sensed images which resulted in successful classification of an IRS-1B LISS II image of Roorkee and its surrounding areas using neural network classification techniques. The method can be applied for various defence applications, such as for the identification of enemy troop concentrations and in logistical planning in deserts by identification of suitable areas for vehicular movement. Five parameters, namely training sample size, number of hidden layers, number of hidden nodes, learning rate and momentum factor were selected. In each case, sets of values were decided based on earlier works reported. Neural network-based classifications were carried out for as many as 450 combinations of these parameters. Finally, a graphical analysis of the results obtained was carried out to understand the relationship among these parameters. A table of recommended values for these parameters for achieving 90 per cent and higher classification accuracy was generated and used in classification of an IRS-1B LISS II image. The analysis suggests the existence of an intricate relationship among these parameters and calls for a wider series of classification experiments as also a more intricate analysis of the relationships.
Decentralized Neural Backstepping Control Applied to a Robot Manipulator
Directory of Open Access Journals (Sweden)
Ramon Garcia-Hernandez
2013-01-01
Full Text Available This paper presents a discrete‐time decentralized control scheme for trajectory tracking of a two degrees of freedom (DOF robot manipulator. A high order neural network (HONN is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF. The weights for each neural network are adapted online by an extended Kalman filter training algorithm. The motion for each joint is controlled independently using only local angular position and velocity measurements. The stability analysis for the closed‐loop system via the Lyapunov approach is included. Finally, the real‐time results show the feasibility of the proposed control scheme using a robot manipulator.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Neural networks for nuclear spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Neural Networks for Rapid Design and Analysis
Sparks, Dean W., Jr.; Maghami, Peiman G.
1998-01-01
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.
Systolic implementation of neural networks
Energy Technology Data Exchange (ETDEWEB)
De Groot, A.J.; Parker, S.R.
1989-01-01
The backpropagation algorithm for error gradient calculations in multilayer, feed-forward neural networks is derived in matrix form involving inner and outer products. It is demonstrated that these calculations can be carried out efficiently using systolic processing techniques, particularly using the SPRINT, a 64-element systolic processor developed at Lawrence Livermore National Laboratory. This machine contains one million synapses, and forward-propagates 12 million connections per second, using 100 watts of power. When executing the algorithm, each SPRINT processor performs useful work 97% of the time. The theory and applications are confirmed by some nontrivial examples involving seismic signal recognition. 4 refs., 7 figs.
Magnitude Sensitive Competitive Neural Networks
Pelayo Campillos, Enrique; Buldain Pérez, David; Orrite Uruñuela, Carlos
2014-01-01
En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto de...
Variable cluster analysis method for building neural network model
Institute of Scientific and Technical Information of China (English)
王海东; 刘元东
2004-01-01
To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.
Traffic Accident Analysis Using Decision Trees and Neural Networks
Chong, Miao M.; Abraham, Ajith; Paprzycki, Marcin
2004-01-01
The costs of fatalities and injuries due to traffic accident have a great impact on society. This paper presents our research to model the severity of injury resulting from traffic accidents using artificial neural networks and decision trees. We have applied them to an actual data set obtained from the National Automotive Sampling System (NASS) General Estimates System (GES). Experiment results reveal that in all the cases the decision tree outperforms the neural network. Our research analys...
Automatic detection of intruders using a neural network
Carvalho, Fernando D.; Novo, Pedro; Pais, Cassiano P.; Rodrigues, Fernando C.; Rego, Toste
1992-09-01
A system is presented that applies a neural network to a video surveillance system. It consists of a pre-processing unit that extract high level information from images and introduces it in the neural network. This system can learn in operational conditions while under the supervision of an unskilled operator. It uses the error backpropagation learning algorithm in a multilayer perceptron structure. The results obtained show that the system performs well, and with a high degree of efficiency.
The Laplacian spectrum of neural networks.
de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P
2014-01-13
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Neural Network Controlled Visual Saccades
Johnson, Jeffrey D.; Grogan, Timothy A.
1989-03-01
The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.
BP神经网络在心理障碍诊断中的应用研究%THE APPLIED RESEARCH OF BP NEURAL NETWORK IN THE DIAGNOSTIC OF MENTAL DISORDERS
Institute of Scientific and Technical Information of China (English)
崔玉洁; 熊海灵; 朱明强
2012-01-01
This system illustrates the basic principles of the neural network algorithm and establishes a psychological diagnosis model based on L-M algorithm which uses common mental illness among college students as subjects. By fully using L-M algorithm' s global optimization and local convergence characteristics with BP neural network optimization, the psychological diagnosis model based on improved BP algorithm is established to realize simple mode recognition. Simulation outcomes illustrate that the model reduces training iterations and time with high accuracy. When applying the neural network into establishing a psychological diagnostic system, it is effective too.%以高校大学生常见心理疾病作为研究对象,充分利用L-M算法的全局寻优性及局部收敛性的特点对BP神经网络进行优化,建立基于改进的BP算法的心理诊断模型,实现简单的模式识别.仿真结果表明:该模型减少了训练迭代次数,缩短了训练时间,具有较高的准确性,应用该神经网络建立心理障碍诊断系统也是有效的.
Dynamic artificial neural networks with affective systems.
Schuman, Catherine D; Birdwell, J Douglas
2013-01-01
Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Video Traffic Prediction Using Neural Networks
Directory of Open Access Journals (Sweden)
Miloš Oravec
2008-10-01
Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Neural Networks for Emotion Classification
Sun, Yafei
2011-01-01
It is argued that for the computer to be able to interact with humans, it needs to have the communication skills of humans. One of these skills is the ability to understand the emotional state of the person. This thesis describes a neural network-based approach for emotion classification. We learn a classifier that can recognize six basic emotions with an average accuracy of 77% over the Cohn-Kanade database. The novelty of this work is that instead of empirically selecting the parameters of the neural network, i.e. the learning rate, activation function parameter, momentum number, the number of nodes in one layer, etc. we developed a strategy that can automatically select comparatively better combination of these parameters. We also introduce another way to perform back propagation. Instead of using the partial differential of the error function, we use optimal algorithm; namely Powell's direction set to minimize the error function. We were also interested in construction an authentic emotion databases. This...
Artificial neural networks in neurosurgery.
Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali
2015-03-01
Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.
Optimising the topology of complex neural networks
Jiang, Fei; Schoenauer, Marc
2007-01-01
In this paper, we study instances of complex neural networks, i.e. neural netwo rks with complex topologies. We use Self-Organizing Map neural networks whose n eighbourhood relationships are defined by a complex network, to classify handwr itten digits. We show that topology has a small impact on performance and robus tness to neuron failures, at least at long learning times. Performance may howe ver be increased (by almost 10%) by artificial evolution of the network topo logy. In our experimental conditions, the evolved networks are more random than their parents, but display a more heterogeneous degree distribution.
Particle identification using artificial neural networks at BESⅢ
Institute of Scientific and Technical Information of China (English)
QIN Gang; LI Gang; LI Hai-Bo; LI Wei-Dong; LIU Chun-Xiu; LIU Huai-Min; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MAO Ze-Pu; MO Xiao-Hu; L(U) Jun-Guang; QIU Jin-Fa; SUN Sheng-Sen; SUN Yong-Zhao; WANG Ji-Ke; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; XIE Yu-Guang; YOU Zheng-Yun; YANG Ming; HE Kang-Lin; YU Guo-Wei; YUAN Chang-Zheng; YUAN Ye; ZANG Shi-Lei; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Ling; ZHANG Xue-Yao; ZHANG Yao; ZHU Yong-Sheng; BIAN Jian-Ming; ZOU Jia-Heng; CAO Guo-Fu; DENG Zi-Yan; HE Miao; HUANG Bin; JI Xiao-Bin
2008-01-01
A multilayered perceptrons' neural network technique has been applied in the particle identification at BESⅢ. The networks are trained in each sub-detector level. The NN output of sub-detectors can be sent to a sequential network or be constructed as PDFs for a likelihood. Good muon-ID, electron-ID and hadron-ID are obtained from the networks by using the simulated Monte Carlo samples.
Drift chamber tracking with neural networks
Energy Technology Data Exchange (ETDEWEB)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Convolution neural networks for ship type recognition
Rainey, Katie; Reeder, John D.; Corelli, Alexander G.
2016-05-01
Algorithms to automatically recognize ship type from satellite imagery are desired for numerous maritime applications. This task is difficult, and example imagery accurately labeled with ship type is hard to obtain. Convolutional neural networks (CNNs) have shown promise in image recognition settings, but many of these applications rely on the availability of thousands of example images for training. This work attempts to under- stand for which types of ship recognition tasks CNNs might be well suited. We report the results of baseline experiments applying a CNN to several ship type classification tasks, and discuss many of the considerations that must be made in approaching this problem.
Optoelectronic implementation of multilayer perceptron and Hopfield neural networks
Domanski, Andrzej W.; Olszewski, Mikolaj K.; Wolinski, Tomasz R.
2004-11-01
In this paper we present an optoelectronic implementation of two networks based on multilayer perceptron and the Hopfield neural network. We propose two different methods to solve a problem of lack of negative optical signals that are necessary for connections between layers of perceptron as well as within the Hopfield network structure. The first method applied for construction of multilayer perceptron was based on division of signals into two channels and next to use both of them independently as positive and negative signals. The second one, applied for implementation of the Hopfield model, was based on adding of constant value for elements of matrix weight. Both methods of compensation of lack negative optical signals were tested experimentally as optoelectronic models of multilayer perceptron and Hopfield neural network. Special configurations of optical fiber cables and liquid crystal multicell plates were used. In conclusion, possible applications of the optoelectronic neural networks are briefly discussed.
Structured learning via convolutional neural networks for vehicle detection
Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso
2017-05-01
One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.
Coherence resonance in bursting neural networks.
Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J
2015-10-01
Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.
Neural network classification - A Bayesian interpretation
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Isolated Speech Recognition Using Artificial Neural Networks
2007-11-02
In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.
Creativity in design and artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Neocleous, C.C.; Esat, I.I. [Brunel Univ. Uxbridge (United Kingdom); Schizas, C.N. [Univ. of Cyprus, Nicosia (Cyprus)
1996-12-31
The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Application of Neural Networks for Energy Reconstruction
Damgov, Jordan
2002-01-01
The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
NeuralNetwork Based 3D Surface Reconstruction
Joseph, Vincy
2009-01-01
This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach
Guidance for the verification and validation of neural networks
Pullum, L; Darrah, M
2007-01-01
Guidance for the Verification and Validation of Neural Networks is a supplement to the IEEE Standard for Software Verification and Validation, IEEE Std 1012-1998. Born out of a need by the National Aeronautics and Space Administration's safety- and mission-critical research, this book compiles over five years of applied research and development efforts. It is intended to assist the performance of verification and validation (V&V) activities on adaptive software systems, with emphasis given to neural network systems. The book discusses some of the difficulties with trying to assure adaptive systems in general, presents techniques and advice for the V&V practitioner confronted with such a task, and based on a neural network case study, identifies specific tasking and recommendations for the V&V of neural network systems.
Deep Recurrent Neural Networks for Supernovae Classification
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Calculation of precise firing statistics in a neural network model
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
Geophysical phenomena classification by artificial neural networks
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Subspace learning of neural networks
Cheng Lv, Jian; Zhou, Jiliu
2010-01-01
PrefaceChapter 1. Introduction1.1 Introduction1.1.1 Linear Neural Networks1.1.2 Subspace Learning1.2 Subspace Learning Algorithms1.2.1 PCA Learning Algorithms1.2.2 MCA Learning Algorithms1.2.3 ICA Learning Algorithms1.3 Methods for Convergence Analysis1.3.1 SDT Method1.3.2 DCT Method1.3.3 DDT Method1.4 Block Algorithms1.5 Simulation Data Set and Notation1.6 ConclusionsChapter 2. PCA Learning Algorithms with Constants Learning Rates2.1 Oja's PCA Learning Algorithms2.1.1 The Algorithms2.1.2 Convergence Issue2.2 Invariant Sets2.2.1 Properties of Invariant Sets2.2.2 Conditions for Invariant Sets2.
Neural networks for damage identification
Energy Technology Data Exchange (ETDEWEB)
Paez, T.L.; Klenke, S.E.
1997-11-01
Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.
Using neural networks to predict the functionality of reconfigurable nano-material networks
Greff, Klaus; Damme, van Ruud; Koutnik, Jan; Broersma, Hajo; Mikhal, Julia; Lawrence, Celestine; Wiel, van der Wilfred; Schmidhuber, Jürgen
2017-01-01
This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices, w
一种神经网络方法在机械手控制中的应用%A neural network method applying to robot manipulator control
Institute of Scientific and Technical Information of China (English)
杨国军; 崔平远
2000-01-01
The multilayer forward neural networks are used to establish theinverse kinematic models for robot manipulator. An improved genetic algorithm is presented to update the weights of the networks. In the improved genetic algorithm, the crossover probability is adapted by the fitness values of the solutions and the mutation probability is adjusted by the iteration times. The motivation of this approach is to overcome the shortcomings of traditional back propagation algorithm, such as the low precision of the solutions, the slow search speed and easy convergence to the local minimum points. Simulations show that the proposed method improves considerably the inverse kinematic solutions for robot manipulator and guarantees a rapid global convergence.%采用多层前向神经网络建立机械手逆运动学模型。提出了一种改进遗传算法来学习网络的权系数，其交叉概率根据解的适应度来自适应调整，变异概率根据迭代次数来动态调整。这样可以有效地克服传统的反向传播算法求解精度低、搜索速度慢、易陷于局部极小的缺点。仿真结果表明，所提方法大大提高了机械手逆运动学解的精度，确保快速达到全局收敛。
Nonlinear programming with feedforward neural networks.
Energy Technology Data Exchange (ETDEWEB)
Reifman, J.
1999-06-02
We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.
A convolutional neural network neutrino event classifier
Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.
2016-09-01
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
A Convolutional Neural Network Neutrino Event Classifier
Aurisano, A; Rocco, D; Himmel, A; Messier, M D; Niner, E; Pawloski, G; Psihas, F; Sousa, A; Vahle, P
2016-01-01
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
Hybrid neural network models of transducers
Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun
2011-10-01
A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Cisneros, Felipe; Veintimilla, Jaime
2013-04-01
The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador
Gupta, S K
1999-01-01
Problem-solving is explained by various paradigms. For example, epistemological paradigms state that, when the task is novel, and pursued of one's free will, problem-solving occurs in discontinuous, discernable phases. It is then also a microdevelopmental process, i.e. involves the construction of knowledge through qualitatively different stages of thought. Quantitative methods are used to focus on the redundancy of function as well as the concept of selective activation of the brains's neural network during the performance of a task. In this model, the following are identified: (a) performance circuits: (i) NP, no performance; (ii) LP, low performance; (iii) MP, medium performance; (iv) HP, high performance; and (v) VHR, very high performance; (b) task performance groups: (i) NOU, no outline used; (serves as a control); (ii) OU, outline used; (iii) MOU, modified outline used; (iv) QMOU, qualitatively and quantitatively modified outline used. An example of a distribution that one obtains is (for the efficiency of activation of the HP): QMOU:MOU:OU. NOU is in the ratio of: 400:100:50:5 (out of 10(3) trials). The subject is hence educated as to the mechanism of various strategies that he may use in everyday problem-solving.
Research of The Deeper Neural Networks
Directory of Open Access Journals (Sweden)
Xiao You Rong
2016-01-01
Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.
Feature extraction for deep neural networks based on decision boundaries
Woo, Seongyoun; Lee, Chulhee
2017-05-01
Feature extraction is a process used to reduce data dimensions using various transforms while preserving the discriminant characteristics of the original data. Feature extraction has been an important issue in pattern recognition since it can reduce the computational complexity and provide a simplified classifier. In particular, linear feature extraction has been widely used. This method applies a linear transform to the original data to reduce the data dimensions. The decision boundary feature extraction method (DBFE) retains only informative directions for discriminating among the classes. DBFE has been applied to various parametric and non-parametric classifiers, which include the Gaussian maximum likelihood classifier (GML), the k-nearest neighbor classifier, support vector machines (SVM) and neural networks. In this paper, we apply DBFE to deep neural networks. This algorithm is based on the nonparametric version of DBFE, which was developed for neural networks. Experimental results with the UCI database show improved classification accuracy with reduced dimensionality.
Deep Recurrent Neural Networks for Supernovae Classification
Charnock, Tom
2016-01-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae. The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC dataset (around 104 supernovae) we obtain a type Ia vs non type Ia classification accuracy of 94.8%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and a SPCC figure-of-merit F1 = 0.64. We also apply a pre-trained model to obtain classification probabilities as a function of time, and show it can give early indications of supernovae type. Our method is competitive with existing algorithms and has appl...
Neutron spectrum unfolding using radial basis function neural networks.
Alvar, Amin Asgharzadeh; Deevband, Mohammad Reza; Ashtiyani, Meghdad
2017-07-26
Neutron energy spectrum unfolding has been the subject of research for several years. The Bayesian theory, Monte Carlo simulation, and iterative methods are some of the methods that have been used for neutron spectrum unfolding. In this study, the radial basis function (RBF), multilayer perceptron, and artificial neural networks (ANNs) were used for the unfolding of neutron spectrum, and a comparison was made between the networks' results. Both neural network architectures were trained and tested using the same data set for neutron spectrum unfolding from the response of LiI detectors with Eu impurity. Advantages of each ANN method in the unfolding of neutron energy spectrum were investigated, and the performance of the networks was compared. The results obtained showed that RBF neural network can be applied as an effective method for unfolding neutron spectrum, especially when the main target is the neutron dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mobility Prediction in Wireless Ad Hoc Networks using Neural Networks
Kaaniche, Heni
2010-01-01
Mobility prediction allows estimating the stability of paths in a mobile wireless Ad Hoc networks. Identifying stable paths helps to improve routing by reducing the overhead and the number of connection interruptions. In this paper, we introduce a neural network based method for mobility prediction in Ad Hoc networks. This method consists of a multi-layer and recurrent neural network using back propagation through time algorithm for training.
Periodicity and stability for variable-time impulsive neural networks.
Li, Hongfei; Li, Chuandong; Huang, Tingwen
2017-10-01
The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Assessing Landslide Hazard Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
NEURAL NETWORK FOR THE QUANTUM CORRECTION OF NANOSCALE SOI MOSFETS
Institute of Scientific and Technical Information of China (English)
Li Zunchao; Jiang Yaolin; Zhang Lili
2006-01-01
The quantum effect of carrier distribution in nanoscale SOI MOSFETs is evident and must be taken into consideration in device modeling and simulation. In this paper, a backpropagation neural network was applied to predict the quantum density of carriers from the classical density, and the influence of the network structure on training speed and accuracy was studied. It was concluded that a carefully trained neural network with two hidden layers using the Levenberg-Marquardt learning algorithm could predict the carrier quantum density of SOI MOSFETs in very good agreement with Schrdinger Poisson equations.
Hybrid pre training algorithm of Deep Neural Networks
Directory of Open Access Journals (Sweden)
Drokin I. S.
2016-01-01
Full Text Available This paper proposes a hybrid algorithm of pre training deep networks, using both marked and unmarked data. The algorithm combines and extends the ideas of Self-Taught learning and pre training of neural networks approaches on the one hand, as well as supervised learning and transfer learning on the other. Thus, the algorithm tries to integrate in itself the advantages of each approach. The article gives some examples of applying of the algorithm, as well as its comparison with the classical approach to pre training of neural networks. These examples show the effectiveness of the proposed algorithm.
The Effect of Network Parameters on Pi-Sigma Neural Network for Temperature Forecasting
Husaini, Noor Aida; Ghazali, Rozaida; Nawi, Nazri Mohd; Ismail, Lokman Hakim
In this paper, we present the effect of network parameters to forecast temperature of a suburban area in Batu Pahat, Johor. The common ways of predicting the temperature using Neural Network has been applied for most meteorological parameters. However, researchers frequently neglected the network parameters which might affect the Neural Network's performance. Therefore, this study tends to explore the effect of network parameters by using Pi Sigma Neural Network (PSNN) with backpropagation algorithm. The network's performance is evaluated using the historical dataset of temperature in Batu Pahat for one step-ahead and benchmarked against Multilayer Perceptron (MLP) for comparison. We found out that, network parameters have significantly affected the performance of PSNN for temperature forecasting. Towards the end of this paper, we concluded the best forecasting model to predict the temperature based on the comparison of our study.
Character Recognition Using Novel Optoelectronic Neural Network
1993-04-01
17 2.3.7. Learning rule ................................................................... 18 3. ADALINE ... ADALINE neuron and linear separability which provides a justification for multilayer networks. The MADALINE (many ADALINE ) multi layer network is also...element used In many neural networks (Figure 3.1). The ADALINE functions as an adaptive threshold logic element. In digital Implementation, an input
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Neural Network Analysis of Tensile Strength of Austempered Ductile Iron
Z. Ławrynowicz; S. Dymski; M. Trepczyńska - Łent; T. Giętka
2007-01-01
The neural technique was applied to the analysis of the ultimate tensile strength and additionally the yield strength of austempered ductile iron (ADI). Austempered ductile iron is an excellent material and it possesses attractive properties as high strength, ductility and toughness. This paper begins with an introduction to neural networks and demonstrates the ability of the method to investigate new phenomena in cases where the information cannot be accessed experimentally. The model allows...
Combining Neural Networks for Skin Detection
Doukim, Chelsia Amy; Chekima, Ali; Omatu, Sigeru
2011-01-01
Two types of combining strategies were evaluated namely combining skin features and combining skin classifiers. Several combining rules were applied where the outputs of the skin classifiers are combined using binary operators such as the AND and the OR operators, "Voting", "Sum of Weights" and a new neural network. Three chrominance components from the YCbCr colour space that gave the highest correct detection on their single feature MLP were selected as the combining parameters. A major issue in designing a MLP neural network is to determine the optimal number of hidden units given a set of training patterns. Therefore, a "coarse to fine search" method to find the number of neurons in the hidden layer is proposed. The strategy of combining Cb/Cr and Cr features improved the correct detection by 3.01% compared to the best single feature MLP given by Cb-Cr. The strategy of combining the outputs of three skin classifiers using the "Sum of Weights" rule further improved the correct detection by 4.38% compared t...
Microbial growth modelling with artificial neural networks.
Jeyamkonda, S; Jaya, D S; Holle, R A
2001-03-20
There is a growing interest in modelling microbial growth as an alternative to time-consuming, traditional, microbiological enumeration techniques. Several statistical models have been reported to describe the growth of different microorganisms, but there are accuracy problems. An alternate technique 'artificial neural networks' (ANN) for modelling microbial growth is explained and evaluated. Published data were used to build separate general regression neural network (GRNN) structures for modelling growth of Aeromonas hydrophila, Shigella flexneri, and Brochothrix thermosphacta. Both GRNN and published statistical model predictions were compared against the experimental data using six statistical indices. For training data sets, the GRNN predictions were far superior than the statistical model predictions, whereas the GRNN predictions were similar or slightly worse than statistical model predictions for test data sets for all the three data sets. GRNN predictions can be considered good, considering its performance for unseen data. Graphical plots, mean relative percentage residual, mean absolute relative residual, and root mean squared residual were identified as suitable indices for comparing competing models. ANN can now become a vehicle whereby predictive microbiology can be applied in food product development and food safety risk assessment.
Directory of Open Access Journals (Sweden)
Huaiqin Wu
2012-01-01
Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.
Recognition of Telugu characters using neural networks.
Sukhaswami, M B; Seetharamulu, P; Pujari, A K
1995-09-01
The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
Multi-agent reinforcement learning using modular neural network Q-learning algorithms
Institute of Scientific and Technical Information of China (English)
YANG Yin-xian; FANG Kai
2005-01-01
Reinforcement learning is an excellent approach which is used in artificial intelligence,automatic control, etc. However, ordinary reinforcement learning algorithm, such as Q-learning with lookup table cannot cope with extremely complex and dynamic environment due to the huge state space. To reduce the state space, modular neural network Q-learning algorithm is proposed, which combines Q-learning algorithm with neural network and module method. Forward feedback neural network, Elman neural network and radius-basis neural network are separately employed to construct such algorithm. It is revealed that Elman neural network Q-learning algorithm has the best performance under the condition that the same neural network training method, i.e. gradient descent error back-propagation algorithm is applied.
Neural Networks for Dynamic Flight Control
1993-12-01
uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid
Neural networks convergence using physicochemical data.
Karelson, Mati; Dobchev, Dimitar A; Kulshyn, Oleksandr V; Katritzky, Alan R
2006-01-01
An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algorithms and provides in most of the cases better prediction. These conclusions are based on eight physicochemical data sets, each with a significant number of compounds comparable to that usually used in the QSAR/QSPR modeling. The superiority of the Levenberg-Marquardt algorithm is revealed in terms of functional dependence of the change of the neural network weights with respect to the gradient of the error propagation as well as distribution of the weight values. The prediction of the models is assessed by the error of the validation sets not used in the training process.
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
TIME SERIES FORECASTING USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
BOGDAN OANCEA
2013-05-01
Full Text Available Recent studies have shown the classification and prediction power of the Neural Networks. It has been demonstrated that a NN can approximate any continuous function. Neural networks have been successfully used for forecasting of financial data series. The classical methods used for time series prediction like Box-Jenkins or ARIMA assumes that there is a linear relationship between inputs and outputs. Neural Networks have the advantage that can approximate nonlinear functions. In this paper we compared the performances of different feed forward and recurrent neural networks and training algorithms for predicting the exchange rate EUR/RON and USD/RON. We used data series with daily exchange rates starting from 2005 until 2013.
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
The design and analysis of effective and efficient neural networks and their applications
Energy Technology Data Exchange (ETDEWEB)
Makovoz, W.V.
1989-01-01
A complicated design issue of efficient Multilayer neural networks is addressed, and the perception and similar neural networks are examined. It shows that a three-layer perceptron neural network with specially designed learning algorithms provides an efficient framework to solve an exclusive OR problem using only n {minus} 1 processing elements in the second layer. Two efficient rapidly converging algorithms for any symmetric Boolean function were developed using only n {minus} 1 processing elements in the perceptron neural network and int(n/2) processing elements in the Adaline and perceptron neural network with the stepfunction transfer function. Similar results were obtained for the quasi-symmetric Boolean functions using a linear number of processing elements in perceptron neural networks, Adaline's, and perceptron neural networks with the stepfunction transfer functions. Generalized Boolean functions are discussed and two rapidly converging algorithms are shown for perceptron neural networks, Adaline's, and perceptron neural network with stepfunction transfer function. Many other interesting perceptron neural networks are discussed in the dissertation. Perceptron neural networks are applied to find the largest value of the n inputs. A new perceptron neural network is designed to find the largest value of the n inputs with the minimum number of inputs and the minimum number of layers. New perceptron neural networks are developed to sort n inputs. New, effective and efficient back-propagation Neural networks are designed to sort n inputs. The Sigmoid transfer function was discussed and a generalized Sigmoid function to improve Neural network performance was developed. A modified back-propagation learning algorithm was developed that builds any n input symmetric Boolean function using only int(n/2) processing elements in the second layer.
Artificial neural network and medicine.
Khan, Z H; Mohapatra, S K; Khodiar, P K; Ragu Kumar, S N
1998-07-01
The introduction of human brain functions such as perception and cognition into the computer has been made possible by the use of Artificial Neural Network (ANN). ANN are computer models inspired by the structure and behavior of neurons. Like the brain, ANN can recognize patterns, manage data and most significantly, learn. This learning ability, not seen in other computer models simulating human intelligence, constantly improves its functional accuracy as it keeps on performing. Experience is as important for an ANN as it is for man. It is being increasingly used to supplement and even (may be) replace experts, in medicine. However, there is still scope for improvement in some areas. Its ability to classify and interpret various forms of medical data comes as a helping hand to clinical decision making in both diagnosis and treatment. Treatment planning in medicine, radiotherapy, rehabilitation, etc. is being done using ANN. Morbidity and mortality prediction by ANN in different medical situations can be very helpful for hospital management. ANN has a promising future in fundamental research, medical education and surgical robotics.
Pattern Recognition Using Neural Networks
Directory of Open Access Journals (Sweden)
Santaji Ghorpade
2010-12-01
Full Text Available Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems,entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural,robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else.Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor.In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM or Self-Organizing Feature Map (SOFM based retrieval system.SOM has good feature extracting property due to its topological ordering. The Facial Analytics results for the 400 images of AT&T database reflects that the face recognition rate using one of the neural network algorithm SOM is 85.5% for 40 persons.
Applications of Pulse-Coupled Neural Networks
Ma, Yide; Wang, Zhaobin
2011-01-01
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci
NARX neural networks for sequence processing tasks
Hristev, Eugen
2012-01-01
This project aims at researching and implementing a neural network architecture system for the NARX (Nonlinear AutoRegressive with eXogenous inputs) model, used in sequence processing tasks and particularly in time series prediction. The model can fallback to different types of architectures including time-delay neural networks and multi layer perceptron. The NARX simulator tests and compares the different architectures for both synthetic and real data, including the time series o...
Neural network models of protein domain evolution
Sylvia Nagl
2000-01-01
Protein domains are complex adaptive systems, and here a novel procedure is presented that models the evolution of new functional sites within stable domain folds using neural networks. Neural networks, which were originally developed in cognitive science for the modeling of brain functions, can provide a fruitful methodology for the study of complex systems in general. Ethical implications of developing complex systems models of biomolecules are discussed, with particular reference to molecu...
Flow version of statistical neurodynamics for oscillator neural networks
Uchiyama, Satoki
2012-04-01
We consider a neural network of Stuart-Landau oscillators as an associative memory. This oscillator network with N elements is a system of an N-dimensional differential equation, works as an attractor neural network, and is expected to have no Lyapunov functions. Therefore, the technique of equilibrium statistical physics is not applicable to the study of this system in the thermodynamic limit. However, the simplicity of this system allows us to extend statistical neurodynamics [S. Amari, K. Maginu, Neural Netw. 1 (1988) 63-73], which was originally developed to analyse the discrete time evolution of the Hopfield model, into the version for continuous time evolution. We have developed and attempted to apply this method in the analysis of the phase transition of our model network.
Techniques of Image Processing Based on Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
LI Wei-qing; WANG Qun; WANG Cheng-biao
2006-01-01
This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two artificial neural networks were made and the two problems were solved. The one solved chromatism classification. Hue,saturation and their probability of three colors, whose appearing probabilities were maximum in color histogram,were selected as input parameters, and the number of output node could be adjusted with the change of requirement. The other solved edge detection. In this neutral network, edge detection of gray scale image was able to be tested with trained neural networks for a binary image. It prevent the difficulty that the number of needed training samples was too large if gray scale images were directly regarded as training samples. This system is able to be applied to not only glass steel fault inspection but also other product online quality inspection and classification.
Reducing Wind Tunnel Data Requirements Using Neural Networks
Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus
1997-01-01
The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.
Practical Application of Neural Networks in State Space Control
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...
Vein matching using artificial neural network in vein authentication systems
Noori Hoshyar, Azadeh; Sulaiman, Riza
2011-10-01
Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.
Neural network segmentation of magnetic resonance images
Frederick, Blaise
1990-07-01
Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at
Information flow among neural networks with Bayesian estimation
Institute of Scientific and Technical Information of China (English)
LI Yan; LI XiaoLi; OUYANG GaoXiang; GUAN XinPing
2007-01-01
Estimating the interaction among neural networks is an interesting issue in neuroscience. Some methods have been proposed to estimate the coupling strength among neural networks; however, few estimations of the coupling direction (information flow) among neural networks have been attempted. It is known that Bayesian estimator is based on a priori knowledge and a probability of event occurrence. In this paper, a new method is proposed to estimate coupling directions among neural networks with conditional mutual information that is estimated by Bayesian estimation. First, this method is applied to analyze the simulated EEG series generated by a nonlinear lumped-parameter model. In comparison with the conditional mutual information with Shannon entropy, it is found that this method is more successful in estimating the coupling direction, and is insensitive to the length of EEG series. Therefore, this method is suitable to analyze a short time series in practice. Second, we demonstrate how this method can be applied to the analysis of human intracranial epileptic electroencephalogram (EEG) recordings, and to indicate the coupling directions among neural networks. Therefore, this method helps to elucidate the epileptic focus localization.
Neural Networks for Signal Processing and Control
Hesselroth, Ted Daniel
Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Chiong, Hong Sheng; Sime, Mary Jane; Wilson, Graham A
2017-09-07
Importance There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Design Retrospective audit Samples Diabetic retinal photos from Otago database photographed during October 2016 (485 photos); and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Main Outcome Measures Area under the receiver operating characteristic curve, sensitivity and specificity RESULTS: For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% CI, 0.807-0.995) with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% CI, 0.973-0.986) with 96.0% sensitivity and 90.0% specificity for Messidor. Conclusions and Relevance This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. This article is protected by copyright. All rights reserved.
Neural networks for segmentation, tracking, and identification
Rogers, Steven K.; Ruck, Dennis W.; Priddy, Kevin L.; Tarr, Gregory L.
1992-09-01
The main thrust of this paper is to encourage the use of neural networks to process raw data for subsequent classification. This article addresses neural network techniques for processing raw pixel information. For this paper the definition of neural networks includes the conventional artificial neural networks such as the multilayer perceptrons and also biologically inspired processing techniques. Previously, we have successfully used the biologically inspired Gabor transform to process raw pixel information and segment images. In this paper we extend those ideas to both segment and track objects in multiframe sequences. It is also desirable for the neural network processing data to learn features for subsequent recognition. A common first step for processing raw data is to transform the data and use the transform coefficients as features for recognition. For example, handwritten English characters become linearly separable in the feature space of the low frequency Fourier coefficients. Much of human visual perception can be modelled by assuming low frequency Fourier as the feature space used by the human visual system. The optimum linear transform, with respect to reconstruction, is the Karhunen-Loeve transform (KLT). It has been shown that some neural network architectures can compute approximations to the KLT. The KLT coefficients can be used for recognition as well as for compression. We tested the use of the KLT on the problem of interfacing a nonverbal patient to a computer. The KLT uses an optimal basis set for object reconstruction. For object recognition, the KLT may not be optimal.
Directory of Open Access Journals (Sweden)
Kleber Rogério Moreira Prado
2013-06-01
Full Text Available Current essay forwards a biodegradation model of a dye, used in the textile industry, based on a neural network propped by bootstrap remodeling. Bootstrapped neural network is set to generate estimates that are close to results obtained in an intrinsic experience in which a chemical process is applied. Pseudomonas oleovorans was used in the biodegradation of reactive Black 5. Results show a brief comparison between the information estimated by the proposed approach and the experimental data, with a coefficient of correlation between real and predicted values for a more than 0.99 biodegradation rate. Dye concentration and the solution’s pH failed to interfere in biodegradation index rates. A value above 90% of dye biodegradation was achieved between 1.000 and 1.841 mL 10 mL-1 of microorganism concentration and between 1.000 and 2.000 g 100 mL-1 of glucose concentration within the experimental conditions under analysis.
Neural-Network Object-Recognition Program
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Data Process of Diagnose Expert System based on Neural Network
Directory of Open Access Journals (Sweden)
Shupeng Zhao
2013-12-01
Full Text Available Engine fault has a high rate in the car. Considering about the distinguishing feature of the engine, Engine Diagnosis Expert System was investigated based on Diagnosis Tree module, Fuzzy Neural Network module, and commix reasoning module. It was researched including Knowledge base and Reasoning machine, and so on. In Diagnosis Tree module, the origin problem was searched in right method. In which module distinguishing rate and low error and least cost was the aim. By means of synthesize judge and fuzzy relation reasoning to get fault origin from symptom, fuzzy synthesize reasoning diagnosis module was researched. Expert knowledge included failure symptom, engine system failure and engine part failure. In the system, Self-diagnosis method and general instruments method worked together, complex failure diagnosis became efficient. The system was intelligent, which was combined by fuzzy logic reasoning and the traditional neural network system. And it became more convenience for failure origin searching, because of utilizing the three methods. The system fuzzy neural networks were combined with fuzzy reasoning and traditional neural networks. Fuzzy neural network failure diagnosis module of system, as a important model was applied to engine diagnosis, with more advantages such as higher efficiency of searching and higher self-learning ability, which was compared with the traditional BP network
Analysis of the experimental positron lifetime spectra by neural networks
Directory of Open Access Journals (Sweden)
Avdić Senada
2003-01-01
Full Text Available This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pžzsitetal, Applied Surface Science, 149 (1998, 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposi-tion of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved.
Matrix representation of a Neural Network
DEFF Research Database (Denmark)
Christensen, Bjørn Klint
This paper describes the implementation of a three-layer feedforward backpropagation neural network. The paper does not explain feedforward, backpropagation or what a neural network is. It is assumed, that the reader knows all this. If not please read chapters 2, 8 and 9 in Parallel Distributed...... Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...
Application of Partially Connected Neural Network
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network.Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set.
Artificial Neural Networks, Symmetries and Differential Evolution
Urfalioglu, Onay
2010-01-01
Neuroevolution is an active and growing research field, especially in times of increasingly parallel computing architectures. Learning methods for Artificial Neural Networks (ANN) can be divided into two groups. Neuroevolution is mainly based on Monte-Carlo techniques and belongs to the group of global search methods, whereas other methods such as backpropagation belong to the group of local search methods. ANN's comprise important symmetry properties, which can influence Monte-Carlo methods. On the other hand, local search methods are generally unaffected by these symmetries. In the literature, dealing with the symmetries is generally reported as being not effective or even yielding inferior results. In this paper, we introduce the so called Minimum Global Optimum Proximity principle derived from theoretical considerations for effective symmetry breaking, applied to offline supervised learning. Using Differential Evolution (DE), which is a popular and robust evolutionary global optimization method, we experi...
Artificial neural network for multifunctional areas.
Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo
2016-01-01
The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted.
Neural network training as a dissipative process.
Gori, Marco; Maggini, Marco; Rossi, Alessandro
2016-09-01
This paper analyzes the practical issues and reports some results on a theory in which learning is modeled as a continuous temporal process driven by laws describing the interactions of intelligent agents with their own environment. The classic regularization framework is paired with the idea of temporal manifolds by introducing the principle of least cognitive action, which is inspired by the related principle of mechanics. The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of learning as a dissipative process. As an example, we apply the theory to supervised learning in neural networks and show that the corresponding Euler-Lagrange differential equations can be connected to the classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm the soundness of the theory.
On neural networks that design neural associative memories.
Chan, H Y; Zak, S H
1997-01-01
The design problem of generalized brain-state-in-a-box (GBSB) type associative memories is formulated as a constrained optimization program, and "designer" neural networks for solving the program in real time are proposed. The stability of the designer networks is analyzed using Barbalat's lemma. The analyzed and synthesized neural associative memories do not require symmetric weight matrices. Two types of the GBSB-based associative memories are analyzed, one when the network trajectories are constrained to reside in the hypercube [-1, 1](n) and the other type when the network trajectories are confined to stay in the hypercube [0, 1](n). Numerical examples and simulations are presented to illustrate the results obtained.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Hardware implementation of stochastic spiking neural networks.
Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni
2012-08-01
Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.
Improvement of the Hopfield Neural Network by MC-Adaptation Rule
Institute of Scientific and Technical Information of China (English)
ZHOU Zhen; ZHAO Hong
2006-01-01
We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.
Stability prediction of berm breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Manjunath, Y.R.
. In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer networks are often used. Among many neural network architectures, the three layers feed forward backpropagation neural...
Pattern Classification using Simplified Neural Networks
Kamruzzaman, S M
2010-01-01
In recent years, many neural network models have been proposed for pattern classification, function approximation and regression problems. This paper presents an approach for classifying patterns from simplified NNs. Although the predictive accuracy of ANNs is often higher than that of other methods or human experts, it is often said that ANNs are practically "black boxes", due to the complexity of the networks. In this paper, we have an attempted to open up these black boxes by reducing the complexity of the network. The factor makes this possible is the pruning algorithm. By eliminating redundant weights, redundant input and hidden units are identified and removed from the network. Using the pruning algorithm, we have been able to prune networks such that only a few input units, hidden units and connections left yield a simplified network. Experimental results on several benchmarks problems in neural networks show the effectiveness of the proposed approach with good generalization ability.
Evaluation of the efficiency of artificial neural networks for genetic value prediction.
Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M
2016-03-28
Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.
A Search for top quark using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Amidi, Erfan [Northeastern Univ., Boston, MA (United States)
1996-02-01
The neural networks method has been applied to 75 pb^{-1} of data collected by the D0 detector at Fermilab during the 1993-1995 p$\\bar{p}$ collider run at √s = 1.8 TeV, to isolate the top quark in the e+jets+E_{T} channel.
Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network
Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.
2003-01-01
A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers, canals
Successful neural network projects at the Idaho National Engineering Laboratory
Energy Technology Data Exchange (ETDEWEB)
Cordes, G.A.
1991-01-01
This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.
A Constructive Neural-Network Approach to Modeling Psychological Development
Shultz, Thomas R.
2012-01-01
This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…
A Constructive Neural-Network Approach to Modeling Psychological Development
Shultz, Thomas R.
2012-01-01
This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…
Neural network based satellite tracking for deep space applications
Amoozegar, F.; Ruggier, C.
2003-01-01
The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.
Modeling brand choice using boosted and stacked neural networks
R. Potharst (Rob); M. van Rijthoven; M.C. van Wezel (Michiel)
2005-01-01
textabstractThe brand choice problem in marketing has recently been addressed with methods from computational intelligence such as neural networks. Another class of methods from computational intelligence, the so-called ensemble methods such as boosting and stacking have never been applied to the
Linear programming for learning in neural networks
Raghavan, Raghu
1991-08-01
The authors have previously proposed a network of probabilistic cellular automata (PCAs) as part of an image recognition system designed to integrate model-based and data-driven approaches in a connectionist framework. The PCA arises from some natural requirements on the system which include incorporation of prior knowledge such as in inference rules, locality of inferences, and full parallelism. This network has been applied to recognize objects in both synthetic and in real data. This approach achieves recognition through the short-, rather than the long-time behavior of the dynamics of the PCA. In this paper, some methods are developed for learning the connection strengths by solving linear inequalities: the figures of merit are tendencies or directions of movement of the dynamical system. These 'dynamical' figures of merit result in inequality constraints on the connection strengths which are solved by linear (LP) or quadratic programs (QP). An algorithm is described for processing a large number of samples to determine weights for the PCA. The work may be regarded as either pointing out another application for constrained optimization, or as pointing out the need to extend the perceptron and similar methods for learning. The extension is needed because the neural network operates on a different principle from that for which the perceptron method was devised.
Design and Algorithm of Neural Network Applied in Switches%开关电器的神经网络设计与算法
Institute of Scientific and Technical Information of China (English)
陈兆仁; 戴瑜兴
2001-01-01
This paper discusses the application of neural Net work in switches,and proposes a method of dividing neural net work into groups and its training algorithm.%根据神经网络的基本理论，研究了神经网络在电器设备中的应用，提出了神经网络 的分块构造方法和神经网络分块学习算法，并通过实验模拟达到实际要求。
Artificial Neural Network in Harmonic Reduction of STATCOM
Institute of Scientific and Technical Information of China (English)
Li Hongmei; Li Zhenran; Zheng Peiying
2005-01-01
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
Inferring low-dimensional microstructure representations using convolutional neural networks
Lubbers, Nicholas; Barros, Kipton
2016-01-01
We apply recent advances in machine learning and computer vision to a central problem in materials informatics: The statistical representation of microstructural images. We use activations in a pre-trained convolutional neural network to provide a high-dimensional characterization of a set of synthetic microstructural images. Next, we use manifold learning to obtain a low-dimensional embedding of this statistical characterization. We show that the low-dimensional embedding extracts the parameters used to generate the images. According to a variety of metrics, the convolutional neural network method yields dramatically better embeddings than the analogous method derived from two-point correlations alone.
Neural tree network method for image segmentation
Samaddar, Sumitro; Mammone, Richard J.
1994-02-01
We present an extension of the neural tree network (NTN) architecture to let it solve multi- class classification problems with only binary fan-out. We then demonstrate it's effectiveness by applying it in a method for image segmentation. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Prediction of surface distress using neural networks
Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo
2017-06-01
Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Learning drifting concepts with neural networks
Biehl, Michael; Schwarze, Holm
1993-01-01
The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using differ
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Neural networks as perpetual information generators
Englisch, Harald; Xiao, Yegao; Yao, Kailun
1991-07-01
The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.
An overview on development of neural network technology
Lin, Chun-Shin
1993-01-01
The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in
Neural network analysis for $\\gamma \\gamma \\to 3\\pi$ at DAPHNE
Ametller, L; Talavera, P; Ametller, Ll.; Garrido, Ll.
1996-01-01
We consider the possibility of using neural networks in experimental data analysis in Daphne. We analyze the process $\\gamma\\gamma\\to \\pi^+ \\pi^- \\pi^0$ and its backgrounds using neural networks and we compare their performances with traditional methods of applying cuts on several kinematical variables. We find that the neural networks are more efficient and can be of great help for processes with small number of produced events.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Neural Network Approaches to Visual Motion Perception
Institute of Scientific and Technical Information of China (English)
郭爱克; 杨先一
1994-01-01
This paper concerns certain difficult problems in image processing and perception: neuro-computation of visual motion information. The first part of this paper deals with the spatial physiological integration by the figure-ground discrimination neural network in the visual system of the fly. We have outlined the fundamental organization and algorithms of this neural network, and mainly concentrated on the results of computer simulations of spatial physiological integration. It has been shown that the gain control mechanism , the nonlinearity of synaptic transmission characteristic , the interaction between the two eyes , and the directional selectivity of the pool cells play decisive roles in the spatial physiological integration. In the second part, we have presented a self-organizing neural network for the perception of visual motion by using a retinotopic array of Reichardt’s motion detectors and Kohonen’s self-organizing maps. It .has been demonstrated by computer simulations that the network is abl
Improving neural network performance on SIMD architectures
Limonova, Elena; Ilin, Dmitry; Nikolaev, Dmitry
2015-12-01
Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.
Antenna impedance matching with neural networks.
Hemminger, Thomas L
2005-10-01
Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.
Stability analysis of discrete-time BAM neural networks based on standard neural network models
Institute of Scientific and Technical Information of China (English)
ZHANG Sen-lin; LIU Mei-qin
2005-01-01
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.
Transient stability Assessment using Artificial Neural Network Considering Fault Location
Directory of Open Access Journals (Sweden)
P.K.Olulope
2010-06-01
Full Text Available This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB. The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks
DEFF Research Database (Denmark)
Wan, Can; Song, Yonghua; Xu, Zhao
2016-01-01
probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....
Hierarchical modular granular neural networks with fuzzy aggregation
Sanchez, Daniela
2016-01-01
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
Boltzmann learning of parameters in cellular neural networks
DEFF Research Database (Denmark)
Hansen, Lars Kai
1992-01-01
The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...
Primary classification on drillability of frozen soil using neural networks
Institute of Scientific and Technical Information of China (English)
FANG Jiang-hua(方江华); ZHANG Zhi-hong(张志红); MA Qin-yong(马芹永)
2003-01-01
Through analysis on drillability of frozen soil, it is concluded that the main factors affecting the drillability of frozen soil are temperature, wave velocity, impact inductility and chiseling specific work. Based on the foundation it is discussed that applying the neural networks method to classify the drillability of frozen soil is simple and feasible, and the inputted vectors quantity of networks don't be restricted, which make the classification on drillability of frozen soil rather well match the objective practice.
Existence and uniqueness results for neural network approximations.
Williamson, R C; Helmke, U
1995-01-01
Some approximation theoretic questions concerning a certain class of neural networks are considered. The networks considered are single input, single output, single hidden layer, feedforward neural networks with continuous sigmoidal activation functions, no input weights but with hidden layer thresholds and output layer weights. Specifically, questions of existence and uniqueness of best approximations on a closed interval of the real line under mean-square and uniform approximation error measures are studied. A by-product of this study is a reparametrization of the class of networks considered in terms of rational functions of a single variable. This rational reparametrization is used to apply the theory of Pade approximation to the class of networks considered. In addition, a question related to the number of local minima arising in gradient algorithms for learning is examined.
Neural PID Control Strategy for Networked Process Control
Directory of Open Access Journals (Sweden)
Jianhua Zhang
2013-01-01
Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.
APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS
Institute of Scientific and Technical Information of China (English)
1998-01-01
Based on radial basis function (RBF) neural networks, the healthy working model of each sub-system of robot in FMS is established. A new approach to fault on-line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi-layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.
DEFF Research Database (Denmark)
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin
2015-01-01
mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...
Color space conversion of digital photofinishing by neural network
Institute of Scientific and Technical Information of China (English)
Baozhong Mu; Feihong Yu
2005-01-01
@@ A practical neural network model was designed to realize the color space conversion of digital photofinishing. The sampling, network structure and training process were introduced respectively. But in actual training, the networks fall into local minimum in all probability. To solve this problem, evolutionary programming (EP) algorithm was applied and the learning rate was adaptively adjusted. In the experiment, the performance of network was compared with pre-optimizing. Then the color space conversion was evaluated by the simulation error of samples from the point of color difference.
Dynamic pricing by hopfield neural network
Institute of Scientific and Technical Information of China (English)
Lusajo M Minga; FENG Yu-qiang(冯玉强); LI Yi-jun(李一军); LU Yang(路杨); Kimutai Kimeli
2004-01-01
The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.
Neutron spectrometry with artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx
2005-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Representations in neural network based empirical potentials
Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios
2017-07-01
Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.
Using neural networks to describe tracer correlations
Directory of Open Access Journals (Sweden)
D. J. Lary
2004-01-01
Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4 (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.
Evaluation of convolutional neural networks for visual recognition.
Nebauer, C
1998-01-01
Convolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks--neocognitron and a modification of neocognitron--are compared with classifiers based on fully connected feedforward layers (i.e., multilayer perceptron, nearest neighbor classifier, auto-encoding network) with respect to their visual recognition performance. Beside the original neocognitron a modification of the neocognitron is proposed which combines neurons from perceptron with the localized network structure of neocognitron. Instead of training convolutional networks by time-consuming error backpropagation, in this work a modular procedure is applied whereby layers are trained sequentially from the input to the output layer in order to recognize features of increasing complexity. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been chosen: handwritten digit recognition and face recognition. In the first example on handwritten digit recognition the generalization of convolutional networks is compared to fully connected networks. In several experiments the influence of variations of position, size, and orientation of digits is determined and the relation between training sample size and validation error is observed. In the second example recognition of human faces is investigated under constrained and variable conditions with respect to face orientation and illumination and the limitations of convolutional networks are discussed.
Community structure of complex networks based on continuous neural network
Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou
2017-09-01
As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.
Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network
Directory of Open Access Journals (Sweden)
Hui ZHU
2008-02-01
Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.
Digital systems for artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Atlas, L.E. (Interactive Systems Design Lab., Univ. of Washington, WA (US)); Suzuki, Y. (NTT Human Interface Labs. (US))
1989-11-01
A tremendous flurry of research activity has developed around artificial neural systems. These systems have also been tested in many applications, often with positive results. Most of this work has taken place as digital simulations on general-purpose serial or parallel digital computers. Specialized neural network emulation systems have also been developed for more efficient learning and use. The authors discussed how dedicated digital VLSI integrated circuits offer the highest near-term future potential for this technology.
Energy Technology Data Exchange (ETDEWEB)
Shimada, N.; Kozawa, T. [Japan National Oil Corp., Tokyo (Japan); Nishikawa, N.; Tani, A. [Fuji Research Institute Corp., Tokyo (Japan)
1997-05-27
Neural network is used for the prediction of porosity and permeability using logging data as reservoir characteristics, and the validity of this method is verified. For the prediction of reservoir characteristics by the use of seismic survey data, composite seismic survey records obtained by density logging and acoustic logging are used to experiment the prediction of porosity and permeability continuous along lines of wells. A 3-output back propagation network is used for analysis. There is a possibility that this technique when optimized will improve on prediction accuracy. Furthermore, in the case of characteristics mapping, 3-dimensional seismic data is applied to a carbonate rock reservoir for predicting spatial porosity and permeability. This technique facilitates the comprehensive analysis of core data, well data, and seismic survey data, enabling the derivation of a high-precision spatial distribution of reservoir characteristics. Efforts will continue for further improvement on prediction accuracy. 6 refs., 7 figs., 3 tabs.
Network Traffic Prediction based on Particle Swarm BP Neural Network
Directory of Open Access Journals (Sweden)
Yan Zhu
2013-11-01
Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Foreign currency rate forecasting using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Training Deep Spiking Neural Networks using Backpropagation
Directory of Open Access Journals (Sweden)
Jun Haeng Lee
2016-11-01
Full Text Available Deep spiking neural networks (SNNs hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Kannada character recognition system using neural network
Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.
2013-03-01
Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
M Sinha; P K Kalra; K Kumar
2000-04-01
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher neuron model (multiplicative aggregation function). It can adapt to standard neuron and higher order neuron, as well as a combination of the two. This approach is found to estimate the orbit with accuracy significantly better than Kalman Filter (KF) and Feedforward Multilayer Neural Network (FMNN) (also simply referred to as Artificial Neural Network, ANN) with lambda-gamma learning. The typical simulation runs also bring out the superiority of the proposed scheme over Kalman filter from the standpoint of computation time and the amount of data needed for the desired degree of estimated accuracy for the specific problem of orbit determination.
Assessing Landslide Hazard Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...... failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Classification of radar clutter using neural networks.
Haykin, S; Deng, C
1991-01-01
A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented.
Yang, Chih-Chung; Bose, N K
2005-05-01
Neural networks have been applied to landmine detection from data generated by different kinds of sensors. Real-valued neural networks have been used for detecting landmines from scattering parameters measured by ground penetrating radar (GPR) after disregarding phase information. This paper presents results using complex-valued neural networks, capable of phase-sensitive detection followed by classification. A two-layer hybrid neural network structure incorporating both supervised and unsupervised learning is proposed to detect and then classify the types of landmines. Tests are also reported on a benchmark data.
Dynamics of Transiently Chaotic Neural Network and Its Application to Optimization
Institute of Scientific and Technical Information of China (English)
YANG Li-Jiang; CHEN Tian-Lun; HUANG Wu-Qun
2001-01-01
Through adding a nonlinear self-feedback term in the evolution equations of neural network, we introduced a transiently chaotic neural network model. In order to utilize the transiently chaotic dynamics mechanism in optimization problem efficiently, we have analyzed the dynamical procedure of the transiently chaotic neural network rnodel and studied the function of the crucial bifurcation parameter which governs the chaotic behavior of the system. Based on the dynamical analysis of the transiently chaotic neural network model, chaotic annealing algorithm is also examined and improved. As an example, we applied chaotic annealing method to the traveling salesman problem and obtained good results.``
Directory of Open Access Journals (Sweden)
Wu Huaiqin
2009-01-01
Full Text Available This paper considers a new class of additive neural networks where the neuron activations are modelled by discontinuous functions with nonlinear growth. By Leray-Schauder alternative theorem in differential inclusion theory, matrix theory, and generalized Lyapunov approach, a general result is derived which ensures the existence and global asymptotical stability of a unique periodic solution for such neural networks. The obtained results can be applied to neural networks with a broad range of activation functions assuming neither boundedness nor monotonicity, and also show that Forti's conjecture for discontinuous neural networks with nonlinear growth activations is true.
Image segmentation using neural tree networks
Samaddar, Sumitro; Mammone, Richard J.
1993-06-01
We present a technique for Image Segmentation using Neural Tree Networks (NTN). We also modify the NTN architecture to let is solve multi-class classification problems with only binary fan-out. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Implementation aspects of Graph Neural Networks
Barcz, A.; Szymański, Z.; Jankowski, S.
2013-10-01
This article summarises the results of implementation of a Graph Neural Network classi er. The Graph Neural Network model is a connectionist model, capable of processing various types of structured data, including non- positional and cyclic graphs. In order to operate correctly, the GNN model must implement a transition function being a contraction map, which is assured by imposing a penalty on model weights. This article presents research results concerning the impact of the penalty parameter on the model training process and the practical decisions that were made during the GNN implementation process.
Livermore Big Artificial Neural Network Toolkit
Energy Technology Data Exchange (ETDEWEB)
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
Spectral classification using convolutional neural networks
Hála, Pavel
2014-01-01
There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (developed by Pierre Sermanet and Yann LeCun) was used to create ConvNets. Application on dataset of more than 60000 spectra yielded success rate of nearly 95%. This thesis conclusively proved great potential of convolutional neural networks and deep learning methods in astrophysics.
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
SAR ATR Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Tian Zhuangzhuang
2016-06-01
Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
Contractor Prequalification Based on Neural Networks
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-long; YANG Lan-rong
2002-01-01
Contractor Prequalification involves the screening of contractors by a project owner, according to a given set of criteria, in order to determine their competence to perform the work if awarded the construction contract. This paper introduces the capabilities of neural networks in solving problems related to contractor prequalification. The neural network systems for contractor prequalification has an input vector of 8 components and an output vector of 1 component. The output vector represents whether a contractor is qualified or not qualified to submit a bid on a project.
Simulation of photosynthetic production using neural network
Kmet, Tibor; Kmetova, Maria
2013-10-01
This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Intelligent neural network classifier for automatic testing
Bai, Baoxing; Yu, Heping
1996-10-01
This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T.; Fukuoka, K.; Shima, H. [Oyo Corp., Tokyo (Japan); Mogi, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Spichak, V.
1997-05-27
The research and development have been conducted to apply neural networks to interpretation technique for 3-D MT data. In this study, a data base of various data was made from the numerical modeling of 3-D fault model, and the data base management system was constructed. In addition, an unsupervised neural network for treating noise and a supervised neural network for estimating fault parameters such as dip, strike and specific resistance were made, and a basic neural network system was constructed. As a result of the application to the various data, basically sufficient performance for estimating the fault parameters was confirmed. Thus, the optimum MT data for this system were selected. In future, it is necessary to investigate the optimum model and the number of models for learning these neural networks. 3 refs., 5 figs., 2 tabs.
Novel Intrusion Detection using Probabilistic Neural Network and Adaptive Boosting
Tran, Tich Phuoc; Tran, Dat; Nguyen, Cuong Duc
2009-01-01
This article applies Machine Learning techniques to solve Intrusion Detection problems within computer networks. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. To overcome such performance limitations, we propose a novel Machine Learning algorithm, namely Boosted Subspace Probabilistic Neural Network (BSPNN), which integrates an adaptive boosting technique and a semi parametric neural network to obtain good tradeoff between accuracy and generality. As the result, learning bias and generalization variance can be significantly minimized. Substantial experiments on KDD 99 intrusion benchmark indicate that our model outperforms other state of the art learning algorithms, with significantly improved detection accuracy, minimal false alarms and relatively small computational complexity.
Application of Artificial Neural Network in Active Vibration Control of Diesel Engine
Institute of Scientific and Technical Information of China (English)
SUN Cheng-shun; ZHANG Jian-wu
2005-01-01
Artificial Neural Network (ANN) is applied to diesel twostage vibration isolating system and an AVC (Active Vibration Control) system is developed. Both identifier and controller are constructed by three-layer BP neural network. Besides computer simulation, experiment research is carried out on both analog bench and diesel bench. The results of simulation and experiment show a diminished response of vibration.
GLOBAL EXPONENTIAL STABILITY OF HOPFIELD NEURAL NETWORKS WITH VARIABLE DELAYS AND IMPULSIVE EFFECTS
Institute of Scientific and Technical Information of China (English)
YANG Zhi-chun; XU Dao-yi
2006-01-01
A class of Hopfield neural network with time-varying delays and impulsive effects is concerned. By applying the piecewise continuous vector Lyapunov function some sufficient conditions were obtained to ensure the global exponential stability of impulsive delay neural networks. An example and its simulation are given to illustrate the effectiveness of the results.
Institute of Scientific and Technical Information of China (English)
Chen,Guochu; Zhang,Lin; Hao,Ninmei; Liu,Xianguang; Wang,Junhong
2003-01-01
Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.
Amplitude pattern synthesis for conformal array antennas using mean-field neural networks
Castaldi, G.; Gerini, G.
2001-01-01
In this paper, we deal with the synthesis problem of conformai array antennas using a mean-field neural network. We applied a discrete version of mean-field neural network proposed by Vidyasagar [1], This technique is used to find the global minimum of the objective function, which represents the sq
Stability of Delayed Hopfield Neural Networks with Variable-Time Impulses
Directory of Open Access Journals (Sweden)
Yangjun Pei
2014-01-01
Full Text Available In this paper the globally exponential stability criteria of delayed Hopfield neural networks with variable-time impulses are established. The proposed criteria can also be applied in Hopfield neural networks with fixed-time impulses. A numerical example is presented to illustrate the effectiveness of our theoretical results.
Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.
Reliability Modeling of Microelectromechanical Systems Using Neural Networks
Perera. J. Sebastian
2000-01-01
Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.
Multiprocessor Realization of Neural Networks
1990-04-01
the unique capabilities of receiving, processing, and transmitting electo-chemical signals. These signals are sent over neural pathways that make up...these switching nodes and a clever arrangement of internode links to guaranteee at least one’ path between each processor and memory. These types of
Optically excited synapse for neural networks.
Boyd, G D
1987-07-15
What can optics with its promise of parallelism do for neural networks which require matrix multipliers? An all optical approach requires optical logic devices which are still in their infancy. An alternative is to retain electronic logic while optically addressing the synapse matrix. This paper considers several versions of an optically addressed neural network compatible with VLSI that could be fabricated with the synapse connection unspecified. This optical matrix multiplier circuit is compared to an all electronic matrix multiplier. For the optical version a synapse consisting of back-to-back photodiodes is found to have a suitable i-v characteristic for optical matrix multiplication (a linear region) plus a clipping or nonlinear region as required for neural networks. Four photodiodes per synapse are required. The strength of the synapse connection is controlled by the optical power and is thus an adjustable parameter. The synapse network can be programmed in various ways such as a shadow mask of metal, imaged mask (static), or light valve or an acoustooptic scanned laser beam or array of beams (dynamic). A milliwatt from LEDs or lasers is adequate power. The neuron has a linear transfer function and is either a summing amplifier, in which case the synapse signal is current, or an integrator, in which case the synapse signal is charge, the choice of which depends on the programming mode. Optical addressing and settling times of microseconds are anticipated. Electronic neural networks using single-value resistor synapses or single-bit programmable synapses have been demonstrated in the high-gain region of discrete single-value feedback. As an alternative to these networks and the above proposed optical synapses, an electronic analog-voltage vector matrix multiplier is considered using MOSFETS as the variable conductance in CMOS VLSI. It is concluded that a shadow mask addressed (static) optical neural network is promising.
Autonomous robot behavior based on neural networks
Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo
1997-04-01
The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.
Exploiting network redundancy for low-cost neural network realizations.
Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT
1996-01-01
A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting
Fire detection from hyperspectral data using neural network approach
Piscini, Alessandro; Amici, Stefania
2015-10-01
This study describes an application of artificial neural networks for the recognition of flaming areas using hyper- spectral remote sensed data. Satellite remote sensing is considered an effective and safe way to monitor active fires for environmental and people safeguarding. Neural networks are an effective and consolidated technique for the classification of satellite images. Moreover, once well trained, they prove to be very fast in the application stage for a rapid response. At flaming temperature, thanks to its low excitation energy (about 4.34 eV), potassium (K) ionize with a unique doublet emission features. This emission features can be detected remotely providing a detection map of active fire which allows in principle to separate flaming from smouldering areas of vegetation even in presence of smoke. For this study a normalised Advanced K Band Difference (AKBD) has been applied to airborne hyper spectral sensor covering a range of 400-970 nm with resolution 2.9 nm. A back propagation neural network was used for the recognition of active fires affecting the hyperspectral image. The network was trained using all channels of sensor as inputs, and the corresponding AKBD indexes as target output. In order to evaluate its generalization capabilities, the neural network was validated on two independent data sets of hyperspectral images, not used during neural network training phase. The validation results for the independent data-sets had an overall accuracy round 100% for both image and a few commission errors (0.1%), therefore demonstrating the feasibility of estimating the presence of active fires using a neural network approach. Although the validation of the neural network classifier had a few commission errors, the producer accuracies were lower due to the presence of omission errors. Image analysis revealed that those false negatives lie in "smoky" portion fire fronts, and due to the low intensity of the signal. The proposed method can be considered
Neutron spectrum unfolding using neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: rvega@cantera.reduaz.mx
2004-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)
Analysis of Recurrent Analog Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
1998-06-01
Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.
NNIC—neural network image compressor for satellite positioning system
Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo
2007-04-01
We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.
Predicting Water Levels at Kainji Dam Using Artificial Neural Networks
African Journals Online (AJOL)
Predicting Water Levels at Kainji Dam Using Artificial Neural Networks. ... The aim of this study is to develop artificial neural network models for predicting water levels at Kainji Dam, which supplies water to Nigeria's largest ... Article Metrics.
Parameter Identification by Bayes Decision and Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1994-01-01
The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....
Mutual information in a dilute, asymmetric neural network model
Greenfield, Elliot
We study the computational properties of a neural network consisting of binary neurons with dilute asymmetric synaptic connections. This simple model allows us to simulate large networks which can reflect more of the architecture and dynamics of real neural networks. Our main goal is to determine the dynamical behavior that maximizes the network's ability to perform computations. To this end, we apply information theory, measuring the average mutual information between pairs of pre- and post-synaptic neurons. Communication of information between neurons is an essential requirement for collective computation. Previous workers have demonstrated that neural networks with asymmetric connections undergo a transition from ordered to chaotic behavior as certain network parameters, such as the connectivity, are changed. We find that the average mutual information has a peak near the order-chaos transition, implying that the network can most efficiently communicate information between cells in this region. The mutual information peak becomes increasingly pronounced when the basic model is extended to incorporate more biologically realistic features, such as a variable threshold and nonlinear summation of inputs. We find that the peak in mutual information near the phase transition is a robust feature of the system for a wide range of assumptions about post-synaptic integration.
Analog implementation of pulse-coupled neural networks.
Ota, Y; Wilamowski, B M
1999-01-01
This paper presents a compact architecture for analog CMOS hardware implementation of voltage-mode pulse-coupled neural networks (PCNN's). The hardware implementation methods shows inherent fault tolerance specialties and high speed, which is usually more than an order of magnitude over the software counterpart. A computational style described in this article mimics a biological neural network using pulse-stream signaling and analog summation and multiplication. Pulse-stream encoding technique uses pulse streams to carry information and control analog circuitry, while storing further analog information on the time axis. The main feature of the proposed neuron circuit is that the structure is compact, yet exhibiting all the basic properties of natural biological neurons. Functional and structural forms of neural and synaptic functions are presented along with simulation results. Finally, the proposed design is applied to image processing to demonstrate successful restoration of images and their features.
Statistical modelling of neural networks in {gamma}-spectrometry applications
Energy Technology Data Exchange (ETDEWEB)
Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants
1995-12-31
Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.
Development of programmable artificial neural networks
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Sparse neural networks with large learning diversity
Gripon, Vincent
2011-01-01
Coded recurrent neural networks with three levels of sparsity are introduced. The first level is related to the size of messages, much smaller than the number of available neurons. The second one is provided by a particular coding rule, acting as a local constraint in the neural activity. The third one is a characteristic of the low final connection density of the network after the learning phase. Though the proposed network is very simple since it is based on binary neurons and binary connections, it is able to learn a large number of messages and recall them, even in presence of strong erasures. The performance of the network is assessed as a classifier and as an associative memory.
The labeled systems of multiple neural networks.
Nemissi, M; Seridi, H; Akdag, H
2008-08-01
This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.
Performance Comparison of Neural Networks for HRTFs Approximation
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In order to approach to head-related transfer functions (HRTFs), this paper employs and compares three kinds of one-input neural network models, namely, multi-layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.
Applications of Neural Networks in Spinning Prediction
Institute of Scientific and Technical Information of China (English)
程文红; 陆凯
2003-01-01
The neural network spinning prediction model (BP and RBF Networks) trained by data from the mill can predict yarn qualities and spinning performance. The input parameters of the model are as follows: yarn count, diameter, hauteur, bundle strength, spinning draft, spinning speed, traveler number and twist.And the output parameters are: yarn evenness, thin places, tenacity and elongation, ends-down.Predicting results match the testing data well.
Temporal association in asymmetric neural networks
Sompolinsky, H.; Kanter, I.
1986-12-01
A neural network model which is capable of recalling time sequences and cycles of patterns is introduced. In this model, some of the synaptic connections, Jij, between pairs of neurons are asymmetric (Jij≠Jji) and have slow dynamic response. The effects of thermal noise on the generated sequences are discussed. Simulation results demonstrating the performance of the network are presented. The model may be also useful in understanding the generation of rhythmic patterns in biological motor systems.
Incremental construction of LSTM recurrent neural network
Ribeiro, Evandsa Sabrine Lopes-Lima; Alquézar Mancho, René
2002-01-01
Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and ...
Stability and Adaptation of Neural Networks
1990-11-02
Feature discovery by competitive works.-~ IEEE Trans- Si’st.. Man. Cybern.. vol. SMC-13. pp. 815- learning.- Cogniive Science , vol. 9. pp. 75-112. 1985...include Electronic Engineering Times, the Los Angeles Times, Popular Science , the Economist, and Breakthroughs. As program chairman of the first...feedback neural networks.*’ Science . vol. 235. pp. 1226-1227. Mar. 6. 1987. networks.- submitted for publication. 141 G. A. Carpenter and S. Grossberg
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2008-06-01
Full Text Available Neural network methods have facilitated the unifi - cation of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
Compressing Neural Networks with the Hashing Trick
Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin
2015-01-01
As deep nets are increasingly used in applications suited for mobile devices, a fundamental dilemma becomes apparent: the trend in deep learning is to grow models to absorb ever-increasing data set sizes; however mobile devices are designed with very little memory and cannot store such large models. We present a novel network architecture, HashedNets, that exploits inherent redundancy in neural networks to achieve drastic reductions in model sizes. HashedNets uses a low-cost hash function to ...
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2009-11-01
Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
Auto-associative nanoelectronic neural network
Energy Technology Data Exchange (ETDEWEB)
Nogueira, C. P. S. M.; Guimarães, J. G. [Departamento de Engenharia Elétrica - Laboratório de Dispositivos e Circuito Integrado, Universidade de Brasília, CP 4386, CEP 70904-970 Brasília DF (Brazil)
2014-05-15
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.
Estimation of concrete compressive strength using artificial neural network
Kostić, Srđan; Vasović, Dejan
2015-01-01
In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superp...
Analysis of Wideband Beamformers Designed with Artificial Neural Networks
1990-12-01
TECHNICAL REPORT 0-90-1 ANALYSIS OF WIDEBAND BEAMFORMERS DESIGNED WITH ARTIFICIAL NEURAL NETWORKS by Cary Cox Instrumentation Services Division...included. A briel tutorial on beamformers and neural networks is also provided. 14. SUBJECT TERMS 15, NUMBER OF PAGES Artificial neural networks Fecdforwa:,l...Beamformers Designed with Artificial Neural Networks ". The study was conducted under the general supervision of Messrs. George P. Bonner, Chief
Neural network method for solving elastoplastic finite element problems
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A basic optimization principle of Artificial Neural Network-the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.
Combining logistic regression and neural networks to create predictive models.
Spackman, K. A.
1992-01-01
Neural networks are being used widely in medicine and other areas to create predictive models from data. The statistical method that most closely parallels neural networks is logistic regression. This paper outlines some ways in which neural networks and logistic regression are similar, shows how a small modification of logistic regression can be used in the training of neural network models, and illustrates the use of this modification for variable selection and predictive model building wit...
Dynamic Object Identification with SOM-based neural networks
Directory of Open Access Journals (Sweden)
Aleksey Averkin
2014-03-01
Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Hopfield Neural Network Approach to Clustering in Mobile Radio Networks
Institute of Scientific and Technical Information of China (English)
JiangYan; LiChengshu
1995-01-01
In this paper ,the Hopfield neural network(NN) algorithm is developed for selecting gateways in cluster linkage.The linked cluster(LC) architecture is assumed to achieve distributed network control in multihop radio networks throrgh the local controllers,called clusterheads and the nodes connecting these clusterheads are defined to be gateways.In Hopfield NN models ,the most critical issue being the determination of connection weights,we use the approach of Lagrange multipliers(LM) for its dynamic nature.
A Modified Algorithm for Feedforward Neural Networks
Institute of Scientific and Technical Information of China (English)
夏战国; 管红杰; 李政伟; 孟斌
2002-01-01
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Psychometric Measurement Models and Artificial Neural Networks
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Artificial neural networks in neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Chaotic behavior of a layered neural network
Energy Technology Data Exchange (ETDEWEB)
Derrida, B.; Meir, R.
1988-09-15
We consider the evolution of configurations in a layered feed-forward neural network. Exact expressions for the evolution of the distance between two configurations are obtained in the thermodynamic limit. Our results show that the distance between two arbitrarily close configurations always increases, implying chaotic behavior, even in the phase of good retrieval.
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Epileptiform spike detection via convolutional neural networks
DEFF Research Database (Denmark)
Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz
2016-01-01
The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated fash...
Learning chaotic attractors by neural networks
Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM
2000-01-01
An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored th
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Binaural Sound Localization Using Neural Networks
1991-12-12
by Brennan, involved the implementation of a neural network to model the ability of a bat to discriminate between a mealworm and an inedible object...locate, identify and capture airborne prey (6:2). The sonar returns were collected from the mealworms , spheres and disks at various rotations (90 to
Brain tumor grading based on Neural Networks and Convolutional Neural Networks.
Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding
2015-08-01
This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.
Neural networks in economic modelling : An empirical study
Verkooijen, W.J.H.
1996-01-01
This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a sta
Extracting Knowledge from Supervised Neural Networks in Image Procsssing
Zwaag, van der Berend Jan; Slump, Kees; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; Zwaag, van der B.J.
2003-01-01
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a ¿magic tool¿ but possibly even more as a my
Analysis of Neural Networks in Terms of Domain Functions
Zwaag, van der Berend Jan; Slump, Cees; Spaanenburg, Lambert
2002-01-01
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a my
Recognition of Continuous Digits by Quantum Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This paper describes a new kind of neural network-Quantum Neural Network (QNN) and its application to recognition of continuous digits. QNN combines the advantages of neural modeling and fuzzy theoretic principles. Experiment results show that more than 15 percent error reduction is achieved on a speaker-independent continuous digits recognition task compared with BP networks.